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Abstract 
 

This work described a self-generating system.  A 
system is self-generated when it can bootstrap itself 
on a system without an external help.  A compiler is 
used as a concrete example.  A small 10,000,0002-
line1 compiler is illustrated to generate an executable 
version of itself from an input description.  The 
automatic bootstrapping process consists of several 
stages.  Each stage reads the input description and 
extends the system itself into a "higher" stage. The 
input description is "evolved" through these stages 
from a low-level language into a high-level language.  
The result is an executable system that built itself step 
by step into a full compiler. 
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bootstrap 
 
1. Introduction 

How a complex system is created?  One possible 
scenario is that it starts from a simple working system 
(how this simple system comes into being is another 
topic), then it extends its capability, very likely that it 
becomes a tool to develop a next generation system.  
This process is repeated and the system "advances" 
itself into a complex system. 
 

Let us consider how complex software is created. 
How contemporary application software is 
implemented?  It needs many powerful tools such as 
a compiler and some ready-built software 
components.  One can ask further, how a compiler is 
created?   Most of the present day compilers have 
been developed through many generation of compiler 
development (for example, Pascal, Oberon etc.).  
Each succeeding version was built from the compiler 
of the earlier version. 

                                                 
1

 I attribute this parody to D.E.Knuth [1] 

 
 To investigate further it is natural to ask "How the 
first compiler is created?"  It was probably developed 
from a simpler tool such as an assembler.  The tools 
constrain a programmer to write a compiler in an 
assembly language.  If we follow this questioning 
further, we will reach the question "How an 
assembler is created?", and so on. 
 

The purpose of this article is to explore the space 
from the very beginning of perhaps nothing to the 
first compiler.  We will follow the iterative process of 
incrementally extending a system to be more capable 
so that it becomes a tool for the next generation 
development.  During its evolution, the description 
(representation) of the system is also evolved. 
 

What is the point of this exercise?  Besides 
creating a beautiful piece of abstraction (software) 
with interesting qualities, this exercise demonstrates 
an evolvable system of description that describes the 
process of its own evolution.  It is very interesting 
that the process of evolution of a complex system can 
be described within itself.   
 
2. General idea 

To build evolvable software, we need to 
dynamically compile and execute a program on the 
fly.  In general, we can think of each successive 
generation of software as a code block.  This code 
block must be created in the system memory and then 
it is activated to work.  Starting from the first code 
block, let us call it Block0, we assume it is already 
resided in the memory.  Once it starts working, it 
creates the next version of software, the code Block1.  
At the termination of execution Block0, it activates 
Block1 then Block1 creates Block2 and actives it and 
so on to BlockN. 

 
How can a code block create a new code block?  

It reads a description of the new code block from an 
input stream.  This description is an extension of the 



current program to be the next version of that 
program.  This description is the key to our 
bootstrapping process. 

 
3. Implementing a compiler 
 How can we write the first compiler from 
nothing?  Not really, we must assume that at the 
bottom line there is a machine language that our 
program will finally be transformed into.  This 
machine language is the one that can be executed on 
a computer (either virtual or real).  Let us call it the 
language M.  We are not going to write the whole 
thing in machine codes.  The semantic content of M 
is too low for a human programmer to develop a 
complex software.  Preferably, we want to write a 
program for a particular task using the highest 
language semantic available.  For example, for a 
compiler, we would like to have a language that have 
this statement "compile P" where P is our target 
language, let us call the target language, the language 
L.  We will need to evolve M to L through 
bootstrapping process. We want to stress that this 
bootstrapping process is entirely automatic.   
 

Suppose there are successive system evolution s0, 
s1, ...sn.  The bootstrapping process works like this.  
Starting from s0 resided in the memory, s0 is 
activated and it reads a description of a language l1 
and builds s1 in the memory then activates it.  s1 
goes on to read l2 (perhaps from the same input 
stream) and builds s2 and so on until the process 
reaches the target system with the language L.  Each 
succeeding l1, l2, ...L will have higher semantic 
content than the preceding one.  In other words, it 
will be a higher level language than its predecessor.   
 

Let us do a concrete exercise on a compiler.  We 
are going to implement a compiler. To keep the size 
of this exercise small, the target language must be 
simple to compile. So, we design a language L to be a 
postfix language. It has global variables, function 
definition, local variables, control flow such as if, 
else, while, and usual operators.  It has only integer 
data type and dynamically allocated array data 
structure.  The following programs show the 
language L. 
 
Notation:  Algorithms and programs are shown in 
courier font, the input stream is in Arial font. 
 
to print i { }  i sys 3 end 
 
; factorial 
to fac n { } 

  if n 0 == { 1 else n n 1 - fac * } 
end 
 

; a global variable 
var ax 
 
; sum all elements of an array 
to sum ar size { i s } 
  1 -> i  0 -> s 
  while i size <= { 
    s ar i ldx + -> s   ;s = s + ar[i] 
    inc i 
  } 
  s                  ; return s 
end 

 
to main { } 
  6 fac print 
  20 array -> ax 
  ax 0 1 stx            ; ax[0] = 1 
  ax 1 2 stx            ; ax[1] = 2 
  ax 20 sum print 
end 
 
where ax is a dynamically allocated array, -> is an 
assignment operator, ldx/stx are array access 
operators.   
 

The compiler for L can be written in itself in 128 
lines (the full program is shown in the appendix).  
However, when we describe algorithms in this work, 
we will use an infix version of L for the sake of 
familiarity. 
 
4. Machine code 
 We also define a machine language, M, that will 
run on a virtual machine.  This language is stack-
based.  It uses a stack for evaluation. It has a high 
level "stack frame" that stores state of computation 
and local variables.  This is used for function call and 
return.  The instruction has two formats: operator and 
operator with one argument.  Each instruction is a 
fixed length 32 bits, the left most 24-bit is an 
argument, the right most 8-bit is an operation code.  
The instruction without an argument will have its 
argument field filled with zero. 
 
no-arg operators:   

add, sub, mul, div, eq, ne, lt .... 
one-arg operators:  

jmp,jt,jf,call,ret,ld,st,get,put... 
 
The complete set of instruction can be found in [2].  
For example, the factorial function above can be 
compiled into M as follows: 
 
; factorial 
to fac n { } 
  if n == 0 { 1 else n * (fac n - 1) } 
end 

 



      3 Fun 1 
      4 Get 1 
      5 Lit 0 
      6 Eq 
      7 Jf 3 
      8 Lit 1 
      9 Ret 2 
     10 Get 1 
     11 Get 1 
     12 Lit 1 
     13 Sub 
     14 Call 3 
     15 Mul 
     16 Ret 2 
 

A virtual machine for M is assumed to run on the 
target platform where we want to bootstrap the self-
assembling system. 
 
5. Bootstrapping 
 The only input/output functions assumed in L are 
reading a character from an input stream and writing 
an integer to an output stream.  The evolution process 
from M to L starts with a simple loader that can read 
only integers. The first code block is loaded by the 
virtual machine.  The next step is a lexical analyser 
that understands simple machine code format and 
comment lines.  Then the system can read symbols, 
which is used in a simple assembler.  The next step is 
a better assembler with symbolic names.  Then the 
system is evolved into a simple compiler which 
understand control flow; if, else, while.  The final 
evolution is a full compiler for L that has function 
definition, global and local names.  Many routines 
from an earlier evolutionary step are reused in the 
subsequent evolutionary steps.  These steps are 
illustrated below (see Fig. 1 at the end of this article 
for the flow of the whole process). 
 
Block0  
program 
  read integer 
  loader1 
input 
  machine code of Block1 
  
Block1 
program 
  symbol table (sym) 
  lexical analyser (lex) 
  a simple assembler (asm1) 
input 
  initial symbols 
  asm2 written in the language of asm1 
 
Block2 
program 
  better assembler  (asm2) 

  with symbolic names 
input  
  com1 written in asm2 
 
Block3 
program 
  a simple compiler (com1) 
  with control flow 
input  
  com2 written in com1  
 
Block4 
program 
  the final compiler for L (com2) 
input 
  application programs written in L 
 

The first code block, Block0, starts the whole 
bootstrapping process (Fig. 2).  It is a loader that 
loads machine code of Block1.  Block0 itself is 
loaded by the virtual machine.  It is written in 
machine code (M) in the format that is suitable for 
the virtual machine to read.  Block0 contains a 
program, loader1, which reads s-code in the format: 
(operator argument)* terminated by 0 (Fig. 3).  For 
the reason of simplicity of the routine to read an 
integer in loader1, a negative integer is represented 
by a positive integer prefixed by a zero "0".  You can 
see the difference between the code in Block0 and 
Block1 by noticing this negative integer. 

 
 
32 139 23 0 38 1 24 1 31 48 13 0 24 1 31 57 12 0 5 0 
40 2 38 1 24 1 31 32 9 0 24 1 31 10 9 0 6 0 24 1 
31 40 9 0 6 0 24 1 31 41 9 0 6 0 24 1 31 10 11 0 
6 0 40 2 38 2 36 3 25 1 24 1 31 59 9 0 30 8 28 3 
36 3 25 1 24 1 31 10 10 0 29 -5 24 1 27 1001 24 1 36 
2 
... 
0 

 
Figure 2.  the machine code of Block0 

 
to outc op arg { }  ; put code at CP 
  CS[CP] = (arg << 8) | op 
  CP = CP + 1 
 
; format (op arg)* .. 0 
to loader1 { op arg }     
  op = readint 
  while op != 0 
    arg = readint 
    outc op arg 
    op = readint 

 
Figure 3.  loader1 in Block0, readint reads an 

integer from an input stream, CS is code segment, CP 
is a pointer to CS 



32 227 32 252 32 276 32 403 32 443 32 788 23 0 1 0 
38 2 26 1004 25 1 26 1004 31 4 1 0 27 1004 26 1005 
24 1 24 2 19 0 24 1 40 3 38 1 26 1005 24 2 18 0 31 0 
9 0 30 6 26 1005 24 2 24 1 32 150 19 0 26 1005 24 2 
18 0 40 3 38 2 28 6 26 1001 31 0 11 0 30 2 28 4 32 
33 32 12 29 07  26 1001 32 3 
... 
0 

 
Figure 4. The input of the code Block1, a negative 

integer is underlined 
 
Block1's code contains a routine to handle a 

symbol table and a routine to do lexical analyser.  
The symbol table is implemented as a Trie using the 
linked list of characters.  All lexicons in the input 
stream are inserted into this table.  The lexical 
analyser understands the comment line and two 
formats for operators: op without argument and op 
with argument.  The machine code format becomes:  
operator [argument] [comment line]*  where [] 
denotes option. 

 
; a tiny assembler 
to asm1 { i j op }       
  i = lex 
  while i > 1 { 
    op = sym[i+3]   ; get attribute 
    tkval = 0 
    if op > 23 { j = lex } 
    outc op tkval 
    i = lex 
  } 

 
Figure 5.  A tiny assembler in Block1 

 
 
With the symbol table, we can associate symbols 

with their internal representation (integer).  Block1 is 
a simple assembler.   Fig. 5 shows its algorithm.  The 
system now can understands the input stream of the 
format:  symbolic-operator [numeric argument].  The 
initial symbols for the symbol table are read from the 
input stream with the format (symbolic-operator 
operation-code)* terminated by 0 (Fig. 6). 

 
Block2 is a better assembler written in the 

language of the simple assembler of the previous 
generation of the system (Fig. 7).  Block2's assembler 
understands labels.  A label is used to associate the 
current code address with a symbol.  This is used for 
labeling a function definition.  The assembly 
language statement "def symbol value" is used to 
associate the symbol to the value.  It is used to define 
symbolic names, for example, global variables or 
previously defined machine code routines. 

; init symtab 
+ 1  - 2  * 3  / 4  & 5  | 6  ! 8  == 9  != 10  < 11 
<= 12  > 14  >= 13  ^ 7  % 17  << 15  >> 16 
ldx 18   stx 19   array 22  halt 23 
get 24   put 25   ld 26     st 27    inc 34 
fun 38   ret 40   jmp 28    jt 29    jf 30   call 32 
lit 31   sys 36 
stop 50  { 51     } 52      else 53  def 54    
if 55    while 56  -> 57    to 58    end 59  var 60 
0 
; end symtab 
 
Figure 6. The symbol table, this symbol table 

included keywords (value > 49) for subsequent 
development such as { } if else while stop  

to end var 
 

; sym 1005 
; lex  179 
; isStop 394 
   ... 
; 403 asm2 { i a } 
 
fun 3 
call 179  put 2               ; i = lex 
ld 1005  get 2  lit 3  + ldx  put 1 ; a = sym[i+3] 
get 1  call 394   jf 2  ret 3    ; if isStop a break 
get 1  get 2  call 336               ; dolabel a i 
get 1  call 348                            ; dodef a 
get 1  call 362                   ; doop a 
jmp 019                                    ; asm2  jmp -19 
ret 3 
 
0 

 
Figure 7.  A better assembler of Block2 written in 

asm1 
 
Now the system is ready to evolve into a high-

level language compiler with control flow and 
function definition.  The first step is to do a compiler 
with control flow.  Block3 extends the better 
assembler (asm2) to understand "if" "else" and 
"while".  This is done using a recursive parser that 
generates all the required jump, conditional jump 
instructions (Fig. 8). 

 
def tkval 1000 
def CP 1002 
def CS 1003 
def sym 1005 
def TK 1007 
 
def outc 81 
def lex 179 
def dolabel 336 
def dodef 348 
def doop 362 
def isStop 394 
                                           ; 443 com1 { i a b } 



com1 fun 4 
call lex  put 3 ; i = lex 
ld sym  get 3  lit 3  +  ldx ; TK = sym[i+3] 
st TK 
ld TK  call isStop  jf 2     ; if isStop TK break 
  ret 4 
get 3  lit 1  ==  jf 5            ; if i == 1 
  lit 31  ld tkval call outc  ;   out lit tkval 
  jmp 59 
ld TK  get 3  call dolabel  ; dolabel TK i 
ld TK  call dodef               ; dodef TK 
ld TK  call doop                ; doop TK 
ld TK  lit 56  == jf 19         ; if TK == while 
  ld CP  put 2                    ;   a = CP 
  call com                         ;   com1 
  ld CP  put 1                    ;   b = CP 
  lit 30  lit 0  call outc        ;   out jF 0 
  call com1                        ;   com1 
  lit 28  get 2  ld CP  - 
  call outc                           ;   out 28 a-CP 
  get 1  ld CP  call patch   ;   patch b CP 
  jmp 30   
ld TK  lit 55  == jf 26         ; if TK == if 
. . . 
stop 
 

Figure 8. The compiler, com1, of Block3 written in 
asm2 

With this language, the final compiler (com2) can 
be written that will be able to compile L.  The final 
code, Block4 is the compiler, com2.  It extends com1 
to handle the function definition "to" "end", local 
variables in the body of a function and global 
variables using "var name" (Fig. 9).   

 
com2 fun 5                               ; com2 { i j a b } 
  call lex  put 4                         ; i = lex 
  ld sym  get 4  3 +  ldx st TK  ; TK = sym[i+3] 
  if ld TK call isStop { ret 5 }   ; if isStop TK brk 
  if get 4  1 == {                         ; if I=1 out lit tkval 
    31  ld tkval call outc 
  else ; else 
    ld TK  call dodef ;   dodef TK 
    ld TK  call doop ;   doop TK 
    if ld TK 56 == { ;   if TK == while 
      ld CP  put 2                           ;     a = CP 
      call com2                              ;     com2 
      ld CP  put 1                           ;     b = CP 
      30 0 call outc                        ;     out jf 0 
      call com2                              ;     com2 
      28  get 2 ld CP - call outc    ;     out jmp a-CP 
      get 1 ld CP call patch          ;     patch b CP 
  . . . 
  else if ld TK 100 > {                 ;  else if TK > 100 
    get 4 call typeof put 3           ;     j = typeof i 
    get 4 call getref put 2            ;    a = getref i 
    if get 3 1 == {                          ;    if j == 1 
      32 get 2 call outc                 ;       out call a 
    else if get 3 2 == { ;     else if j == 2 
      26 get 2 call outc                 ;       out ld a 

    else                                         ;     else 
      24 get 2 call outc } }            ;       out get a 
  } } } } } } } 
  jmp 0206                                  ; com2 
ret 5 
 
stop 

 
Figure 9.  The final compiler, com2, written in com1 

with control flow in Block4 
 
 
The example below shows a program in L and the 

M output code (Fig. 10). 
  

to print i { } i sys 1 end 
 
; a global variable 
var ax 
 
; sum all elements of an array 
to sum ar size { i s } 
  1 -> i  0 -> s 
  while i size <= { 
    s  ar i ldx + -> s  ;s = s + ar[i] 
    inc i 
  } 
  s            ; return s 
end 

 
to main { } 
  20 array -> ax 
  ax 0 1 stx           ; ax[0] = 1 
  ax 1 2 stx           ; ax[1] = 2 
  ax 20 sum print 
end 

 
32 25 23 0 38 1 24 1 36 1 40 2 38 3 31 
1 25 2 31 0 25 1 24 2 24 3 12 0 30 8 24 
1 24 4 24 2 1 0 25 1 34 2 28 -10 24 1 
40 6 38 1 31 20 22 0 27 1001 26 1001  
31 0 31 1 26 1001 31 1 31 2 24 1  
26 1001 31 20 32 7 32 3 40 2  

 
Figure 10.  An example of an application program 

translated into a correct M-code from the first 
example of this paper in the format of the raw code  

similar to Block0 
 
 

6. Discussion and related work 
 Now we can discuss the question "How the first 
compiler is built?". Using a contemporary software 
tool such as a C compiler, the final 128-line compiler, 
which is itself written in L, can be written in C and 
then compile to generate an executable code.  The 
self-assembling compiler described in this work is 
different.  It does not require any outside tool such as 
a compiler to generate an executable code.  It does 
bootstrap itself from a small beginning then extends 



itself into a more complex system by reading many 
sequences of description from an input stream. The 
input description that the system used to build itself 
has an interesting character.  As the system evolves 
itself, the description becomes richer in its semantic.  
This is intentional because it was designed so that a 
human programmer find himself/herself a higher and 
higher level of tool that facilitates the task of writing 
programs.  Reading through the whole sequence of 
input description to this self-generating system, you 
can notice the "evolution" of the description easily, 
from machine codes, to an assembly language and 
finally to a target high level language (see the full 
input stream at the reference website [2]). 
 

This description is planned and is written by a 
human. In an ordinary task of writing a compiler, it 
also requires a human designer. The main distinction 
of this self-generating system is that the description 
itself is also "evolved" through bootstrapping 
process.  The stages of bootstrapping process must be 
carefully planned.  However, it is possible to imagine 
a system that can search for this description. For 
example, evolutionary techniques such as Genetic 
Algorithms [3] or Genetic Programming [4] can be 
used to search for such description.  Because the 
evolution step of this description is small, it is more 
like a continuum rather than a big jump.  The search 
for a description that will extend a system to grow in 
the right direction is more likely to be possible.   
 

The bootstrapping process has been used to 
develop software systems since the early days of 
computer evolution. Human is the main agent to do 
the bootstrapping process.  By creating a more and 
more powerful system based on a previous one, a 
very powerful system has been successfully 
developed.  An evolution of any programming 
language is the case, for example FORTRAN and 
many of its variants, B to BCPL to C, C to C++ and 
then to JAVA, ALGOL to many languages as its 
descendant such as Pascal, Oberon etc.  Most of the 
history of programming language was recorded in 
Annal of history of computing [5] and the book [6].   
 

The minimalist approach to programming was 
championed by FORTH [7].  The bootstrapping 
process was described as a meta-compiler, one of the 
most significant contribution in this area is 
cmFORTH [8] which the whole meta-compilation 
process (FORTH code plus machine code) to build a 
new system on another platform can be described in 
about 10 pages.  Comparatively, the input description 
of the system described in this work is 6 pages long.  
It is interesting to note that, an interpreter is more 
compact than a compiler.  A self describing 

interpreter, so called meta-interpreter is very 
compact.  An extreme example can be cited from 
PROLOG where its meta-interpreter is almost trivial 
to write.  A full PROLOG interpreter that can handle 
"cut" can be written in less than one page of 
PROLOG [9].  You can see the whole code including 
the next evolution step of this compiler that has tail-
call optimisation in my webpage [2].  It also contains 
the source and executable code for the virtual 
machine used in this work. 
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32 227 32 252 32 276 32 403 32 443 32 788 
23 0 1 0 
26 1001 31 0 11 0 30 2 28 4 32 33 32 12 29 07  
26 1001 32 3 
... 
0 
 
; init symtab for asm 
+ 1  - 2  * 3  / 4  & 5  | 6  ! 8  == 9  != 10  < 11 
<= 12  > 14  >= 13  ^ 7  % 17  << 15  >> 16 
ldx 18   stx 19   array 22  halt 23 
... 
0 
; end symtab 
... 
; 336 dolabel tk i  
fun 1 
get 2  lit 0  ==  jf 7   ; if tk == 0 
... 
0 
 
def TK 1007 
def dolabel 336 
def dodef 348 
... 
; 443 com1 { i a b } 
com1 fun 4 
call lex  put 3 ; i = lex 
ld sym  get 3  lit 3  +  ldx     ; TK = sym[i+3] 
st TK 
ld TK  call isStop  jf 2         ; if isStop TK break 
  ret 4 
... 
stop 
 
... 
com2 fun 5                         ; 579 com2 { i j a b } 
  call lex  put 4                  ; i = lex 
  ld sym  get 4  3 +  ldx  st TK  ; TK = sym[i+3] 
  if ld TK  call isStop { ret 5 }  ; if isStop TK break 
  if get 4  1 == {                 ; if i = 1 outc 31 tkval
    31  ld tkval call outc 
  else                             ; else 
    ld TK  call dodef              ;   dodef TK 
... 
stop 
 
 
; a global variable 
var ax 
 
; sum all elements of an array 
to sum ar size { i s } 
  1 -> i  0 -> s 
  while i size <= { 
    s  ar i ldx + -> s  ;s = s + ar[i] 
    inc i 
  } 
  s            ; return s 
end 

32 139 38 1 24 1 31 48 13 0 24 1  
31 57 12 0 5 0 
36 3 25 1 24 1 31 10 10 0 29 -5 24 
1 27 1001 24 1 36 2 
... 
0 

lex 
initsym
asm1 

loader

asm2

com1

com2

32 25 23 0 38 1 24 1 36 1 40 2 38 3 
31 1 25 2 31 0 25 1 24 2 24 3 12 0 
30 8 24 1 24 4 24 2 1 0 25 1 34 2  
28 -10 24 1 40 6 38 1 31 20 22 0  
27 1001 26 1001  
31 0 31 1 26 1001 31 1 31 2 24 1  
26 1001 31 20 32 7 32 3 40 2

Block0 

Block1 

Block2 

Block3 

Block4 

Load by vm

Output 
machine code

Input 

Figure 1.  The flow of self-generating compiler 



Appendix 
The listing of the full compiler (com2) in 128 lines in infix L. 

 
     ; a 128-line compiler for L  
 
     ; tkval              value of token num 
     ; last             the end of last fun 
     ; numlocal      no. of locals of current fun 
     ; freecell         pointer to free sym 
     ; CH                current input char 
     ; TK                attribute of current token 
     ; CP                code pointer 
     ; CS                code segment, array 1000 
     ; sym              symbol table, array 1000 
     ; lvrec             record of locals, array 20 
 
    1 to isNum c { } (c >= 48) & (c <= 57) ; 0..9 
    2 to isSpace c { } (c < 33)            ; tab space nl 
    3  
    4 to readc { }         ; read one char 
    5   CH = sys 3 
    6   CH 
    7  
    8 ; a cell has 4 fields: char,right,next,atr 
    9 to newcell c { k } 
  10   k = freecell 
  11   freecell = freecell + 4 
  12   sym[k] = c 
  13   k 
  14  
  15 to search i c { }    ;  if sym[i]=0 insert c at i 
  16   if sym[i] == 0 { sym[i] = newcell c } 
  17   sym[i] 
  18  
  19 ; return index to symtab[], 1 if numeric 
  20 to lex { i } 
  21   while readc  
  22     if CH == 59  
  23       while CH != 10 { readc }   ; skip comment 
  24     if ! isSpace CH { break }    ; skip blank 
  25   if isNum CH 
  26     tkval = CH - 48 
  27     while ! isSpace readc 
  28       tkval = tkval*10 + CH - 48 
  29       1 break                            ; it is numeric  
  30   i = 0 
  31   while ! isSpace CH            ; check space 
  32     i = search i+2 CH            ; next of i 
  33     while sym[i] != CH { i = search i+1 CH }  
  34     CH = readc                      ; read next 
  35   i 
  36  
  37 to outc op arg { }  
  38   CS[CP] = (arg << 8) | op 
  39   CP = CP + 1 
  40  
  41 to patch a1 a2 { op }          ; relative address 
  42   op = CS[a1] & 255 
  43   CS[a1] = ((a2-a1) << 8) | op 
  44  
  45 to rename d { } numlocal - d + 1  ;1..n to n..1 

  46 to typeof i { } (sym[i+3] >> 20) & 15  
  47 to getref i { } sym[i+3] & 1048575    
  48 to setattr i ty ref { } sym[i+3] = (ty << 20) | ref  
  49  
  50 to parse { i j a b } 
  51   i = lex 
  52   TK = sym[i+3]                      ; get attr 
  53   if i == 1  outc 31 tkval          ; lit tkval 
  54   else if TK == 0  
  55     numlocal = numlocal + 1 
  56     setattr i 3 numlocal           ; declare local 
  57     lvrec[numlocal] = i 
  58   else if TK < 24  outc TK 0   ; op no-arg 
  59   else if TK < 50                      ; op arg 
  60     j = lex                                  ; get arg  
  61     outc TK tkval 
  62   else if TK < 54  break           ; stop { } else  
  63   else if TK == 56                     ;   -> 
  64     j = lex                                   ;  name 
  65     if (typeof j) == 2          
  66       outc 27 getref j                  ; gvar, st ref 
  67     else  
  68       outc 25 rename getref j    ; lvar, put ref 
  69   else if TK == 53                     ;   to 
  70     last = CP                              ; record fun 
  71     j = lex                                   ; fname 
  72     setattr j 1 CP 
  73     parse                                    ; get pv until { 
  74     a = numlocal                        ; set arity 
  75     parse                                    ; get lv until } 
  76     outc 38 numlocal-a             ; fun lv 
  77   else if TK == 54                     ;   end 
  78     outc 20 numlocal                ; ret n 
  79     i = 1 
  80     while i <= numlocal         
  81       setattr lvrec[i] 0 0 
  82       i = i + 1 
  83     numlocal = 0                       ; clear locals 
  84   else if TK == 57                     ;  while 
  85     a = CP 
  86     parse                                   ; cond { 
  87     b = CP 
  88     outc 30  0                            ; jf 0 
  89     parse                                   ; body } 
  90     outc 28 a-CP                       ; jmp a 
  91     patch b CP 
  92   else if TK == 55                     ;  if 
  93     parse                                    ; cond { 
  94     a = CP 
  95     outc 30 0                              ; jf 0 
  96     parse 
  97     if TK == 52                           ;   else 
  98        patch a CP+1 
  99        a = CP 
 100       outc 28 0                           ;   jmp 0 
 101       parse 
 102    patch a CP 
 103  else if TK == 60                    ;   var 



 104     j = lex                           ; global name 
 105     setattr j 2 (array 1)     ; gvar, alloc DS 
 106   else                               ; TK > 100, names 
 107     j = typeof i 
 108     a = getref i 
 109     if j == 1  outc 32 a       ; fun, call ref 
 110     if j == 2  outc 26 a       ; gvar, ld ref 
 111     if j == 3  outc 24 rename a ; lvar, get ref 
 112   parse 
 113  
 114 to main { i k } 
 115   freecell = 4 
 116   CP = 1 
 117   CS = array 1000 
 118   sym = array 1000 
 119   lvrec = array 20 
 120   i = lex                         ; init symtab 
 121   while i > 1                 ; until 0  
 122     k = lex                     ; get attr 
 123     sym[i+3] = tkval 
 124     i = lex                      ; get sym 
 125   outc 32 0                  ; call  main 
 126   outc 23 0                  ; end 
 127   parse 
 128   patch 1 last+1 
 
End of listing 
 


