
1

S2 Instruction Set (part2)

There are 4 groups of instructions:

1 alu&logic
 add sub mul div
 and or xor not shl shr
 eq ne lt le gt ge

2 control flow
 jmp jt jf jal ret

3 data
 ld st mv push pop

4 other
 trap

Form of instruction (number of arguments)

1 alu&logic
 Most instructions are binary operators except "not" (unary).

 dest = src1 op src2

It operates with registers and src2 may be a constant (number, called immediate value), for
example,

 add r1 r2 r3 is R[r1] = R[r2] + R[r3]
 add r1 r2 #10 is R[r1] = R[r2] + 10

The name of register are r0..r31. r0 is always 0. Writing any value to r0 does not change it.
The constant is an integer (17 bits) prefixed with "#". It may be a negative number, for
example #-1.

"div" is an integer division (no fractional part). and, or, xor, shl, shr are bit-wise instructions.

 shl r1 r2 #2 is R[r1] = R[r2] shift left by 2 bits

The logical instructions: eq, ne... produce boolean result, the value true/false where false is 0,
and true is not 0.

2 control flow
 These instructions affect the sequence of execution of instructions by changing the program
counter (PC).

 jmp ads goto ads
 jt r1 ads if r1 != 0 goto ads
 jf r1 ads if r1 == 0 goto ads

 jal r1 ads R[r1] = PC; goto ads

jal is a call to a subroutine. It saves the current program counter (which is now pointed to the
place to continue when the subroutine is returned) in R[r1] which is called "link register".

2

 ret r1
jump back to the address stored in the link register (R[r1]).

3 data
 Move the content between registers and memory. The calculation of the desired address of
the memory (effective address) is called "addressing mode".

 reg <-- ld -- memory
 --- st -->

 reg <-- mv --> reg

3.1 We will discuss ld/st first
 1 absolute addressing mode -- the effective address is taken directly from the constant in
the instruction (size 22 bits).
 ld r1 ads R[r1] = M[ads]
 st ads r1 M[ads] = R[r1]

 2 indirect addressing mode -- the effective address is calculated from a value in one register
(that is why it is called "indirect") and a constant in the instruction (from the field "disp").
 ld r1 @d r2 R[r1] = M[d + R[r2]]
 st @d r2 r1 M[d + R[r2]] = R[r1]

 3 index addressing mode -- the effective address is calculated from two registers (one is
base address, another is an index).
 ld r1 +r2 r3 R[r1] = M[R[r2] + R[r3]]
 st +r2 r3 r1 M[R[r2] + R[r3]] = R[r1]

3.2 mv transfer data between registers, or set a value of a register (a constant is 22 bits).
 mv r1 r2 R[r1] = R[r2]
 mv r1 #n R[r1] = n

3.3 push/pop transfter data between a stack data structure resided in a memory and a register.
 push r1 r2 R[r1]++; M[R[r1]] = R[r2]

Take a value in R[r2] and store it in a stack pointed to by R[r1]. R[r1] is called a stack
pointer.

 pop r1 r2 R[r2] = M[R[r1]]; R[r1]--
Take a value from a stack (let R[r1] be the stack pointer) and store it to R[r2].

4 other
 trap is an instruction that interface to the operating system functions such as: stopping the
execution, print a number onto the screen, etc.

 trap 0 stop the execution
 trap 1 print R[30] to screen as an integer
 trap 2 print R[30] to screen as a character (ASCII)

Encoding of instructions

All instructions are 32 bits. There are 3 types of encoding: L, D, X.

3

L op:5 | r1:5 | ads:22 |
D op:5 | r1:5 | r2:5 | disp:17 |
X op:5 | r1:5 | r2:5 | r3:5 | xop:12 |

The format L is used with the control flow instructions and ld/st in absolute addressing mode
where they need 22-bit argument. The format D is used with the instruction which require an
immediate value. Lastly, the format X is used for the instructions that require two register
arguments. The format X's opcode has two parts, the first part, op, is 31, the second part is in
the field xop (extended opcode).

1 alu&logic

 reg-imm reg-reg
 fmt op fmt op xop
add D 10 add X 31 0
sub D 11 sub X 31 1
mul D 12 mul X 31 2
div D 13 div X 31 3
and D 14 and X 31 4
or D 15 or X 31 5
xor D 16 xor X 31 6
shl D 17 shl X 31 7
shr D 18 shr X 31 8
eq D 19 eq X 31 9
ne D 20 ne X 31 10
lt D 21 lt X 31 11
le D 22 le X 31 12
gt D 23 gt X 31 13
ge D 24 ge X 31 14
 not X 31 22

2 control flow

 fmt op xop
jmp L 6
jal L 7
jt L 8
jf L 9
ret X 31 18

3 data

 format op fmt op fmt op xop

ld absolute L 1 ld indirect D 2 ld index X 31 16
st absolute L 3 st indirect D 4 st index X 31 17

 reg-imm reg-reg
 fmt op fmt op xop
mv L 5 mv X 31 15

push X 31 20
pop X 31 21
trap X 31 19

4

Example

add r1 r2 r3 | 31 | 1 | 2 | 3 | 0 |
add r1 r2 #8 | 10 | 1 | 2 | 8 |
jt r4 100 | 8 | 4 | 100 |
ld r1 2000 | 1 | 1 | 2000 |
ld r1 @30 r2 | 2 | 1 | 2 | 30 |
ld r1 +r2 r3 | 31 | 1 | 2 | 3 | 16 |
mv r1 r2 | 31 | 1 | 2 | 0 | 15 |
mv r1 #40 | 5 | 1 | 40 |
push r1 r2 | 31 | 2 | 3 | 0 | 20 |

You can see the example of instruction encoding from the listing file.

Prabhas Chongstitvatana
5 February 2007

