
Self-Generating Systems:
How a 10,000,0002-line Compiler Assembles Itself

Prabhas Chongstitvatana

Department of Computer Engineering, Chulalongkorn University
Bangkok 10330, Thailand

Email: prabhas@chula.ac.th

Abstract

This work described a self-generating system. A
system is self-generated when it can bootstrap itself
on a system without an external help. A compiler is
used as a concrete example. A small 10,000,0002-
line1 compiler is illustrated to generate an executable
version of itself from an input description. The
automatic bootstrapping process consists of several
stages. Each stage reads the input description and
extends the system itself into a "higher" stage. The
input description is "evolved" through these stages
from a low-level language into a high-level language.
The result is an executable system that built itself step
by step into a full compiler.

Key Words: self-generating systems, compiler,
bootstrap

1. Introduction

How a complex system is created? One possible
scenario is that it starts from a simple working system
(how this simple system comes into being is another
topic), then it extends its capability, very likely that it
becomes a tool to develop a next generation system.
This process is repeated and the system "advances"
itself into a complex system.

Let us consider how complex software is created.
How contemporary application software is
implemented? It needs many powerful tools such as
a compiler and some ready-built software
components. One can ask further, how a compiler is
created? Most of the present day compilers have
been developed through many generation of compiler
development (for example, Pascal, Oberon etc.).
Each succeeding version was built from the compiler
of the earlier version.

1

 I attribute this parody to D.E.Knuth [1]

 To investigate further it is natural to ask "How the
first compiler is created?" It was probably developed
from a simpler tool such as an assembler. The tools
constrain a programmer to write a compiler in an
assembly language. If we follow this questioning
further, we will reach the question "How an
assembler is created?", and so on.

The purpose of this article is to explore the space
from the very beginning of perhaps nothing to the
first compiler. We will follow the iterative process of
incrementally extending a system to be more capable
so that it becomes a tool for the next generation
development. During its evolution, the description
(representation) of the system is also evolved.

What is the point of this exercise? Besides
creating a beautiful piece of abstraction (software)
with interesting qualities, this exercise demonstrates
an evolvable system of description that describes the
process of its own evolution. It is very interesting
that the process of evolution of a complex system can
be described within itself.

2. General idea

To build evolvable software, we need to
dynamically compile and execute a program on the
fly. In general, we can think of each successive
generation of software as a code block. This code
block must be created in the system memory and then
it is activated to work. Starting from the first code
block, let us call it Block0, we assume it is already
resided in the memory. Once it starts working, it
creates the next version of software, the code Block1.
At the termination of execution Block0, it activates
Block1 then Block1 creates Block2 and actives it and
so on to BlockN.

How can a code block create a new code block?

It reads a description of the new code block from an
input stream. This description is an extension of the

current program to be the next version of that
program. This description is the key to our
bootstrapping process.

3. Implementing a compiler
 How can we write the first compiler from
nothing? Not really, we must assume that at the
bottom line there is a machine language that our
program will finally be transformed into. This
machine language is the one that can be executed on
a computer (either virtual or real). Let us call it the
language M. We are not going to write the whole
thing in machine codes. The semantic content of M
is too low for a human programmer to develop a
complex software. Preferably, we want to write a
program for a particular task using the highest
language semantic available. For example, for a
compiler, we would like to have a language that have
this statement "compile P" where P is our target
language, let us call the target language, the language
L. We will need to evolve M to L through
bootstrapping process. We want to stress that this
bootstrapping process is entirely automatic.

Suppose there are successive system evolution s0,
s1, ...sn. The bootstrapping process works like this.
Starting from s0 resided in the memory, s0 is
activated and it reads a description of a language l1
and builds s1 in the memory then activates it. s1
goes on to read l2 (perhaps from the same input
stream) and builds s2 and so on until the process
reaches the target system with the language L. Each
succeeding l1, l2, ...L will have higher semantic
content than the preceding one. In other words, it
will be a higher level language than its predecessor.

Let us do a concrete exercise on a compiler. We
are going to implement a compiler. To keep the size
of this exercise small, the target language must be
simple to compile. So, we design a language L to be a
postfix language. It has global variables, function
definition, local variables, control flow such as if,
else, while, and usual operators. It has only integer
data type and dynamically allocated array data
structure. The following programs show the
language L.

Notation: Algorithms and programs are shown in
courier font, the input stream is in Arial font.

to print i { } i sys 3 end

; factorial
to fac n { }

 if n 0 == { 1 else n n 1 - fac * }
end

; a global variable
var ax

; sum all elements of an array
to sum ar size { i s }
 1 -> i 0 -> s
 while i size <= {
 s ar i ldx + -> s ;s = s + ar[i]
 inc i
 }
 s ; return s
end

to main { }
 6 fac print
 20 array -> ax
 ax 0 1 stx ; ax[0] = 1
 ax 1 2 stx ; ax[1] = 2
 ax 20 sum print
end

where ax is a dynamically allocated array, -> is an
assignment operator, ldx/stx are array access
operators.

The compiler for L can be written in itself in 128
lines (the full program is shown in the appendix).
However, when we describe algorithms in this work,
we will use an infix version of L for the sake of
familiarity.

4. Machine code
 We also define a machine language, M, that will
run on a virtual machine. This language is stack-
based. It uses a stack for evaluation. It has a high
level "stack frame" that stores state of computation
and local variables. This is used for function call and
return. The instruction has two formats: operator and
operator with one argument. Each instruction is a
fixed length 32 bits, the left most 24-bit is an
argument, the right most 8-bit is an operation code.
The instruction without an argument will have its
argument field filled with zero.

no-arg operators:

add, sub, mul, div, eq, ne, lt
one-arg operators:

jmp,jt,jf,call,ret,ld,st,get,put...

The complete set of instruction can be found in [2].
For example, the factorial function above can be
compiled into M as follows:

; factorial
to fac n { }
 if n == 0 { 1 else n * (fac n - 1) }
end

 3 Fun 1
 4 Get 1
 5 Lit 0
 6 Eq
 7 Jf 3
 8 Lit 1
 9 Ret 2
 10 Get 1
 11 Get 1
 12 Lit 1
 13 Sub
 14 Call 3
 15 Mul
 16 Ret 2

A virtual machine for M is assumed to run on the
target platform where we want to bootstrap the self-
assembling system.

5. Bootstrapping
 The only input/output functions assumed in L are
reading a character from an input stream and writing
an integer to an output stream. The evolution process
from M to L starts with a simple loader that can read
only integers. The first code block is loaded by the
virtual machine. The next step is a lexical analyser
that understands simple machine code format and
comment lines. Then the system can read symbols,
which is used in a simple assembler. The next step is
a better assembler with symbolic names. Then the
system is evolved into a simple compiler which
understand control flow; if, else, while. The final
evolution is a full compiler for L that has function
definition, global and local names. Many routines
from an earlier evolutionary step are reused in the
subsequent evolutionary steps. These steps are
illustrated below (see Fig. 1 at the end of this article
for the flow of the whole process).

Block0
program
 read integer
 loader1
input
 machine code of Block1

Block1
program
 symbol table (sym)
 lexical analyser (lex)
 a simple assembler (asm1)
input
 initial symbols
 asm2 written in the language of asm1

Block2
program
 better assembler (asm2)

 with symbolic names
input
 com1 written in asm2

Block3
program
 a simple compiler (com1)
 with control flow
input
 com2 written in com1

Block4
program
 the final compiler for L (com2)
input
 application programs written in L

The first code block, Block0, starts the whole
bootstrapping process (Fig. 2). It is a loader that
loads machine code of Block1. Block0 itself is
loaded by the virtual machine. It is written in
machine code (M) in the format that is suitable for
the virtual machine to read. Block0 contains a
program, loader1, which reads s-code in the format:
(operator argument)* terminated by 0 (Fig. 3). For
the reason of simplicity of the routine to read an
integer in loader1, a negative integer is represented
by a positive integer prefixed by a zero "0". You can
see the difference between the code in Block0 and
Block1 by noticing this negative integer.

32 139 23 0 38 1 24 1 31 48 13 0 24 1 31 57 12 0 5 0
40 2 38 1 24 1 31 32 9 0 24 1 31 10 9 0 6 0 24 1
31 40 9 0 6 0 24 1 31 41 9 0 6 0 24 1 31 10 11 0
6 0 40 2 38 2 36 3 25 1 24 1 31 59 9 0 30 8 28 3
36 3 25 1 24 1 31 10 10 0 29 -5 24 1 27 1001 24 1 36
2
...
0

Figure 2. the machine code of Block0

to outc op arg { } ; put code at CP
 CS[CP] = (arg << 8) | op
 CP = CP + 1

; format (op arg)* .. 0
to loader1 { op arg }
 op = readint
 while op != 0
 arg = readint
 outc op arg
 op = readint

Figure 3. loader1 in Block0, readint reads an

integer from an input stream, CS is code segment, CP
is a pointer to CS

32 227 32 252 32 276 32 403 32 443 32 788 23 0 1 0
38 2 26 1004 25 1 26 1004 31 4 1 0 27 1004 26 1005
24 1 24 2 19 0 24 1 40 3 38 1 26 1005 24 2 18 0 31 0
9 0 30 6 26 1005 24 2 24 1 32 150 19 0 26 1005 24 2
18 0 40 3 38 2 28 6 26 1001 31 0 11 0 30 2 28 4 32
33 32 12 29 07 26 1001 32 3
...
0

Figure 4. The input of the code Block1, a negative

integer is underlined

Block1's code contains a routine to handle a

symbol table and a routine to do lexical analyser.
The symbol table is implemented as a Trie using the
linked list of characters. All lexicons in the input
stream are inserted into this table. The lexical
analyser understands the comment line and two
formats for operators: op without argument and op
with argument. The machine code format becomes:
operator [argument] [comment line]* where []
denotes option.

; a tiny assembler
to asm1 { i j op }
 i = lex
 while i > 1 {
 op = sym[i+3] ; get attribute
 tkval = 0
 if op > 23 { j = lex }
 outc op tkval
 i = lex
 }

Figure 5. A tiny assembler in Block1

With the symbol table, we can associate symbols

with their internal representation (integer). Block1 is
a simple assembler. Fig. 5 shows its algorithm. The
system now can understands the input stream of the
format: symbolic-operator [numeric argument]. The
initial symbols for the symbol table are read from the
input stream with the format (symbolic-operator
operation-code)* terminated by 0 (Fig. 6).

Block2 is a better assembler written in the

language of the simple assembler of the previous
generation of the system (Fig. 7). Block2's assembler
understands labels. A label is used to associate the
current code address with a symbol. This is used for
labeling a function definition. The assembly
language statement "def symbol value" is used to
associate the symbol to the value. It is used to define
symbolic names, for example, global variables or
previously defined machine code routines.

; init symtab
+ 1 - 2 * 3 / 4 & 5 | 6 ! 8 == 9 != 10 < 11
<= 12 > 14 >= 13 ^ 7 % 17 << 15 >> 16
ldx 18 stx 19 array 22 halt 23
get 24 put 25 ld 26 st 27 inc 34
fun 38 ret 40 jmp 28 jt 29 jf 30 call 32
lit 31 sys 36
stop 50 { 51 } 52 else 53 def 54
if 55 while 56 -> 57 to 58 end 59 var 60
0
; end symtab

Figure 6. The symbol table, this symbol table

included keywords (value > 49) for subsequent
development such as { } if else while stop

to end var

; sym 1005
; lex 179
; isStop 394
 ...
; 403 asm2 { i a }

fun 3
call 179 put 2 ; i = lex
ld 1005 get 2 lit 3 + ldx put 1 ; a = sym[i+3]
get 1 call 394 jf 2 ret 3 ; if isStop a break
get 1 get 2 call 336 ; dolabel a i
get 1 call 348 ; dodef a
get 1 call 362 ; doop a
jmp 019 ; asm2 jmp -19
ret 3

0

Figure 7. A better assembler of Block2 written in

asm1

Now the system is ready to evolve into a high-

level language compiler with control flow and
function definition. The first step is to do a compiler
with control flow. Block3 extends the better
assembler (asm2) to understand "if" "else" and
"while". This is done using a recursive parser that
generates all the required jump, conditional jump
instructions (Fig. 8).

def tkval 1000
def CP 1002
def CS 1003
def sym 1005
def TK 1007

def outc 81
def lex 179
def dolabel 336
def dodef 348
def doop 362
def isStop 394
 ; 443 com1 { i a b }

com1 fun 4
call lex put 3 ; i = lex
ld sym get 3 lit 3 + ldx ; TK = sym[i+3]
st TK
ld TK call isStop jf 2 ; if isStop TK break
 ret 4
get 3 lit 1 == jf 5 ; if i == 1
 lit 31 ld tkval call outc ; out lit tkval
 jmp 59
ld TK get 3 call dolabel ; dolabel TK i
ld TK call dodef ; dodef TK
ld TK call doop ; doop TK
ld TK lit 56 == jf 19 ; if TK == while
 ld CP put 2 ; a = CP
 call com ; com1
 ld CP put 1 ; b = CP
 lit 30 lit 0 call outc ; out jF 0
 call com1 ; com1
 lit 28 get 2 ld CP -
 call outc ; out 28 a-CP
 get 1 ld CP call patch ; patch b CP
 jmp 30
ld TK lit 55 == jf 26 ; if TK == if
. . .
stop

Figure 8. The compiler, com1, of Block3 written in
asm2

With this language, the final compiler (com2) can
be written that will be able to compile L. The final
code, Block4 is the compiler, com2. It extends com1
to handle the function definition "to" "end", local
variables in the body of a function and global
variables using "var name" (Fig. 9).

com2 fun 5 ; com2 { i j a b }
 call lex put 4 ; i = lex
 ld sym get 4 3 + ldx st TK ; TK = sym[i+3]
 if ld TK call isStop { ret 5 } ; if isStop TK brk
 if get 4 1 == { ; if I=1 out lit tkval
 31 ld tkval call outc
 else ; else
 ld TK call dodef ; dodef TK
 ld TK call doop ; doop TK
 if ld TK 56 == { ; if TK == while
 ld CP put 2 ; a = CP
 call com2 ; com2
 ld CP put 1 ; b = CP
 30 0 call outc ; out jf 0
 call com2 ; com2
 28 get 2 ld CP - call outc ; out jmp a-CP
 get 1 ld CP call patch ; patch b CP
 . . .
 else if ld TK 100 > { ; else if TK > 100
 get 4 call typeof put 3 ; j = typeof i
 get 4 call getref put 2 ; a = getref i
 if get 3 1 == { ; if j == 1
 32 get 2 call outc ; out call a
 else if get 3 2 == { ; else if j == 2
 26 get 2 call outc ; out ld a

 else ; else
 24 get 2 call outc } } ; out get a
 } } } } } } }
 jmp 0206 ; com2
ret 5

stop

Figure 9. The final compiler, com2, written in com1

with control flow in Block4

The example below shows a program in L and the

M output code (Fig. 10).

to print i { } i sys 1 end

; a global variable
var ax

; sum all elements of an array
to sum ar size { i s }
 1 -> i 0 -> s
 while i size <= {
 s ar i ldx + -> s ;s = s + ar[i]
 inc i
 }
 s ; return s
end

to main { }
 20 array -> ax
 ax 0 1 stx ; ax[0] = 1
 ax 1 2 stx ; ax[1] = 2
 ax 20 sum print
end

32 25 23 0 38 1 24 1 36 1 40 2 38 3 31
1 25 2 31 0 25 1 24 2 24 3 12 0 30 8 24
1 24 4 24 2 1 0 25 1 34 2 28 -10 24 1
40 6 38 1 31 20 22 0 27 1001 26 1001
31 0 31 1 26 1001 31 1 31 2 24 1
26 1001 31 20 32 7 32 3 40 2

Figure 10. An example of an application program

translated into a correct M-code from the first
example of this paper in the format of the raw code

similar to Block0

6. Discussion and related work
 Now we can discuss the question "How the first
compiler is built?". Using a contemporary software
tool such as a C compiler, the final 128-line compiler,
which is itself written in L, can be written in C and
then compile to generate an executable code. The
self-assembling compiler described in this work is
different. It does not require any outside tool such as
a compiler to generate an executable code. It does
bootstrap itself from a small beginning then extends

itself into a more complex system by reading many
sequences of description from an input stream. The
input description that the system used to build itself
has an interesting character. As the system evolves
itself, the description becomes richer in its semantic.
This is intentional because it was designed so that a
human programmer find himself/herself a higher and
higher level of tool that facilitates the task of writing
programs. Reading through the whole sequence of
input description to this self-generating system, you
can notice the "evolution" of the description easily,
from machine codes, to an assembly language and
finally to a target high level language (see the full
input stream at the reference website [2]).

This description is planned and is written by a
human. In an ordinary task of writing a compiler, it
also requires a human designer. The main distinction
of this self-generating system is that the description
itself is also "evolved" through bootstrapping
process. The stages of bootstrapping process must be
carefully planned. However, it is possible to imagine
a system that can search for this description. For
example, evolutionary techniques such as Genetic
Algorithms [3] or Genetic Programming [4] can be
used to search for such description. Because the
evolution step of this description is small, it is more
like a continuum rather than a big jump. The search
for a description that will extend a system to grow in
the right direction is more likely to be possible.

The bootstrapping process has been used to
develop software systems since the early days of
computer evolution. Human is the main agent to do
the bootstrapping process. By creating a more and
more powerful system based on a previous one, a
very powerful system has been successfully
developed. An evolution of any programming
language is the case, for example FORTRAN and
many of its variants, B to BCPL to C, C to C++ and
then to JAVA, ALGOL to many languages as its
descendant such as Pascal, Oberon etc. Most of the
history of programming language was recorded in
Annal of history of computing [5] and the book [6].

The minimalist approach to programming was
championed by FORTH [7]. The bootstrapping
process was described as a meta-compiler, one of the
most significant contribution in this area is
cmFORTH [8] which the whole meta-compilation
process (FORTH code plus machine code) to build a
new system on another platform can be described in
about 10 pages. Comparatively, the input description
of the system described in this work is 6 pages long.
It is interesting to note that, an interpreter is more
compact than a compiler. A self describing

interpreter, so called meta-interpreter is very
compact. An extreme example can be cited from
PROLOG where its meta-interpreter is almost trivial
to write. A full PROLOG interpreter that can handle
"cut" can be written in less than one page of
PROLOG [9]. You can see the whole code including
the next evolution step of this compiler that has tail-
call optimisation in my webpage [2]. It also contains
the source and executable code for the virtual
machine used in this work.

Acknowledgements

I would like to thank my colleagues, Yanyong
Tengamnuay and Somchai Prasitjutrakul for a lively
debate of my early idea of this work which helped me
to polish it to this stage. I like to thank Jaruloj
Chongstitvatana who did all illustrations in this work.

7. References

[1] D. E. Knuth homepage, his birthday event in 2002.
[2] http://www.cp.eng.chula.ac.th/faculty/pjw/project/sgs/
[3] D. Goldberg, Genetic Algorithm in search

optimization and machine learning. Addison Wesley,
1989.

[4] J. Koza. Genetic Programming II: Automatic
discovery of reusable programs, MIT Press, 1994.

[5] http://www.computer.org/pubs/annals/annals.htm
[6] T. Bergin and R. Gibson, History of programming

languages, Addison Wesley, 1996.
[7] Charles Moore, the inventor of FORTH language,

http://www.colorforth.com/bio.html
[8] J. Melvin, Demise of the metacompiler in cmForth,

ACM SIGFORTH Newsletter, Volume 1 , Issue 2,
1989, pp.7-8.

[9] Y. Shoham, Artificial Intelligence Techniques in
Prolog, Morgan Kaufmann Publishers, 1993.

32 227 32 252 32 276 32 403 32 443 32 788
23 0 1 0
26 1001 31 0 11 0 30 2 28 4 32 33 32 12 29 07
26 1001 32 3
...
0

; init symtab for asm
+ 1 - 2 * 3 / 4 & 5 | 6 ! 8 == 9 != 10 < 11
<= 12 > 14 >= 13 ^ 7 % 17 << 15 >> 16
ldx 18 stx 19 array 22 halt 23
...
0
; end symtab
...
; 336 dolabel tk i
fun 1
get 2 lit 0 == jf 7 ; if tk == 0
...
0

def TK 1007
def dolabel 336
def dodef 348
...
; 443 com1 { i a b }
com1 fun 4
call lex put 3 ; i = lex
ld sym get 3 lit 3 + ldx ; TK = sym[i+3]
st TK
ld TK call isStop jf 2 ; if isStop TK break
 ret 4
...
stop

...
com2 fun 5 ; 579 com2 { i j a b }
 call lex put 4 ; i = lex
 ld sym get 4 3 + ldx st TK ; TK = sym[i+3]
 if ld TK call isStop { ret 5 } ; if isStop TK break
 if get 4 1 == { ; if i = 1 outc 31 tkval
 31 ld tkval call outc
 else ; else
 ld TK call dodef ; dodef TK
...
stop

; a global variable
var ax

; sum all elements of an array
to sum ar size { i s }
 1 -> i 0 -> s
 while i size <= {
 s ar i ldx + -> s ;s = s + ar[i]
 inc i
 }
 s ; return s
end

32 139 38 1 24 1 31 48 13 0 24 1
31 57 12 0 5 0
36 3 25 1 24 1 31 10 10 0 29 -5 24
1 27 1001 24 1 36 2
...
0

lex
initsym
asm1

loader

asm2

com1

com2

32 25 23 0 38 1 24 1 36 1 40 2 38 3
31 1 25 2 31 0 25 1 24 2 24 3 12 0
30 8 24 1 24 4 24 2 1 0 25 1 34 2
28 -10 24 1 40 6 38 1 31 20 22 0
27 1001 26 1001
31 0 31 1 26 1001 31 1 31 2 24 1
26 1001 31 20 32 7 32 3 40 2

Block0

Block1

Block2

Block3

Block4

Load by vm

Output
machine code

Input

Figure 1. The flow of self-generating compiler

Appendix
The listing of the full compiler (com2) in 128 lines in infix L.

 ; a 128-line compiler for L

 ; tkval value of token num
 ; last the end of last fun
 ; numlocal no. of locals of current fun
 ; freecell pointer to free sym
 ; CH current input char
 ; TK attribute of current token
 ; CP code pointer
 ; CS code segment, array 1000
 ; sym symbol table, array 1000
 ; lvrec record of locals, array 20

 1 to isNum c { } (c >= 48) & (c <= 57) ; 0..9
 2 to isSpace c { } (c < 33) ; tab space nl
 3
 4 to readc { } ; read one char
 5 CH = sys 3
 6 CH
 7
 8 ; a cell has 4 fields: char,right,next,atr
 9 to newcell c { k }
 10 k = freecell
 11 freecell = freecell + 4
 12 sym[k] = c
 13 k
 14
 15 to search i c { } ; if sym[i]=0 insert c at i
 16 if sym[i] == 0 { sym[i] = newcell c }
 17 sym[i]
 18
 19 ; return index to symtab[], 1 if numeric
 20 to lex { i }
 21 while readc
 22 if CH == 59
 23 while CH != 10 { readc } ; skip comment
 24 if ! isSpace CH { break } ; skip blank
 25 if isNum CH
 26 tkval = CH - 48
 27 while ! isSpace readc
 28 tkval = tkval*10 + CH - 48
 29 1 break ; it is numeric
 30 i = 0
 31 while ! isSpace CH ; check space
 32 i = search i+2 CH ; next of i
 33 while sym[i] != CH { i = search i+1 CH }
 34 CH = readc ; read next
 35 i
 36
 37 to outc op arg { }
 38 CS[CP] = (arg << 8) | op
 39 CP = CP + 1
 40
 41 to patch a1 a2 { op } ; relative address
 42 op = CS[a1] & 255
 43 CS[a1] = ((a2-a1) << 8) | op
 44
 45 to rename d { } numlocal - d + 1 ;1..n to n..1

 46 to typeof i { } (sym[i+3] >> 20) & 15
 47 to getref i { } sym[i+3] & 1048575
 48 to setattr i ty ref { } sym[i+3] = (ty << 20) | ref
 49
 50 to parse { i j a b }
 51 i = lex
 52 TK = sym[i+3] ; get attr
 53 if i == 1 outc 31 tkval ; lit tkval
 54 else if TK == 0
 55 numlocal = numlocal + 1
 56 setattr i 3 numlocal ; declare local
 57 lvrec[numlocal] = i
 58 else if TK < 24 outc TK 0 ; op no-arg
 59 else if TK < 50 ; op arg
 60 j = lex ; get arg
 61 outc TK tkval
 62 else if TK < 54 break ; stop { } else
 63 else if TK == 56 ; ->
 64 j = lex ; name
 65 if (typeof j) == 2
 66 outc 27 getref j ; gvar, st ref
 67 else
 68 outc 25 rename getref j ; lvar, put ref
 69 else if TK == 53 ; to
 70 last = CP ; record fun
 71 j = lex ; fname
 72 setattr j 1 CP
 73 parse ; get pv until {
 74 a = numlocal ; set arity
 75 parse ; get lv until }
 76 outc 38 numlocal-a ; fun lv
 77 else if TK == 54 ; end
 78 outc 20 numlocal ; ret n
 79 i = 1
 80 while i <= numlocal
 81 setattr lvrec[i] 0 0
 82 i = i + 1
 83 numlocal = 0 ; clear locals
 84 else if TK == 57 ; while
 85 a = CP
 86 parse ; cond {
 87 b = CP
 88 outc 30 0 ; jf 0
 89 parse ; body }
 90 outc 28 a-CP ; jmp a
 91 patch b CP
 92 else if TK == 55 ; if
 93 parse ; cond {
 94 a = CP
 95 outc 30 0 ; jf 0
 96 parse
 97 if TK == 52 ; else
 98 patch a CP+1
 99 a = CP
 100 outc 28 0 ; jmp 0
 101 parse
 102 patch a CP
 103 else if TK == 60 ; var

 104 j = lex ; global name
 105 setattr j 2 (array 1) ; gvar, alloc DS
 106 else ; TK > 100, names
 107 j = typeof i
 108 a = getref i
 109 if j == 1 outc 32 a ; fun, call ref
 110 if j == 2 outc 26 a ; gvar, ld ref
 111 if j == 3 outc 24 rename a ; lvar, get ref
 112 parse
 113
 114 to main { i k }
 115 freecell = 4
 116 CP = 1
 117 CS = array 1000
 118 sym = array 1000
 119 lvrec = array 20
 120 i = lex ; init symtab
 121 while i > 1 ; until 0
 122 k = lex ; get attr
 123 sym[i+3] = tkval
 124 i = lex ; get sym
 125 outc 32 0 ; call main
 126 outc 23 0 ; end
 127 parse
 128 patch 1 last+1

End of listing

