
1

1. Introduction

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

AI and Search

• Search is an integral part of many artificial
intelligence applications

• It takes many forms:
• Explicit (e.g. game-playing programs, optimization,

path-finding, planning, web agents, theorem
proving, satisfiability, belief networks, NP-
complete problems, DNA sequence alignment)

• Implicit (e.g. Prolog deductions)

• Search is the heart of artificial intelligence

Search and Knowledge

• Some will argue that AI consists of only
two fundamental concepts:

• Knowledge
• Representation and manipulation of factual

and probabilistic knowledge

• Search
• Explore knowledge alternatives to arrive at

the best quality answer

Search is...

• Search is knowledge!
• Enhance the quality of explicit knowledge

• Refine the values of heuristic knowledge

• Reduce knowledge required
• No need to include explicit knowledge that will be

uncovered by the search
• Eliminate the knowledge acquisition bottleneck

• Used to uncover implicit knowledge
• Chess with a random number evaluation function
• Bridge/poker/scrabble using simulations

2

AI Textbooks

• Open any introductory book on AI and
examine the section on search

• Alpha-beta algorithm (games are popular)

• A* (puzzles, planning and optimization)

• AO* (theorem proving)

• Simulations (maybe, for probabilistic
domains)

• SAT (maybe, for satisfiability)

Changing Perceptions

• Over the years, the percent of pages
devoted to search in introductory AI
books has decreased

• Neilson (1980) 17%

• Rich (1983) 31%

• Russell and Norvig (1995) 12%

• Poole, Mackworth and Goebel (1998) 10%

• Russell and Norvig (2003) 13%

Why?

• Search algorithms are “well understood”

• No major advances in our basic
understanding of the algorithms

• But… is the algorithm alone enough to
tell you how to use search in a high-
performance program?

Search Reality

• Most of the core AI search algorithms
can be expressed in 20 lines of code

• Is search really that simple?

“If the search algorithm is really 20 lines of
code, then why is my search routine over 20
pages of code?”

M. Newborn, 1985

3

Search is all about...

• Not the search algorithm!
• Usually trivial decision made based on the

application to be solved

• The search enhancements!
• Standard algorithms are often impractical

• The enhancements can reduce the
execution time of a search by orders of
magnitude

The Message Is...

• Efficient search is all about search
enhancements

• Given an application domain, choice of
algorithm is usually trivial

• 99% of the effort is spent implementing,
debugging, tuning and analyzing search
enhancements

• The AI textbooks have it backwards

Brute-force Search

• Search enhancements make it possible for
“brute-force” techniques to solve a problem

• Paradoxical that a “dumb” and exhaustive
searcher can out-perform a “smart” and
selective searcher

• This is one of the major advances in AI
• It took many years to get grudging respect from

the AI community

The Challenge!

• Build high-performance search
programs

• Start with the basic algorithm and
improve the search through:

• Better quality evaluation function

• Combination of search enhancements

4

Heuristic Search

• Combination of search and knowledge
to explore a state space to find the best
quality answer

• The goal is to dampen or eliminate the
exponential growth of the search tree

Search Goals

• Optimizing
• Optimal solution(s)

• May not be achievable in reasonable time

• Satisficing
• Come up with the best quality decision

within given resource constraints

• Solution quality can be significantly worse
than an optimal solution

Search Knowledge

• Optimal
• Terminal nodes of search tree are well-

defined by the application domain
• E.g., win/loss/draw; length/cost of solution

• Satisficing
• Can’t reach all the terminal nodes
• Stop search at leaf nodes and approximate

result
• Use a heuristic evaluation function

Ingredients in a Searcher?

• Application-dependent information

• Successor state generator

• Algorithm
• Next node to expand

• Backup rule

• Heuristic evaluation function

5

Example

O

X

OO
X
X

XX

OO
X

X

X

OO
X

X

OO
X

O

X

X

OO
X

Application-dependent
information

Branching factor

O wins

X loses

Terminal node Heuristic node

Even

Even

State generation

Maximize

Minimize

Backup rule

S
e
a
r
c
h

D
e
p
t
h

Algorithms?

• Adversary search
• Alpha-beta and variants

• Single-agent search
• A* and variants

• Imperfect information
• Simulations

• Stochastic
• Expecticmax and variants

• Other
• Many other algorithms for handling specific cases

It’s All About the Algorithm?

• Choice of algorithm is often trivial
given a statement of the problem

• Pre-packaged code is usually readily
available

• Just need to put in application-dependent
information

It’s All About Enhancements!

• Generic search algorithms get poor
performance

• There are a plethora of enhancements
in the literature that can dramatically
improve the efficiency of search

6

Exponential Search Growth!?

• Branching factor = b

• Search depth = d

• Naïve search = bd nodes

• Smart search?

IDA* Example

IDA* 36,302,808,031
Enhanced search [1] 21,261,747

Full-width search 1,000,000,000,000,
 000,000,000,000
 000,000,000,000

15-Puzzle (test set of 100 positions):

Further work [2] ~1,000,000

DAG, not a tree ~10,000,000,000,000

Hot off the press! [3] 19,540

Alpha-beta Example

Minimax search: 100,000,000,000,000
Alpha-beta search: 310,000,000

Enhanced search: 7,000,000

Checkers program:

Conclusion

Need I say more?

7

References
[1] Joseph Culberson and Jonathan Schaeffer. “Pattern

Databases”, Computational Intelligence, Vol. 14, No. 4,
pp. 318-334, 1998.

[2] Richard Korf and Ariel Felner, “Disjoint Pattern Database
Heuristics”, Artificial Intelligence, vol. 134, no. 1-2, pp. 9-
22, 2002.

[3] Ariel Felner, Robert Holte, Jonathan Schaeffer, and Uzi
Zahavi. Unpublished, 2004.

