Evaluating Software Deployment Languages and Schema
An Experience Report

Richard S. Hall, Dennis M. Heimbigner, Alexander L. Wolf
Department of Computer Science
University of Colorado
Boulder, CO 80309 USA
{rickhall,dennis,alw } @cs.colorado.edu

Abstract

Software distribution is evolving from a physical media
approach to one where it is practical and advantageous to
leverage the connectivity of networks. Network distribu-
tion of software systems provides timeliness and continuity
of evolution not possible with physical media distribution
methods. 10 support network-based software distribution,
companies and organizations such as Microsoft, Marimba,
and the Desktop Management Task Force (DMTF) are
strengthening their efforts to package sofiware systems in
a way that is conducive to network distribution and man-
agement. The result of these efforts has led to the creation
of software description languages and schema such as the
Open Software Description format created by Microsoft and
Marimba and the Management Information Format created
by DMTF. While these efforts are steps in the right direc-
tion, they do not address deployment issues in a complete
and systematic fashicn. The contribution of this paper is to
evaluate these leading software description technologies.

1. Introduction

The connectivity of large networks, such as the Internet,
is affecting how software deployment is being performed.
The simple notion of providing a complete installation pro-
cedure for a software system ona CD-ROM is giving way to
a more sophisticated notion where software deployment in-
volves the ongoing cooperation and negotiation among soft-
ware producers themselves and among software producers
and software consumers. This new cooperation has led to
exciting possibilities in software deployment that were not
previously possible.

One result of this connectivity and cooperation is the
possibility of software producers offering high-level de-
ployment services to their customers. The responsibility of

0-8186-8779-7/98 $10.00 © 1998 IEEE

177

the software producer is now moving beyond the mere in-
stallation of their software systems to encompass other ac-
tivities in the software deployment life cycle. The resulting
benefit to the software consumer is a lowered total cost of
ownership because less effort need be expended on main-
taining the software that they own.

One way these new notions of connectivity and cooper-
ation are being addressed is through software system and
component languages and corresponding schema. The pur-
pose of these languages and schema is to provide enough
semantic information about a given software system so that
many standard deployment tasks can be automated or sim-
plified. Specific efforts such as the Software Dock [4], the
Open Software Description (OSD) [8], and the Desktop
Management Task Force (DMTF) [2] are trying to create
a standard syntax and semantic for describing software sys-
tems in order to facilitate deployment and related activities.

The purpose of this paper is to discuss two specific high-
profile deployment language efforts. One is Microsoft’s and
Marimba’s joint proposal named OSD [8] that was submit-
ted to the W3 Consortium. The other is the DTMF con-
sortium’s Software MIF standard [2]. In order to discuss
these technologies, the next section briefly introduces the
requirements and issues of software deployment. Sections
3 and 4 discuss OSD and MIF, respectively, and specifically
address their solutions with respect to the requirements and
issues outlined in Section 2.

2. Requirements for software deployment lan-
guages and schema

Software deployment is not a simple, single process to
be performed after a software system has been developed.
Software deployment is a collection of interrelated activities
that address all of the issues of interfacing a deployed soft-
ware system to the ongoing usage of the consumer as well
as the ongoing development efforts of the producer. These

Release Retire

(e}

Install > Remove

(][]

Update Adapt

I ey gy vt |+ cotors]

Activate De-activate

Figure 1. Software Deployment Life Cycle

activities are collectively referred to as the software deploy-
ment life cycle and their relationships are depicted in Figure
1. For a more detailed description of the software deploy-
ment life cycle see [5]. A brief description of each life cycle
activity follows:

¢ Release - package, advertise, and make a software
system ready for release.

o Install - gather and configure the necessary artifacts
of a software system in order for it to be used on a
consumer site.

o Update - reconfigure a software system at a con-
sumer site in response to producer-side changes.

e Adapt - reconfigure a software system at a consumer
site in response to consumer-side changes.

e Activate - transform the software system into a us-
able state (i.e., execute it).

e De-activate - return the software system to a dormant
state (i.e., shut it down).

o Remove - remove a given software system from a
consumer site.

e Retire - retire a given software system, thus making
it unavailable for future deployment.

These activities define the scope of the software deploy-
ment problem space; a space for which software deploy-
ment languages and schema must provide coverage. Taking
into account the above description of the software deploy-
ment life cycle, certain requirements for a software deploy-
ment language or schema emerge. Specifically, a software
deployment language or schema must be able to:

o semantically describe software systems and compo-
nents and

¢ semantically describe consumer sites where software
is to be deployed.

The purpose of these descriptions is to provide semantic
knowledge that is rich and rigorous enough to support the
automation of the software deployment life cycle. Given
such descriptions, generic solutions to software deployment
tasks are possible by combining software product knowl-
edge with consumer site knowledge. For example, a generic
software installation process interprets the constraints, de-
pendencies, and various configurations of a specific soft-
ware system with respect to the constraints and resources
available at a particular consumer site; through this inter-
pretation the generic software installation process performs
a specific installation activity for a given software system.

In order to provide such semantic descriptions of soft-
ware systems and computing sites it is necessary to adopt a
semantic model. A common approach, and one that is as-
sumed in this paper, is that software systems and computing
sites are objects that can be modeled as a collection of at-
tributes or properties. These collections of attributes may
have internal structure, but at the base level they map to
primitive attribute types (e.g., integer, string). This model is
used throughout this paper and, in general, is used by both
OSD and MIF.

2.1. Consumer site description

There are two classes of participants in the software de-
ployment problem space, namely producers and consumers.
The purpose of the consumer description is to provide a
context about the site into which a software system is to be
situated; this is essential to fully describe a software system
or component. For example, it is difficult to describe a soft-
ware system’s dependency on properties such as operating
system, architecture, or dependent software subsystems if
there is no accessible model of such information. As such,
the consumer site description and the software system de-
scription, should be viewed as two halves to a whole, rather
than two distinct entities.

At the very least, the consumer site description must
record information about the state of the consumer site at
any given time; such records include the following:

o Properties - attributes of the consumer site that may
affect the outcome of deployment operations (e.g.,
operating system, hardware architecture, and hard-
ware configuration such as memory),

» Constraints - restrictions placed on the values of spe-
cific site properties either by deployed software sys-
tems or by administrators (e.g., a deployed software

system may constrain how the operating system can
be configured or which version of a shared resource
can be installed), and

e Resources - interfaces and capabilities provided by
the consumer site as well as the existence and avail-
ability of other deployed software systems at the site.

2.2. Software system and component description

The other half of the software deployment problem space
is represented by tte software producers’ descriptions of
software systems and components. These descriptions de-
fine an interface to the products and services provided by
software producers. The goal for the software system de-
scription is to provide enough semantic information abouta
particular software system so that it can be deployed in an
automated fashion. The responsibility of describing a soft-
ware system lies solely with the producer of the software
system since the producer has the most knowledge about
the system.

We have identified minimally [6, 5] five classes of se-
mantic information that must be described for a software
system or component, these are:

e Assert constraints: These are predicates over re-
quired attribute values where the predicate must eval-
uate to true or else an unresolvable conflict is indi-
cated. Examples include the requirement of Windows
95 or that total memory is greater than 24 megabytes.
In general, assertion constraints are used for two pur-
poses, selecting a properly configured software sys-
tem and to maintain the proper operation of a de-
ployed software system; the former case being the
most common. The latter case requires the notion of a
consumer site model where assert constraints can be
maintained in order to enforce and disallow incom-
patible changes to the consumer site.

Dependency constraints: These are also predicates
over required attribute values. But in contrast to as-
sert constraints, each dependency constraint has an
associated resolution procedure that can be invoked to
attempt to resolve conflicts in the case that the depen-
dency predicate evaluates to false. The difference be-
tween assert constraints and dependency constraints
is subjective because although a constraint may be
solvable it may not be practical to solve it in all cases.
Thus a particular constraint may be an assert in some
cases and a dependency in others. Dependency con-
straints may be used to express dependencies on sub-
systems that can installed if not available, on proper-
ties that can be reconfigured if the values are not ap-
propriate, or on generic capabilities required by the
software systeni.

179

o Artifacts: These are the physical components, repre-
sented as files, that comprise a software system. Ar-
tifacts can be executables, libraries, data sets, or doc-
umentation. It is necessary to understand the source,
destination, description, type, and mutability of the
artifacts that comprise a software system.

Configuration: This maps sets of properties to asso-
ciated sets of artifacts that must be present depending
on the value of the properties. This mapping is com-
bined with the assert and dependency constraints to
select valid configurations for a given software sys-
tem. A configuration description for a software sys-
tem may include functional properties like optional
subcomponents or non-functional properties such as
performance characteristics.

o Activities: These are the specialized activities that
are required in order to complete deployment. It
is unlikely that a standard deployment language or
schema can address everything that is ever going to be
needed to perform software deployment tasks, there-
fore some notion of describing and including special-
ized tasks is nccessary.

3. Open software description

The Open Software Description (OSD) is a W3 Con-
sortium proposed standard created jointly by Microsoft and
Marimba. In general, OSD provides a vocabulary for pack-
aging software; this includes describing software compo-
nents, their versions, their underlying structure, and rela-
tionships among components. OSD, which is one piece
of Microsoft’s Zero Administration Initiative [7], is re-
lated to Microsoft’s Channel Definition Format (CDF)[3]
for “push” content. The two standards combined are in-
tended to be used in conjunction with “push” technologies
to enable software systems to automatically install and up-
date themselves. The syntax for both OSD and CDF are
based on the Extensible Markup Language (XML) [1]. Re-
fer to Appendix A for a simple OSD specification.

3.1. Detailed description

The OSD syntax is organized hierarchically with very
few keywords. The major syntax elements for OSD include:
SOFTPKG to define a general software package, IMPLE-
MENTATION to describe an implementation of a software
package, and DEPENDENCY to indicate a dependency on
some other software package or package component.

A SOFTPKG has IMPLEMENTATION e¢lements as its
children to describe specific implementations of the soft-
ware package. A SOFTPKG may also have DEPENDENCY

elements as its children to specify required software pack-
ages. Additional children of SOFTPKG include: TITLE to
indicate the “friendly name” of the software package, AB-
STRACT to provide a short description of the nature and
purpose of the software package, and LICENSE to indicate
the location of the license agreement or copyright noticed
to be retrieved.

An IMPLEMENTATION element may also have DE-
PENDENCY elements as children in order to specify de-
pendent components. Additional children of IMPLEMEN-
TATION include: CODEBASE to indicate the location of
the archive for the implementation, OS to indicate the re-
quired operating system, PROCESSOR to indicate the re-
quired central processing unit, LANGUAGE to indicate the
required natural language in the software’s user interface,
VM to indicate the required virtual machine, MEMSIZE to
indicate the required amount of run-time memory, DISK-
SIZE to indicate the required amount of disk space, and IM-
PLTYPE to indicate the type of the implementation. The OS
element may also have an OSVERSION as a child to indi-
cate the required version of the required operating system.

Wherever used, the DEPENDENCY element can be ei-
ther an assert or install dependency. For assert, if the de-
pendency does not exist, the entire dependency fails. For
install, if the dependency does not exist an attempt will be
made to install it.

3.2. Evaluation

In all fairness, it must be stated up front that OSD is an
initial attempt by Microsoft and Marimba to create a joint
standard for describing software systems and components
for deployment. The intention of OSD is not expressly to
address the entire software deployment life cycle described
within this paper, but more specifically to address the in-
stallation and update processes using “push” technologies.
In that regard it is certainly a step in the right direction.
Despite this modest goal, though, it is clear than many of
the same requirements outlined in Section 2 need to be ad-
dressed by OSD at some point to make it useful for a larger
class of problems. As it stands, OSD currently addresses
only a limited form of installation and update in the soft-
ware deployment life cycle.

Inspecting the OSD specification [8], it is clear that there
are two halves to the specification: the Microsoft half and
the Marimba half. Given the issues surrounding the col-
laboration and the time constraints involved in dealing with
market forces, it appears that this initial attempt was merely
Microsoft and Marimba combining their separate simple,
description efforts into one standard. In particular, the Mi-
crosoft half is concerned with some consumer side proper-
ties such as operating system type and version, while the
Marimba side is simply considered a different implementa-

180

tion type from the Windows implementation type assumed
by Microsoft.

The main thrust of OSD is to describe a single version
of a software system. Standardized handling of a handful
of consumer side propertics and of dependent systems and
components makes this possible. A single OSD descrip-
tion may contain any number of variants or implementa-
tions based on the properties provided. In this scenario Java
1s simply treated as a different implementation. In addition,
the actual processing to be performed on an OSD specifi-
cation is completely unspecified within the description, nor
is there enough detail to completely infer the processing.
Some of the OSD specifics are detailed below.

Consumer site description: OSD lacks an explicit con-
sumer site model, thus making it difficult to use assert con-
straints to maintain a properly working configuration of a
software system. At the most basic level, OSD does not
provide any standardized mechanism for answering ques-
tions as simple as which operating system is running on
the consumer site or which microprocessor architecture is
in use, although it assumes that these answers are required.
Since there is no standardized means to answer these sim-
ple questions, there is no hope of asking more complicated
questions. Questions such as which software will break if
a specific property is changed, are far beyond the capabil-
ities of OSD. It is assumed that Microsoft intends to use
the Registry component of Windows to answer basic ques-
tions for Windows-centric platforms and that Marimba is
not generally concerned with these types of issues since
they are concentrating on a platform neutral environment
(i.e., Java). Neither approach is particularly well-suited for
the task at hand because the Windows Registry has no in-
herent schema definition for deployment and Java is not as
platform neutral as one might hope.

Assert constraints: The OSD specification directly sup-
ports only a limited set of assert constraints. The specifica-
tion indicates that OSD can be arbitrarily extended by third
parties using separate XML namespaces, but this approach
will result in a fragmented solution to software deployment
if each interested producer produces a proprietary schema.
The schema must be enriched and broadened to avoid the
same situation that currently exists with many software de-
ployment tools using proprietary schema. In such a sce-
nario, the only value that OSD provides is combining all
of the schema into one common syntax, which is a tenuous
contribution at best.

The current set of assert constraints in OSD appear to
have limited usefulness. Their intended use appears to be
to select an implementation and nothing more. In other
words, the supported assert constraints are generally static
consumer side properties, that will only ever be checked

once when installing or updating and then forgotten. Fur-
ther, there is no support for using constraints to maintain
the integrity or operational correctness of a software Sys-
tem. It is particularly vague, for example, how changing
the operating system version would affect already deployed
software systems.

Dependency constraints: OSD does support the notion
of a software system and component dependencies, but
these are merely URL pointers to another OSD specifica-
tion. The semantics of a dependency in OSD are particu-
larly weak and the dependency discussion of Section 4.2 is
applicable here too.

Artifacts, Configuration, and Activities: Artifact de-
scription is absent from the OSD specification. In general it
is always assumed that an OSD specification merely points
to an archive to be installed. Nor is there any support in
OSD for configurable software systems. The software sys-
tem being described is either considered monolithic with
respect to its archive or that any configuration occurs in an
external installation cr update process. Lastly, the support
provided by OSD is clearly not sufficient to perform the va-
riety of software deployment activities that are required. For
all of these shortcomings it appears that the solution is to fall
back to the extensibility of XML namespaces to allow each
producer to introduce their own notion of process descrip-
tion. As before, this solution is insufficient if the true intent
is to provide some form of a unified software deployment
framework.

4. Management information format

The Desktop Management Task Force (DMTF) is an
industry consortium chartered with the development, sup-
port, and maintenance of management standards for per-
sonal computer systems and products. An initial result of
the DMTF effort was the Desktop Management Interface
(DMI), which creates a common interface layer to access
management information on computing systems. An ef-
fort related to DMI is the Management Information Format
(MIF), which is a common, hierarchical data model used in
describing all aspects of computing systems, including soft-
ware systems. A major contribution by DMTF is the forma-
tion of working groups to create standard MIF schema to
describe various aspects of computing systems. The focus
of the discussion in this section is on the Software MIF cre-
ated by the Application Management working group. Cur-
rently, DMTF is moving towards a new, object-oriented data
model called the Common Information Model (CIM). The
Software MIF is currently being mapped to this model. Ap-
pendix B shows a simple Software MIF specification. It is

181

intended to be analogous to the OSD example of Appendix
A. Note that the MIF specification is substantially larger
than the OSD specification. This is partly because the MIF
is more detailed, but also because it is more verbose as well.

4.1. Detailed description

The standard syntax of MIF is broken into three hi-
crarchical elements: COMPONENT, GROUP, and AT
TRIBUTE. A COMPONENT is a top-level grouping mech-
anism and is used to describe a single entity. A COM-
PONENT may contain one or more GROUP elements
which are used to group a related set of ATTRIBUTE:.
An ATTRIBUTE is a child of GROUP and encapsulates a
typed value. The Software MIF creates a set of standard
software groups to describe a software component, these
GROUPs are named ComponentID, Software Component
Information, Software Signature, Location, Equivalence,
Superseded Products, Maintenance, Verification, Subcom-
ponents, Component Dependencies, Attribute Dependen-
cies, File List, Installation, Installation Log Files, and Sup-
port. For the sake of brevity, the attributes associated with
each group will not be discussed in detail; only the purpose
of each group will be presented. For a more detailed view
of the group attributes refer to [2] and to Appendix B.

Four groups, ComponentID, Software Component Infor-
mation, Software Signature, and Verification, are used to
identify and verify a software component. These groups de-
scribe the manufacturer, the specific product configuration,
the means with which to detect the product’s existence, and
the product’s level of operation, respectively.

The Location group is used to describe locations where
files and components reside. Other groups reference an in-
dex into the location group rather than specifying the lo-
cation directly; this is intended to simplify management by
separating out location information. The Equivalence group
describes other software components that are equivalent (in
some unspecified manner) to the one being described; the
intended use of this group is unclear. The Superseded Com-
ponents group describes products that have been superseded
by the software component being described in the specifica-
tion.

The Maintenance group is used only when the software
component being described is actually a maintenance re-
lease or patch to another software component and describes
the component to which the maintenance is to be applied.

The Subcomponents group is used to support “suite”
style software components (e.g., Microsoft Office). The
Component Dependencies group identifies the software
components on which the described software component
depends, while the Attribute Dependencies group specifies
the value of specific attributes on which the software com-
ponent being described depends on in order to operate cor-

rectly.

The File List group lists the files that comprise the soft-
ware component being described. The Installation group
specifies the available installation and de-installation pro-
cesses for the software component. The Installation Log
Files group specifies the names, locations, and descriptions
of log files created during the installation process. Lastly,
the Support group gives information used to obtain product
support for the described software component.

4.2. Evaluation

The Software MIF from the DMTF Application Manage-
ment working group has a longer history, and hence is more
well-defined, than the OSD specification effort. The major
contribution of the DMTF is the collection of schema defini-
tions from the various working groups. Specifically related
to software deployment, the Software MIF has defined the
above schema and many standard values for the attributes
contained in that schema. This type of standardization is
necessary to provide any type of general solution to the soft-
ware deployment dilemma. As a result, companies are re-
leasing computing systems that conform to various pieces
of the Software MIF standard. Wide-scale adoption has still
not occurred and only basic capabilities are provided such
as inventory management. Currently the Software MIF only
addresses installation, update, and de-installation from the
software deployment life cycle, while the adapt process re-
ceives limited support in the form of operational assert con-
straints.

A single Software MIF specification describes a single
version and variant of one component. One very important
aspect about the Software MIF is that it is not “Web en-
abled” in the sense of using any World Wide Web standards
or protocols. Some of the Software MIF characteristics are
detailed below.

Consumer site description: The complete definition of
the DMTF effort specifically includes a client-side model
through its DMI interface. DMTF has established work-
ing groups to create standard schema to describe various
hardware configurations as well as the software description
discussed here.

Assert constraints: Assert constraints are supported in
the form of attribute dependencies. A dependency can
be placed on any attribute defined in the standard DMTF
schema definitions. Asserts are used to select a properly
configured software system to install, and through the con-
sumer site model they possibly could be used to enforce
operational correctness, though this is not a main focus.

182

Dependency constraints: Software MIF dependencies
are not flexible with respect to defining a dependency con-
straint. It is always the case that a specific component ver-
sion (or range of versions) is considered to be a dependency
constraint. This implies that a dependency is always on a
versioned subsystem, and this is likely to be too simplis-
tic. There is no support for dependency constraints based
on something other than a subsystem or on the need of a
different configuration or functional capability. For exam-
ple, a software system may be dependent upon a particular
configuration of a dependent subsystem, but there is no way
this can be specified.

No clear support exists for the notion of a generic or ca-
pability dependency such as the generic dependency on an
HTML viewer. The inclusion of the Equivalence group in
the Software MIF schema may have some intended use in
this area, but it is not clear how useful it is since it requires
the creation of an explicit list of equivalences.

Artifacts: The Software MIF provides the necessary sup-
port for artifact description by providing a place to specify
each software artifact that comprises the software system
and its location and type.

Configuration and Activities: There is no support for
configurable software systems in the Software MIF. It is ei-
ther assumed that the component description is all or noth-
ing, or that any configurability is handled externally. In ad-
dition, the Software MIF is largely devoid of any process or
activity related description. At a very high level, the Soft-
ware MIF supports installation and de-installation process-
ing by providing a place in the schema to point to an instal-
lation and de-installation program, respectively. This can
be considered a high-level process description, but it is not
very useful. This approach does not allow general interpre-
tation or reasoning about the processing steps or activities
that need to be performed, which in turn disallows the cre-
ation of a generic procedure for handling these processes.

5. Conclusion

The use of networks, such as the Internet, to distribute
software to consumers is proving to be very beneficial for
both the consumer as well as the software producer. In order
to realize the potential of network software distribution, cer-
tain key areas of technology must be created and introduced.
One such technology is the definition and standardization
of software system and component description. Describing
software systems and components in a complete and rigor-
ous manner is required to enable and create a general in-
frastructure to support the software deployment life cycle.
Such a software description definition must include ways to

describe system assert constraints, dependency constraints,
artifacts, configurations, and specialized deployment activ-
ities. Combining such a definition with a semantic descrip-
tion of consumer sites makes it possible to create general
solutions to the various deployment tasks.

Specific efforts, such as Microsoft’s and Marimba’s OSD
and DMTE’s Software MIF, are attempting to address the
need for software system and component description to
varying degrees of success and detail. These efforts, while
generally steps in the right direction, still lack the level of
sophistication required to fully support the software deploy-
ment life cycle. This paper has outlined the specific require-
ments that are needed by software system and component
description techniques and has evaluated the ability of OSD
and MIF to address those needs.

Research work that is directly related to this topic is be-
ing performed by the authors in the form of the Software
Dock [4]. The Software Dock is a distributed, agent-based
framework for supporting the entire software deployment
life cycle. One majcr aspect of the Software Dock research
is the creation of a standard schema to meet the require-
ments outlined in th:s paper.

The current prototype of the Software Dock system in-
cludes an evolving software description schema definition
that is comprised of elements for describing assertions, de-
pendencies, artifacts, and configuration information. Ab-
stractly, the Software Dock provides infrastructure for hous-
ing software releases and their semantic descriptions at re-
lease sites and prov:des infrastructure to deploy or “dock”
software releases at consumer sites. Mobile agents are pro-
vided to interpret the semantic descriptions provided by the
release site in order to perform various software deployment
life cycle processes.

Initial implementations of generic agents for performing
configurable content install, update, adapt, reconfigure, and
remove have been created. These agents are completely pa-
rameterized by the irformation provided in the semantic de-
scriptions of the software releases. For more information
regarding the Software Dock and other research being per-
formed within the Software Engineering Research Labora-
tory, refer to http.//www.cs.colorado.edu/serl.

Acknowledgements

This materiel is based upon work sponsored by the Air
Force Materiel Command, Rome Laboratory, and the De-
fense Advanced Research Projects Agency under Contract
Numbers F30602-94-C-0253 and F30602-98-2-0163. The
content of the inforrnation does not necessarily reflect the
position or the policy of the Government and no official en-
dorsement should be inferred.

References

[1] T. Bray. “Extensible Markup Lanuage (XML). Part I. Syn-
tax”. Textuality, Vancouver, BC, Canada.
(http://www.w3.org/pub/WWW/TR/WD-xml-lang.html).
Desktop Management Task Force. “Software Standard
Groups Definition, Version 2.0", 29 Nov. 1995.
(http://www.dmtf.org/tech/apps.html).

C. Ellerman. “Channel Definition Format”. Microsoft Corp,
Redmond, WA.
(http://www.w3.0rg/TR/NOTE-CDFsubmit.html).
R. S. Hall, D. Heimbigner, A. van der Hoek, and A. L. Wolf,
“An architecture for Post-Development Configuration Man-
agement in a Wide-Area Network”. In Proc. of the 1997
Intl. Conf. on Distributed Computing Systems, pages 269—
278. IEEE Computing Society, May 1997.
R. S. Hall, D. Heimbigner, and A. L. Wolf. “Software De-
ployment Languages and Schema”. Technical Report CU-
SERL-203-97, University of Colorado Software Engineering
Research Laboratory, 18 Dec. 1997.
(http://www.cs.colorado.edu/serl/cm/Papers.html#Schema).
R. S. Hall, D. Heimbigner, and A. L. Wolf. “Requirements
for Software Deployment Languages and Schema”. In Proc.
of the 8th Intl. Symposium on System Configuration Manage-
ment (SCM-8), Brussels, July 1998.
Microsoft Corp, Redmond, WA. “Zero Administration Initia-
tive”. (http://www.microsoft.com/windows/innovation/).
A. van Hoff, H. Partovi, and T. Thai. “The Open Software
Description Format (OSD)”. Microsoft Corp. and Marimba,
Inc. (http://www.w3.0rg/TR/NOTE-OSD.html).

2]

3]

[4]

[7

(8]

—

Appendix A - OSD example

This example is taken directly from the OSD specifica-
tion for W3C [8].

<SOFTPKG NAME="com.foobar.www.Solitaire"

VERSION="1,0,0,0">

<TITLE>Solitaire</TITLE>

<ABSTRACT>Solitaire by FooBar Corporation</ABSTRACT>

<LICENSE HREF=
"http://www.foobar.com/solitaire/license.html"/>

<!--FooBar Solitaire is implemented in native code
for Win32, Java code for other platforms -->

<IMPLEMENTATION>
<0S VALUE="WinNT">
<OSVERSION VALUE="4,0,0,0"/></08>
<0S VALUE="Win95"/>
<PROCESSOR VALUE="x86"/>
<LANGUAGE VALUE="en"/>
<CODEBASE HREF=
“http://www.foobar.org/solitaire.cab"/>
</IMPLEMENTATION>

<IMPLEMENTATION>
<IMPLTYPE VALUE="Java"/>
<CODEBASE HREF=
*http://www.foobar.org/solitaire.jar"/>
<!-- The Java implementation needs the
DeckOfCards object -->
<DEPENDENCY>
<CODEBASE HREF=
vhttp://www.foobar.org/cards.osd"/>
</DEPENDENCY>
</IMPLEMENTATION>
</SOFTPKG>

183

Appendix B - MIF example

The MIF example tries to mimic the OSD example where
possible. MIF is verbose so many details have been left out
at the places marked by the ellipsis symbol. In the case of
attributes, most details have been omitted, such as identi-
fication number, description (where deemed unnecessary),
access rights, storage type, and value. In addition, other
attribute groups have been entirely omitted as being irrel-
evant. These include the software signature, equivalence,
verification, subcomponents, superceded components, in-
stallation log file, and support. }

START COMPONENT
Name = "ComponentID"
Class = “"DMTF|ComponentID]001"
START ATTRIBUTE
Name = "Manufacturer"
ID =1
Description = "Manufacturer of this component"
Access Read-Only
Storage = Common
Type = String(64)
Value = "FooBar Corporation"
END ATTRIBUTE
START ATTRIBUTE

Name = "Product"
ID = 2
Degcription = "Product name of this component"

Access Read-Only
Storage = Common
Type = String(64)
Value = "Solitaire"
END ATTRIBUTE
START ATTRIBUTE
Name = "Version"

value = “1.0"
END ATTRIBUTE
START ATTRIBUTE
Name = "Serial Number'

Value = "1234567890"
END ATTRIBUTE
START ATTRIBUTE

Name = “"Installation"
Description = "Automatically assigned date"
Value = " "

END ATTRIBUTE

START ATTRIBUTE
Name = "Verify"
Description = “"Level of verification”
Type = START ENUM

0 = "An error occurred; check status code"
1 = "This component does not exist"
2 = “The verify is not supported"
3 = "Reserved"
4 = "This component exists, but the"
vfunctionality is untested"
5 = vThis component exists, but the"
“functionality is unknown"
6 = "This component exists, and is not"
vfunctioning correctly"
7 = “This component exists, and is"
v"functioning correctly"
END ENUM
Value = 2
END ATTRIBUTE
END GROUP
BEGIN GROUP
Name = "Software Component Information"
Class = "DMTF|Software Component Information{002"
Description = "This group contains additional®

"identifying information"

184

START ATTRIBUTE
Name = "Target Operating System"

Type = START ENUM

0 = "Otherv

1 = "pos"

2 = "MACOS"

3 = Q82"

4 = “UNIX"

5 = "WINle"

6 = "WIN32"

7 = "OPENVMS"

8 = "NetWare"
END ENUM
Value = 6

END ATTRIBUTE
START ATTRIBUTE
Name = "Language Edition"

Value = "en"
END ATTRIBUTE
END GROUP
START GROUP

Name = "Software Location"
Class = "DMTF|Software Location|001"

Description = "This group identifies the various"

"locations where parts of the component"

*have been installed"
START ATTRIBUTE
Name = "Index"

Type = Integer
END ATTRIBUTE
START ATTRIBUTE

Name = "Type"

Type = START ENUM

0 = "Unknown"
1 = "Other"
2 = "Product base directory"
3 = "Product executables directory”
4 = "Product library directory"
5 = wproduct configuration directory"
6 = "Product include directory"
7 = “Product working directory"
8 = "Product log directory"
9 = v“sShared base directory"
10 = "Shared executables directory"
11 = "Shared library directory"
12 = "Shared include directory"
13 = “System base directory"
14 = "System executables directory"
15 = "System library directory"
16 = "System configuration directory"
17 = "System include directory"
18 = “System log directory"
END ENUM

END ATTRIBUTE
START ATTRIBUTE
Name = “Path"

END ATTRIBUTE

END GROUP
START TABLE
Name = “"Software Location"
Class = "DMTF|Software Location|001"

{1, 2, “C:\\SOLITAIRE" }
{ 2, 3, "C:\\SOLITAIRE\\BIN" }
{3, 4, "C:\\SOLITAIRE\\DLL"

END TABLE

START GROUP
Name = "Component Dependencies"
Class = "DMTF|Component Dependencies|001"
Description = "This group identifies dependencies

"component has on other components"

START ATTRIBUTE
Name = "Manufacturer"

this®

END ATTRIBUTE
START ATTRIBUTE
Name = "Product"

END ATTRIBUTE
START ATTRIBUTE
Name = "Minimum Version"

END ATTRIBUTE
START ATTRIBUTE
Name = "Maximum Version"

END ATTRIBUTE
START ATTRIBUTE

Name = "Type"
Type = START ENUM

0 "Exclude"

1 = "Required"

2 = "One of a set reguired"
END ENUM

END ATTRIBUTE
START ATTRIBUTE
Name = "Set Index"

END ATTRIBUTE

END GROUP
START TABLE
Name = "Componert Dependencies"
Class = "DMTF|Ccmponent Dependencies{001"
{ "Foobar Corporation", “Cards", "2.1“, "3.0", 1, 0}
END TABLE
START GROUP
Name = "Attribute Dependencies"
Class = "DMTF|Attribute Dependencies|001"
Description = "This group identifies dependencies on”

vattribute values"
START ATTRIBUTE
Name = "Class"

END ATTRIBUTE
START ATTRIBUTE
Name = "ID"
END ATTRIBUTE
START ATTRIBUTE
Name = “Minimum Value"

END ATTRIBUTE
START ATTRIBUTE
Name = "Maximum Value"

END ATTRIBUTE
START ATTRIBUTE

Name = "Type"
Type = START ENUM

0 = "Exclude"

1 = "Reqaired"

2 = “One of a set required"
END ENUM

END ATTRIBUTE
START ATTRIBUTE
Name = "Set Index"

END ATTRIBUTE

END GROUP
START TABLE
Name = "Attribute Dependencies"
Class = "DMTF|Atiribute Dependencies|001"
{ "DMTF|video|00.", 6, “VGA", "VGA", 2, 1}
{ "DMTF|Video|00.", 6, "SVGA", "SVGA", 2, 1}
END TABLE
BEGIN GROUP
Name = "File List"
Cclass = "DMTF|File List|001"
Description = “This group describes the files"

rircluded in the software product"

185

START ATTRIBUTE
Name = "Location"
Description = "Index into the location table"

END ATTRIBUTE
START ATTRIBUTE
Name = "Name"
END ATTRIBUTE
START ATTRIBUTE
Name = "Description"

END ATTRIBUTE
END GROUP
START TABLE
Name = "File List”
Class = "DMTF|File List|001"
{ 3, "solitaire.exe",
"Primary executable for this application" }
{ 3, "install.exe",
"Configuration executable for thig"
"application" }
{4, "solitaire.dll",
"Library routines for this application" 1}

{ 2, "readme.txt", "Readme notes for this"
vapplication" 1}
END TABLE
START GROQUP
Name = "Installation"
Class = "DMTF|Installation|[001"
Description = "This group contains information to"

"allow install, update, and deinstall"
“of this software component."
START ATTRIBUTE

Name = “Type"
Type = START ENUM

0 = "Other"

1 = "Install"

2 = "De-install”
END ENUM

END ATTRIBUTE
START ATTRIBUTE
Name = "Name"

END ATTRIBUTE
START ATTRIBUTE
Name = "Description"

END ATTRIBUTE
START ATTRIBUTE
Name = "Install size"

END ATTRIBUTE
START ATTRIBUTE
Name = "Command Line"

END ATTRIBUTE
START ATTRIBUTE

Name = "Location"

END ATTRIBUTE

END GROUP
START TABLE
Name = "Installation"
Class = "DMTF|Installation|001"
{ 1, "Deinstall®, "Uninstalls this product",
359.8, 'install.exe /d", 5 }
END TABLE

