
Reduced Instruction Set Computer 
Architecture 

Since the earliest days of the computer era, the general trend in 
computer architecture and organization has been toward increas- 
ing CPU complexity: larger instruction sets, more addressing 
modes, more specialized registers, and the like. However, in the 
past several years, there has been increasing interest in an innova- 
tive approach to computer architecture: the reduced instruction 
set computer (RISC). The intended performance benefits of RISC, 
compared to a more conventional approach, include more effec- 
tive compilers, no use of microcode, more effective pipelining, and 
improved response to interrupts. Key characteristics of the RlSC 
approach include: a limited and simple instruction set; the use of 
eithera large number of registers (hundreds) or an Optimizing com- 
piler, to maximize the use of registers and minimize references to 
main memory; an emphasis on optimizing the instruction execu- 
tion pipeline. 

This paper presents a tutorial on the RlSC approach and high- 
lights the key design issues involved in RlSC architecture. We begin 
by looking at the results of a number of studies on the instruction 
execution characteristics of compiled high-level language pro- 
grams. The results of these studies inspired the RlSC movement. 
The paper then summarizes approaches to three key RlSC design 
issues: optimized register usage, reduced instruction sets, and 
pipelining. As examples, an experimental system, the Berkeley 
RISC, and a commercial system, the MIPS R2000, are presented. 
The paper closes with a discussion of the RlSC versus CISC (com- 
plex instruction set computer) controversy. 

I .  INTRODUCTION 

Since the development of the stored-program computer 
around 1950, there have been remarkably few true inno- 
vations in the areas of computer organization and archi- 
tecture. One of the most interesting and, potentially, one 
of the most important innovations i s  the reduced instruc- 
tion set computer (RISC). The RlSC architecture is a dra- 
matic departure from the historical trend in CPU architec- 
ture and challenges the conventional wisdom expressed in 
words and deeds by most computer architects. An analysis 
of the RlSC architecture brings into focus many of the 
important issues in computer organization and architec- 
ture. 

Most of the work has been on experimental systems, but 
commercial RlSC systems have begun to appear [1]-[12]. 
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Recently, both IBM (with its RT PC) and Hewlett-Packard 
(with its900series) have introduced machinesthat have both 
RlSC and conventional characteristics [13], [14]. Although 
RlSC systems have been defined and designed in a variety 
of ways by different groups, the key elements shared by 
most (not all) designs are these: 

a limited and simple instruction set; 
the use of either a hardware or compiler strategy to 
maximizethe useof registersand minimize references 
to main memory; - am emphasis on optimizing the instruction execution 
pipeline. 

This paper surveys key design issues relating to RlSC 
architecture. To begin, we present a brief survey of some 
results on instruction sets that inspired much of the RlSC 
work. 

II. INSTRUCTION EXECUTION CHARACTERISTICS 

Oneof the mostvisible formsof evolution associated with 
computers is that of programming languages. As the cost 
of hardware has dropped, the relative cost of software has 
risen. Along with that, a chronic shortage of programmers 
has driven up software costs in absolute terms. Thus the 
major cost in the life cycle of a system is  software, not hard- 
ware. Adding to ihe cost, and to the inconvenience, i s  the 
element of unreliability: It i s  common for programs, both 
system and application, to continue to exhibit new bugs 
after years of operation. 

The response from researchers and industry has been to 
develop ever more powerful and complex high-level pro- 
gramming languages (compare Fortran to Ada). These high- 
level languages (HLL) allow the programmer to express 
algorithms more concisely, take care of much of the detail, 
and often support naturally the use of structured program- 
ming. 

Alas, this solution gave rise to another problem, known 
as the semanticgap, the difference between the operations 
provided in HLLs and those provided in computer archi- 
tecture. Symptoms of this gap are alleged to include exe- 
cution inefficiency, excessive program size, and compiler 
complexity. Designers responded with architectures 
intended to close this gap. Key features include large 
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instruction sets, dozens of addressing modes, and various 
HLL statements implemented in hardware. An example of 
the latter is the CASE machine instruction on the VAX-11. 
Such complex instruction sets are intended to 

ease the task of the compiler writer; 
improve execution efficiency, since complex 
sequences of operations can be implemented in 
microcode; 
provide support for even more complex and sophis- 
ticated HLLs. 

Meanwhile,a numberof studies have been doneoverthe 
years to determine the characteristics and patterns of exe- 
cution of machine instructions generated from HLL pro- 
grams. The results of these studies inspired some research- 
ers to look for an altogether differerlt approach: namely, to 
make the architecture that supports the HLL simpler, rather 
than more complex. 

So, to understand the line of reasoning of the RlSC advo- 
cates, we begin with a brief review of instruction execution 
characteristics. The aspects of computation of interest are 

Operations Performed:These determine the functions 
to be performed by the CPU and i t s  interaction with mem- 
ory. 

Operands Used: The types of operands and the fre- 
quency of their use determine the memory organization for 
storing them and the addressing modes for accessing them. 

€xecution Sequencing: This determines the control 
and pipeline organization. 

In the remainder of this section, we summarize the results 
of a number of studies of high-level language programs. All 
of the results are based on dynamic measurements [15].That 
is, measurements are collected by executing the program 
and counting the number of times some feature has 
appeared or a particular property has held true. In contrast, 
static measurements merely perform these counts on the 
source text of a program. They give no useful information 
on performance, because they are not weighted relative to 
the number of times each statement is executed. 

The remainder seldom had more than one operator. Tanen- 
baum [ I 7  published measurements of HLL constructs, col- 
lected from over 300 procedures used in operating-system 
programs and written in a language that supports struc- 
tured programming (SAL). Patterson and Sequin [18], two 
of the key figures in the Berkeley RlSC project, analyzed a 
set of measurements taken in the early stages of the RlSC 
effort. Measurements were collected from compilers and 
from programs for typesetting, CAD, sorting, and file com- 
parison. The programming languages C and Pascal were 
studied. Huck [I91 analyzed four programs intended to rep- 
resent a mix of general-purpose and scientific computing, 
including fast Fourier transform and integration of systems 
of differential equations. 

There is  quite good agreement in the results of this mix- 
ture of languages and applications. Assignment statements 
predominate, suggesting that the simple movement of data 
isof high importance.There isalsoa preponderanceof con- 
ditional statements (IF, LOOP). These statements are imple- 
mented in machine language with some sort of compare 
and branch instruction. This suggests that the sequence 
control mechanism of the instruction set is important. 

These results are instructive to the machine instruction 
set designer, indicating which types of statements occur 
most often and therefore should be supported in an "opti- 
mal" fashion. However, these results do not reveal which 
statements use the most time in the execution of a typical 
program. That is, given a compiled machine language pro- 
gram, which statements in the source language cause the 
execution of the most machine-language instructions? 

To get at this underlying phenomenon, the Patterson pro- 
grams [I81 were compiled on the VAX, PDP-11, and Motor- 
ola MOO0 to determine the average number of machine 
instructions and memory references per statement type. By 
multiplying the frequency of Occurrence of each statement 
type by these averages, Table 2 is obtained. Columns 2 and 

Table 2 Weighted Relative Dynamic Frequency of all 
ODerations 

A. Operations 

A variety of studies have been made to analyze the behav- 
ior of HLL programs. Table 1 includes key results from the 
following studies. The earliest study of programming lan- 

Table 1 Relative Dynamic Frequency of High-Level 
Language Operations 

Study [I 91 [I 61 [I81 [I81 [I71 
Language Pascal Fortran Pascal C SAL 
Workload Scientific Student System System System 

Machine- Memory 
Dynamic Instruction Reference 

Occu rence Weighted Weighted 

Pascal C Pascal C Pascal C 

ASSIGN 45 38 13 13 14 15 
LOOP 5 3 42 32 33 26 
CALL 15 12 31 33 44 45 
IF 29 43 11 21 7 13 
COT0 3 
Other 6 1 3 1 2 1 

Source: [18] 

ASSIGN 74 67 45 38 42 
LOOP 4 3 5 3 4 
CALL 1 3 15 12 12 
IF 20 11 29 43 36 
GOT0 2 9 3 
Other 7 6 1 6 

guage, performed by Knuth [I61 examined a collection of 
Fortran programs used as student exercises. Dynamic mea- 
surements showed that two-thirds of all statements were 
assignment and, of these one-third were of the type A = B. 

3 provide surrogate measures of the actual time spent exe- 
cuting the various statement types. The results suggest that 
the procedurecalllreturn is  the most time-consuming oper- 
ation in typical HLL programs. 

The reader should be clear on the significance of Table 
2. This table indicates the relative significance of various 
statement types in an HLL, when that HLL is  compiled for 
a typical contemporary instruction set architecture. Some 
other architecture could conceivably produce different 
results. However, this study produces results that are rep- 
resentative for contemporary complex instruction set com- 
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puter (CISC) architectures. Thus they can provideguidance 
to those looking for more efficient ways to support HLLs. 

B. Operands 

Much lesswork has been doneon theoccurrenceof types 
of operands, despite the importance of this topic. There are 
several aspects that are significant. 

The Patterson study already referenced [I81 also looked 
at the dynamic frequency of occurrence of classes of vari- 
ables (Table 3). The results, consistent between Pascal and 

Table 3 Dynamic Percentage of Operands 

Pascal C Average 

Integer constant 16 23 20 
Scalar Variable 58 53 55 
Arrayktructure 26 24 25 

C programs, show that the majorityof references are to sim- 
ple scalar variables. Further, over 80 percent of the scalars 
were local (to the procedure) variables. In addition, ref- 
erences to arraydstructures require a previous reference 
to their index or pointer, which again i s  usually a local sca- 
lar. Thus there i s  a preponderance of references to scalars, 
and these are highly localized. 

The Patterson study examined the dynamic behavior of 
HLL programs, independent of the underlying architecture. 
As discussed earlier, it i s  necessary todeal with actual archi- 
tectures to examine program behavior more deeply. One 
study, [20], examined DEC-10 instructions dynamically and 
found that each instruction on the average references 0.5 
operands in memory and 1.4 registers. Similar results are 
reported in [I91 for C, Pascal, and Fortran programs on 
S/370, PDP-11, and VAX-11. Of course, these figures depend 
highly on both the architecture and the compiler, but they 
do illustrate the frequency of operand accessing. 

These latter studies suggest the importance of an archi- 
tecture that lends itself to fast operand accessing, since this 
operation is performed so frequently. The Patterson study 
suggests that a prime candidate for optimization is the 
mechanism for storing and accessing local scalar variables. 

C. Procedure Calls 

We have seen that procedure calls and returns are an 
important aspect of HLL programs. The evidence (Table 2) 

Time 

suggests that these are the most time-consuming opera- 
tions in the compiled HLL programs. Thus it will be prof- 
itable to consider ways of implementing these operations 
efficiently. Two aspects are significant: the number of 
parameters and variables that a procedure deals with, and 
the depth of nesting. 

In Tanenbaum‘s study [Iq, he found that 98 percent of 
dynamically called procedures were passed fewer than six 
arguments, and that 92 percent of them used fewer than six 
local scalar variables. Similar results were reported by the 
Berkeley RlSC team [21], as shown in Table 4. These results 

Table 4 Procedure Arguments and Local Scalar Variables 

Percentage of Executed 
Procedure Calls with 

Compiler, Small 
Interpreter and Nonnumeric 

Typesetter Programs 
(percent) (percent) 

> 3 arguments 
> 5 arguments 
> 8 words of arguments 

> 12 words of arguments 
and local scalars 

and local scalars 

0-7 0-5 
0-3 0 

1-20 

1-6 

0-6 

0-3 

show that the number of words required per procedure 
activation i s  not large. The studies reported earlier indi- 
cated that a high proportion of operand references are to 
local scalar variables. The studies just mentioned show that 
those references are, in fact, confined to relatively few vari- 
ables. 

The same Berkeley group also looked at the pattern of 
procedure calls and returns in HLL programs. They found 
that it i s  rare to have a long uninterrupted sequence of pro- 
cedure calls followed by the corresponding sequence of 
returns. Rather, they found that a program remains con- 
fined to a rather narrow window of procedure-invocation 
depth. This is illustrated in Fig. 1 [22]. The graph illustrates 
call-return behavior. Each call is represented by the line 
moving down to the right, and each return by the line mov- 
ing up and to the right. In the figure, a window with depth 
equal to 5 i s  defined. Only a sequence of calls and returns 
with a net movement of 6 in either direction causes thewin- 
dow to move. As can be seen, the executing program can 
remain within this window for quite long periods of time. 
The Berkeley results (for C and Pascal) showed that a win- 
dow of depth 8 will need to shift only on less than 1 percent 

(in Units of CallsiRetums) 

~ 
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Fig. 1. The 

Nesting 
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call-return behavior of programs. 
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of the calls or returns [23]. These results also suggest that 
operand references are highly localized. 

D. Implications 

A number of groups have looked at results such as those 
just reported and have concluded that the attempt to make 
the instruction set architecture close to HLLs is  not the most 
effective design strategy. Rather, the HLLs can best be sup- 
ported by optimizing performance of the most time-con- 
suming features of typical HLL programs. 

Generalizing from the work of a number of researchers, 
three elements emerge that, by and large, characterized 
RlSC architectures. First, use a large number of registers. 
This i s  intended tooptimizeoperand referencing.The stud- 
ies just discussed showthat thereare several references per 
HLL instruction, and that there is  a high proportion of move 
(assignment) statements. This, coupled with the locality and 
predominance of scalar references, suggests that perfor- 
mance can be improved by reducing memory references 
at the expense of more register references. Because of the 
locality of these references, an expanded register set seems 
practical. 

Second, careful attention needs to be paid to the design 
of instruction pipelines. Because of the high proportion of 
conditional branch and procedure call instructions, a 
straightforward instruction pipeline will be inefficient. This 
manifests itself as a high proportion of instructions that are 
pre-fetched but never executed. 

Finally, a simplified (reduced) instruction set is indicated. 
This point is not asobviousas theothers, but should become 
clearer in the ensuing discussion. In addition, we will see 
that the desire to implement an entire CPU on a single chip 
leads to a reduced instruction set solution. 

Ill. OPTIMIZED REGISTER USAGE 

The results summarized above point out the desirability 
of quick access to operands that are referenced frequently. 
We have seen that there is  a large proportion of assignment 
statements in HLL programs, and many of these are of the 
simple form A = B. Also, there are a significant number of 
operand accesses per HLL statement. If we couple these 
results with the fact that most accesses are to local scalars, 
heavy reliance on register storage is  suggested. 

The reason that register storage is  indicated is that it is 
the fastest available storage device, faster than both main 
memory and cache. The register file is physically small, gen- 
erally on the same chip as the ALU and control unit, and 
employs much shorter addresses than addresses for cache 
and memory. Thus a strategy is needed that will allow the 
most frequently accessed operands to be kept in registers 
and to minimize register-memory operations. 

Two basic approaches are possible, one based on soft- 
ware and the other on hardware. The software approach is  
to rely on the compiler to maximize register usage. The 
compiler will attempt to allocate registers to those variables 
that will be used the most in a given time period. This 
approach requires the use of sophisticated program-anal- 
ysis algorithms. The hardware approach is  simply to use 
more registers so that more variables can be held in reg- 
isters for longer periods of time. This section presents both 
approaches. 

To provide some context for this section, the following 
subsections discuss design issues related to CPU registers. 

A. Registers 

To understand the role of registers in the CPU, let us con- 
sider the requirements placed on the CPU, the things that 
it must do: 

Fetch instructions: The CPU must read instructions 
from memory. 

lnterpret instructions: The instruction must be 
decoded to determine what action is required. 

Fetch data:The execution of an instruction may require 
reading data from memory or an IIO module. 

Process data: The execution of an instruction may 
require performing some arithmetic or logical operation on 
data. 

Write data: The results of an execution may require 
writing data to memory or an 110 module. 

To be able to do these things, it should be clear that the 
CPU needs to temporarily store some data. The CPU must 
remember the location of the last instruction so that it can 
know where to get the next instruction. It needs to store 
instructions and data temporarily while an instruction is 
being executed. In other words, the CPU needs a small 
internal memory. This memory consists of a set of high- 
speed registers. The registers in the CPU serve two func- 
tions: 

User-visible registers: These enable the machine- or 
assembly-language programmer to minimize main-mem- 
ory references by optimizing use of registers. 

Control and status registers: These are used by the 
control unit to control theoperation of the CPU and by priv- 
ileged, operating system programs to control the execution 
of programs. 

There is  no clean separation of registers into these two 
categories. For example, on some machines the program 
counter is  user-visible (e.g., VAX-11 architecture), but on 
many it is not. For purposes of the following discussion, 
however, we will use these categories. 

B. User-Visible Registers 

A user-visible register is  one which may be referenced by 
means of the machine language that the CPU executes. Vir- 
tually all contemporary CPU designs provide for a number 
of user-visible registers, as opposed to a single accumu- 
lator. We can characterize these in the following categories: 

General Purpose 
Data 
Address 
Condition Codes. 

General-purpose registers can be assigned to a variety of 
functions by the programmer. Sometimes, their use within 
the instruction set is  orthogonal to the operation; that is, 
any general-purpose register can contain the operand for 
any opcode. This provides true general-purpose register 
use. Often, however, there are restrictions. For example, 
there may be dedicated registers for floating-point oper- 
ations. 

In some cases, general-purpose registers cap be used for 
addressing functions (e.g., register indirect, displacement). 
In other cases, there is a partial or clean separation between 
data registers and address registers. Data registers may only 
be used to hold data and cannot be employed in the cal- 
culation of an operand address. Address registers may 
themselves be somewhat general-purpose, or they may be 
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devoted to a particular addressing mode. Examples of reg- 
isters are as follows: 

Segment pointers: In a machine with segmented 
addressing, a segment register holds the address of the base 
of the segment. There may be multiple registers, for exam- 
ple, one for the operating system and one for the current 
process. 

Index registers: These are used for indexed address- 
ing, and may be autoindexed. 

Stack pointer: If there i s  user-visible stack addressing, 
then typically the stack i s  in memory and there i s  a dedi- 
cated register that points to the top of the stack. This allows 
implicit addressing; that is, push, pop, and other stack 
instructions need not contain an explicit stack operand. 

There are several design issues to be addressed here. An 
important one is  whether to use completely general-pur- 
pose registers or to specialize their use. With the use of spe- 
cialized registers, it can generally be implicit in the opcode 
which type of register a certain operand specifier refers to. 
The operand specifier must only identify one of a set of spe- 
cialized registers rather than one out of all the registers, 
thus saving bits. On the other hand, this specialization lim- 
its the programmer’s flexibility. There is no final and best 
solution to this design issue, but, the trend seems to be 
toward the use of specialized registers. 

Another design issue is  the number of registers, either 
general-purpose or data-plus-address, to be provided. 
Again, this affects instruction set design since more reg- 
isters require more operand specifier bits. Somewhere 
between 8 and 32 registers appears optimum [20]. Fewer 
registers result in more memory references; more registers 
do not noticeably reduce memory references. However, a 
new approach, which finds advantage in the use of 
hundreds of registers, is exhibited in some RlSC systems. 

Finally, there i s  the issue of register length. Registers that 
must hold addresses obviously must be at least long enough 
to hold the largest address. Data registers should be able 
to hold values of most data types. Some machines allow two 
contiguous registers to be used as one for holding double- 
length values. 

A final category of registers, which i s  at least partially vis- 
ible to the user, holds condition codes (also referred to as 
flags). Condition codes are bits set by the CPU hardware 
as the result of operations. For example, an arithmetic oper- 
ation may produce a positive, negative, zero, or overflow 
result. In addition to the result itself being stored in a reg- 
ister or memory, a condition code is  also set. The code may 
subsequently be tested as part of aconditional branch oper- 
ation. 

Condition code bits are collected into one or more reg- 
isters. Usually, they form part of a control register. Gen- 

erally, machine instructions allow these bits to be read by 
implicit reference, but they cannot be altered by the pro- 
grammer. 

In some machines, a subroutine call will result in the 
automatic saving of all user-visible registers, which are to 
be restored on return. The saving and restoring i s  per- 
formed by the CPU as part of the execution of call-and- 
return instructions. This allows each subroutine to use the 
user-visible registers independently. On other machines, 
it i s  the responsibility of the programmer to save the con- 
tents of the relevant user-visible registers prior to a sub- 
routinecall by including instructionsforthis purpose in the 
program. 

C. The Hardware Approach 

The hardware approach has been pioneered by the 
Berkeley RlSC group [I81 and is used in the first commercial 
RlSC product, the Pyramid [24]. 

Register Windows: On the face of it, the use of a large set 
of registers should decrease the need to access memory. 
Thedesign task is toorganize the registers in such afashion 
that this goal i s  realized. 

Since most operand references are to local scalars, the 
obvious approach is to store these in registers, with per- 
haps a few registers reserved for global variables. The prob- 
lem is that the definition of local changes with each pro- 
cedure call and return, operations that occur frequently. 
On every call, local variables must be saved from the reg- 
isters into memory, so that the registers can be reused by 
the called program. Furthermore, parameters must be 
passed. On return, thevariablesof the parent program must 
be restored (loaded back into registers)and results must be 
passed back to the parent program. 

Thesolution i s  based ontwoother results reported above. 
First, a typical procedure employs only a few passed param- 
eters and local variables. Second, the depth of procedure 
activation fluctuates within a relatively narrow range (Fig. 
1). To exploit these properties, multiple small sets of reg- 
isters are used, each assigned to a different procedure. A 
procedure call automatically switches the CPU to use a dif- 
ferent fixed-size window of registers, rather than saving 
registers in memory. Windows for adjacent procedures are 
overlapped to allow parameter passing. 

The concept is illustrated in Fig. 2. At any time, only one 
window of registers is visible and is  addressable as if it were 
the only set of registers (e.g., address 0 through N - 1). The 
window is  divided into three fixed-size areas. Parameter 
registers hold parameters passed down from the procedure 
that called the current procedure and results to be passed 
back up. Local registers are used for local variables, as 
assigned by the compiler. Temporary registers are used to 

Parameter Temporary 
Registers - 
Call/retum 

* 

Fig. 2. Overlapping register windows. 
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exchange parameters and results with the next lower level 
(procedure called by current procedure). The temporary 
registers at one level are physically the same as the param- 
eter registers at the next lower level. This overlap permits 
parameters to be passed without the actual movement of 
data. 

To handle any possible pattern of calls and returns, the 
number of register windows would have to be unbounded. 
Instead, the register windows can be used to hold the few 
most recent procedure activations. Older activations must 
be saved in memory and later restored when the nesting 
depth decreases. Thus the actual organization of the reg- 
ister file is  as a circular buffer of overlapping windows. 

This organization is shown in Fig. 3 [21], which depicts a 
circular buffer of six windows. The buffer is  filled to a depth 

Current- 
Window- 
Pointer 

Call 

Return 

Fig. 3. Circular buffer organization of overlapped win- 
dows. 

of 4 (A called B; B called C; C called D) with procedure D 
active. The current-window pointer (CWP) points to the 
window of the currently active procedure. Register refer- 
ences by a machine instruction are offset by this pointer to 
determine the actual physical register. The saved-window 
pointer identifies the window most recently saved in mem- 
ory. If procedure D now calls procedure E,  arguments for 
fare placed in D's temporary registers (the overlap between 
w3 and w4) and the CWP is  advanced by one window. 

If procedure E then makes a call to procedure F, the call 
cannot be made with the current status of the buffer. This 
is  because F's window overlaps A's window. If F begins to 
load its temporary registers, preparatory to a call, it will 
overwrite the parameter registers of A (A.param). Thus when 
CWP is incremented (modulo 6) so that it becomes equal 
to SWP, an interrupt occurs and A's window is saved. Only 
the first two portions (A.param and A.loc) need be saved. 
Then the SWP is  incremented and the call to F proceeds. 
A similar interrrupt can occur on returns. For example, sub- 

sequent to the activation of F, when B returns to A, CWP 
is  decremented and becomes equal to SWP. This causes an 
interrupt that results in the restoral of A's window. 

From the preceding, it can be seen that an N-window reg- 
ister file can hold only N - 1 procedure activations. The 
value of N need not be large. As was mentioned earlier, one 
study [23] found that, with eight windows, a save or restore 
is  needed on only 1 percent of the calls or returns. The 
Berkeley RlSC computers use 8 windows of 16 registers 
each. The Pyramid computer employs Idwindows of 32 reg- 
isters each. 

Global VariablesZThe window scheme just described pro- 
vides an efficient organization for storing local scalar vari- 
ables in registers. However, this scheme does not address 
the need to store global variables, those accessed by more 
than one procedure (e.g., COMMON variables in Fortran). 
Two options suggest themselves. First, variables declared 
as global in an HLL can be assigned memory locations by 
the compiler, and all machine instructions that reference 
these variables will use memory-reference operands. This 
is straightforward, from both the hardware and software 
(compiler) points of view. However, forfrequentlyaccessed 
global variables, this scheme is  inefficient. 

An alternative is  to incorporate a set of global registers 
in the CPU. These registers would be fixed in number and 
available to all procedures. A unified numbering scheme 
can be used to simplify the instruction format. For example, 
references to registers 0 through 7 could refer to unique 
global registers, and references to registers 8 through 31 
could be offset to refer to physical registers in the current 
window. Thus there is an increased hardware burden to 
accommodate the split in register addressing. In addition, 
the compiler must decide which global variables should be 
assigned to registers. 

Large Register File versus Cache: The register file, or- 
ganized intowindows,actsasasmall,fast buffer for holding 
a subset of all variables that are likely to be used most 
heavily. From this point of view, the register file acts much 
like a cache memory. The question therefore arises as to 
whether it would be simpler and better to use a cache and 
a small traditional register file. 

Table 5 compares characteristics of the two approaches. 
The window-based register file holds all of the local scalar 
variables (except in the rare case of window overflow) of the 
most recent N - 1 procedure activations. The cache holds 
a selection of recently used scalar variables. The register 
files should save time, since all local scalar variables are 
retained. On the other hand, thecache may make more effi- 
cient use of space, since it i s  reacting to the situation 
dynamically. Furthermore, caches generally treat all mem- 
ory references alike, including instructions and other types 

Table 5 Characteristics of Large Register File and Cache 
Organizations 

Large Register File Cache 

All Local Scalars 
Individual Variables Blocks of Memory 
Compiler-Assigned Global Recently Used Global 

Variables Variables 
SavelRestore Based on SavelRestore Based on 

Procedure Nesting Depth Cache Replacement 

Recently Used Local Scalars 

Algorithm 
Register Addressing Memory Addressing 
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of data. Thus savings in these other areas are possible with 
a cache and not a register file. 

A register file may make inefficient use of space, since not 
all procedures will need the full window space allotted to 
them. On the other hand, the cache suffers from another 
sort of inefficiency: Data are read in blocks. Whereas the 
register file contains only those variables in use, the cache 
reads in a block of data, some or much of which will not 
be used. 

The cache is  capable of handling global as well as local 
variables. There are usually many global scalars, but only 
a few of them are heavily used [21]. A cache will dynamically 
discover these variables and hold them. If the window- 
based register file i s  supplemented with global registers, 
it too can hold some global scalars. However, it i s  difficult 
for a compiler to determine which globals will be heavily 
used. 

With the register file, the movement of data between reg- 
isters and memory i s  determined by the procedure nesting 
depth. Since this depth usually fluctuates within a narrow 
range, the use of memory i s  relatively infrequent. Most 
cache memories are set-associative with a small set size. 
Thus there i s  the danger that other data or instructions will 
displace, in the cache, frequently used variables. 

Based on thediscussion sofar, thechoice between a large 
window-based register file and acache is not clear cut. There 
is one characteristic, however, in which the register 
approach i s  clearly superior and which suggests that a 
cache-based system will be noticeably slower. This dis- 
tinction shows up in the amount of addressing overhead 
experienced by the two approaches. 

Fig. 4 [25] illustrates the difference. To reference a local 
scalar in a window-based register file, a “virtua1”register 
number and a window number are used. These can pass 
through a relatively simple decoder to select one of the 
physical registers.To reference a memory location in cache, , lnstruclii~”; , 
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Fig. 4. Referencing a local scalar. (a) Window-based reg- 
ister file. (b) cache. 

a full-width memory address must be generated. The com- 
plexity of this operation depends on the addressing mode. 
In a set-associative cache, a portion of the address is used 
to read a number of words and tags equal to the set size. 
Another portion of the address is compared to the tags, and 
oneofthewordsthatwas read isselected. ltshould beclear 
that even if the cache i s  as fast as the register file, the access 
time will be considerably longer. Thus from the point of 
view of performance, the window-based register file i s  
superior for local scalars. Further performance improve- 
ment could be achieved by the addition of a cache for 
instructions only. 

D. The Compiler Approach 

Let us assume now that only a small number (e.g., 16-32) 
of registers is available on the target RISC machine. In this 
case, optimized register usage is the responsibility of the 
compiler. A program written in a high-level language has, 
of course, no explicit references to register. Rather, pro- 
gram quantities are referred to symbolically. The objective 
of thecompiler i s  to keep as manycomputationsas possible 
in registers ratherthan main memory,and to minimize load- 
and-store operations. 

In general, the approach taken i s  as follows. Each pro- 
gram quantity that i s  a candidate for residing in a register 
is assigned to a symbolic or virtual register. The compiler 
then maps the unlimited number of symbolic registers into 
a fixed number of real registers. Symbolic registers whose 
usage does not overlap can share the same real register. If, 
in a particular portion of the program, there are more quan- 
titiestodeal with than real registers, then someof thequan- 
tities are assigned to memory locations. Load-and-store 
instructions are used to temporarily position quantities in 
registers for computational operations. 

The essence of the optimization task i s  to decide which 
quantities are to be assigned to registers at any given point 
in the program. The technique most commonly used in RlSC 
compilers i s  known as graph coloring, which i s  a technique 
borrowed from the discipline of topology [26]-[28]. 

The graph coloring problem i s  this. Given a graph con- 
sisting of nodes and edges, assign colors to nodes such that 
adjacent nodes have different colors, and do this in such 
a way as to minimize the number of different colors. This 
problem is  adapted to the compiler problem in the follow- 
ing way. First, the program is  analyzed to build a register 
interference graph. The nodes of the graph are the sym- 
bolic registers. If two symbolic registers are “live” during 
the same program fragment, then they are joined by an edge 
to depict interference. An attempt i s  then made to color the 
graph with N colors, where N i s  the number of registers. 
If this fails, then nodes that cannot be colored must be 
placed in memory, and loads and stores must be used to 
make space for the affected quantities when they are 
needed. 

Fig. 5 i s  a simple example of the process. Assume a pro- 
gram with six symbolic registers to be compiled onto a 
machinewith threeactive registers. Fig. 5(a) shows the time 
sequence of active use of each symbolic register, and Fig. 
5(b) shows the register interference graph. A possible col- 
oring with three colors is indicated. One symbolic register, 
F, is left uncolored and must be dealt with using loads and 
stores. 

44 PROCEEDINGS OF THF IFFF VOI  76 NO 1 I A N I I A R V  19RR 



A 
R I  

I I 

I lR4 

B C 
R2 R3 

E F 
R5 R6 

GREEN RED GREEN 

(b) 
Fig. 5. The graph coloring approach. (a) Time sequence of 
active use of symbolic registers. (b) Register interference 
graph. 

IV. REDUCED INSTRUCTION SET ARCHITECTURE 

In this section, we look at some of the general charac- 
teristics of and the motivation for a reduced instruction set 
architecture. Specific examples will be seen later in this 
paper. We begin with a discussion of motivations for con- 
temporary complex instruction set architectures. 

A. The ClSC Approach 

We have noted the trend to richer instruction sets, which 
include a larger number of instructions and more-complex 
instructions. Two principal reasons have motivated this 
trend: adesiretosimplifycompilers and adesireto improve 
performance. Underlying both of these reasons was the 
shift to high-level languages (HLL) on the part of program- 
mers; architect attempted to design machines that pro- 
vided better support for HLLs. 

It is not the intent of this paper to say that the ClSC 
designers took the wrong direction. RlSC technology is  very 
new and so the ClSC versus RlSC debate cannot now be 
settled. Indeed, because technology continues to evolve 
and because architectures exist along a spectrum rather 
than in two neat categories, a black-and-white assessment 
i s  unlikely ever to emerge. Thus the comments that follow 
are simply meant to point out some of the potential pitfalls 
in the ClSC approach and to provide some understanding 
of the motivation of the RlSC adherents. 

The first of the reasons cited, compiler simplification, 
seems obvious. The task of the compiler writer i s  to gen- 
erate a sequence of machine instructions for each HLL 

statement. If there are machine instructions that resemble 
HLL statements, this task i s  simplified. This reasoning has 
been disputed by the RlSC researchers [29]-[31]. They have 
found that complex machine instructions are often hard to 
exploit sincethecompiler must find thosecasesthatexactly 
fit the construct. The task of optimizing the generated code 
to minimize code size, reduce instruction execution count, 
and enhance pipelining i s  much more difficult with a com- 
plex instruction set.Asevidenceofthis, studiescited earlier 
in this paper indicate that most of the instructions in acom- 
piled program are the relatively simple ones. 

The other major reason cited i s  the expectation that a 
ClSCwill yield smaller, faster programs. Let us examine both 
aspects of this assertion: that programs will be smaller and 
that they will execute faster. 

There are two advantages to smaller programs. First, 
because the program takes up less memory, there i s  a sav- 
ings in that resource. With memory today being so inex- 
pensive, this potential advantage is  no longer compelling. 
More importantly, smaller programs should improve per- 
formance, and this will happen in two ways. First, fewer 
instructions means fewer instruction bytes to be fetched. 
And second, in a paging environment, smaller programs 
occupy fewer pages, reducing page faults. 

The problemwiththislineof reasoning isthat it isfarfrom 
certain that a ClSC program will be smaller than a corre- 
sponding RlSC program. In manycases, the ClSC program, 
expressed in symbolic machine language, may be shorter 
(i.e., fewer instructions), but the number of bits of memory 
occupied may not be noticeably smaller. Table 6 shows 

Table 6 Code Size Relative to RlSC I 

ti81 t211 t381 
11 c 12 c 5c 

Programs Programs Programs 
RlSC I 1 .o 1 .o 1 .o 
VAX-I 11780 0.8 0.67 
M68000 0.9 0.9 
za002 1.2 1.12 
PD P-I 1 I70 0.9 0.71 

results from three studies that compared the size of com- 
piled C programs on a variety of machines, including RlSC 
1, which has a reduced instruction set architecture. On the 
whole, thecode savingsof ClSCversus RlSC is  lessthan one 
might expect. It is also interesting to note that the VAX-11, 
which has a much more complex instruction set than the 
PDP-11, achieves very little savings over the latter. These 
results were confirmed by ISM researchers [30], who found 
that the IBM 801 (a RISC) produced code that was 0.9 times 
the size of code on an IBM S1370. The study used a set of 
PUI programs. 

There are several reasons for these rather surprising 
results. We havealreadynoted thatcompilerson ClSCstend 
to favor simpler instructions, so that the conciseness of the 
complex instructions seldom comes into play. Also, since 
there are more instructions on a CISC, longer opcodes are 
required, producing longer instructions. Finally, RlSCs tend 
to emphasize register rather than memory references, and 
the former require fewer bits. An example of this last effect 
i s  discussed presently (see Fig. 6).  

So, the expectation that a ClSC will produce smaller pro- 
grams, with the attendant advantages, may not be realized. 
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(a) 

I = Size o f  executed instructions 
D = Size of executed data 
M = I + D = Total memory traffic 

Fig. 6. (a)A + B + C. (b) A + B + C; B + A  + C; D + D - B. 

The second motivating factor for increasingly complex 
instruction sets was that instruction execution would be 
faster. It seems to make sense that a complex HLL operation 
will execute more quickly as a single machine instruction 
rather than as a series of more-primitive instructions. How- 
ever, because of the bias towards the use of those simpler 
instructions, this may not be so.Theentirecontrol unit must 
be made more complex, and/or the microprogram control 
store must be made larger, to accommodate a richer 
instruction set. Either factor increases the execution time 
of the simple instructions. 

In fact, some researchers have found that the speedup 
in the execution of complex functions i s  due not so much 
to the power of the complex machine instructions as to their 
residence in high-speedcontrol store[30]. In effect,thecon- 
trol store acts as an instruction cache. Thus the hardware 
architecture i s  in the position of trying to determine which 
subroutines or functions will be used most frequently and 
assigning those to the control store by implementing them 
in microcode.The results have been less than encouraging. 
Thus on S/370 systems, instructions such as Translate and 
Extended-Precision-Floating-Point-Divide reside in high- 
speed storage, while the sequence involved in setting up 
procedure calls or initiating an interrupt handler are in 
slower main memory. 

Thus it isfar from clearthatthetrend to increasinglycom- 
plex instruction sets i s  appropriate. This has led a number 
of groups to pursue the opposite path. 

B. Characteristics of Reduced Instruction Set Architecture 

Although a variety of different approaches to reduced 
instruction set architecture have been taken, certain char- 
acteristics are common to all of them. These characteristics 
are listed in Table 7 and described here. Specific examples 
are explored later in this section. 

Table 7 Characteristics of Reduced Instruction Set 
Architectures 

One Instruction Per Cycle 
Register-to-Register Operations 
Simple Address Modes 
SimDle Instruction Formats 

The first characteristiclisted inTable7is thatonemachine 
instruction is executed per machine cycle. A machine cycle 
i s  defined to be the time it takes to fetch two operands from 
registers, perform as ALU operation, and store the result 
in a register. Thus RlSC machine instructions should be no 
more complicated, than, and execute about as fast as, 
microinstructions on ClSC machines. With simple, one- 
cycle instructions, there is little or no need for microcode; 
the machine instructions can be hardwired. Such instruc- 
tions should execute faster than comparable machine 
instructions on other machines, since it i s  not necessary to 
access a microprogram control store during instruction 
execution. 

A second characteristic i s  that most operations should be 
register-to-register, with only simple LOAD and STORE oper- 
ations accessing memory.This design feature simplifies the 
instruction set and therefore the control unit. For example, 
a RlSC instruction set may include only one or two ADD 

instructions (e.g., integer add, add with carry); the VAX-11 
has 25 different ADD instructions. Another benefit i s  that 
such an architecture encourages the optimization of reg- 
ister use, so that frequently accessed operands remain in 
high-speed storage. 

This emphasis on register-to-register operations i s  unique 
to RlSC designs. Other contemporary machines provide 
such instructions but also include memory-to-memory and 
mixed register/memory operations. Attempts to compare 
these approaches were made in the 1 9 7 0 ~ ~  before the 
appearance of RISCs. Fig. 6(a) illustrates the approach taken 
[22]. Hypothetical architectures were evaluated on program 
size and the number of bits of memory traffic. Results such 
as this one led one researcher to suggest that future archi- 
tectures should contain no registers at all [32]. Onewonders 
what he would have thought, at the time, of the RlSC 
machine marketed by Pyramid, which contains no less than 
528 registers! 

What was missing from these studies was a recognition 
of the frequent accesstoasmall number of local scalars and 
that, with a large bank of registers or an optimizing com- 
piler, most operands could be kept in registers for long 
periods of time. Thus Fig. 6(b) may be a fairer comparison. 

Returning to Table 7, a third characteristic is the use of 
simple addressing modes. Almost all instructions use sim- 
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ple register addressing. Several additional modes, such as 
displacement and PC-relative, may be included. Other, 
more-complex modes can be synthesized in software from 
the simple ones. Again, this design feature simplifies the 
instruction set and the control unit. 

Afinal common characteristic is  the useof simple instruc- 
tion formats. Generally, only one or a few formats are used. 
Instruction length is fixed and aligned on word boundaries. 
Field locations, especially theopcode, are fixed. This design 
feature has a number of benefits. With fixed fields, opcode 
decoding and register operand accessing can occur simul- 
taneously. Simplified formats simplify the control unit. 
Instruction fetching is  optimized since word-length units 
are fetched. This also means that a single instruction does 
not cross page boundaries. 

Taken together, these characteristics can be assessed to 
determine the potential benefits of the RlSC approach. 
These benefits fall into two main categories: those related 
to performance and those related to VLSl implementation. 

With respect to performance, a certain amount of "cir- 
cumstantial evidence" can be presented. First, more-effec- 
tive optimizing compilers can be developed. With more- 
primitive instructions, there are more opportunities for 
moving functions out of the loops, reorganizing code for 
efficiency, maximizing register utilization, and so forth. It 
i s  even possible to compute parts of complex instructions 
at compile time. For example, the S/370 Move Characters 
(MVC) instruction moves a string of characters from one 
location to another. Each time it is executed, the move will 
depend on the length of the string, whether and in which 
direction the locations overlap, and what the alignment 
characteristics are. In most cases, these will all be known 
at compile time. Thus the compiler could produce an 
optimized sequence of primitive instructions for this func- 
tion. 

A second point, already noted, is  that most instructions 
generated by a compiler are relatively simple anyway. It 
would seem reasonable that a control unit built specifically 
forthose instructions and using littleor no microcodecould 
execute them faster than a comparable CISC. 

A third point relates to the use of instruction pipelining. 
RlSC researchers feel that the instruction pipelining tech- 
nique can beapplied much more effectivelywith a reduced 
instruction set. We examine this point in some detail pres- 
ently. 

A final, and somewhat less significant point, is  that RlSC 
programs should be more responsive to interrupts since 
interrupts are checked between rather elementary oper- 
ations. Architectures with complex instructions either 
restrict interrupts to instruction boundaries or must define 
specific interruptable points and implement mechanisms 
for restarting an instruction, 

The case for improved performance for a reduced 
instruction set architecture is  far from proven. A number 
of studies have been done but not oh machines of com- 
parable technology and power. Further, most studies have 
not attempted to separate the effects of a reduced instruc- 
tion set and the effects of a large register file. The "cir- 
cumstantial evidence" however, has been sufficient to 
encourage the RlSC proponents. 

The second areaof potential benefit, which i s  more clear- 
cut, relates to VLSl implementation. When VLSl i s  used, the 
design and implementation of the CPU are fundamentally 

changed. Traditional CPUs, such as the IBM SI370 and the 
VAX-11, consist of one or more printed circuit boards con- 
taining standardized SSI and MSI packages. With theadvent 
of LSI and VLSI, it i s  possible to put an entire CPU on a single 
chip. For a single-chip CPU, there are two motivations for 
following a RlSC strategy. First, there is  the issue of per- 
formance. Onchipdelaysareof much shorter duration than 
inter-chip delays. Thus it makes sense to devote scarce chip 
real estate to those activities that occur frequently. We have 
seen that simple instructions and access to local scalars are, 
in fact, the most frequent activities. The Berkeley RlSCchips 
were designed with this consideration in mind. Whereas 
a typical single-chip microprocessor dedicates about half 
of i ts area to the microcode control store, the RISC I chip 
devotes only about 6 percent of its area to the control unit 

A second VLSI-related issue is design-and-implementa- 
tion time. A VLSl processor is  difficult to develop. Instead 
of relying on available SSI/MSI parts, the designer must per- 
form circuit design, layout, and modeling at the device level. 
With a reduced instruction set architecture, this process i s  
far easier, as evidenced by Table 8 [34]. If, in addition, the 

1331. 

Table 8 Design and Layout Effort for Some 
MicroDrocessors 

Design layout 
CPU Transistors (Person-Months) (Person-Months) 

RlSC I 44 15 12 
RlSC II 41 18 12 
M68000 68 100 70 
Z8OOO 18 60 70 
Intel iAPx432 110 1 70 90 

performance of the RlSC chip is  equivalent to comparable 
CISC microprocessors, then the advantages of the RlSC 
approach become evident. 

V. RlSC PIPELINING 

One of the traditional methods of enhancing processor 
performance is  instruction pipelining. The use of a reduced 
instruction set architectureopens up new opportunities for 
the effective use of pipelining. To illustrate the significance 
of pipelining on a RlSC machine, we begin with a general 
discussion. 

A. Pipelining Strategy 

Instruction pipelining is similar to the use of an assembly 
line in amanufacturing plant. An assemblylinetakesadvan- 
tage of the fact that a product goes through various stages 
of production. By laying the production process out in an 
assembly line, products at various stages can be worked on 
simultaneously. This process is also referred to as pipelin- 
ing, because, as in a pipeline, new inputs are accepted at 
one end before previously accepted inputs appear as out- 
puts at the other end. 

To apply this concept to instruction execution, we must 
recognize that, in fact, the execution of an instruction 
involves a number of stages. As a simple approach, con- 
sider subdividing instruction processing into two stages: 
fetch instruction and execute instruction. There are times 
during the execution of an instruction when main memory 

STALLING: REDUCED INSTRUCTION SET COMPUTER ARCHITECTURE 47 



i s  not being accessed. This time could be used to fetch the 
next instruction in parallel with theexecution of thecurrent 
one. Fig. 7(a) depicts this approach. The pipeline has two 
independent stages. The first stage fetches an instruction 

Instruction Instruction Result 
Fetch - + Execute 

Wait Wait 
New Address 

I 1 
Ins t ruc t ion4  I Ins t ruc t ion4  Execute 1 Result ~ 

w 

Disc a r d 

(b) 
Fig. 7. Two-stage instruction pipeline. (a) Simplified view. 
(b) Expanded view. 

and buffers it. When the second stage is free, the first stage 
passes the buffered instruction to the second stage. While 
the second stage is executing the instruction, the first stage 
takes advantage of any unused memory cycles to fetch and 
buffer the next instruction. This i s  called instruction pre- 
fetch or fetch overlap. 

It should be clear that this process will speed up instruc- 
tion execution. If the fetch and instruction stages were of 
equal duration, the instruction cycle time would be halved. 
However, if we look more closely at this pipeline (Fig. 7(b)), 
we will see that this doubling of execution rate i s  unlikely 
for two reasons: 

1) The execution time will generally be longer than the 
fetch time. Execution will involve reading and storing oper- 
ands and the performanceof someoperation. Thus the fetch 
stage may have to wait for some time before it can empty 
its buffer. 

2) A conditional branch instruction makes the address 
of the next instruction to be fetched unknown. Thus the 
fetch stage must wait until it receives the next instruction 
address from theexecute stage. Theexecute stage maythen 
have to wait while the next instruction i s  fetched. 

The time loss from the second reason can be reduced by 
guessing. A simple rule i s  the following: When aconditional 
branch instruction is passed on from the fetch to the exe- 
cute stage, the fetch stage fetches the next instruction in 
memory after the branch instruction. Then, if the branch 

i s  not taken, no time is lost. If the branch i s  taken, the fetched 
instruction must be discarded and a new instruction 
fetched. 

While these factors reduce the potential effectiveness of 
the two-stage pipeline, some speedup occurs. To gain fur- 
ther speedup, the pipeline must have more stages. Let us 
consider the following decomposition of the instruction 
processing. 

Fetch Instruction (FI): Read the next expected instruc- 
tion into a buffer. - Decode Instruction (DI): Determine the opcode and 
the operand specifiers. 

Calculate Operands (CO): Calculate the effective 
address of each source operand. This may involve displace- 
ment, register indirect, indirect, or other forms of address 
calculation. 

Fetch Operands (FO): Fetch each operand from mem- 
ory. Operands in registers need not be fetched. 

Execute Instruction (€1): Perform the indicated opera- 
tion and store the result, if any, in the specified destination 
operand location. 

With this decomposition, the various stages will be of 
more nearly equal duration. For the sake of illustration, let 
us assume equal duration and assume that only one stage 
that accesses memory may be active at a time. Then, Fig. 8 
illustrates that a five-stage pipeline can reduce the exe- 
cution time for four instructions from 20 time units to 13 
time units. Note that the FI stage always involves a memory 
access. The FO and E l  stages may or may not involve mem- 
ory access, but the diagram is  based on the assumption that 
they do. 

Again, several factors serve to reduce the performance 
enhancement. If the five stages are not of equal length, there 
will be some waiting involved at various pipeline stages, as 
discussed before. A conditional branch instruction can 
invalidate several instruction fetches. A similar unpredict- 
able event is an interrupt. Fig. 9 indicates the logic needed 
for pipelining to account for branches and interrupts. 

Other problems arise that did not appear in our simple 
two-stage organization. The CO stage may depend on the 
contents of a register that could be altered by a previous 
instruction st i l l  in the pipeline. Other such register and 
memory conflicts could occur. The system must contain 
logic to account for this type of conflict. 

The system should also contain additional logic to 
improve pipeline efficiency. For example, if an El  stage is 
not going to access memory, then another memory-access- 
ing stage in another instruction can be performed in par- 
allel. 

0 I 2 3 4 5 6 7 8 Y I O  I1 12  13 
I I I I I I I I 1 

Instruction 4 

Fig. 8. Timing diagram for pipelined operation. 
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Fig. 9. Five-stage CPU pipeline. 

From the preceding discussion, it might appear that the 
greater the number of stages in the pipeline, the faster the 
execution rate. However, two factors work against this con- 
clusion: 

1) At each stage of the pipeline, there i s  some overhead 
involved in moving data from buffer to buffer and in per- 
forming various preparation and delivery functions. This 
overhead can appreciably lengthen the total execution time 
of a single instruction, which can produce significant delays 
when the ideal pipeline pattern i s  not followed either 
through branching or memory access dependencies. 

2) The amount of control logic required to handle mem- 
ory and register dependencies and to optimize the use of 
the pipeline increases enormously with the number of 
stages. This can lead to a situation where the control logic 
controlling thegating between stages is  morecomplex than 
the stages being controlled. 

Thus instruction pipelining is  a powerful technique for 
enhancing performance but requires careful design to 
achieve optimum results with reasonable complexity. 

B. Dealing with Branches 

One of the major problems in designing an instruction 
pipeline i s  assuring a steady flow of instructions to the ini- 
tial stages of the pipeline. The primary impediment, as we 
have seen, i s  the conditional branch instruction. Until the 
instruction i s  actually executed, it i s  impossible to deter- 
mine whether the branch will be taken or not. 

In what follows, we briefly summarize some of the more 
common approaches to be taken for dealing with branches. 

Multiple Streams: A simple pipeline suffers a penalty 
for a branch instruction because it must choose one of two 
instructions to fetch next and may choose erroneously. A 
brute-force approach is  to allow the pipeline to fetch both 
instructions, making useof multiple streams. One problem 
with this approach is that additional branch instructions 
may enter the pipeline (either stream) before the original 
branch is resolved. These instructions need their own mul- 
tiple streams beyond what is supported in the hardware. - Prefetch Branch Target: When a conditional branch is  
recognized, the target of the branch is prefetched, in addi- 
tion to the instruction following the branch. This target is 
then saved until the branch instruction i s  executed. If the 
branch is  taken, we have already prefetched the target. 

Branch Prediction: Various techniques can be used to 
predict whether a branch will be taken. These can be based 
on historical analysis of past executions (e.g., by opcode) 
or on some dynamic measure of the recent frequency of 
branching. 

Delayed Branch: It i s  possible to improve pipeline per- 
formance by automatically rearranging instructions within 
a program so that branch instructions occur later than 
actually desired. 

The firstthreeapproaches are built intothe hardwareand 
are exercised at run time. The last approach listed above i s  
performed at compile time and is  used in most of the RlSC 
compilers. 

C. Pipelining with RlSC Instructions 

Let us now consider pipelining in the context of a RlSC 
architecture. Most instructions are register-to-register, and 
an instruction cycle has the following two phases: 

I: Instruction fetch. 
E: Execute. Performs an ALU operation with register 

input and output. 

For load and store operations, three phases are required: 

I: Instruction fetch. 
E: Execute. Calculates memory address. 
D: Memory. Register-to-memory or memory-to-reg- 

Fig. 10 depicts the timing of a sequence of instructions 
using no pipelining (Figs. 10-14 are based on [33]). Clearly, 

ister operation. 

Load A + M [  I I E I D J 

Add C + A + B  

Store M + C  

Branch X 

Time - 
Fig. 10. Timing of sequential execution. 

this i s  a wasteful process. Even very simple pipelining can 
substantially improve performance. Fig. 11 shows a two-way 
pipelining scheme, in which the I and E phases of two dif- 
ferent instructions are performed simultaneously. This 
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Load A - M  ml 
Load B - M  

Add C + A + B  

Store M e ( '  

Branch X 

NOOP 

El 

Fig. 11. Two-way pipelined timing. 

scheme can yield up to twice the execution rate of a serial 
scheme. Two problems prevent the maximum speedup 
from being achieved. First, we assume that a single-port 
memory is  used and that only one memory access i s  pos- 
sible per phase. This requires the insertion of a wait state 
in some instructions. Second, a branch instruction inter- 
rupts the sequential flow of execution. To accommodate 
this with minimum circuitry, a NOOP instruction can be 
inserted into the instruction stream by the compiler or 
assembler. 

Pipelining can be improved further by permitting two 
memory accesses per phase. This yields the sequence 
shown in Fig. 12. Now, up to three instructions can be over- 

Load A - M  

Load B t M  

NOOP 

m Add C+-AtB 

Storr M e(' [IIEID] 
Branch X 

NOOP 

Fig. 12. Three-way pipelined timing. 

lapped,and theimprovement isas much asafactorofthree. 
Again, branch instructions cause the speedup to fall short 
of the maximum possible. Also, note that data dependen- 
cies have an effect. If an instruction needs an operand that 
is altered by the preceding instruction, a delay i s  required. 
Again, this can be accomplished by a NOOP. 

The pipelining discussed so far works best if the three 
phases are of approximately equal duration. Because the 
E phase usually involves an ALU operation, it may be longer. 

In this case, we can divide into two subphases: 

E,: Register file read. 
E,: ALU operation and register write. 

Because of the simplicity and regularity of the instruction 
set, the design of the phasing into three or four phases is  
easily accomplished. Fig. 13 shows the result with a four- 

Lood A + M 

Load B + M  -1 
NOOP -1 
Add C + A + B  -1 
Store M + C  ml 
Branch X WI 
NOOP m1 
NOOP 

Fig. 13. Four-way pipelined timing. 

way pipeline. Up to four instructions at a time can be under 
way,and themaximum potential speedup isafactoroffour. 
Note again the use of NOOPS to account for data and branch 
delays . 

D. Optimization of Pipelining 

Because of the simple and regular nature of RISC instruc- 
tions, pipelining schemes can be efficiently employed. 
There are few variations in instruction execution duration, 
and the pipeline can be tailored to reflect this. However, 
we have seen that data and branch dependencies reduce 
the overall execution rate. 

To compensate for these dependencies, code reorgan- 
ization techniques have been developed [35]. First, let us 
consider branching instructions. Delayed branch, a way of 
increasing the efficiency of the pipeline, makes use of a 
branch that does not take effect until after the following 
instruction. This strange procedure is illustrated in Table 
9. In the first column, we seea normal symbolic instruction 
machine-language program. After 102 is executed, the next 
instruction to be executed is  105. In order to regularize the 
pipeline, a NOOP i s  inserted after this branch. However, 
increased performance is achieved if the instructions at 101 
and 102 are interchanged. Fig. 14 shows the result. The JUMP 

instruction is fetched before the ADD instruction. Note, 

Table 9 Normal and Delayed Branch 

Address Normal Branch Delayed Branch Optimized Delayed Branch 

100 
101 
102 
103 
104 
105 
106 

LOAD X , A  
ADD 1, A 
IUMP 105 
ADD A, B 

STORE A, z 
SUB C, B 

LOAD x, A 
ADD 1 , A  
JUMP 106 
NOOP 
ADD A,  B 

STORE A, z 
S U B  C, B 

LOAD X , A  
JUMP 105 
ADD 1, A 
ADD A , 6  

STORE A,  z 
S U B  C, B 
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IO0 Load X, A 

101 Add I .  A 

102 Jump 106 

103 Noop 

106 Store A,  Z 

(a) 

100 Load X. A 

101 lump 105 

102 Add 1. A 

105 Store A. Z 

, 
D 

(b) 
Fig. 14. Execution of delayed jump. (a) Inserted NOOP. (b) 
Reversed instructions. 

however, that the ADD instruction i s  fetched before the exe- 
cution of the JUMP instruction has a chance to alter the pro- 
gram counter. Thus the original semantics of the program 
are retained. 

This interchange of instructions will work successfully 
for unconditional branches, calls, and returns. For condi- 
tional branches, this procedure cannot be blindly applied. 
If the condition that is tested for the branch can be altered 
by the immediately preceding instruction, then the com- 
piler must refrain from doing the interchange and instead 
inserta NooP.Theexperienceof both the Berkeley RlSCand 
IBM 801 systems is  that the majority of conditional branch 
instructions can be optimized in this fashion [18], [30]. 

A similar sort of tactic, called the delayed load, can be 
used on LOAD instructions. On LOAD instructions, the reg- 
ister that is  to be the’target of the load is  locked by the CPU. 
The CPU then continues execution of the instruction stream 
until it reaches an instruction requiring that register, at 
which point it idles until the load is  complete. If the com- 
piler can rearrange instructions so that useful work can be 
donewhiletheload is in the pipeline, efficiencyis increased. 

VI. EXAMPLE SYSTEMS 

This section provides two concrete examples of RlSC sys- 
tems, the Berkeley RlSC and the R2000 from MIPS Com- 
puter Systems. Unlikeanumberofother machinesthat pre- 
sent RlSC characteristics mixed with ClSC characteristics, 
these are both relatively “pure” RlSC systems. 

A. Berkeley RlSC 

The best documented RlSC project is that conducted at 
the University of California at Berkeley. Two similar 
machines, RlSC I and RlSC II, were produced [18], [21]. The 
Berkeley RlSC architecture was the inspiration for a com- 
mercially available product, the Pyramid [24]. 

Instruction Set: Table 10 lists the instructions for the 
Berkeley RlSC computers. 

As can be seen, most of the instructions reference only 
register operands. Register-to-register instructions have 

three operands and can be expressed in the form 

Rd + Rsl OP S2 

Rd and Rsl are register references. S2 can refer either to a 
register or to a 13-bit immediate operand. Register zero (R,) 
is hardwired with the value 0. This form is  well suited to 
typical programs, which have a high proportion of local sca- 
lars and constants. 

The available ALU operations can be grouped as follows: 

integer addition (with or without carry) 
integer subtraction (with or without carry) 
bitwise Boolean AND, OR, XOR 

shift left logical, right logical, or right arithmetic. 

All of these instructions can optionally set the four con- 
dition codes (ZERO, NEGATIVE, OVERFLOW, CARRY). Integers are 
represented in 32-bit 2’s-complement form. 

Only simple load-and-store instructions reference mem- 
ory. There are separate load-and-store instructions forword 
(32 bits), halfword, and byte. For the latter two cases, there 
are instructions for loading these quantities as signed or 
unsigned numbers. Signed numbers are sign-extended to 
fill out the 32-bit destination register. Unsigned numbers 
are padded with Os. 

On the RlSC I ,  the only available addressing mode, other 
than register, is a displacement mode. That is, the effective 
address of an operand consists of a displacement from an 
address contained in a register: 

EA = (RSI) + S2 

or 

EA = (RsJ + (RsJ 

according as the second operand is immediate or a register 
reference. To perform a load or store, an extra phase is 
added to the instruction cycle. During the second phase, 
the address is calculated using the ALU; the load or store 
occurs in athird phase. This single addressing mode isquite 
versatile and can be used to synthesize other addressing 
modes, as indicated in Table 11. 

The RlSC II includes an additional version of each load 
and store instruction using relative address: 

EA = (PC) = S2. 

The remaining instructions include control-transfer 
instructions and some miscellaneous instruction. The con- 
trol-transfer instructions include conditional jump, call, and 
conditional return instructions. Both forms of RlSC I I  
addressing can be used. 

Instruction Format: One of the major factors in the com- 
plexity of instruction processing is  instruction decoding, 
especially the task of extracting the various instruction 
fields. To minimize this chore, the ideal instruction set 
would use a single fixed-length format with fixed field posi- 
tions. The RlSC instruction set comes close to this goal. 

All RlSC instructions are a single word (32 bits) in length 
(Fig. 15). The first 7 bits are the opcode, allowing up to 128 
different opcodes. RISC I and RlSC II use only 31 and 39 
codes, respectively. The SCC bit indicates whether to set 
the condition codes. The DEST field usually contains a 5-bit 
destination register reference. For conditional branch 
instructions, 4 bits of the field designate which condition 
or conditions are to be tested. 
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Table 10 RlSC Instruction Set 

I 

Instruction Operands Comments 

Op Code DLST 

7 1 5 1 s  

ADD 
ADDC 
SUB 
SUBC 
SUBR 
SUBCR 
AND 
OR 
XOR 
SLL 
SRL 
SRA 
LDXW 
LDXHU 
LDXHS 
LDXBU 
LDYBS 
STXW 
STXH 
STXB 
LDRW 
LDRHU 
LDRHS 
LDRBU 
LDRBS 
STRW 
STRH 
STRB 
JMP 
JMPR 
CALL 

CALLR 

RET 
CALLINS 
RETINT 
LDHl 
GTLPC 
GETPSW 
PUTPSW 

4, shortSOII K ( ’ t 2  

14 

Rs,S2,Rd 
Rs,S2,Rd 
Rs,SZ,Rd 
Rs,S2,Rd 
Rs,S2,Rd 
Rs,S2,Rd 
Rs,S2,Rd 
Rs,S2,Rd 
Rs,SZ,Rd 
Rs,S2,Rd 
Rs,S2,Rd 
Rs,S2,Rd 
(Rx)SZ,Rd 
(Rx)S2,Rd 
(Rx)SZ,Rd 
(Rx)S2,Rd 
(Rx)S2,Rd 
Rm,(Rx)S2 
Rm,(Rx)S2 
Rm,(Rx)S2 
S2,Rd 
S2,Rd 
S2,Rd 
S2,Rd 
S2,Rd 
Rm,S2 
Rm,S2 
Rm,S2 
COND,S2(Rx) 
COND,Y 
Rd,SZ(Rx) 

Rd,Y 

Rm,S2 
Rd 
Rm,S2 
Rd,Y 
Rd 
Rd 
Rm 

o p  (‘ode 

RdeRs + S2 
RdtRs + S2 + carry 

RdtRs - S2 - carry 

Rd tS2  - Rs - carry 
RdtRs 1 S2 
RdtRs I S2 
R d t  Rs xor S2 
Rd-Rs shifted by S2 
Rd-Rs shifted by S2 
RdtRs shifted by S2 
Rd+-M[Rx + S2] 
Rd+-M[Rx + S2] 
RdtM[Rx + S2] 
RdtM[Rx + S2] 
RdtM[Rx + S2] 
M[Rx + S2]-Rm 
M[Rx + SZI-Rm 
M[Rx + S2]-Rm 
Rd+-M[PC + S21 
Rd-M[PC + S2] 
Rd+-M[PC + S2] 
RdtM[PC + SZ] 
Rd-M[PC + S2] 
M[PC + S2]+Rm 
M[PC + S2]+Rm 
M[PC + S2ItRm 
p c t R x  + S2 

Rdtpc ,  next 

Rd-pc, next 

p c t R m  + SZ,CWP+CWP + 1 
Rdt last  pc; next CWPtCWP - 1 
pc-Rm + S2; next CWPeCWP + 1 
Rd( 31 : 13) 
Rd-last pc 
RdtPSW 
PSWtRm 

RdtRs - S2 

RdtS2 - RS 

pc+pc + Y 

~ c ~ R x  + S2,CWPtCWP - 1 

p c t p c  + Y,CWP+-CWP - 1 

Y; Rd( 12: 0 ) t O  

D f S T  irnrnlLl 

integer add 
add with carry 
integer subtract 
subtract with carry 
integer subtract 
subtract with carry 
logical and 
logical or 
logical exclusive or 
shift left 
shift right logical 
shift right arithmetic 
load word 
load halfword unsigned 
load halfword signed 
load byte unsigned 
load byte signed 
store word 
store halfword 
store byte 
load word relative 
load halfword unsigned relative 
load halfword signed relative 
load byte unsigned relative 
load byte signed relative 
store word 
store halfword 
store byte 
conditional jump 
conditional relative 
call 
and change window 
call relative 
and change window 
return and change window 
disable interrupts 
enable interrupts 
load immediate high 
to restart delayed jump 
load status word 
set status word 

Table 11 Synthesizing Other Addressing Modes with RlSC Addressing Modes 

Mode Algorithm RlSC Equivalent Instruction Type 
~ ~~ 

I mmediate 
Direct 
Register 
Register indirect 
Displacement 

operand = A 
EA = A 
EA = R 
EA = (R) 
EA = (R) + A 

register-register 
load, store 
register-register 
load, store 
load, store 

The remaining 19 bits designate one o r  t w o  operands, 
depending on opcode. A single 19-bit 2’s-complement 
immediate operand is used fo r  all PC-relative instructions. 
Otherwise, the  first o f  the  t w o  operands i s  a register ref- 
erence. The second operand is either a register reference 
or  a 13-bit 2’s-complement immediate operand. 

RegisterFi/e:The RlSC register f i le contains 138 registers. 
Physical registers 0 through 9 are global registers shared by 
all procedures. The remaining registers are grouped in to  
eight windows. Each process sees logical registers Othrough 
31 (Fig. 16). Logical registers 26 through 31 are shared w i th  
the cal l ing (parent) procedure, and logical registers 10 
through 15 are shared w i t h  any called (child) procedure. 
These t w o  port ions overlap w i t h  other windows. 

Pipelining: The RlSC I processor uses a two-stage pipe- 
line, d iv id ing each instruct ion in to  fetch and execute states. 
RlSC II uses the three stages. The second stage performs 
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PHYSICAL REGISTERS LOGICAL REGISTERS 

Proc A Proc B Roc c 

R31, 

R26, 

R25, 

R10, 

- 
R31, 

R?6, 

R25, 
- 

R16, 

R15, 

R10, 

- 

- 

Fig. 16. Berkeley RlSC register windows. 

ALU operations. The third stage stores a result in Rd or 
accesses memory with an effective address computed in 
the second stage. 

B. MIPS R2000 

One of the first commercially available chip sets was 
developed by MIPS Computer Systems [36], [37l. The system 
was inspired by an experimental system, also using the 
name MIPS, developed at Stanford [38]. 

The RlSC processor chip (called the R2000) is partitioned 
into two sections, one containing the CPU, and the other 
containing a coprocessor for memory management. The 
CPU has averysimplearchitecture.The intentwas todesign 
a system in which the instruction execution logic was as 
simple as possible, leaving space available for logic to 
enhance performance (e.g., the entire memory manage- 
ment unit). 

The processor supports thirty-two 32-bit registers. It also 
provides for up to 128 kbytes of high-speed cache, half each 
for instructionsand data.The relativelylargecache(the IBM 
3090 provides 128-256 kbytes of cache) enables the system 
to keep large sets of program code and data local to the 
processor, off-loading the main memory bus and avoiding 
the need fora large registerfilewith theaccompanyingwin- 
dowing logic. All processor instructions are encoded in a 
single 32-bit word. All data operations are register-to-reg- 
ister; the only memory references are pure loadlstore oper- 
ations. 

Several features found in other RlSC designs are missing 
in the MIPS machine. As was mentioned, there are only 32 

general-purpose registers, all of which are visible at all 
times; there are no hidden registers and no use of win- 
dowing. The optimizing compiler tailors each procedure’s 
register usage. The 32 registers are used like a stack, with 
avirtual stackframemarkingthetopof thestackforthenew 
procedure activation environment. By making the compiler 
do all the work, a procedure call or return may require as 
few as two instructions. In addition, the compiler uses a 
priority-based graph coloring algorithm to optimize reg- 
ister usage within and across procedures. 

The R2000 makes no use of condition codes. If an instruc- 
tion generates a condition, the corresponding flags are 
stored in a general-purpose register. This avoids the need 
for special logic to deal with condition codes as they affect 
the pipelining mechanism and the reordering of instruc- 
tions by the compiler. Instead, the mechanisms already 
implemented to deal with register-value dependencies are 
employed. Further, conditions mapped onto the register 
file are subject to the same compile-time optimizations in 
allocation and reuse as other values stored in registers. 

As with the Berkeley RISC, but unlike many other RISC- 
based machines, the MIPS uses a single instruction length. 
This single instruction length simplifies instruction fetch 
and decode, and also simplifies the interaction of instruc- 
tion fetch with the virtual memory management unit (i.e., 
instructions do not cross word or page boundaries). The 
three instruction formats (Fig. 17) share common formating 

31 2625 2120 1615 0 

[-type (immediate) Operation rs rt Immediate I 
31 2625 2120 1615 1110 6 5  0 

R-type (register) Operation rs rt rd shift F.unction 

Operation 6-bit operation code 
5-bit source register specifier 
5-bit sourceldestination register specifier 

Immediate 16-bit immediate. branch or address displacement 
Target 26-bit jump target address 
rd 5-bit destination register specifier 
Shift %bit shift amount 
Function &bit ALUlshift function specifier 

Fig. 17. MIPS instruction formats. 

of opcodes and register references, simplifying instruction 
decode. The effect of longer instructions can be synthe- 
sized at compile time. For example, two I-type instructions 
can be concatenated to provide for operation on a 32-bit 
immediate quantity. 

Only the simplest and most frequently used addressing 
mode is  implemented in hardware. All addresses are of the 
form (contents of register plus immediate offset). Complex 
modes such as (base + index + offset) are synthesized in 
compile time, subject to optimizations that eliminate 
redundancy. This approach minimizes both hardware and 
pipeline latencies for loads and branches. 

With its simplified instruction architecture, the MIPS can 
achieve very efficient pipelining. Instructions execute at a 
rate of almost one per cycle. The MIPS compiler i s  able to 
reorder instructions to fill delay slots with useful code 70- 
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clock 

CACHE 

DhaSe 

IDECI OP 1 
RF I DA I DCACHE I WB 

Instro: CACHE ( IDEC~ OP 1 
I RF I DA ]I DCACHE I WB 

‘4, lnstr 1: 

lnstr 2: 

lnstr 3: 

Fig. 18. MIPS instruction pipeline. 

4 
CACHE ~ I D E C ~  OP I 

RF I DA I DCACHE I WB 

ICACHE 
IDEC 
RF 
IA 
OP 
DA 
DCACHE 
WB 

Instruction cache access 
Instruction decode 
Register operand fetch 
Instruction address calculation and translation 
Operation (ALU/Shift) 
Data address calculation and translation 
Data cache access 
Write-back to register file 

90 percent of the time. All instructions follow the same 
sequence of five pipeline stages: instruction fetch, source 
operand fetch from register file, ALU operation or data 
operand address generation, data memory reference, and 
write back into register file. As illustrated in Fig. 18, there 
i s  not onlyparallelism dueto pipelining but also parallelism 
within the execution of a single instruction. The clock cycle 
i s  divided into two 30-11s phases. The external instruction 
and data access operations to the cache each require 60 ns, 
as do the major internal operations (OP, DA, IA). Instruction 
decode is  a simpler operation, requiring only a single 
30-ns phase, overlapped with register fetch in the same 
instruction. Calculation of an address for a branch instruc- 
tion also overlaps instruction decode and register fetch, so 
that a branch at instruction 0 in Fig. 18 can address the 
ICACHE access of instruction 2 (see dotted line A). Simi- 
larly, a load at instruction 0 fetches data that are immedi- 
ately used by the OP of instruction 2 (dotted line C), while 
an ALUlshift result gets passed directly into instruction 1 
with no delay (dotted line B ) .  This tight coupling between 
instructions makes for a highly efficient pipeline. 

VII. THE RlSC VERSUS ClSC CONTROVERSY 

For many years, the general trend in computer architec- 
ture and organization has been toward increasing CPU 
complexity: more instructions, more addressing modes, 
more specialized registers, and so on. The RlSC movement 
represents afundamental breakwith the philosophy behind 
that trend. Naturally the appearance of RlSC systems, and 
the publication of papers by its proponents extolling RlSC 
virtues, has led to a reaction from what might be called the 
mainstream of computer architecture. 

The work that has been done on assessing merits of the 
RlSC approach can be grouped into two categories: 

Quantitative: attempts to compare program size and 

execution speed of programs on RlSC and ClSC machines 
that use comparable technology. 

Qualitative: examination of issues such as high-level 
language support and optimum use of VLSl real estate. 

Most of the work on quantitative assessment has been 
done by those working on RlSC systems [311, [391, [40], and 
has been, by and large, favorable to the RlSC approach. 
Others have examined the issue and come away uncon- 
vinced 1411. There are several problems with attempting 
such comparisons [42]: - There is no pair of RlSC and a ClSC machine that are 
comparable in life-cycle cost, level of technology, gatecom- 
plexity, sophistication of compiler, operating-system sup- 
port, and so on. 

No definitive test set of programs exists. Performance 
varies with the program. 

It is difficult to sort out hardware effects from effects 
due to skill in compiler writing. 

Most of the comparative analysis on RlSC has been 
done on “toy” machines: not commercial products. Fur- 
thermore, most commercially available machines adver- 
tised as RlSC possess a mixture of RlSC and ClSC char- 
acteristics [13]. Thus a fair comparison with a commercial, 
“pure-play“ ClSC machine (e.g.,VAX, Intel 432), i s  difficult. 

The qualitative assessment is, almost by definition, sub- 
jective. Several researchers have turned their attention to 
such an assessment [41], [43], [441, but the resultsare, at best, 
ambiguous, and certainly subject to rebuttal [45], and, of 
course, counter-rebuttal [46]. 

The success of the RlSC approach in the marketplace is  
far from assured. As research, development, and product 
introduction continue, the assessment goes on. 
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