
Calculating FIRST and FOLLOW sets
S. Kamin

FIRST and FOLLOW sets are used when constructing recursive descent parsers (when
the grammar is too complex to do it by inspection). They are also used in the
construction of LR(1) parsers, although we are not covering that construction in class.

Simply put, for non-terminal A, FIRST(A) is the set of tokens that can occur as the first
token in a string derivable from A, and FOLLOW(A) is the set of tokens that can occur
immediately after A in a string derivable from the start symbol of the grammar. The
purpose of this document is to formalize these definitions and illustrate how FIRST and
FOLLOW sets are calculated.

Definition A properly pruned syntax tree is a syntax tree in which some (zero or more)
nodes have had all their children removed. A sentential form is the frontier of a properly
pruned syntax tree.

Example
We’ll be using this grammar for examples in this document:

Expr -> Expr + Term | Term
Term -> Term * Primary | Primary
Primary -> FunCall | Id | (Expr)
Funcall -> Id (OptArgs)
OptArgs -> ε | Args
Args -> Expr | Args , Expr

For example, given this syntax tree:

We can see that the following are sentential forms: x+f(y), Expr+Term, Expr+Funcall.
On the other hand, Expr+f(can be obtained as the frontier of the tree if we remove some
of the children of the FunCall node, but it is not a sentential form.

Definition FOLLOW(A) is the set of all tokens that can appear immediately after A in
some sentential form. By convention, the set of tokens is assumed to include “eof”, and
each sentence is assumed to end with that token.

Definition FIRST(A) is the set of all tokens that can be the first token in a string derived
from A (that is, in the frontier of a syntax tree rooted at A). For tokens t, we define
FIRST(A) to be {t}. And for sequences of grammar symbols X1...Xn (for n >= 0),
FIRST(X1...Xn) is the set of all tokens that can be the first token in a string derived from
X1...Xn; that is, the first token in a string obtained by concatenating the frontiers of syntax
trees rooted at X1, ..., Xn. In addition, if each of X1 ... Xn is a non-terminal that can
produce the empty string, or if n = 0, we add the symbol • to the FIRST set.

In our grammar, we have:

FIRST(Expr) = FIRST(Term) = FIRST(Primary) = FIRST(Args) = { Id, (}
FIRST(FunCall) = {Id}
FIRST(OptArgs) = { •, Id, (}

FOLLOW(Expr) = { +,), eof, ‘,’ }
FOLLOW(Term) = FOLLOW(Primary) = FOLLOW(FunCall) = { +, *,), eof }
FOLLOW(OptArgs) = {) }
FOLLOW(Args) = {), ‘,’ }

To calculate FIRST and FOLLOW sets, we start with the following definitions:

Define FIRST: sequences of grammar symbols -> Tokens ∪ {•}:

 FIRST(ε) = {•}
 FIRST(t) = {t} (for token t)
 FIRST(A) = union of all sets FIRST(α) for all production A -> α
 FIRST(X1...Xn), for n>1, = FIRST(X1), if • ∉ FIRST(X1)
 = FIRST(X1) - {•} ∪ FIRST(X2...Xn), o.w.

Note that in the final clause, we will have • in FIRST(X1...Xn) only if we have it in each
set FIRST(X1), ..., FIRST(Xn).

This definition cannot be circular if the grammar is LL(1) – since that would violate the
prohibition against left recursion – but it can be circular in general. Since FIRST sets are
useful even for non-LL(1) grammars, we need to explain how to use this definition to
calculate FIRST sets when it is circular. An algorithm for calculating FIRST sets is:

1. Start by assuming FIRST(A) = ∅ for all A.

2. Using the values of FIRST(A) calculated thus far, use the definition above to
calculate new values for FIRST(A).

3. Repeat this process until no new elements are added to any of the sets
FIRST(A).

For example, we calculate the FIRST sets for the above grammar, in steps:

0. Start with FIRST(Expr) = FIRST(Term) = ... = ∅
1. FIRST(Expr) = FIRST(Expr + Term) ∪ FIRST(Term) = ∅

FIRST(Term) = FIRST(Term + Primary) ∪ FIRST(Primary) = ∅
FIRST(Primary) = FIRST(FunCall) ∪ FIRST(Id) ∪ FIRST((Expr))
 = ∅ ∪ {Id, (} = { Id, (}
FIRST(FunCall) = FIRST(Id (OptArgs)) = {Id}
FIRST(OptArgs) = FIRST(ε) ∪ FIRST(Args) = { • } ∪ ∅ = { • }
FIRST(Args) = FIRST(Expr) ∪ FIRST(Args , Expr) = ∅ ∪ ∅ = ∅

2. FIRST(Expr) = FIRST(Expr + Term) ∪ FIRST(Term) = ∅
FIRST(Term) = FIRST(Term + Primary) ∪ FIRST(Primary) = { Id, (}
FIRST(Primary) = FIRST(FunCall) ∪ FIRST(Id) ∪ FIRST((Expr))
 = {Id} ∪ {Id, (} = { Id, (}
FIRST(FunCall) = FIRST(Id (OptArgs)) = {Id}
FIRST(OptArgs) = FIRST(ε) ∪ FIRST(Args) = { • } ∪ ∅ = { • }
FIRST(Args) = FIRST(Expr) ∪ FIRST(Args , Expr) = ∅ ∪ ∅ = ∅

3. (Listing only sets that change)
FIRST(Expr) = FIRST(Expr + Term) ∪ FIRST(Term) = { Id, (}

4. FIRST(Args) = FIRST(Expr) ∪ FIRST(Args , Expr) = { Id, (}
5. FIRST(OptArgs) = FIRST(ε) ∪ FIRST(Args) = { • } ∪ { Id, (} = { • , Id, (}

For FOLLOW sets, we can calculate using the definition:

 FOLLOW(A) = { t | ∃ production B -> ...Aα where t ∈ FIRST(α) } (1)
 ∪ { eof | A is the start symbol} (2)

 ∪ ∪B { FOLLOW(B) | ∃ production B -> αA } (3)

Again, start with FOLLOW(A) = ∅ for all non-terminals A, and iterate:

0. FOLLOW(Expr) = FOLLOW(Term) = ... = ∅
1. FOLLOW(Expr) = { eof, +,) } (rules 1 & 2)

FOLLOW(Term) = { * } (rule 1)
FOLLOW(Primary) = ∅
FOLLOW(FunCall) = ∅
FOLLOW(OptArgs) = {) } (rule 1)
FOLLOW(Args) = { , } (rule 1)

2. FOLLOW(Expr) = {eof, +,), ‘,’} (rules 1, 2, 3)
FOLLOW(Term) = {*, eof, +,) } (rules 1, 3)

FOLLOW(FunCall) = ∅
FOLLOW(OptArgs) = {) } (rule 1)
FOLLOW(Args) = { ‘,’,) } (rule 1, 3)

3. (Listing only sets that changed)
FOLLOW(Primary) = { *, eof, +,) } (rule 3)
FOLLOW(FunCall) = { * } (rule 3)

4. FOLLOW(FunCall) = { *, eof, +,) } (rule 3)

