
Control Flow

Ordering of what should be done in program execution

• Sequencing: implicit ordering from top to bottom

• Selection: choice is made among two or more statements

• Iteration: program fragment executed repeatedly

• Procedural abstraction: collection of control constructs encapsulated in a single unit

• Recursion: self-referential subroutines

Expression

Expression produces a value, i.e. literal constant, named variable, constant, or
operator (or function) applied to operands (or arguments)

A language may specify the location of function name.

• Prefix: before arguments, e.g. (*(+ 1 3) 2) in Lisp

• Infix: among arguments, e.g. 1+3 in most imperative languages

• Postfix: after arguments, e.g. post-increment/decrement (++ and--) in C and its
descendants

Most imperative languages use infix notation for binary operators, and prefix notation
for many operators and other functions.

Precedence and Associativity
When operators are written in infix notation without parentheses, ambiguity arises as to what
is an operand of what, e.g.

a+b*c**d**e/f should be evaluated as
((((a+b)*c)**d)**e)/f or
a+(((b*c)**d)**(e/f)) or
a+((b*(c**(d**e)))/f) ?

PrecedencePrecedencePrecedencePrecedence says that certain operators, in the absence of parentheses, group more tightly
than other operators, e.g.

a-b*c is a-(b*c)

AssociativityAssociativityAssociativityAssociativity says sequences of operators of equal precedence, in the absence of parentheses,
group to the left or to the right, e.g.

a-b+c is (a-b)+c

Precedence

Operators at the top group

most tightly.

In most languages ,

multiplication and division

group more tightly than

addition and subtraction.

Associativity

Basic arithmetic operators almost always associate left-to-right.

9-3-2 is 4, not 8 because (9-3)-2

Exponentiation usually associates right-to-left.

4**3**2 is 4**(3**2)

Assignment associates right-to-left.

a = b = a+c is (a+c) assigned to b, then the same value assigned to a

Exercise: Precedence and Associativity

Given the precedence table and associativity rules in the previous slides,

• Apply parentheses to the expression to show how operands are grouped to
operators and

• Give the result of the expression

• Where a = 1, b = 2, c = 3, d = 2, e = 2, f = 3

Fortran a + b * c ** d ** e / f result is

Pascal a < b and c < d result is

C a < b && c < d result is

Evaluation Order within Expression (1)
Precedence and associativity do notdo notdo notdo not specify the order in which the operands of a given
operator are evaluated, e.g.

Precedence and associativity say a - f(b) - c * d is (a - f(b)) - (c * d)

Which one is evaluated first, (a - f(b)) or (c * d) ?

Similarly, in f(a, g(b), h(c)) , what is the order in which the arguments will be evaluated?

But evaluation order is important.

• Impact on expression result via side effect
� What if f(b) modifies c and/or d?

� What if g(b) modifies a and/or c?

• Impact on code improvement
� In a*b + f(c), for example, it might be desirable to call f first, because the product a*b stored in a

register would need to be saved (on stack) during the call to f (i.e. run time cost) as f might want to use
all registers.

Evaluation Order within Expression (2)

As for code improvement, most languages then leave the order of evaluation
undefined, i.e. compiler can choose whatever order that results in faster code.

Be careful when writing expression in which side effect of evaluating one operand or
argument can affect the value of another, e.g. use parentheses to impose ordering.

But Java and C# require left-to-right evaluation (i.e. cleaner semantics over run time
cost).

Exercise: Precedence, Associativity, Evaluation Order
Given the precedence table and associativity rules in the previous slides, and
evaluation order within expression is left to right, what is the result of this C program?

int give2() { printf("two\n"); return 2; }

int give3() { printf("three\n"); return 3; }

int give4() { printf("four\n"); return 4; }

int main() {

printf("%d\n", give4() + give2() * give3() - give4() / give2());

return 0;

}

Assignment

In imperative language, assignment provides the means to make the changes to the
values of variable in memory.

Assignment takes two arguments.

• A valuevaluevaluevalue

• A reference to a variablereference to a variablereference to a variablereference to a variable into which the value should be placed.

Assignment has a side effect, i.e. it changes the value of a variable, thereby affecting
the result of any later computation in which the variable appears.

//C

int max(int x, int y) {

if (x > y) {return x;} else {return y;}

}

int main()

{ int a, b;

a = 1; b = 2;

printf("max is %d\n", max(a, b)); //max is 2

a = 3;

printf("max is %d\n", max(a, b)); //max is 3

return 0;

}

--Haskell has no assignment and no side effect

a, b :: Int

a = 1

b = 2

max a b

--2

max a b

--2

Semantics of Assignment (1)

In value model of variablesvalue model of variablesvalue model of variablesvalue model of variables, a variable is a named container for a value (e.g. Pascal, C,
Java’s built-in type, PHP).

A variable has two interpretations when used with assignment.

• llll----valuevaluevaluevalue refers to expression that denotes location.

• rrrr----valuevaluevaluevalue refers to expression that denotes value.

//C

b = 2; // l-value of b is used

c = b; // r-value of b is used, l-value of c is used

a = b+c; // r-values of b and c are used, l-value of a is used

Semantics of Assignment (2)

In reference model of variablesreference model of variablesreference model of variablesreference model of variables, a variable is a named reference to a value (e.g. Clu,
Lisp, Haskell, Smalltalk, Java’s user-defined type (class), Python, Ruby).

• Every variable is an llll----valuevaluevaluevalue.

• When a variable appears where an rrrr----valuevaluevaluevalue is expected, it must be dereferenced be dereferenced be dereferenced be dereferenced to
obtain the value to which it refers (automatic in most languages).

%Clu

b := 2; % l-value of b is used

c := b; % l-value of b is dereferenced, l-value of c is used

a := b+c; % l-values of b and c are dereferenced, l-value of a is used

% 2 and 4 are immutable values at some locations to which any variables can refer

Short-Circuit Evaluation

Consider these logical expressions,

(a < b) and (b < c)

(a > b) or (b > c)

When the overall value of these expressions can be determined from the first half of
the computation, compiler will generate code that skips the second half.

This saves time.

Short-Circuit Changes Semantics of Boolean Expressions

An example of a search for an element in a list.

C short-circuits its logical operators.

Pascal does not short-circuit. Both <> will be evaluated before and, so run-time
semantic error if p is nil (unsuccessful search).

//C

p = my_list;

while (p && p->key != val)

p = p->next;

(* Pascal *)

p := my_list;

while (p <> nil) and (p^.key <> val) do (*ouch!*)

p := p^.next;

key next key next

my_list

p

Exercise: Short-Circuit

How can we use short-circuit evaluation to make the following code safer?

const int MAX = 10;

int A[MAX];

…

if (A[i] > foo) …

if (n/d < threshold) …

Sequencing

It is the principal means of controlling the order in which side effects occur.

When one statement follows another, the first statement executes before the second.

Sequence of statements can be enclosed as a compound statement (block), e.g.
begin…end or {…}.

Selection

Most languages employ variant of if ... then … else ...

if condition then statement

else if condition then statement

else if condition then statement

…

else statement

Short-Circuited Condition in Selection

In languages with short-circuit, compilers generate target code which evaluates the
conditions for branching control to various locations without having to store any
boolean values.

if ((A > B) and (C > D)) or (E ≠ F) then

then_clause

else

else_clause

r1 := A

r2 := B

if r1 <= r2 goto L4

r1 := C

r2 := D

if r1 > r2 goto L1

L4: r1 := E

r2 := F

if r1 = r2 goto L2

L1: then_clause

goto L3

L2: else_clause

L3:

Nested If

Compilers generate target code which tests each expression sequentially.

--Ada

i := … -- calculate tested expression

if i = 1 then

clause_A

elsif i = 2 or i = 7 then

clause_B

elsif i in 3..5 then

clause_C

elsif i = 10 then

clause_D

else

clause_E

end if;

≠

≠

≠

Case/Switch Statements

Less verbose syntactically than nested if but the principal motivation is to facilitate
the generation of efficient target code.

--Ada with case labels and arms

case … --calculate tested expression

is

when 1 => clause_A

when 2 | 7 => clause_B

when 3..5 => clause_C

when 10 => clause_D

when others => clause_E

end case;

-- General form

goto L6 --jump to code to compute address

L1: clause_A

goto L7

L2: clause_B

goto L7

L3: clause_C

goto L7

...

L4: clause_D

goto L7

L5: clause_E

goto L7

L6: r1 := ... --computed target of branch

goto *r1

L7:

Case/Switch Implementation Example

Code at label T is an array of addresses (called jump table). Each entry is for each value from
the lowest to the highest value of the case labels.

L6 checks boundary and fetches corresponding entry from the table and branches to it. So
finding the correct arm is in constant time.

r1 := T[r1]

goto *r1

Address at label L1

content of r1

< min

> max

Exercise: Case/Switch Implementation

What is the problem with jump table implementation in the previous slide?

What do you think a compiler should do about it?

Switch Statement with Fall-Through

Found in C and retained in C++, Java.

• Each possible value for tested expression must have its own label.

• A label with empty arm falls through into the code of subsequent label.

• To get out of a switch, a break statement must be used at the end of an arm, rather
than falling through into the next. switch (… /*tested expression */) {

case 1: clause_A;

break;

case 2:

case 7: clause_B;

break;

case 3:

case 4:

case 5: clause_C;

break;

case 10: clause_D;

break;

default: clause_E;

break; }

Iteration

In most languages, iteration takes the form of loops.

An enumeration controlled loop executes over values in a given finite set.

A logically controlled loop executes until some boolean condition changes value.

An iterator iterates over elements of any well-defined set (collection).

Enumeration-Controlled Loop

Test for empty bounds first, i.e. test terminating condition before the first iteration.

(* Modula-2: enumeration-controlled *)

FOR i := first TO last BY step DO

…

END

/* C: combination of enumeration- and logically-controlled */

for (i = first; i <= last; i += step) {

…

}

Logically Controlled Loop

Pre-test loop: Loop body may not be executed

Post-test loop: Loop body is executed at least once.

Mid-test loop: A special statement is nested inside a test for terminating condition.

while condition do statement

//C

do {

line = read_line(stdin);

} while line[0] != ‘$’;

//C

for (;;) {

line = read_line(stdin);

if (all_blanks(line)) break;

consume_line(line);

}

Iterator (1)

True iterator (e.g. Clu, Python, Ruby, C#)

• Any container abstraction provides an iterator that enumerates its items.

#Python

#Iterator goes unseen as it is implicitly used

for i in [1, 2, 3]:

print(i)

...

1

2

3

#range(first, last, step) is a built-in iterator.

#It yields integers in the range in increments of step, but not including last.

#It is a function but, when called each time, continues where it last left off, giving next integer.

my_list = [‘one’, ‘two’, ‘three’, ‘four’, ‘five’]

my_list_len = len(my_list)

for i in range(0, my_list_len, 2):

print(my_list[i])

...

one

three

Five

Iterator (2)

Iterator as an ordinary object (e.g. C++, Java, Ada, Python).

• Provides methods for initialization, generation of the next index value, and testing
for completion. //Java

ArrayList al = new ArrayList();

//add elements to the array list

al.add("C");

al.add("A");

al.add("E");

//use iterator to display contents of al

System.out.print(“Contents of al: ”);

Iterator itr = al.iterator();

while(itr.hasNext()) {

Object element = itr.next();

System.out.print(element + “ ”);

}

…

Contents of al: C A E

Recursion

Functions calling themselves.

Functions calling other functions that call them back in turn.

Any iterative algorithm can be rewritten as a recursive algorithm and vice versa. Which
to use in which circumstance is mainly a matter of taste.

Recursion and Iteration

a if a=b

gcd(a, b) gcd(a-b, b) if a>b

positive integers, a, b gcd(a, b-a) if b>a

//C

//Iteration, assume a, b > 0

int gcd(int a, int b) {

while (a != b) {

if (a > b) a = a-b;

else b = b-a;

}

return a;

}

//C

//Recursion, assume a, b > 0

int gcd(int a, int b) {

if (a == b) return a; //base case

else if (a > b) return gcd (a-b, b);

else return gcd(a, b-a);

}

