

by

Chung-Kwan Shin, Ui Tak Yun, Huy Kang Kim, and Sang Chan Park

IEEE Transactions on Neural Networks, Vol. 11, No. 3, MAY 2000.

Review by: Thimaporn Phetkaew

Introduction

- Hybrid system of neural network and memory-based learning
- Experimental results
- Conclusion, limitations and future work

Introduction

- The knowledge representation of neural network (NN) is unreadable to humans.
- Memory-based reasoning (MBR) suffers from the feature-weighting problem.
- The k-nearest neighbor (k-NN) method --> all of the features presented are equally important.

Introduction

- In dynamic situations, the on-line learning property is crucial.
- Hybrid system is designed to take full advantage of the vast amount of memory.

Hybrid system of NN and memory-based learning

Framework of extracting feature weight from a trained NN

Hybrid system of NN and memory-based learning

Hybrid system of NN and memory-based learning

Feature weighting algorithms using a trained NN

• Sensitivity --> input feature x_i

$$S_{i} = \frac{\left(\sum L \frac{\left|P^{0} - P^{i}\right|}{P^{0}}\right)}{n}$$

Hybrid system of NN and memory-based learning

Feature weighting algorithms using a trained NN

• Activity --> a hidden node z_i

$$A_{j} = \left(w_{j}^{(2)} \right)^{2} \cdot \operatorname{var} \left(g \left(\sum_{i=0}^{d} w_{ji}^{(1)} x_{i} \right) \right)$$

--> an input node x_i

$$A_i = \sum_{j=1}^M \left(\left(w_{ji}^{(1)} \right)^2 \cdot A_j \right)$$

Hybrid system of NN and memory-based learning

Feature weighting algorithms using a trained NN

Saliency --> an input node

Saliency
$$_{i} = \sum_{j=1}^{M} \left(\left(w_{ji}^{(1)} \right)^{2} \cdot \left(w_{j}^{(2)} \right)^{2} \right)$$

Hybrid system of NN and memory-based learning

Feature weighting algorithms using a trained NN

• Relevance --> a hidden node z_j $R_i = \left(w_i^{(2)} \right)^2 \cdot \operatorname{var} \left(w_{ii}^{(1)} \right)$

--> overall relevance of input node x_i

$$R_i = \left(\left(w_{ji}^{(1)} \right)^2 \cdot R_j \right)$$

Hybrid system of NN and memory-based learning

MBR with weighted features (k-NN method)

• Case
$$x = \{x_1, x_2, ..., x_n, x_c\}$$

• Distance
Distance
$$(x, q) = \sqrt{\sum_{f=1}^{n} W_f} \times \text{difference } (x_f, q_f)^2$$

difference $(x_f, q_f) = \begin{cases} |x_f - q_f|, \text{ if feature } f \text{ is numeric} \\ 0, & \text{if feature } f \text{ is symbolic and } x_f = q_f \\ 1, & \text{otherwise} \end{cases}$

Hybrid system of NN and memory-based learning

Integration of memory and NN-based learning

Hybrid system of NN and memory-based learning

Integration of memory and NN-based learning

The rule of PQM rejection --> classification task

- If $P_M <> P_{NN}$ Then "Reject to answer" Else "Answer with P_M (or, identically, P_{NN})"

--> regression task

- If $|P_M - P_{NN}| \ge \mathcal{E}$ Then "Reject to answer" Else "Answer with average of P_M and P_{NN} "

Hybrid system of NN and memory-based learning

Integration of memory and NN-based learning

Rejection ratio

Rejection ratio = $\frac{\text{Number of unanswered queries}}{\text{Total number of queries}}$

,

Experimental results

TABLE I
DATASETS USED IN THE EXPERIMENTS AND THEIR NEURAL NETWORK LEARNING SETTINGS

datasets used for the experiments					1	Neural Network Set	tings	
Determ	Insta	nces	Attri	ibutes	Output	# of Hidden	Mean	Prediction
Dataset	Learning	Testing	Original	Random	Classes	Nodes	Iterations	Error
Odd Parity	350	150	4	7	2	6	727±1528	0.0 ± 0.0
Sinusoidal	350	1,50	2	0	2	18	8442±1163	35.5±6.3
WDBC				0			3017±1495	3.7 ± 0.0
WDBC+15	468	101	30	15	2	20	2826± 2221	5.7 ± 0.0
WDBC+30				30			3284± 814	5.9±0.0
Credit				0		5	8820±1454	20.20 ± 3.86
Credit+20	500	153	43	20	2	8	7553±2143	22.43 ± 2.45
Credit+43				43		20	6870± 1915	24.2 ± 3.17
Sonar				0		6	6230±1565	16.5±2.15
Sonar+30	104	104	60	30	2	8	5995±2158	26.2±2.04
Sonar+60				60		9	8159±1927	27.1±3.54
MPG				0			5709±2902	3.11 ± 0.41
MPG+4	300	92	9	4	real	9	5764± 3432	3.42 ± 0.52
MPG+9				9			3278± 2530	3.73 ± 0.32

Experimental results

Classification accuracy of the feature weighting method for

the odd-parity problem

Experimental results

Experimental results

TABLE II

ODD PARITY PROBLEM (a) MEAN WEIGHTS OF RELEVANT FEATURES $(I_1 \dots I_4)$ and Irrelevant Features $(I_0 \dots I_{11})$ and (b) Mean Error of Feature Weighting Algorithms

	Sensitivity	Activity	Saliency	Relevance
11 - 14	1.91 ± 0.60	2.06 ± 0.56	2.06 ± 0.42	2.04 ± 0.41
B-10	0.43 ± 0.46	0.40 ± 0.60	0.39 ± 0.58	0.40± 0.62

x = x

			(a)		
k	Uniform	Sensitivity	Activity	Saliency	Relevance
1	30.8±3.4	0.9±1.3	0.8±1.4	1.0±1.8	0.2±0.4
3	31.7±2.6	1.8±2.5	1.3±2.3	1.7±2.7	0.7±1.2
5	72.0±1.5	9.3±11.1	4.5±6.7	6.9±9.5	4.3±5.5
7	69.0±1.0	10.1 ± 12.2	4.8±7.0	8.3±11.4	5.2±7.0
9	67.9±2.6	14.1 ± 15.0	6.9±7.3	11.5±12.7	8.4±8.3
11	65.8±2.6	19.7±15.5	13.1±9.7	16.3±13.0	13.4±10.2
13	66.7±3.1	22.1±16.6	16.7±9.1	19.1±11.2	17.9±9.3
15	83.1±2.0	41.1±21.3	33.1 ± 13.7	37.3±11.0	38.1±10.4

(b)

Experimental results

TABLE III

SINUSOIDAL PROBLEM (a) MEAN WEIGHTS OF RELEVANT FEATURE (I_1) and LESS RELEVANT FEATURE (I_2) and (b) MEAN ERROR OF FEATURE WEIGHTING ALGORITHMS

	Sensitivity	Activity	Saliency	Relevance
11	1.68±0.25	1.84±0.09	1.85±0.10	1.75±0.14
12	0.32±0.25	0.16±0.09	0.15±0.10	0.25±0.14

			(a)		
k	Uniform	Sensitivity	Activity	Saliency	Relevance
1	22.4±2.2	14.2±4.4	11.7±1.3	12.1±1.3	14.0±1.7
3	27.6±3.5	15.8±6.1	13.1±2.9	14.2±3.7	15.9±3.2
5	34.0±4.9	19.1±6.7	15.0±3.7	16.5±3.8	19.2±4.5
7	36.3±4.3	22.8±8.2	17.9±2.6	18.3±4.3	20.7±5.7
9	37.1±4.9	25.3±8.4	20.1±3.7	21.1±4.0	23.2±6.3
11	36.9±5.0	25,5±9,5	19,9±3.2	20,9±4.5	24.6±5.2
13	37.0±3.5	27.3±9.0	21.9±4.1	23.3±5.1	26.1±6.6
15	37.5±3.9	28.3±8.6	24.0±5.3	25.1±6.5	28.5±7.1

Experimental results

TABLE IV

COMPARISON OF FEATURE WEIGHT LEARNING ALGORITHMS ON PARITY AND SINUSOIDAL PROBLEM

Max. Prediction Accuracy (%)	Parity	S inuso ida I
k-N N	69.2	77.6
Sensitivity	99.1	85.8
Activity	99.2	88.3
Saliency	99.0	87.9
Relevance	99.8	86.0
Relief-F	100.0	80.1
k-NN (VSMI)	100.0	88.6
CCF	70.5	68.5
VDM	70.9	68.5
MVDM	71.1	68.4
MI	71.4	73.0

72

Experimental results

Experimental results

TABLE V

COMPARISON OF MANN AND OTHER EXPERIMENTS IN REAL WORLD DATASETS

	WANN Error Rate (Rejection Ratio)	Offher Experiment
WDBC	2.1% (5.0%)	2.5% (Bennett [31]), M SM - Tree
f ber 0	8.3% (9.1%)	14.13% (Quinlan [28]), Bagged C4.5
Sonar	1.2% (17.3%)	4.8% (Hastie and Tibshirani [8]), DANN
		6.2% (Setiono and Liu [15]), selected features
M PG	2.09 (10.1%)	2.11 (Quintan [30]), ModelTree

Conclusion

- provides the most similar cases for the prediction query, which demonstrates its explaining capability.
- suggests a hybrid approach to the feature weighting problem with NN technique.
- can be directly applied to classification and regression without additional transformation mechanisms.
- provides on-line learning property.

Limitations

may not be appropriate to situations that require a short learning time.

• does not explicitly provide any symbolic knowledge.

Future work

Parameters

- Length of the case lifetime
- Treatment of old cases
- Point to renew the feature weight
- Dynamic behavior
 - Discards old cases
 - Updates the feature weight

