Data Abstraction and Object Orientation

Data abstraction is association of a name with a program fragment that represents
information about data.

Class is data abstraction with behavior to manipulate data.
Instance of a class is an object.

Three key concepts

* |nheritance allows new abstractions to be defined as refinements or extensions to
existing ones.

* Encapsulation enables grouping of data and subroutines that operate on them
together in one place, and to hide irrelevant details from the users of an
abstraction.

* Dynamic method binding allows a new version of an abstraction to display newly
refined behavior, even when used in a context that expects an earlier version.

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

clase list_err { [/ exception
public:
char *description;
list_err (char #g) {description = &;}

+;

//C++
_ class list_node {
Encapsulation of data members ligt_node* prev;

(attributes, fields) and subroutine

list_node* next;
members (methods)

list_node* head _node;
Visibility public:

« public - class members int wval; // the actual data in a node
accessible to anybody list_node () { [/ constructor
prev = next = head node = this; // point to self

* protected - class members
accessible to members of this !
class or derived classes (for
C++, also friend classes)

e private — class members

val = 0; [/ default value

list_node* predecessor () {
if (prev == this || prev == head_node) return 0;
return prev;

accessible just to members of !
this class (for C++, also friend .
list_node* successor () {
classes) , ,
if (next == this || next == head_node) return 0;

Constructor as initiliazation return next;
subroutine, usually automatically }
invoked on object creation bool singleton () f{

return (prev == this);

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION]‘

//C++ (cont.)

Destructor as finalization
subroutine, automatically
invoked on object
destruction by either

e Explicit programmer
action, or

e Return from subroutine
in which it was declared

void insert_before (list_node* new_node) {
if (Inew_node-»singleton (J)
throw new list_err ("attempt to insert node already on list");
prev->next = new_node;
new_node->prev = prev;
new_node-"=next = this;
prev = new_node;
new_node-"-head_node = head_node;
}
void remove () {
if (singleton ())
throw new list_err ("attempt to remove node not currently on list");
prev->=next = next;
next->prev = prev,

prev = next = head node = this; // point to self
}
"list_node () { /[destructor
if (Isingleten ()
throw new list_err ("attempt to delete node still om list");
}

Static or automatic allocation on stack using a declaration statement
e Space is allocated when the block containing the variable creation is entered, and is

released when the block is exited. elem
previous
. next
list node elem; //C++
- head node
val

Dynamic allocation on heap using an explicit operator

e Space is usually referenced by a pointer variable and is released manually, or

automatically by garbage collection.
list_node object

elem_ptr previous
list node* elem_ptr =new list node; //C++ next
head node
2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION val

Exercise: Object Creation and Destruction

What is printed when procedureA() is called?
//C++
class Trace {
public:

Trace (string t): text(t)

{cout << “entering “ << text << endl;}

~Trace () {cout << “exiting “ << text << endl; }
private:

string text;

|3

void procedureA () {
Trace dummy(“procedure A”);

cout << “processing procedure A” << endl;

}

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

class list {
list_node header;

//C++ public:

// no explicit constructor required;
WP?_Ie'p?]rtor has-a // implicit construction of ‘header’ suffices
relationsnip

int empty () {
return (header.singleton ());
}
list_node* head () {
return header.successor () ;
}

vold append (list_node *new_node) {
header.insert_before (new_node) ;

+
"list () { // destructor
if ('header.singleton (J)
throw new list_err ("attempt to delete non-empty list");
+

+;

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

//C++ class queue : public list { J// derive from 1list
public:

/f no specialized constructor or destructor required

vold enqueue (list_node* new_node) {

|s-a relationship

All fields and methods
of the base class are

inherited. append (new_node) ;
Derived class can }_

define extra fields and list_node* dequeue () {
methods that the base 1f (empty ())

class lacks.

throw new list_err ("attempt to dequeue from empty queue");

Derived class can list_node* p = head ();

redefine methods of

base class. p->remove ();

C++ has no single root Teturn p;

class unlike others +

(e.g. Object in Java int head() ({

and Smalltalk, object if (empty())

H]C#) throw new list err (“attempt to peek at head of empty queue”);

return list::head()->val;

b

//C++

Calling base class constructor
before derived class
constructor to ensure
inherited fields are in
consistent state

Default base class constructor
is called in this case . (Or
define

Derived: :Derived (Derived pa
rams) -
Base (Base arguments) {..}

to specify base class
constructor.)

class gp_list_node {
gp_list_node* prev,
Ep_list_node* next,
Ep_list_node* head node;
public:
gp_list_node ();

gp_list_node* successor ();
int singleton ();

// assume
gp_list_node* predecessor ();

method bodles glven separately

vold insert_before (gp_list_node* new_node) ;

void remove ():
“gp_list_node ();

// the actual data in a node

+;
class int_list_node : public gp_list_node {
public:
int wval;
int_list_node () {
val = 0;
+
int_list_node (int w) {
val = v;
+

+;

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTA......

class person { ...

A derived class has all data class student : public person { ... We redefine student’s
and subroutines members of ¢1ass professor : public person { ... |Print_mailing_label() to include
its base class. student’s year.
We redefine professor’s
An object of derived class can . print_mailing_label() to include
. student s; professor’s department.
be allowed to use in any professor p:
context that expects an object
of base class. person *x = &s;

person *#y = &p;
In the code, the choice of the
method to be called depend
on the types of the variables x veid persen::print_mailing label O { ...

andy, or on the classes of the

objects s and D to which x and &.print_mailing label (); // student::print_mailing label (s)
Y refer? p.print_mailing label (); // professor::print_mailing label (p)

¥-=print_mailing_label (); Jf/ 77
y-=print_mailing_label (); // 7?7

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

Dynamic Method Binding (2)

Static method binding if the method call is resolved at compile time. The type of the
reference is used.

Dynamic method binding if the method call is resolved at run time. The class of the
object to which the reference refers may be used.

Dynamic method binding imposes run time overhead to determine the type of the
object referred to by the reference.

Smalltalk, Python, Ruby, and Objective-C use dynamic method binding for all methods.

Java uses dynamic method binding by default, but allows methods to be labeled final,
in which case they cannot be overridden by derived classes.

C++ and C# use static method binding by default, but allow the programmer to specify
dynamic method binding when desired.

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

Virtual Method

In C++, calls to virtual methods are dispatched to the appropriate implementation at run time, based on the
class of the object rather than the type of the reference.

class person {
public:
virtual void print_mailing_label();

student s;
person *x = &s;

x->print_mailing_label(); //dynamic method binding, student’s version

But if the method in base class is not declared virtual, or the method is invoked on a statically allocated object
student s;

person x =s; //static allocation

x.print_mailing_label(); //static method binding, person’s version

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

Exercise: Method Binding and Reference Variable

Do the four method calls compile OK? Do they use static or dynamic binding and which version of the method is called?
class person {
public:

virtual void print_mailing_label();

Person x; Students; Person* pt;
Person &rl =s; //rlis the reference variable of s
rl.some_student Method(), e ettt ettt

P RNt MailiNg LAl) e e ettt ettt

Person &r2 =x;

P PrNE MaAIliNG [aI() e e ettt et

Person* &r3 = pt;
r3 =&s;
PE->PriNt MailiNg [DEI(); e e ettt et

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

Member Lookup at Run Time (1)

With dynamic method binding, the object referred to by a reference or pointer
variable contains sufficient info in a virtual method table (vtable) for the object’s class.

Each entry is the address of the code of each virtual method of the class. All objects of
a given class share the same vtable.

clazs foo | f)
int a; F foo's viable
deuble b > k —t—> Code for foo’s k
char c; a 1 —t+— Code for foo’s 1
public: In » Code for foo’s m
virtnal woid k [... b
n —— Code for foo’s n
virtual int 1
wirtnal woid m () ; - S
uppose
virtual doukle nf ... foo* f; f = &F;
- f->m () ;
P Fi
rl=f
r2=*rl --vtable addr
r2=*(r2+(3-1) x4) -—-sizeof (addr) =4
*
2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION Call r2

If bar is derived from foo, copy foo’s vtable, replace overridden virtual method entries,
and append bar’s virtual method entries.

class bar : public foo { B bar s viable

int w; —J- k —1— Code for foo’s k

public: a 1 — 1 > Code for foo’s 1
void m (): JSfoverride .

_ ' m » Code for bar s m
virtual double = { ... b .

_ n —+—»_ode for foo s n
virtual char *t .

c g ——®»_ode for bar s =

1 B: W t —1+— Code for bar’s t

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

Member Lookup at Run Time (3)

class foo {
clase bar : public foo {

foo F;
bar E;
foo*x q;
bar* s;
q = &B; // ok; references through q will use prefixes
// of B's data space and vtable
s = &F; // static semantic error; F lacks the additional

// data and vtable entries of a bar

C++ allows backward assignment which performs dynamic semantic check. Dynamic_cast is allowed
only on pointers and references of polymorphic types (they have vtables).

s = dynamic_cast<bar*>(q); //run time check, s is null if failed
s =(bar*) q; //C-style cast is permitted but no run time check

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

Space Allocation for Polymorphic Variable (1)

How much space to set aside for a variable of base class if it can hold a value of
derived class?

//C++

foo x; //foo is base class
bary; //bar is derived class
X=Y,

foo x bary

277

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

Space Allocation for Polymorphic Variable (2)

If variable is declared normally
* Use minimum static space allocation and slicing.
* Assignment changes the values of derived class into the values of base class.

 Method binding has to be static (by static class of variable), regardless of whether
the method is declared virtual or not.

//C++ foo x bary
. : foo’s vtable [bar’s vtable
foo x; //foo is base class o0 i
bary; //bar is derived class a — - 3
b b
X = y/ C C

x.m(); @

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

Space Allocation for Polymorphic Variable (3)

If variable is declared as a pointer

 Method binding can be dynamic (by dynamic class of variable, if the method is
declared as virtual).

* Assignment changes pointer to the dynamically allocated area of the derived class
object.

//C++ foo* x
foo* x; //foo is base class \
)) bar*y '
bar* y = new bar(); //baris derived class bar object
—>
bar’s vtable
X=Y, addr
X ->m(); °

b
C
W

2110316 PROG LANG PRIN: DATA ABSTRACTION AND OBJECT ORIENTATION

