Parallel Information Retrieval on A PC-Cluster Using Vector Space Model

Mr. Tawa Khampachua

Tawa.K@Student.chula.ac.th

Software Engineering Laboratory (SE)
Department of Computer Engineering
Chulalongkorn University

Agenda

Problem and Motivation

Proposed Solution

Fundamental Theories

Design and Implementation

Experimental Results

Conclusions

Problem Statement and Motivation

Problem Statement

- Large-scale text databases.
- Limitation of computing resources.

Motivation

• Emerging of parallel and distributed computing on Beowulf PC-Cluster.

Proposed Solution

Parallel computing (On cluster of PCs)

+

Information Retrieval (using VSM model)

Information Retrieval

What is Information Retrieval

Information Retrieval is the process of identifying and retrieving relevant

documents based on a query consists of three basic steps;

- a document representation.
- a query representation.
- a similarity measurement between both of documents and queries.

Information Retrieval

The common classic models in information retrieval

- Exact match: based on text pattern and Boolean search techniques.
- Inexact match: based on statistic search techniques.

Information Retrieval

Vector Space IR Model

- Representing a document with a vector.
- Keeping document semantics with the length and direction of the vector.

Information Retrieval

Retrieval Phase

- Query vector formulation.
- Similarity measures; determining similarity of documents with simple vector operations (dot product).

Information Retrieval

IR system functional diagram

- Stop words: eliminate non useful words, e.g., a, an, the, etc.
- Stemming: reduce vocabulary size.
- Doc derive : construct document vectors.
- Retrieval : similarity computation.

Information Retrieval

Retrieval Evaluation

- Recall = Ra / A
- Precision = Ra / R

Parallel and Distributed Computing

Parallel computing concept

- # Decomposing a large problem into more parts.
- # Processing each part in parallel by more processors.
- # Reduce the time required to solve the problem.
- # Scale up the larger problems.

Parallel and Distributed Computing

SIMD and MIMD

Parallel and Distributed Computing

Performance Evaluation

• Speedup
$$S_p = \frac{T_1}{T_p}$$

• Efficiency
$$E_p = \frac{S_p}{p}$$

Problems and Solution

Problems

- A large-scale text database.
- A sequential system have a resources limitation.

Solution

- Apply parallel computing with IR system.
- Split a large text database into small pieces and conquer with computing nodes .

Parallel indexing using master-slave model

Parallel indexing functional diagram

Parallel retrieval functional diagram

Materials and Configuration

Collections

• Test collection, Cranfield and TREC-8 (2GB).

Testing

- Retrieval performance (Precision).
- Speed-up performance.

Retrieval performance

Cranfiled Collections

Size in Mbytes	1.6
Number of documents	1400
Number of queries	225
Maximum terms/document	225
Minimum terms/document	18
Average terms/document	88
Total terms found	125822
Total unique terms	3959

Retrieval performance

Test Diagram

Retrieval performance

Retrieved Result

Cranfiled Collection	PVS	SMART
Retrieved	22500	22500
Relevant	1838	1838
Rel_retrieved	1295	1295
Average precision	0.3531	0.3531

Speed-up performance

TREC Collections

Collections	LATIME	FR	FT	FBIS
Total size (MB)	498	414	591	493
Total documents	131896	55630	210158	130471
Total words	70494552	38154925	84433831	67804697
Unique words	285643	157939	385795	321394

Speed-up performance

Test Collections

Computing nodes	Size of data (MB)	Documents
1	1,969	1,689,272
2	985	840,636
4	492	420,318
8	246	210,158
16	123	105.079

Speed-up performance

Beowulf PCs cluster

16 machines of Athlon 700MHz with 128MB RAM and IDE 10 GB.

Each of node is connected with 100Mbps Switching.

Speedup curve

Efficiency of indexing

Effect of Data Collection

Computing time

Comparison to SMART

Computing time

Comparison to SMART

Conclusion

Problem

- Large-scale text databases.
- Limitation of computing resources.

Propose

- Apply Parallel computing to information retrieval system.
- Using low-cost PCs cluster for implementation.

Consequence

- Parallel computing technique can help;
 - to reduce an execution time.
 - to solve resources limitation.

Conclusion

Perspective

- Apply Inverted file for improve speed of retrieval process.
- Optimize Parallel algorithms to reduce computing time.
- Add new functions and retrieval techniques to improve precision of system.

