
2012 Ninth International Joint Conference on Computer Science and Software Engineering (JCSSE)

Design of a GPU-styled Softcore on Field Programmable Gate Array

Nattapong Thammasan
Department of Computer Engineering

Chulalongkorn University
Bangkok 10330, THAILAND

Nattapong.Th@Student.chula.ac.th

Abstract - This work describes a softcore design of a processor in
style of Graphic Processing Units. The design is realized using

Verilog Hardware Description Language. The proposed design
has an advantage in the flexibility to scale up by adding more
processing elements to attain more speedup. The design of its
instruction set architecture is explained. A realization of four
processing elements processor is presented. It requires 268,637
equivalent gates. The maximum frequency is 117 MHz. It �s
suitable of embedded applications. In term of cycles consumed, It
compares very well to a test program running on commercial

Intel's CPU, Core2 Duo P8400.

Keywords-soltcore design; graphic processing unit; FPGA;

1. INTRODUCTION

In recent years, difficult computational problems tend to be
solved by hardware implementation to achieve high speed [1].
Another approach is to exploit parallel execution from Graphic
Processing Units (GPUs) [2]. A hardware imI?lementation,
however, is very specific and cannot be applied to other
problems. The use of GPU is much more flexi?le. The. work
reported here presents a design of parallel archItecture m the
style of Single Instruction Multiple . Da!a str�m (SI�)
architecture similar to a GPu. The desIgn IS realized on FIeld
Programmable Gate Array devices. The main purpose of this
hardware is to solve computational problems, not to run
graphic tasks like what a GPU mainly does.

The remaining sections are organized as follows. Section 2
introduces the characteristics of GPu. Section 3 describes the
proposed hardware design. Section 4 presents a synthesis result
from the design. Section 5 concludes the paper.

II. CHARACTERJSTlC OF GPU

The most important characteristic of GPU is its single
instruction multiple data model. It can execute single
instruction by multiple processing elements simultaneously. In
the task that multiple data can be performed simultaneously by
the same instruction, this kind of data parallelism can
accelerate computation and give speedups. A modern GPU has
a number of processing elements in one pipeline. Fig. 1 shows
an example of a commercial GPU.

978-1-4673-1921-8112/$31.00 ©20 12 IEEE 142

Prabhas Chongstitvatana
Department of Computer Engineering

Chulalongkorn University
Bangkok 10330, THAILAND

prabhas@chula.ac.th

--,
EvorgroCln-Fomily","ocossor

Figure I. Evergreen Family GPU Block Diagram [3]

For example, Evergreen Family GPU of AMD [3] consists
of data-parallel processor (DPP) arrays, a command processor,
a memory controller, program counters, data sharing units,
caches, and other logic. The DPP array is organized as a set of
compute unit pipelines that operate in parallel on streams of
data. The pipelines can process data or transfer data to, or from,
memory. The programs for this GPU consist of instructions
that operate on 32-bit or 64-bit IEEE floating-point values and
signed or unsigned integers. Both graphic programs and
general-computing applications use these instructions.

III. HARDWARE DESIGN

The proposed design is a 32-bit processor with no pipelined
execution. This design is based on the SIMD model of a GPu.
The hardware organization and the instruction set architecture
are described in the following subsections.

A. Hardware Organization
Fig. 2 demonstrates a system overview of the proposed

design. The processor has 32-bit data width an� 1 O-bit addr�ss
width. The degree of parallelism of hardware ImplementatIon
depends on the number of processing elements. The processi�g
elements are the most important modules that can execute baSIC
operations in parallel. Other units such as the contr�l logic and
data memory are simplified so that the whole deSIgn can be
synthesized into a compact device.

The hardware organization is shown in Fig. 2. Each major
component will be explained next.

Random Number Generator

Figure 2. Hardware Organization

Memory Controller (MemCtrl) is the module to connect
to system memory and local memory.

Program Counter (PC) is the module to indicate the
current position of program.

Command Processor is the module to memorize the
instruction fetched from a system memory. It also is connected
to the processing elements, local data shared and buffer, so that
the operand of some instructions can specify the addresses of
units of each module to operate. For example, the operand of
the instruction specifies the general purpose registers.

Buffer is the module to hold data receiving from, or
sending to, a memory controller. It consists of registers of
processing elements.

Local data share is the module to transfer data to, or from,
each processing element, where each element can exchange
their data to others. It is connected to buffer and it consists of
registers of processing elements in one pipeline.

Random is the module to generate 32-bit random numbers
for each processing element by exploiting linear feedback shift
register.

Processing Element (PE) is an element to calculate
arithmetic and logic operations. It consists of array of general
purpose registers, the result register and an accumulator
register. The hardware organization of processing element is
shown in Fig.3.

Figure 3. Hardware Organization of processing element

143

As we implement this design by using Verilog Hardware
Description Language, we can scale up this design duplicating
processing element module and connecting link into those
modules correctly. We can do this because all processing
element modules are not different form each other. In other
words, they process the same instruction given by command
processor simultaneously.

B. Instruction Set Architecture
The instruction set has a fixed length of 32 bits. Each

instruction consists of two parts: 10-bit opcode and 22-bit
operand. The instructions can be divided into four categories:
arithmetic and logic, data manipulation, control, and others
(See Table I). Fig.4 shows the example of instructions. A unary
instruction operates on general purpose registers or other
registers within the processing element. A binary instruction
needs two operands, which are depended on the addressing
mode. It can be either an immediate value or a local variable
stored in the memory.

Normally, the processor takes;

• two cycles for an instruction fetch because the
processor need to wait for memory read

• three cycles for an operand fetch those are one cycle to
send data from memory controller to command
processor, one cycle to decode addressing mode, and
one more cycle to decode instruction

• one more cycle for executing the instruction

• For some complex instructions, the execution needs one
or more cycles to complete. For example, the
instruction that needs to keep its computational result
into another general purpose register again can not do
so directly. It needs to keep it into the result register for
one cycle and send such data from the result register
into specific general purpose register for one cycle. For
store buffer instruction, the execution needs two cycle
for sending data from buffer to memory controller and
two more cycle to store data from memory controller to
system memory or local memory.

As a result, an overall performance of this design is around
6 to 7 cycles per instruction.

31

Opcode

Opcode

22 21 18 17 12 11

101010101 Rn Rm

AOO (Rd<-Rn+Rm)

101010101010101010101 Offset

DIVSI-IIFTINGSIGN Rd<-Rd» Offset

65

Rd

Rd

Opcode 1 0 1
RANOOM

Opcode 101010101010101010101010101 Addr 1 Rd

EVAL_AOO Rd<-slJl1(GPR(Addr»

Opcode

CPVMCtoBUFFER Buffer(Addr]<-Bl.U·lemCtrl

Opcode 101010101010101010101010 1 0 1 01 01 01 Rd

LOAORE9JL TtoGPR Rd< -Result

Opcode Addr 1010101010101010101010101 Rd

Opcode 101010101010101010101010 1 Destination

JUMPIFZBW PC < -D3tination if Z_flag = = 0

Figure 4 . Example of lnstructions

TABLE!. THE LIST OF THE INSTRUCTIONS OF THE PROPOSED As we compute 4x4 matrix multiplication by 4 processing
DESIGN elements, we unroll the for-loop fully so it becomes a "straight

Instruction category Instruction

ADD, SUB, MUL, DIVSHIFTINGSIGN,

Arithmetic & Logic
INC, DEC, RANDOM, COMPARE,
COMPARE_EQUAL, EVAL _ADD,
CDTADD, ADDGPRAC BOUND

CPYMDtoBUFFER, CPYBUFFERtoLDS,
CPYLDStoBUFFER, CPYLDStoGPR,

Data Manipulation
CPYPROCtoLDS, CDT _LOAD _ GPR ,

LOADRESULTtoGPR,
CPY _ SPECLDStoGPR, STRBUFFER,

CPYGPRtoLDS,

Control
JUMPIFZERO, JUMPIFNOTZERO,
JUMPIFTRUE, JUMPIFNOTTRUE

Mise NOOP

IV. MEASUREMENTS

In this section the processor is tested with three programs to
validate the correctness of the design.

To give a picture of the size and performance of the design,
it is compared to a well-known commercial soficore, Micro

Blaze [4]. The test programs are: a matrix multiplication, the
calculation of Mandelbrot set, and lastly, an application. A
compact Genetic Algorithm ([5]) is implemented to illustrate
the application.

The matrix multiplication C = AxB of two matrices A and
B is conformable, if the number of columns of A is equal to the
number of rows ofB. The ijth element ofC is given by

n

cij = L aikbkj
k=l

where, A = [aij] , B = [bij] and C = [Cij] are matrices of
appropriate dimensions.

From the study of parallel matrix multiplication, the nature
of problem is proper to be solved in parallel by assigning each
row and each column of matrix to each processor. From the
equation above, cij is assigned to one processing element to
compute the result. Fig.5 shows pseudo code of the matrix
multiplication.

procedure MatrixMultiplication(A, B)
input A, B n*n matrix
output C, n*n matrix

begin
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for(k = 0; k < n; k++)

C[i,j] = C[i,j] + A[i,k] * B[k,j]
end for

end for
end for

end MatrixMultiplication
Figure 5 . Pseudo code of matrix multiplication

144

line" code consisted of 172 instructions. We assign each
processing elements to compute each element in the result
matrix row by row. From the pseudo code, each i-th processing
elements is responsible to compute C[O,i], C[1,i], C[2,i], and

C[3,i] for n=4. Fig.6 shows straight lines code of instructions in
the part to compute C[O,i].

IdO@5 12
Id 1 @5 13
Id2@5 14
Id3 @5 15
Ids
IdrO
IdO@5 16
Id 1 @5 1 7
Id2 @5 18
Id3 @5 19
Ids
Idr 1
IdO@520
Id 1 @521
Id2@522
Id3 @523
Ids
Idr 2
IdO@524
Id 1 @525
Id2@526
Id3 @527
Ids
Idr 3 ; load vO to rO .. r3

IdO@528
Id 1 @528
Id2 @528
Id3 @528
Ids
Idr 4
IdO@529
Id 1 @529
Id2@529
Id3 @529
Ids
Idr 5
IdO @530
Id 1 @530
Id2 @530
Id3 @530
Ids
Idr 6
IdO@53 1
Id 1 @53 1
Id2@53 1
Id3 @53 1
Ids
Idr 7 ; load a row vl'to
r4 .. r7

mul804
mul9 1 5
mullO 2 6
mul 1 1 3 7
add 12 8 9
add 13 1 0 1 1
add 14 12 13 ; inner
product
str 14
buf
st@64 0 0
s t @64 1 1
st@6422
st @643 3 ; finish a row
(0)

Figure 6. straight lines code of instructions in the part to compute first row of
the result of matrix multiplication

Fig.7 shows pseudo code of the Mandelbrot set. The
number of pixels that can be computed simultaneously depends
on the number of processing elements per one pipeline. Four
processing elements are assigned to compute the color of four
pixels at the same time. As each processing element performs
the same instruction, it is impossible to get out of the loop
when the condition of one processing element is false. In other
words, all processing elements must be synchronized to
terminate.

The solution is to have each processing element performs a
fixed number of iterations and use a flag register to represent
whether it is still in the loop. This flag is used to synchronize
all processing element to terminate.

In compact Genetic Algorithm (cGA) ([5]), a probability
vector is used to represent the population. The length of the
vector is equal to the problem size. Rather than trying to
represent all of the population in one processing element that
requires a large resource. Fig.S shows pseudo code of cGA.
Each processing element is responsible for each gene of
chromosome. That is general purpose registers in each
processing element represents i-th position of probability
vector, an individual a, an individual b, and also other
necessary memory for the calculation. In the experiment, cGA
is used to solve the one-max problem, a simple problem
consisting in maximizing the number of ones of a bitstring.

For each pixel on the screen do:
{

xO = scaled x co-ordinate
interval (-2.5,1)

yO = scaled y co-ordinate
interval (-1,1)

x = 0
y = 0

iteration = 0
max iteration = 1000

of pixel

of pixel

in the

in the

while (x*x + y*y < (2*2) AND iteration <

max iteration)

xtemp = x*x - y*y + xO
y = 2*x*y + yO
x = xtemp
iteration = iteration + 1

if (x*x + y*y < (2*2))
then

color = black
else

color = iteration

plot (xO,yO,color)

Figure 7. Pseudo code of the Mandelbrot set

compact GA parameters:
n: population size.
1 : chromosome length.

for i = 1 to 1 do
p[i) = 0.5;

repeat
for i = 1 to 1 do

a[i] = (
b[i] = (

1 with probability p[i]
o otherwise

1 with probabilityp[i]
o otherwise

endfor

II Fitness calculation
fa = fitness (a)
fb = fitness (b)
for i = 1 to 1 do

if fa � fb then
if ali) = 1 and b[i) = 0 then

p [i) = min (1, P [i) + .!.)
n

if ali) = 0 and b[i) = 1 then

p[i) = max(O, p[i) - ;)

else
if ali)

p[i)
if ali)

p[i)
endif

endfor

= 1 and b[i) = 0 then

= max(O, p[i) - ;)
= 0 and b[i) = 1 then

= min (1, p[i) + .!.)
n

until each p[i) E {O,l}

Figure 8. Pseudo code of compact Genetic Algorithm

145

Table II shows the report on running three programs on the
proposed processor, and Table III shows the report on running
three programs on the proposed processor in comparison, in
term of ''number of clock cycle" used to execute the programs
(We use number of clock cycle instead of execution time
because of tremendous difference between clock frequency of
FPGA board and commercial CPU). The programs are written
in C programming language and compiled by gnu C compiler,
on Intel Core2 Duo CPU P8400 @2.26 GHz. By normalizing
the clock frequency, the proposed processor with four
processing elements can outperform C program with Intel

CPU. In case of cGA, one possible cause is the different
method of generating random number, where the hardware
method has the advantage. It suggests that the proposed
processor can be comparable with Intel CPU for some tasks,
and has potential to be improved.

TABLE II. REpORT ON RUNNING THREE PROGRAMS ON THE
PROPOSED PROCESSOR

Program Line of Static No. of cycle
code* Program executed

size (words)

4x4 matrix
82 172 1,400

multiplication
Mandelbrot Set

59 80 39,264,548
(64x64 pixel)

cGA
48 42 244,986

(256 population)
'" In Assembly Language

The design is realized on a FPGA. Using the Xilinx devices
and their synthesizer software, Design Suite, the total
equivalent gate count is 236,07l. The maximum frequency is
117 MHz. The general purpose registers consume more than
half of the resource. This indicates the area for future
optimization. The synthesis result with four processing is given
in Fig.9.

Target information:
Vendor: Xilinx
Family: Spartan3
Device: XC3 S1500 L
Speed: -4

Design Summary:
Number of Slices: 4 ,661 out of26 ,624 17%

Slice Flip Flops: 4 ,525
4 input LUTs: 12 ,625

Number of bonded lOBs: 57 out of221 25%
Number of GCLKs: 2 out of 8 25%

Total equivalent gate count for design (w/o block ram): 2 36 ,071
Additional JTAG gate count for lOBs: 2 ,7 36

Design statistics:
Minimum period: 8.522 ns
Maximum frequency: 117 MHz

Figure 9. Synthesis result for four processing elements.

The total equivalent gates needed in Micro Blaze system,
the processor and 8kbytes of block ram is 315,528 gates [6].
The Micro Blaze alone needs about 55,000 gates. In
comparison, the proposed design with I kbytes of block ram
(enough for each of the three programs) needs 268,637 gates.
In term of performance, Micro Blaze's maximum frequency is
91 MHz while the proposed design is 117 MHz.

In the aspect of scalability, Fig.l0 shows the relevance of
total equivalent gate count for design (without block ram) and
the number of processing elements in the proposed processor.
The more processing elements does the processor contain, the
higher potential of speed up of computation it can give.

TABLE III. THE COMPARISON OF NO. OF CYCLE EXECUTED
BETWEEN THE PROPOSED PROCESSOR AND C PROGRAM

Problem C Proposed Comparison
Desi2n

4x4 matrix
2,434 1,400 58%

multiplication
Mandelbrot
Set (64x64 66,896,000 39,264,548 59%

pixel)
cGA
(256 635,060 244,986 39%

population)
* Executed 10 mteger fonnat

TABLE IV. THE COMPARISON BETWEEN THE PROPOSED
PROCESSOR AND XILINX MICRO BLAZE [6]

Category Xilinx Proposed Comparison
Micro Design
Blaze

Circuit Size
(Equivalent
Gate)
Maximum
frequency
(MHz)

.

250000

200000

150000

100000

50000

o

315,528* 268,637** 85.1%

91 117 128.6%

8kbyte of Block ram IS mcluded In the eqUIvalent gate count of MIcro Blaze processor.
** lkbyte of Block ram is included in the equivalent gate count of proposed design.

236,071

2 3 4

Figure 10. Relevance of total equivalent gate count for design (w/o block ram)
and the number of processing elements in the proposed processor

146

This design is interesting because it has advantages in
parallel computing and compactness. Moreover, it is flexibility
to scale up by adding more processing elements to attain more
speedup. There is room to implement this design as IP-core of
embedded system to solve some computation problems, with
the need of low power consuming and parallel computing.

V. CONCLUSIONS

This paper presents a design of a softcore of a GPU-styled
processor. The design is potentially scalable by adding more
processing elements. The performance of the proposed design
is satisfactory. The data from the experiment shows a good
speedup when compared to test program running on a
commercial cpu. This design is suitable for embedding. In
fact, a special unit is included in the reference design to
demonstrate this flexibility. In the cGA program, a random
number generator is realized in hardware. A similar idea can
be used to specialize the design to a specific purpose.

REFERENCES

[I] Aporntewan, c.; Chongstitvatana, P.; A hardware implementation of the
Compact Genetic Algorithm, Evolutionary Computation, 2001.
Proceedings of the 2001 Congress on, vol.!, no., pp.624 -629 vol. 1,2001
doi: 10.1 109/CEC.2001.93444 9.

[2] Thontirawong P.; Burutarchanai A.; Rimcharoen S.; Chongstitvatana P.;
Running Compact Genetic Algorithm on Large Scale Problems Using
Graphics Processing Unit, In Proceedings of 26 th International Technical
Conference on Circuits/Systems, Computers and Communications (ITC­
CSCC 2011), Busan, Korea, June 19-22,2011.

[3] Advanced Micro Devices, Inc. Evergreen Family Instruction Set
Architecture, Instructions and Microcode. Reference Guide. February,
2011.

[4] Xilinx, Inc. MicroBlaze Processor Reference Guide. Available:
www.xilinx.com.

[5] Harik, G.R.; Lobo, F.G.; Goldberg, D.E.;, The compact genetic
algorithm, Evolutionary Computation, IEEE Transactions on , vol.3 , no.4 ,
pp.287-297, Nov 1999 doi: 10.1109/4235 .797971.

[6 1 Satayavibul, c.; Chongstitvatana, P.;, An embedded processor with
instruction packing, Electrical Engineering, Electronics, Computer,
Telecommunications and Information Technology (ECTI) International
Conference, Chiang Rai, Thailand, 9-12 May 2007, pp.1135 -1138.

