
Data Abstraction and Object Orientation
Data abstraction is association of a name with a program fragment that represents
information about data.

Class is data abstraction with behavior to manipulate data.

Instance of a class is an object.

Three key concepts

• Inheritance allows new abstractions to be defined as refinements or extensions to
existing ones.

• Encapsulation enables grouping of data and subroutines that operate on them
together in one place, and to hide irrelevant details from the users of an
abstraction.

• Dynamic method binding allows a new version of an abstraction to display newly
refined behavior, even when used in a context that expects an earlier version.

List Node Abstraction (1)

//C++

Encapsulation of data members
(attributes, fields) and subroutine
members (methods)

Visibility
• public - class members

accessible to anybody
• protected - class members

accessible to members of this
class or derived classes (for
C++, also friend classes)

• private – class members
accessible just to members of
this class (for C++, also friend
classes)

Constructor as initiliazation
subroutine, usually automatically
invoked on object creation bool singleton () {

List Node Abstraction (2)

//C++ (cont.)

Destructor as finalization
subroutine, automatically
invoked on object
destruction by either

• Explicit programmer
action, or

• Return from subroutine
in which it was declared

Object Creation
Static or automatic allocation on stack using a declaration statement

• Space is allocated when the block containing the variable creation is entered, and is
released when the block is exited.

list_node elem; //C++

Dynamic allocation on heap using an explicit operator

• Space is usually referenced by a pointer variable and is released manually, or
automatically by garbage collection.

list_node* elem_ptr = new list_node; //C++

elem

previous

next

head_node

val

list_node object

previous

next

head_node

val

elem_ptr

Exercise: Object Creation and Destruction
What is printed when procedureA() is called?

//C++

class Trace {

public:

Trace (string t): text(t)

{cout << “entering “ << text << endl;}

~Trace () {cout << “exiting “ << text << endl; }

private:

string text;

};

…

void procedureA () {

Trace dummy(“procedure A”);

cout << “processing procedure A” << endl;

} ………………………………………………………………………………

Reuse by Composition

//C++

Whole-part or has-a
relationship

Reuse by Inheritance

//C++

Is-a relationship

All fields and methods
of the base class are
inherited.

Derived class can
define extra fields and
methods that the base
class lacks.

Derived class can
redefine methods of
base class.

C++ has no single root
class unlike others
(e.g. Object in Java
and Smalltalk, object
in C#)

int head() {

if (empty())

throw new list_err(“attempt to peek at head of empty queue”);

return list::head()->val;

}

};

Execution Order
//C++

Calling base class constructor
before derived class
constructor to ensure
inherited fields are in
consistent state

Default base class constructor
is called in this case . (Or
define
Derived::Derived(Derived_pa
rams) :
Base(Base_arguments) {…}

to specify base class
constructor.)

Dynamic Method Binding (1)
A derived class has all data
and subroutines members of
its base class.

An object of derived class can
be allowed to use in any
context that expects an object
of base class.

In the code, the choice of the
method to be called depend
on the types of the variables x
and y, or on the classes of the
objects s and p to which x and
y refer?

We redefine student’s
print_mailing_label() to include
student’s year.
We redefine professor’s
print_mailing_label() to include
professor’s department.

Dynamic Method Binding (2)
Static method binding if the method call is resolved at compile time. The type of the
reference is used.

Dynamic method binding if the method call is resolved at run time. The class of the
object to which the reference refers may be used.

Dynamic method binding imposes run time overhead to determine the type of the
object referred to by the reference.

Smalltalk, Python, Ruby, and Objective-C use dynamic method binding for all methods.

Java uses dynamic method binding by default, but allows methods to be labeled final,
in which case they cannot be overridden by derived classes.

C++ and C# use static method binding by default, but allow the programmer to specify
dynamic method binding when desired.

Virtual Method
In C++, calls to virtual methods are dispatched to the appropriate implementation at run time, based on the
class of the object rather than the type of the reference.

class person {

public:

virtual void print_mailing_label();

…

student s;

person *x = &s;

x->print_mailing_label(); //dynamic method binding, student’s version

But if the method in base class is not declared virtual, or the method is invoked on a statically allocated object

student s;

person x = s; //static allocation

x.print_mailing_label(); //static method binding, person’s version

Exercise: Method Binding and Reference Variable
Do the four method calls compile OK? Do they use static or dynamic binding and which version of the method is called?

class person {

public:

virtual void print_mailing_label();

…

Person x; Student s; Person* pt;

Person &r1 = s; //r1 is the reference variable of s

r1.some_student_method(); ……………………………………………………………….…………………………..

r1.print_mailing_label(); ……………………………………………………………………………………………

Person &r2 = x;

r2.print_mailing_label(); ……………………………………………………………………………………………

Person* &r3 = pt;

r3 = &s;

pt->print_mailing_label(); ……………………………………………………………………………………………

Member Lookup at Run Time (1)
With dynamic method binding, the object referred to by a reference or pointer
variable contains sufficient info in a virtual method table (vtable) for the object’s class.

Each entry is the address of the code of each virtual method of the class. All objects of
a given class share the same vtable.

Suppose

foo* f; f = &F;

f->m();

r1=f

r2=*r1 --vtable addr

r2=*(r2+(3-1)x4) --sizeof(addr)=4

call *r2

f

Code for foo’s k

Code for foo’s m

Code for foo’s l

Code for foo’s n

Member Lookup at Run Time (2)
If bar is derived from foo, copy foo’s vtable, replace overridden virtual method entries,
and append bar’s virtual method entries.

Code for foo’s k

Code for foo’s l

Code for bar’s t

Member Lookup at Run Time (3)

C++ allows backward assignment which performs dynamic semantic check. Dynamic_cast is allowed
only on pointers and references of polymorphic types (they have vtables).

s = dynamic_cast<bar*>(q); //run time check, s is null if failed

s = (bar*) q; //C-style cast is permitted but no run time check

Space Allocation for Polymorphic Variable (1)
How much space to set aside for a variable of base class if it can hold a value of
derived class?

//C++

foo x; //foo is base class

bar y; //bar is derived class

x = y;
bar y

a

b

c

w

foo x

a

b

c

???

Space Allocation for Polymorphic Variable (2)
If variable is declared normally

• Use minimum static space allocation and slicing.

• Assignment changes the values of derived class into the values of base class.

• Method binding has to be static (by static class of variable), regardless of whether
the method is declared virtual or not.

//C++

foo x; //foo is base class

bar y; //bar is derived class

x = y;

x.m();

foo x

a

b

c

foo’s vtable
addr

bar y

a

b

c

bar’s vtable
addr

Space Allocation for Polymorphic Variable (3)
If variable is declared as a pointer

• Method binding can be dynamic (by dynamic class of variable, if the method is
declared as virtual).

• Assignment changes pointer to the dynamically allocated area of the derived class
object.

//C++

foo* x; //foo is base class

bar* y = new bar(); //bar is derived class

x = y;

x -> m();

bar object

a

b

c

w

bar* y

foo* x

bar’s vtable
addr

