
Types
A type is a set of values having predefined characteristics, e.g. integer, floating point,
character, string, pointer.

Types provide implicit context for operations so that the programmer does not have to specify
that context explicitly, e.g.
• a+b Integer addition if a and b are of integer types.
• new MyType() Heap is allocated without having to specify object size, and

constructor is called automatically.

Types limit the set of operations that may be performed in a semantically valid program, e.g.
• Prevent adding char and struct
• Prevent passing a file as a parameter to a subroutine that expects an integer

High-level languages associate types with values to provide contextual information and error
checking.

Common Types
Discrete types

• The domains to which they correspond are countable.

• There is the notion of predecessor and successor.

• E.g. integer, boolean, char, enumeration, subrange

Scalar types

• They hold a single data item (single-valued types).

• E.g. discrete, real

Composite types

• Non-scalar types created by applying a type constructor to one or more simpler
types.

• E.g. record (struct), array, string, set, pointer, list, file

Type System (1)
Consists of

• A mechanism to define types and associate them with certain language constructs
 Mechanism: predefined types vs. composite types (having type constructors to build from simpler

types)

 Associated construct: named constant, variable, record field, parameter, subroutine, literal
constant, complicated expression

//C struct

typedef struct pnt {

int x, y;

} Point;

Point point_new(int x, int y) { … }

(* Pascal array, subrange *)

type

ch_array = array[char] of 1..26;

test_score = 0..100;

var

alphabet: ch_array;

score: test_score;

//Java enumeration, class

public enum Day {

SUNDAY, MONDAY, TUESDAY,

WEDNESDAY,THURSDAY, FRIDAY,

SATURDAY

}

public class EnumTest {

Day day;

… }

…

EnumTest firstDay;

Type System (2)
Consists of (cont.)

• Type equivalence rules to determine when the types of two values are the same.

• Type compatibility rules to determine when a value of a given type can be used in a
given context.

• Type inference rules to determine the type of an expression based on the types of
its constituent parts or the surrounding context.

Type Checking
Process of ensuring that a program obeys the language’s type compatibility rules
(checking if an object of a certain type can be used in a certain context)

A violation of the rules is known as a type clash.

//c

int a;

a = "xyz"; //clash

Static vs. Dynamic Typing
Statically-typed language

• Type is bound to the variable, and type checking can be performed at compile time,
e.g. Pascal, Java, C, C#

• In practice, most type checking can be performed at compile time and the rest at
run time.

Dynamically-typed language

• Type is bound to the value, and types are checked at run time, e.g. Lisp, Perl, PHP,
Python, Ruby

//C

int n; int iarr[3];

…

iarr[n] = 5;

#Python

s = "abcd" # s is a string

s = 123 # s is now an integer

p = s – 1

//Java

String s = "abcd"; //s will forever be a string

Type Equivalence Rules
In a language in which the user can define new types, there are two ways of defining
type equivalence.

Structural equivalence

• Based on meaning behind the declarations

• Two types are the same if they consist of the same components.

• E.g. Algol-68, Modula-3, (to some extent) C, ML.

Name equivalence

• Based on declarations

• Each definition introduces a new type.

• More fashionable these days

• E.g. Java, C#, Pascal, Ada

Structural Equivalence (1)
Expand the definitions of two types. If the same, they are equivalent.

But exact definition of structural equivalence varies from one language to another.

R1 and R2 are equivalent. What about R2 and R3?

Most languages say R2 and R3 are equivalent, ML says no.

type R1 = record

a, b : integer

end;

type R2 = record

a : integer;

b : integer

end;

type R3 =record

b : integer;

a : integer

end;

a b
integer integer

b a
integer integer

Structural Equivalence (2)
Inability to distinguish between types that programmer may think of as distinct but
which happen to have the same internal structure. Compiler with structural
equivalence will accept this.

type student = record

name, address : string

age: integer

type school = record

name, address : string

age : integer

x : student; y : school;

…

x := y;

name address age
string string integer

name address age
string string integer

//C structural equivalence for scalar types

typedef float celsius;

typedef float fahrenheit;

…

celsius c; fahrenheit f;

…

f = c;

Name Equivalence
If the programmer takes the effort to write two type definitions, then those are meant
to represent different types.

//C

typedef struct b1 {

char title[20];

char author[20];

int book_id;

} Book1;

typedef struct b2 {

char title[20];

char author[20];

int book_id;

} Book2;

…

Book1 book1; Book2 book2;

…

book2 = book1; //no match for operator =, operand types are Book2 and Book1

Exercise: Structural vs. Name Equivalence
//Java

class MyCard {

public MyCard() { … }

public int suit() { … }

public int rank() { … }

private int suitValue;

private int rankValue;

}

class YourCard {

public YourCard() { … }

public int suit() { … }

public int rank() { … }

private int suitValue;

private int rankValue;

}

class MyCardChild extends MyCard { … }

Given

MyCard mc;

What kind of type equivalence is used in each statement?
What happens to each statement when type checking is performed?

1. mc = new YourCard(); ………………………………………………………………………………………………..
2. mc = (MyCard) new MyCardChild(); …………………………………………………………………………..
3. mc = new MyCardChild(); …………………………………………………………………………………………..

Type Conversion and Cast (1)
In a statically-typed language, there are many contexts in which values of a specific
type are expected, e.g.

• a = expression (expression is expected to be of the same type as a)

• a+b (a and b are expected to be either integer or float)

• foo(arg1, arg2, …, argN) (arguments are expected to be of the types
declared in foo’s header)

If the programmer wishes to use a value of one type in a context that expects another,
he or she will need to specify an explicit type conversion (or type cast) to enforce type
equivalence.

Variables can be cast into other types, but they do not get converted. You just read
them assuming they are another type.

Type Conversion and Cast (2)
Depending on the types involved, conversion may or may not require code to be
executed at run time. There are three principal cases:

1. If two types are structurally equivalent (same low-level representations and set of
values) but the language uses name equivalence, no code will need to be executed
at run time.

2. The types have different sets of values, but intersecting values are represented in
the same way (e.g. one type is a subrange of the other, one type is two’s
complement signed integers and the other is unsigned).

• If the provided type has some values that the expected type does not, code must
be executed at run time to check if the current value is valid in the expected type.

3. The types have different low-level representations but a correspondence among
their values can be defined (e.g. integer to floating-point, floating-point rounded to
integer). Most processors provide a machine instruction for this.

Exercise: Type Conversion and Cast
Which of the three cases of run-time code for type checking applies to the following?

--Ada

n : integer; --assume 32 bits

r : long_float; --assume IEEE double-precision

t : test_score; --type test_score is new integer range 0..100;

c : celsius_temp; --type celsius_temp is new integer;

…

1. t := test_score(n); ……………………………………………………………………………………………………….

2. n := integer(t); ……………………………………………………………………………………………………….

3. r := long_float(n); ……………………………………………………………………………………………………….

4. n := integer(r); ……………………………………………………………………………………………………….

5. n := integer(c); ……………………………………………………………………………………………………….

6. c := celsius_temp(n); ……………………………………………………………………………………………………….

Type Compatibility Rules
Most languages do not require type equivalence in every context. They say that a
value’s type must be compatible with that of the context in which it appears.

Whenever a language allows a value of one type to be used in a context that expects
another, the language implementation must perform an automatic implicit conversion
to the expected type. This is a type coercion.

Like explicit type conversion, coercion may require run-time code to perform a
dynamic semantic check or to convert between low-level representations.

Type Coercion
Coercion allows types to be mixed without explicit indication of intent from
programmer.

//C

short int s; //16 bits

unsigned long int l; //32 bits

char c; //8 bits

float f; //32 bits, IEEE single-precision

double d; //64 bits, IEEE double-precision

… //something may be interpreted differently,

//or some precision may be lost

s = l;

l = s;

s = c;

f = l;

d = f;

f = d;

//C

//array and pointer can be mixed

int n;

int *a;

int b[10];

a = b;

n = a[3];

Universal Reference Type
Several languages provide a universal reference type (compatible with any data value), e.g.

C, C++ void *

Clu any

Modula-2 address

Java Object

C# object

Arbitrary l-values (locations) can be assigned into an object of a universal reference type.

Assignment of a universal reference back into the object of a particular reference type
requires the object to be self-descriptive and include a type tag in the representation of each
object.

Such type tags are common in OO languages.

//C

int x; char y; void *z;

z = &x; z = &y;

//Java

Object a;

Cat c = new Cat(); Dog d = new Dog();

a = c;

a = d;

Exercise: Universal Reference Type
What happens to the last statement below? How can you ensure the safety of universal-to-
specific assignment?

import java.util.* //library containing Stack container class

…

Stack my_stack = new Stack();

String s = “Hi, Mom”;

foo f = new foo();

…

Object aString = my_stack.push(s);

Object aFoo = my_stack.push(f);

…

s = my_stack.pop(); …………………………………………………………………………………………….

class Stack {

Object push(Object item) {…}

Object pop() {…}

…

}

Type Inference Rules
Sometimes type of a whole expression needs to be inferred from the types of subexpressions
(and possibly the type expected by the surrounding context) for type checking.

In many cases, the answer is easy, e.g.
• Result of an arithmetic operator usually has the same type as the operands (possible after

coercing one of them if their types are not the same)

• Result of an assignment operator has the same type as the left-hand side.
• Result of a function call is of the type declared in the function’s header.
In other cases, the answer is not obvious, e.g.

a = b + c

int

int int

a = b + c

float

float int

(* Pascal *)

type Atype = 0..20;

Btype = 10..20;

var a: Atype; b: Btype; c: integer;

c = a + b; (* subrange base type (integer), not the type sometype = 10..40 *)

