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Abstract - This work describes a softcore design of a processor in 
style of Graphic Processing Units. The design is realized using 

Verilog Hardware Description Language. The proposed design 
has an advantage in the flexibility to scale up by adding more 
processing elements to attain more speedup. The design of its 
instruction set architecture is explained. A realization of four 
processing elements processor is presented. It requires 268,637 
equivalent gates. The maximum frequency is 117 MHz. It �s 
suitable of embedded applications. In term of cycles consumed, It 
compares very well to a test program running on commercial 

Intel's CPU, Core2 Duo P8400. 
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1. INTRODUCTION 

In recent years, difficult computational problems tend to be 
solved by hardware implementation to achieve high speed [1]. 
Another approach is to exploit parallel execution from Graphic 
Processing Units (GPUs) [2]. A hardware imI?lementation, 
however, is very specific and cannot be applied to other 
problems. The use of GPU is much more flexi?le. The. work 
reported here presents a design of parallel archItecture m the 
style of Single Instruction Multiple . Da!a str�m (SI�) 
architecture similar to a GPu. The desIgn IS realized on FIeld 
Programmable Gate Array devices. The main purpose of this 
hardware is to solve computational problems, not to run 
graphic tasks like what a GPU mainly does. 

The remaining sections are organized as follows. Section 2 
introduces the characteristics of GPu. Section 3 describes the 
proposed hardware design. Section 4 presents a synthesis result 
from the design. Section 5 concludes the paper. 

II. CHARACTERJSTlC OF GPU 

The most important characteristic of GPU is its single 
instruction multiple data model. It can execute single 
instruction by multiple processing elements simultaneously. In 
the task that multiple data can be performed simultaneously by 
the same instruction, this kind of data parallelism can 
accelerate computation and give speedups. A modern GPU has 
a number of processing elements in one pipeline. Fig. 1 shows 
an example of a commercial GPU. 
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Figure I. Evergreen Family GPU Block Diagram [3 ] 

For example, Evergreen Family GPU of AMD [3] consists 
of data-parallel processor (DPP) arrays, a command processor, 
a memory controller, program counters, data sharing units, 
caches, and other logic. The DPP array is organized as a set of 
compute unit pipelines that operate in parallel on streams of 
data. The pipelines can process data or transfer data to, or from, 
memory. The programs for this GPU consist of instructions 
that operate on 32-bit or 64-bit IEEE floating-point values and 
signed or unsigned integers. Both graphic programs and 
general-computing applications use these instructions. 

III. HARDWARE DESIGN 

The proposed design is a 32-bit processor with no pipelined 
execution. This design is based on the SIMD model of a GPu. 
The hardware organization and the instruction set architecture 
are described in the following subsections. 

A. Hardware Organization 
Fig. 2 demonstrates a system overview of the proposed 

design. The processor has 32-bit data width an� 1 O-bit addr�ss 
width. The degree of parallelism of hardware ImplementatIon 
depends on the number of processing elements. The processi�g 
elements are the most important modules that can execute baSIC 
operations in parallel. Other units such as the contr�l logic and 
data memory are simplified so that the whole deSIgn can be 
synthesized into a compact device. 

The hardware organization is shown in Fig. 2. Each major 
component will be explained next. 



Random Number Generator 

Figure 2. Hardware Organization 

Memory Controller (MemCtrl) is the module to connect 
to system memory and local memory. 

Program Counter (PC) is the module to indicate the 
current position of program. 

Command Processor is the module to memorize the 
instruction fetched from a system memory. It also is connected 
to the processing elements, local data shared and buffer, so that 
the operand of some instructions can specify the addresses of 
units of each module to operate. For example, the operand of 
the instruction specifies the general purpose registers. 

Buffer is the module to hold data receiving from, or 
sending to, a memory controller. It consists of registers of 
processing elements. 

Local data share is the module to transfer data to, or from, 
each processing element, where each element can exchange 
their data to others. It is connected to buffer and it consists of 
registers of processing elements in one pipeline. 

Random is the module to generate 32-bit random numbers 
for each processing element by exploiting linear feedback shift 
register. 

Processing Element (PE) is an element to calculate 
arithmetic and logic operations. It consists of array of general 
purpose registers, the result register and an accumulator 
register. The hardware organization of processing element is 
shown in Fig.3. 

Figure 3. Hardware Organization of processing element 

143 

As we implement this design by using Verilog Hardware 
Description Language, we can scale up this design duplicating 
processing element module and connecting link into those 
modules correctly. We can do this because all processing 
element modules are not different form each other. In other 
words, they process the same instruction given by command 
processor simultaneously. 

B. Instruction Set Architecture 
The instruction set has a fixed length of 32 bits. Each 

instruction consists of two parts: 10-bit opcode and 22-bit 
operand. The instructions can be divided into four categories: 
arithmetic and logic, data manipulation, control, and others 
(See Table I). Fig.4 shows the example of instructions. A unary 
instruction operates on general purpose registers or other 
registers within the processing element. A binary instruction 
needs two operands, which are depended on the addressing 
mode. It can be either an immediate value or a local variable 
stored in the memory. 

Normally, the processor takes; 

• two cycles for an instruction fetch because the 
processor need to wait for memory read 

• three cycles for an operand fetch those are one cycle to 
send data from memory controller to command 
processor, one cycle to decode addressing mode, and 
one more cycle to decode instruction 

• one more cycle for executing the instruction 

• For some complex instructions, the execution needs one 
or more cycles to complete. For example, the 
instruction that needs to keep its computational result 
into another general purpose register again can not do 
so directly. It needs to keep it into the result register for 
one cycle and send such data from the result register 
into specific general purpose register for one cycle. For 
store buffer instruction, the execution needs two cycle 
for sending data from buffer to memory controller and 
two more cycle to store data from memory controller to 
system memory or local memory. 

As a result, an overall performance of this design is around 
6 to 7 cycles per instruction. 

31 

Opcode 

Opcode 

22 21 18 17 12 11 

101010101 Rn Rm 

AOO (Rd<-Rn+Rm) 

101010101010101010101 Offset 

DIVSI-IIFTINGSIGN Rd<-Rd» Offset 

65 

Rd 

Rd 

Opcode 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
RANOOM 

Opcode 101010101010101010101010101 Addr 1 Rd 

EVAL_AOO Rd<-slJl1(GPR(Addr» 

Opcode 

CPVMCtoBUFFER Buffer(Addr]<-Bl.U·lemCtrl 

Opcode 101010101010101010101010 1 0 1 01 01 01 Rd 

LOAORE9JL TtoGPR Rd< -Result 

Opcode Addr 1010101010101010101010101 Rd 

Opcode 101010101010101010101010 1 Destination 

JUMPIFZBW PC < -D3tination if Z_flag = = 0 

Figure 4 .  Example of lnstructions 



TABLE!. THE LIST OF THE INSTRUCTIONS OF THE PROPOSED As we compute 4x4 matrix multiplication by 4 processing 
DESIGN elements, we unroll the for-loop fully so it becomes a "straight 

Instruction category Instruction 

ADD, SUB, MUL, DIVSHIFTINGSIGN, 

Arithmetic & Logic 
INC, DEC, RANDOM, COMPARE, 
COMPARE_EQUAL, EVAL _ADD, 
CDTADD, ADDGPRAC BOUND 

CPYMDtoBUFFER, CPYBUFFERtoLDS, 
CPYLDStoBUFFER, CPYLDStoGPR, 

Data Manipulation 
CPYPROCtoLDS, CDT _LOAD _ GPR , 

LOADRESULTtoGPR, 
CPY _ SPECLDStoGPR, STRBUFFER, 

CPYGPRtoLDS, 

Control 
JUMPIFZERO, JUMPIFNOTZERO, 
JUMPIFTRUE, JUMPIFNOTTRUE 

Mise NOOP 

IV. MEASUREMENTS 

In this section the processor is tested with three programs to 
validate the correctness of the design. 

To give a picture of the size and performance of the design, 
it is compared to a well-known commercial soficore, Micro 

Blaze [4]. The test programs are: a matrix multiplication, the 
calculation of Mandelbrot set, and lastly, an application. A 
compact Genetic Algorithm ([5]) is implemented to illustrate 
the application. 

The matrix multiplication C = AxB of two matrices A and 
B is conformable, if the number of columns of A is equal to the 
number of rows ofB. The ijth element ofC is given by 

n 

cij = L aikbkj 
k=l 

where, A = [aij] , B = [bij] and C = [Cij] are matrices of 
appropriate dimensions. 

From the study of parallel matrix multiplication, the nature 
of problem is proper to be solved in parallel by assigning each 
row and each column of matrix to each processor. From the 
equation above, cij is assigned to one processing element to 
compute the result. Fig.5 shows pseudo code of the matrix 
multiplication. 

procedure MatrixMultiplication(A, B) 
input A, B n*n matrix 
output C, n*n matrix 

begin 
for ( i = 0; i < n; i++) 

for ( j = 0; j < n; j++) 
for( k = 0; k < n; k++) 

C[i,j] = C[i,j] + A[i,k] * B[k,j] 
end for 

end for 
end for 

end MatrixMultiplication 
Figure 5 .  Pseudo code of matrix multiplication 
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line" code consisted of 172 instructions. We assign each 
processing elements to compute each element in the result 
matrix row by row. From the pseudo code, each i-th processing 
elements is responsible to compute C[O,i], C[1,i], C[2,i], and 

C[3,i] for n=4. Fig.6 shows straight lines code of instructions in 
the part to compute C[O,i]. 

IdO@5 12 
Id 1 @5 13 
Id2@5 14 
Id3 @5 15 
Ids 
IdrO 
IdO@5 16 
Id 1 @5 1 7  
Id2 @5 18 
Id3 @5 19 
Ids 
Idr 1 
IdO@520 
Id 1 @521  
Id2@522 
Id3 @523 
Ids 
Idr 2 
IdO@524 
Id 1 @525 
Id2@526 
Id3 @527 
Ids 
Idr 3 ; load vO to rO .. r3 

IdO@528 
Id 1 @528 
Id2 @528 
Id3 @528 
Ids 
Idr 4 
IdO@529 
Id 1 @529 
Id2@529 
Id3 @529 
Ids 
Idr 5 
IdO @530 
Id 1 @530 
Id2 @530 
Id3 @530 
Ids 
Idr 6 
IdO@53 1 
Id 1 @53 1 
Id2@53 1  
Id3 @53 1 
Ids 
Idr 7 ;  load a row vl'to 
r4 .. r7 

mul804 
mul9 1 5  
mullO 2 6 
mul 1 1  3 7  
add 12 8 9 
add 13 1 0  1 1  
add 14 12 13 ; inner 
product 
str 14 
buf 
st@64 0 0  
s t  @64 1 1 
st@6422 
st @643 3 ; finish a row 
(0) 

Figure 6. straight lines code of instructions in the part to compute first row of 
the result of matrix multiplication 

Fig.7 shows pseudo code of the Mandelbrot set. The 
number of pixels that can be computed simultaneously depends 
on the number of processing elements per one pipeline. Four 
processing elements are assigned to compute the color of four 
pixels at the same time. As each processing element performs 
the same instruction, it is impossible to get out of the loop 
when the condition of one processing element is false. In other 
words, all processing elements must be synchronized to 
terminate. 

The solution is to have each processing element performs a 
fixed number of iterations and use a flag register to represent 
whether it is still in the loop. This flag is used to synchronize 
all processing element to terminate. 

In compact Genetic Algorithm (cGA) ([5]), a probability 
vector is used to represent the population. The length of the 
vector is equal to the problem size. Rather than trying to 
represent all of the population in one processing element that 
requires a large resource. Fig.S shows pseudo code of cGA. 
Each processing element is responsible for each gene of 
chromosome. That is general purpose registers in each 
processing element represents i-th position of probability 
vector, an individual a, an individual b, and also other 
necessary memory for the calculation. In the experiment, cGA 
is used to solve the one-max problem, a simple problem 
consisting in maximizing the number of ones of a bitstring. 



For each pixel on the screen do: 
{ 

xO = scaled x co-ordinate 
interval (-2.5,1) 

yO = scaled y co-ordinate 
interval (-1,1) 

x = 0 
y = 0 

iteration = 0 
max iteration = 1000 

of pixel 

of pixel 

in the 

in the 

while ( x*x + y*y < (2*2) AND iteration < 

max iteration ) 

xtemp = x*x - y*y + xO 
y = 2*x*y + yO 
x = xtemp 
iteration = iteration + 1 

if ( x*x + y*y < (2*2) ) 
then 

color = black 
else 

color = iteration 

plot (xO,yO,color) 

Figure 7. Pseudo code of the Mandelbrot set 

compact GA parameters: 
n: population size. 
1 :  chromosome length. 

for i = 1 to 1 do 
p[i) = 0.5; 

repeat 
for i = 1 to 1 do 

a[i] = ( 
b[i] = ( 

1 with probability p[i] 
o otherwise 

1 with probabilityp[i] 
o otherwise 

endfor 

II Fitness calculation 
fa = fitness (a) 
fb = fitness (b) 
for i = 1 to 1 do 

if fa � fb then 
if ali) = 1 and b[i) = 0 then 

p [ i) = min (1, P [i) + .!.) 
n 

if ali) = 0 and b[i) = 1 then 

p[i) = max(O, p[i) - ;) 

else 
if ali) 

p[i) 
if ali) 

p[i) 
endif 

endfor 

= 1 and b[i) = 0 then 

= max(O, p[i) - ;) 
= 0 and b[i) = 1 then 

= min (1, p[i) + .!.) 
n 

until each p[i) E {O,l} 

Figure 8. Pseudo code of compact Genetic Algorithm 

145 

Table II shows the report on running three programs on the 
proposed processor, and Table III shows the report on running 
three programs on the proposed processor in comparison, in 
term of ''number of clock cycle" used to execute the programs 
(We use number of clock cycle instead of execution time 
because of tremendous difference between clock frequency of 
FPGA board and commercial CPU). The programs are written 
in C programming language and compiled by gnu C compiler, 
on Intel Core2 Duo CPU P8400 @2.26 GHz. By normalizing 
the clock frequency, the proposed processor with four 
processing elements can outperform C program with Intel 

CPU. In case of cGA, one possible cause is the different 
method of generating random number, where the hardware 
method has the advantage. It suggests that the proposed 
processor can be comparable with Intel CPU for some tasks, 
and has potential to be improved. 

TABLE II. REpORT ON RUNNING THREE PROGRAMS ON THE 
PROPOSED PROCESSOR 

Program Line of Static No. of cycle 
code* Program executed 

size (words) 

4x4 matrix 
82 172 1,400 

multiplication 
Mandelbrot Set 

59 80 39,264,548 
(64x64 pixel) 

cGA 
48 42 244,986 

(256 population) 
'" In Assembly Language 

The design is realized on a FPGA. Using the Xilinx devices 
and their synthesizer software, Design Suite, the total 
equivalent gate count is 236,07l. The maximum frequency is 
117 MHz. The general purpose registers consume more than 
half of the resource. This indicates the area for future 
optimization. The synthesis result with four processing is given 
in Fig.9. 

Target information: 
Vendor: Xilinx 
Family: Spartan3 
Device: XC3 S1500 L 
Speed: -4 

Design Summary: 
Number of Slices: 4 ,661 out of26 ,624 17% 

Slice Flip Flops: 4 ,525 
4 input LUTs: 12 ,625 

Number of bonded lOBs: 57 out of221 25% 
Number of GCLKs: 2 out of 8 25% 

Total equivalent gate count for design (w/o block ram): 2 36 ,071 
Additional JTAG gate count for lOBs: 2 ,7 36 

Design statistics: 
Minimum period: 8.522 ns 
Maximum frequency: 117 MHz 

Figure 9. Synthesis result for four processing elements. 



The total equivalent gates needed in Micro Blaze system, 
the processor and 8kbytes of block ram is 315,528 gates [6]. 
The Micro Blaze alone needs about 55,000 gates. In 
comparison, the proposed design with I kbytes of block ram 
(enough for each of the three programs) needs 268,637 gates. 
In term of performance, Micro Blaze's maximum frequency is 
91 MHz while the proposed design is 117 MHz. 

In the aspect of scalability, Fig.l0 shows the relevance of 
total equivalent gate count for design (without block ram) and 
the number of processing elements in the proposed processor. 
The more processing elements does the processor contain, the 
higher potential of speed up of computation it can give. 

TABLE III. THE COMPARISON OF NO. OF CYCLE EXECUTED 
BETWEEN THE PROPOSED PROCESSOR AND C PROGRAM 

Problem C Proposed Comparison 
Desi2n 

4x4 matrix 
2,434 1,400 58% 

multiplication 
Mandelbrot 
Set (64x64 66,896,000 39,264,548 59% 

pixel) 
cGA 
(256 635,060 244,986 39% 

population) 
* Executed 10 mteger fonnat 

TABLE IV. THE COMPARISON BETWEEN THE PROPOSED 
PROCESSOR AND XILINX MICRO BLAZE [6 ] 

Category Xilinx Proposed Comparison 
Micro Design 
Blaze 

Circuit Size 
(Equivalent 
Gate) 
Maximum 
frequency 
(MHz) 

. 

250000 

200000 

150000 

100000 

50000 

o 

315,528* 268,637** 85.1% 

91 117 128.6% 

8kbyte of Block ram IS mcluded In the eqUIvalent gate count of MIcro Blaze processor. 
** lkbyte of Block ram is included in the equivalent gate count of proposed design. 

236,071 

2 3 4 

Figure 10. Relevance of total equivalent gate count for design (w/o block ram) 
and the number of processing elements in the proposed processor 
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This design is interesting because it has advantages in 
parallel computing and compactness. Moreover, it is flexibility 
to scale up by adding more processing elements to attain more 
speedup. There is room to implement this design as IP-core of 
embedded system to solve some computation problems, with 
the need of low power consuming and parallel computing. 

V. CONCLUSIONS 

This paper presents a design of a softcore of a GPU-styled 
processor. The design is potentially scalable by adding more 
processing elements. The performance of the proposed design 
is satisfactory. The data from the experiment shows a good 
speedup when compared to test program running on a 
commercial cpu. This design is suitable for embedding. In 
fact, a special unit is included in the reference design to 
demonstrate this flexibility. In the cGA program, a random 
number generator is realized in hardware. A similar idea can 
be used to specialize the design to a specific purpose. 
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