
A Cooperative Approach to Support Software Deployment
Using the Software Dock

Richard S. Hall, Dennis Heimbigner, Alexander L. Wolf
Software Engineering Research Laboratory

University of Colorado
Boulder, Colorado 80309-0430 USA
[rickhall,dennis,alw] @cs.colorado.edu

ABSTRACT
Software deployment is an evolving collection of interre-
lated processes such as release, install, adapt, reconfigure,
update, activate, deactivate, remove, and retire. The con-
nectivity of large networks, such as the Internet, is affecting
how software deployment is performed. It is necessary to
introduce new software deployment technologies that lev-
erage this connectivity. The Software Dock framework
creates a distributed, agent-based deployment framework to
support the ongoing cooperation and negotiation among
software producers themselves and among software pro-
ducers and software consumers. This deployment frame-
work is enabled by the use of a standardized deployment
schema for describing software systems, called the Deploy-
able Software Description (DSD) format. The Software
Dock also employs agents to traverse between software
producers and consumers in order to perform software de-
ployment activities by interpreting the descriptions of soft-
ware systems. The Software Dock infrastructure allows
software producers to offer their customers high-level de-
ployment services that were previously not possible.

Keywords
Software deployment, Java, mobile agents, configuration
management

1 INTRODUCTION
The connectivity of large networks, such as the Internet, is
affecting how software deployment is being performed.
The simple notion of providing a complete installation pro-
cedure for a software system on a CD-ROM is giving way
to a more sophisticated notion of ongoing cooperation and
negotiation among software producers and consumers.
This connectivity and cooperation allows software produc-
ers to offer their customers high-level deployment services
that were previously not possible. In the past, only soft-
ware system installation was widely supported, but already
support for the update process is becoming common. Sup-

Permission to make digital or hard copies ol’all or part ofthis \svrk Ihl
pCr.Wnal or ckissroom USC is granted without fee provided that topics
are not made or distributed for profit or commercial advantage and that
cupies bear this notice and the fbil citation on the first page. To copy
otherwise, IO republish, to post on servers or to rcdistrihutc to lists.
requires prior spccitic permission and/or a tic.

ICSE ‘99 LOS Angeles CA
Copyright ACM 1999 I-581 13-074-0/99/05...$5.00

port for other software deployment processes, though, such
as release, adapt, activate, deactivate, remove., and retire
[see Section 21 is still virtually non-existent.

New software deployment technologies are necessary if
software producers are expected to accept more responsi-
bility for the long-term operation of their software systems.
In order to support software deployment, new deployment
technologies must:

l operate on ti variety of platforms and network envi-
ronments, ranging from single sites to the entire Inter-
net,

l provide a semantic model for describing a wide range
of software systems in order to facilitate some level of
software deployment process automation,

. provide a semantic model of target sites for deploy-
ment in order to describe the context in which deploy-
ment processes occur, and

. provide decentralized control for both software pro-
ducers and consumers.

The Software Dock research project addresses many of
these concerns. The Software Dock is a system of loosely
coupled, cooperating, distributed components. The Soft-
ware Dock supports software producers by providing the
release dock that acts as a repository of software system
releases. At the heart of the release dock is a standard se-
mantic schema for’describing the deployment requirements
of software systems. The field dock component of the
Software Dock supports the consumer by providing an in-
terface to the consumer’s resources, configuration, and de-
ployed software systems. The Software Dock empldys
agents that travel from release docks to field docks in order
to perform specific software deployment tasks while
docked at a field dock. The agents perform their tasks by
interpreting the semantic descriptions of both the software
systems and the target consumer site. A wide-area event
system connects release docks to field docks and enables
asynchronous, bi-directional connectivity.

The purpose of this paper is to discuss how the Software
Dock project supports software deployment processes.
This is accomplished by first introducing the processes that

174

comprise software deployment in Section 2. Section 3 pro-
vides a high-level introduction to the Software Dock, a
framework for software deployment, while Section 4 de-
scribes the Deployable Software Description (DSD) format,
a critical piece of the Software Dock project used to de-
scribe the deployment requirements of software systems.
Section 5 discusses specific deployment process support
through the use of agents. Section 6 discusses security as it
relates to the deployment and the Software Dock specifi-
cally, while Section 7 discusses related work. Lastly, cur-
rent status and future work are discussed in Sections 8 and
9, respectively, followed by the conclusion.

2 SOFTWARE DEPLOYMENT LIFE CYCLE
In the past, software deployment was largely defined as the
installation of a software system; a view of software de-
ployment that is simplistic and incomplete. Software de-
ployment is actually a collection of interrelated activities
that form the software deployment life cycle. This life cy-
cle, as defined by this research, is an evolving collection of
processes that include release, retire, install, activate, deac-
tivate, reconfigure, update, adapt, and remove.

The processes of the software deployment life cycle are
performed on either the software producer or consumer
side; the processes for each side are described below.

Producer-side Processes
The producer-side of the life cycle consists of two proc-
esses, release and retire. The release process is the bridge
between development and deployment. It encompasses all
of the activities needed to package, prepare, provide, and
advertise a system for deployment to consumer sites. The
release package that is created contains the physical arti-
facts that comprise a given software system and also a de-
scription of the deployment requirements for the software
system. As modifications or updates are made to the soft-
ware system, the software producer must repeat the release
process to create an updated release package.

When a software producer is no longer able or willing to
support a given software system, it must perform the retire
process. This process withdraws support for a software
system or a given configuration of a software system. The
retire process is distinct from the consumer-side remove
process; retiring a software system makes it unavailable for
future deployment, but it does not necessarily affect con-
sumer sites where the retired software system is currently
deployed. Consumers of the software system may continue
to use the software without knowing that it has been retired,
but the retire process should attempt to notify current users
that support for the software system is withdrawn.

Consumer-side Processes
The install process is the initial deployment activity per-
formed by a consumer. The install process must configure
and assemble all of the resources necessary to use a given
software system. The install process uses the package cre-
ated in the release process above. For a specific package,
the install process interprets the encoded knowledge and

then examines the target consumer site in order to deter-
mine how to properly configure the software system for the
specific site. Once installation is complete, the deployed
software system is ready for use and is ready for other de-
ployment activities.

After a software system is installed, the activate and deac-
tivate processes allow the consumer to actually use the
software system. The activate process is responsible for
making a deployed software system executable or usable.
For a simple tool, activation involves establishing some
form of command or click-able graphical icon for executing
the tool binary. In a client/server system, for example,
multiple components may need to execute in parallel. The
deactivate process is the inverse of the activate process. It
is responsible for shutting down any executing components
of an activated software system.

Throughout the lifetime a software system is installed at a
consumer site, it is not a static entity with respect to soft-
ware deployment. Instead, the reconfigure, update, and
adapt processes are responsible for changing and main-
taining the deployed software system configuration. These
processes may occur in any order and any number of times.

The update process modifies a previously installed software
system. Update deploys a new, previously unavailable
configuration of a software system. An update becomes
necessary when a software producer makes a change to the
description of a deployed software system. The changes to
the software system’s description may denote a new ver-
sion, a content update, or simply a description update.

The reconfigure process, like install, also modifies a previ-
ously installed software system, but its purpose is to select
a different configuration of a deployed software system
from its existing description.

The purpose of the adapt process is to maintain the consis-
tency of the currently selected configuration of a deployed
software system. The adapt process must monitor changes
at the consumer site and respond to those changes in order
to maintain consistency in the deployed software system.
Adaptation becomes necessary when a change is made to
the local consumer site that affects the deployed software
system. For example, when a required software system file
is deleted or corrupted, the adapt process determines the
affected file and replaces it.

Once a software system is no longer required at a consumer
site, the remove process is performed. The remove process
must undo all of the changes to the consumer site that were
caused by previous deployment activities for a given soft-
ware system. The remove process must pay special atten-
tion to shared resources such as data files and libraries in
order to prevent dangling references to a required resource.
As a result, the remove process must examine the current
state of the consumer site, its dependencies, and con-
straints, and then remove the software system in such a way
as to not violate these dependencies and constraints.

175

/I Release docks represent the producer and
provide an interface to software releases

*...
Agents provide deployment
process functionality

A wide-area event service
provide :s connectivity
betwee.. Y. VUUIU. O -.- n rwcuhl~Pm- md
consumers

Field docks represent the consumer and
provide an interface to the consumer site

Figure 1: Software Dock Architecture

3 SOFTWARE DOCK ARCHITECTURE
The Software Dock research project, originally described in
[9], addresses support for software deployment processes
by creating a framework that enables cooperation among
software producers themselves and between software pro-
ducers and software consumers. The Software Dock ar-
chitecture [see Figure 11 defines components that represent
these two main participants in the software deployment
problem space. The release dock represents the software
producer and the field dock represents the software con-
sumer. In addition to these components the Software Dock
employs agerzts to perform specific deployment process
functionality and a wide-area event system to provide con-
nectivity between the release docks and the field docks.

In the Software Dock architecture, the release dock is a
server residing within a software producing organization.
The purpose of the release dock is to serve as a release re-
pository for the software systems that the software producer
provides. The release dock provides a Web-based release
mechanism that is not wholly unlike the release mecha-
nisms that are currently in use; it provides a browser-
accessible means for software consumers to browse and
select software,for deployment.

The release dock, though, is more sophisticated than most
current release mechanisms. Within the release dock, each
software release is described using a standard deployment
schema; the details of standard schema description for
software systems are presented in Section 4. Each software
release is accompanied with generic agents that perform
software deployment processes by interpreting the descrip-
tion of the software release. The release dock provides a
programmatic interface for agents to access its services and
content. Finally, the release dock generates events as

changes are made to the software releases that it manages.
Agents associated with deployed software systems can sub-
scribe for these events to receive notifications about spe-
cific release-side occurrences, such as the release of an up-
date.

The field dock is a server residing at a software consumer
site. The purpose of the field dock is to serve as an inter-
face to the consumer site. This interface provides informa-
tion about the state of the consumer site’s resources and
configuration; this information provides the context into
which software systems from a release dock are deployed.
Agents that accompany software releases “dock” them-
selves at the target consumer site’s field dock. The inter-
face provided by the field dock is the only interface avail-
able to an agent at the underlying consumer site. This in-
terface includes capabilities to query and examine the re-
sources and configuration of the consumer site; examples
of each might include installed software systems and the
operating system configuration.

The release dock and the field dock are very similar com-
ponents. Each is a server where agents can ‘“dock” and
perform activities. Each manages a standardiz.ed, hierar-
chical registry of information that records the configuration
or the contents of its respective sites and creates a common
namespace within the framework. The registry model used
in each is that of nested collections of attribute-value pairs,
where the nested collections form a hierarchy. Any change
to a registry generates an event that agents may receive in
order to perform subsequent activities. The registry of the
release dock mostly provides a list of available software
releases, whereas the registry of the field dock performs the
valuable role of providing access to consumer-side infor-
mation.

176

Consumer-side information is critical in performing nearly
any software deployment process. In the past, software
deployment was complicated by the fact that consumer-side
information was not available in any standardized fashion.
The field dock registry addresses this issue by creating a
detailed, standardized, hierarchical schema for describing
the state of a particular consumer site. By standardizing the
information available within a consumer organization, the
field dock creates a common software deployment name-
space for accessing consumer-side properties, such as oper-
ating system and computing platform. This information,
when combined with .the description of a software system,
is used to perform specific software deployment processes.

Agents implement the actual software deployment process
functionality. When the installation of a software system is
requested on a given consumer site, initially only an agent
responsible for installing the specific software system and
the description of the specific software system are loaded
onto the consumer site from the originating release dock.
The installation agent docks at the local field dock and uses
the description of the software system and the consumer
site state information provided by the field dock to config-
ure the selected ‘software system. When the agent has con-
figured the software system for the specific target consumer
site, it requests from its release dock the precise set of arti-
facts that correspond to the software system configuration.

The installation agent may request other agents from its
release dock to come and dock at the local field dock.
These other agents are responsible for other deployment
activities such as update, adapt, reconfigure, and remove.
Each agent performs its associated process by interpreting
the information of the software system description and the
consumer site configuration.

The wide-area event service [2] in the Software Dock ar-
chitecture provides a means of connectivity between soft-
ware producers and consumers for “push’‘-style capabili-
ties. Agents that are docked at remote field docks can sub-
scribe for events from release docks and can then perform
actions in response to those events, such as performing an
update. Direct communication between agents and release
docks is provided by standard protocols over the Internet.
Both forms of connectivity combine to provide the software
producer and consumer the opportunity to cooperate in
their pursuit of software deployment process support.

4 DEPLOYABLE SOFTWARE DESCRIPTION
FORMAT

In order to automate or simplify software deployment proc-
esses it is necessary to have some form of deployment
knowledge about the software system being deployed. One
approach to this requirement is the use of a standardized
language or schema for describing a software system; this
is the approach adopted by the Software Dock research
project. In such a language or schema approach it is com-
mon to model software systems as collections of properties,
where semantic information is mapped into standardized

properties and values. This approach is also used in [4],
[61, [IO], [201, and [221.

Minimally five classes of semantic information have been
identified [7] that must be described by the software system
model. These classes of semantic information are:

Configuration - describes relationships inherent in the
software system, such as revisions and variants, and
describes resources provided by the software system,
such as deployment-related interfaces and services.

Assertions - describe constraints on consumer-side
properties that must be true otherwise the specific de-
ployment process fails, such as supported hardware
platforms or operating systems.

Dependencies - describe constraints on consumer-side
properties where a resolution is possible if the con-
straint is not true, such as installing dependent subsys-
tems or reconfiguring operating system parameters.

Artifacts - describe the actual physical artifacts that
comprise the software system.

Activities - describe any specialized activities that are
outside of the purview of standard software deploy-
ment processes.

The Software Dock project has defined the Deployable
Software Description (DSD) format to address these needs.
The DSD is a critical piece of the Software Dock research
project that enables the creation of generic deployment
process definitions.

DSD provides a standard schema for describing a software
system family. In this usage, a family is defined as all revi-
sions and variants of a specific software system. The soft-
ware system family was chosen as the unit of description,
rather than a single revision, variant, or some combination,
because it provides flexibility when specifying dependen-
cies, enables description reuse, and provides characteristics,
such as extending revision lifetime, that are necessary in
component-based development.

A DSD family description is broken into multiple elements
that address the five semantic classes of information de-
scribed above. The sections of a DSD family description
are identification, imported properties, system properties,
property composition, assertions, dependencies, artifacts,
interfaces, notifications, services, and activities. Some of
these sections map directly onto the five semantic classes
of information, others, such as system properties, property
composition, interfaces, and notifications, combine to map
onto the configuration class of semantic information.

A DSD family description is a simple, hierarchical schema
that is built around the notion of properties of the described
software system. For example, a typical property of a
software system is version number. By defining such a
property in a family description it is possible to organize
the other pieces of the family description, such as asser-
tions, dependencies, and artifacts, with respect to a given

177

version number. Other examples of software system prop-
erties are performance variants and optional capabilities.
Once the properties of a software system are defined then
the property composition section is used to describe the
relationships among properties. For example, one property
may exclude another property or it may require secondary
property selections. Therefore, composition rules describe
valid configurations for the described software system.

The remaining DSD family description sections are
guarded by arbitrary boolean property expressions that in-
dicate whether a specific schema element is applicable to a
specific configuration. The property expression guards are
expressions over software system properties, consumer site
properties, or both.

The following examples depict portions of a DSD descrip-
tion that describes a software system that has optional on-
line help documentation. To describe the optional online
help documentation, it is necessary to create a software
system property to represent the online documentation:

Property {
Name = "Online Help"
Type' = "Boolean"
Description = ‘Include online help."
. . . 1

The above property definition creates a boolean property of
the software system that is used for determining whether
the online help documentation is applicable to a given con-
figuration of the software system.

Also consider that the described software system only sup-
ports the SolarisrM and Window 9.STM operating systems.
To guarantee that these constraints are true an assertion is
created:

Assertion {
Condition = "(OS == ‘Solaris') 11

(OS == 'Win95')"
Description = "Test for supported

operating system."
. . . 1

This assertion tests the target consumer site’s operating
system properties by using the standard namespace that is
created by the field dock registry. In the above assertion
example, the variable OS is actually shorthand intro-
duced for brevity; the actual variable is the standard field
dock registry path expression of :

$/Local/Software/OperatingSystem/Name$:

The artifacts that comprise the online help documentation
must also be described:

Artifacts (
Guard = "(SOnline Help$ == true)"
Artifact {

Guard = ‘(OS == ‘Solaris'.)"
SourceName = "help.html"

Source = "/proj/doc"
DestinationName = "help.html"
Destination = "dot"
Mutable = false
Signature = "a4ca443b8902d3410ec832"
Type = "DOCUMENTATION"
. . . 1

Artifact {
Guard = ‘(OS == 'Win95')"
SourceName = "help.hlp"
Source = "/proj/doc"
DestinationName = "help.hlp"
Destination = ‘dot"
Mutable = false
Signature = "9283cd2378102fla3bl2ee"
Type = "DOCUMENTATION"
. . . 1 1

The artifacts are described by nesting them in an artifact
collection. The above artifact collection is guarded by a
property expression that tests the applicability of the arti-
fact collection with respect to a specific configuration; in
this case, the artifact collection is only applicable if the
“Online Help” property of the software system .is true. The
actual online help documentation artifacts are described
within the artifact collection, each of which is guarded by a
property expression that tests for a specific consumer site
operating system value. The endresult is that the proper
artifact is installed with respect to the target consumer site
and the selected configuration of the software system.

As a note, software system properties are arbitrary names;
they have no meaning within DSD. Therefore!, a property
such as “version” has no special significance in DSD as it
might in other configuration management disciplines. One
result of this approach is that properties can be used to or-
ganize a software system in a variety of ways. For some
examples, properties can be mapped to the traditional con-
figuration management view of versions, the components in
the software system architecture, or the features or capa-
bilities of the software system.

5 SOFTWARE DOCK PROCESSES
In the prototype Software Dock framework, agents define
the software deployment processes. In general, the other
components in the Software Dock architecture are passive
elements, such as data and interfaces. Agents, on the other
hand, are active since they perform the functionality of the
software deployment life cycle processes. The Software
Dock framework enables the creation of a collection of
generic agents that perform many of the standard software
deployment processes, such as install, update, adapt, recon-
figure, and remove. These generic agents, although useful
in many cases, may not be sufficient for every case and
therefore are also useful as base classes for the creation of
other, more specialized deployment agents.

All agents perform their deployment processes by encoding
some functionality that is then parameterized by the infor-
mation provided in the DSD specifications and the con-

178

sumer site descriptions. In this fashion, a single agent defi-
nition is used for any software system described using DSD
and at any consumer site that has a field dock. The re-
mainder of this section describes the generic deployment
process algorithm that all current deployment agents per-
form and then describes each specific deployment process
in more detail.

Generic Deployment Process Definition
As described in Section 4, DSD models a software system
based on properties and the proper configuration of those
properties. A result of this approach led to the discovery of
an abstract deployment process algorithm.

Most software deployment processes can be characterized
as the transformation of one software system configuration
to another based on the set of property values for a given
software system configuration. A valid set of software
system property values represents a particular valid con-
figuration of a software system. Given a new set of valid
property values, a deployment process simply transforms
its current configuration to the new configuration by per-
forming differential processing over the applicable schema
elements of the DSD specification. The applicable schema
elements for a software release are computable via the
guard conditions that are dispersed throughout the DSD
specification. Differential processing of the applicable
schema elements creates a new software system configura-
tion that corresponds to the desired software configuration.
For a common example, if the version of a software system
is changed from “1.0” to “1.1,” then all of the artifacts as-
sociated with version “1.0” are removed, the artifacts asso-
ciated with version “1.1” are added, and any common arti-
facts are left untouched.

The install, update, reconfigure, adapt, and remove soft-
ware deployment processes all follow this general, abstract
algorithm.

Specific Deployment Process Definitions
The software deployment processes vary from each other in
small, but important ways. (Each specific deployment proc-
ess is described below. There is an interesting, implicit
issue with respect to all of the deployment process imple-
mentations described below. AI1 of the agents manipulate
the DSD specification of a given software release in isola-
tion of the software system itself. This means that an agent
needs only the specification of a software release to per-
form a large portion of its tasks. As a result, an agent is
much more efficient, especially in the area of transfer time,
since by manipulating the schema description first, the
agent only requests exactly what it needs to finish its task.
This is possible since the release dock works in cooperation
with the agents to perform the deployment processes.

Install Process
The install agent deploys a new configuration of a software
release to a consumer site. The install agent differs from
the other software deployment process agents since it is not
associated with an existing software release configuration.

The install agent performs its
task by first retrieving the
current DSD specification for
the software family for which
it is responsible. The install
agent queries the local field
dock and the user to deter-
mine the configuration of the
software release to install
[see Figure 21. Once a con-
figuration is determined the
install agent only needs to
perform the actions associ-
ated with all of the applicable
schema elements for the se-
lected configuration, such as
testing assertions, resolving
dependencies, and retrieving
artifacts. Once the install
process is complete, the in-
stall agent is no longer
needed and therefore it re-

Figure 2:
Configuration Editor

moves itself. Multiple install requests are always handled
by separate install agents and therefore always ,install an-
other configuration of the associated software release. If a
software release is unable to have multiple installations at a
site, it is necessary to add an assertion to the DSD specifi-
cation that tests for this condition. Current1 y the install
process is always invoked either directly or indirectly by a
specific user request to install a software release; therefore
the install process is always “pull” oriented.

Update Process
The update agent deploys a new, previously unavailable
configuration of a deployed software release, thus elimi-
nating the previously deployed configuration. The newly
available software release configuration is provided in an
updated DSD specification for the software release. The
update agent must retrieve the new DSD specification from
its release dock in order to perform the update. The update
agent must account for the existing deployed software re-
lease by performing differential processing on the applica-
ble schema elements for the existing and updated software
release configurations. Differential processing requires the
undoing of sche&ma elements corresponding to the prior
configuration and performing the associafed actions of the
schema elements for the updated configuration. Any
schema elements that are shared among configurations are
left untouched. A specific update agent always handles the
update process for a specific deployed software release.
The update process. is either specifically directed by the
“push” of a new configuration, such as a new version, or it
may be undirected in the case of a “pull” update where a
new configuration is discovered or specifically selected by
the user. An update is not always the result of a change to
the currently selected configuration; a content-only update
is also possible. In such a scenario, the update does not
change the selected configuration of the software system,

179

only the content of the current configuration. This is typi-
cal in many software systems that use a “channel” or con-
tent delivery model. Finally, an update may not actually
update the deployed software release at all; an update may
simply provide a new, more accurate DSD specification for
the deployed software release.

Reconfigure Process
The reconfigure agent changes the current configuration of
a deployed software release, thus eliminating the previously
deployed configuration. The reconfigure agent differs from
the update agent because it does not retrieve a new DSD
specification from its release dock even if one exists; there-
fore the reconfiguration agent cannot perform an update.
The reconfigure agent only manipulates the existing DSD
specification of the deployed software release with which it
is associated. The reconfigure agent determines the new
software release configuration much like the install agent.
Once a new configuration is chosen from the existing DSD
specification, the reconfigure agent performs differential
processing on the applicable schema elements much like
the update agent. A specific reconfigure agent always han-
dles the reconfigure process for a specific deployed soft-
ware release. Currently the reconfigure agent operates in
“pull” mode.

Adapt Process
The adapt agent maintains the consistency of a currently
deployed software release configuration in the context of
the consumer site. The adapt agent does not change the
software release configuration at all, it enforces it. When
invoked, the adapt agent uses the existing DSD specifica-
tion for its associated software release to verify that the
deployed software release matches its description. It does
this by determining the applicable schema elements for the
deployed software release configuration and then testing
them to make sure that they are still valid. If any discrep-
ancies are discovered, the adapt agent simply performs the
default processing of the invalid schema elements in order
to correct the problem. A specific adapt agent always han-
dles the ,adapt process for a specific deployed software re-
lease. Currently the adapt agent operates in “pull” mode.
The adapt agent is easily extended to operate in “push”
mode where consumer-side events, such as file deletions,
automatically instigate the adapt process.

Remove Process
The remove agent is responsible for removing a deployed
configuration from a consumer site. The remove agent
must ensure that no constraints are violated by the removal
of the software system. For example, if other deployed
software systems depend on the software system that is
being removed, the remove must fail. A specific remove
agent always handles the remove process for a specific de-
ployed software release. One remove request may cause
multiple remove requests to other remove agents in the case
of dependent software releases. Currently the remove
agent operates in “pull” mode.

6 SECURITY
Security has an impact on the Software Dock research, but
has not been a primary research issue. Despite this fact,
this issue has not been summarily excluded in the solution
discussed thus far.

Mobile agents cause a large security concern because they
come from unknown sources. In order to address some of
the security concerns in the Software Dock, agents operate
in the Java Virtual Machine (JVM) sandbox. The field
dock is the only local interface that an agent has to perform
its tasks. To extend the interface provided to agents, the
field dock uses a capability approach. The ca.pability ap-
proach provided by the field dock allows access to certain
restricted operations, such as controlled access to the disk.
Currently, the JVM does not support a true capability ap-
proach, but this functionality is expected in the 2.0 release
of Java. Regardless, all current agents are implemented as
though this approach was in effect; thus there is a relatively
simple transition when support for the capability-based
security approach is released. In addition, thi.s approach
can be extended to adopt a mechanism by which agents can
become trusted. In such a scenario, trusted agents may be
provided with even more sensitive capabilities.

7 RELATED WORK
Software deployment intersects a number of related tech-
nologies; this section only covers the most important of
these. For more detailed information on related technolo-
gies refer to 131 and [8].

The DSD schema created for the Software Dock project is
not a unique attempt to create a standard schema for de-
scribing software systems. A handful of related technolo-
gies are also trying to address the same issue with similar
approaches. Traditional configuration management mod-
eling approaches, such as Adele [6] and PCL [22], have
influenced DSD, particularly in the area of configuration
selection. These traditional approaches, though, are more
general configuration modeling languages that do not ad-
dress software deployment. Nor do these approaches at-
tempt to create a standard schema for any specific task,
rather the modeling language is their primary contribution.

A recent, high-profile effort to create a standard software
deployment schema is called the Open Software Descrip-
tion (OSD) format [lo]. This effort is a,collaboration be-
tween Microsoft and Marimba to create a schema for de-
scribing software systems for “push” technologies. OSD is
immature and merely allows for the description of multiple
coarse-grain variants of a single revision of a software sys-
tem; dependent software systems may also be specified.
The descriptive information includes some identification
information and pointers to archives where the physical
artifacts are found. The resulting description is too sim-
plistic to perform any significant software deployment pro-
cess automation.

The Desktop Management Task Force (DMTF) has created
the Management Information Format (MIF) [4]. It is a

180

modeling language for describing various computing sys-
tem elements. DMTF formed a specific working group to
create a standard schema in MIF for describing software
systems [4]. An extension to the Software MIF was created
by Tivoli and is called the Application Management Speci-
fication (AMS) [20]. Since AMS is a superset of MIF, only
AMS is discussed here. AMS is more mature than OSD.
AMS describes a single revision of a single variant of a
software system in great detail. Software system composi-
tion, constraints, dependencies, identification, support, and
artifacts are some of the elements that AMS describes.
AMS is not intended, though, to automate all of the soft-
ware deployment processes. Instead, AMS describes a
semi-static configuration of a software system that is to be
installed and monitored at a consumer site; the notion of
manipulating internal software system properties like revi-
sions or variants is not directly supported. It is also as-
sumed that there is no cooperation between software pro-
ducers and software consumers; rather, there is a central-
ized “administration” authority that is responsible for
maintaining the state of deployed software systems.

The Defense Information Infrastructure Common Operat-
ing Environment (DII COE) [131 is a Department of De-
fense effort to restrict the set of components used to build
their software systems. The COE supports, among other
things, a standard means for packaging components for
delivery and installation. These packages are called seg-
ments [14], where each segment is a separate, installable
entity. The DII COE segment describes the constraints,
dependencies, and artifacts of a software system. High-
level software deployment process support is provided in
the form of scripts, though all deployment activities are not
directly supported. Like other approaches, the deployed
software system configurations are largely static entities
that do not change and cannot be manipulated. The support
provided is intended for a centralized administration
authority and there is no release-side support.

Other approaches, such as GNU Autoconf [16], try to re-
solve consumer site description by using scripts and heu-
ristics to directly examine the state of a site, but these
methods are not always accurate and they are not rich
enough to support deployment process automation. The
Microsoft Registry [111, is a hierarchical registry of con-
sumer site information for the Windows platform. The
schema used in this registry’is only partially standardized
and even the standardized portions are not sufficient to se-
mantically describe software systems for deployment.

The Redhat Package Manager (RPM) [I] is a tool for the
Linux user community that provides many software de-
ployment features. RPM packages contain the software
system to be deployed and a semantic description of the
software system; this description includes constraints, de-
pendencies, artifacts, and activities in the form of scripts.
The granularity of an RPM package is a single revision and
a single variant. As a result, only limited forms of configu-
ration selection are supported. RPM does not have a notion

of a “release-side” and therefore is only able to request and
manipulate complete packages. Also, RPM is intended for
single-site deployment and provides no support for multi-
site deployment or management.

A host of install utilities exist in the commercial world,
such as InstallShield [12]‘. These systems typically work
well for installation, but only address a handful of deploy-
ment processes, such as reconfigure and remove, in a lim-
ited form. Recent install utilities, such as netDeploy [19]
and PC-Install with Internet Extensions [23], are starting to
leverage the connectivity of the Internet. Some of these
utilities are addressing the update process as well. In gen-
eral, most of these solutions do not provide reasonable
software system description capabilities. The deployment
information is not declarative and is not rich enough for
software deployment process automation. 1

Another class of commercial and research utilities exist to
support artifact update; these systems include Castanet
[17], NSBD [IS], and rsync [21]. In most of these systems,
there is little if any support for other software deployment
processes. These solutions provide only a very simple
model for describing software systems, in most cases a
software system is merely considered to be a collection of
files.

8 CURRENT STATUS
A prototype of the Software Dock deployment framework
exists. The Software Dock prototype is implemented en-
tirely in Java and uses Voyager [18] from ObjectSpace as
an inter-process communication mechanism and a mobile
agent enabling technology. A related research project at
the University of Colorado, called SIENA [2], provides a
wide-area event.

An evolving definition of the DSD also exists. The current
definition of the DSD contains the main elements to sup-
port gross software deployment behavior.

The current implementation of the Software Dock infra-
structure includes elements for both the release-side and the
consumer-side. A release dock implementation exists to
house the various software system releases that a software
producer has available. The creation of release packages
for the release dock is supported by a schema editing tool.
This simple schema editor provides a way to create and edit
DSD descriptions of software systems and automates some
tasks, such as the entry of software artifacts into the DSD
description. The schema editor is also used to submit new
or updated software release specifications to the local re-
lease dock so that they can be made available for deploy-
ment. The submission of a release to the release dock
automatically generates a set of HTML pages for the new
release that consumers can browse and use to initiate in-
stallation.

The consumer-side the field dock describes various aspects
of the consumer site, such as platform, operating system,
memory, and resources. The field dock also provides a

181

Figure 3: Docking Station Support Tool

place for agents to “dock” and perform software deploy-
ment related tasks by providing an interface to the under-
lying consumer site. To further support the consumer-side,
a tool, called a docking station [see Figure 31, has been
created that provides an interface to the software systems
that have been deployed at the consumer site. The docking
station provides an interface to the deployment processes
that can be performed on the locally deployed software
systems. The docking station is used to request updates,
reconfigures, adapts, and removes.

A collection of generic agents exists to interpret the DSD
software system descriptions in order to perform specific
software deployment processes. These generic agents in-
clude install, reconfigure, update, adapt, and remove. Each
of these agents is fully parameterized by the DSD software
description. All agents generically perform the configura-
tion and selection process and then check assertions, re-
solve subsystem dependencies, and request and retrieve
physical artifacts. The end result is support for the release
and deployment of configurable content software systems.

The current implementation was used in a demonstration to
describe a Web-based software system called the Online
Learning Academy (OLLA) created by a division of Lock-
heed Martin. OLLA consists of 45 megabytes in over 1700
files. OLLA is comprised of two dependent subsystems
called Disco and Harvest. The software deployment proc-
esses of release, install, reconfigure, update, adapt, and
remove have all been initially demonstrated using the ge-
neric agents described in this paper along with the DSD
description ‘of all three software systems.

Experiments were also conducted to verify the feasibility of
the Software Dock. These experiments compared the
Software Dock prototype to an existing deployment solu-
tion for a specific software system. A DSD specification
for versions 1.1.6 and 1.1.7 of the Java Development Kit
(JDK) by Sun Microsystems was created in order to com-
pare the Software Dock deployment processes to the stan-
dard InstallShield self-extracting distribution archive for
the Microsoft Windows platform. Time to completion was
the dimension for comparison; Table 1 summarizes the
results of the experiments.

In these experiments the Software Dock prototype per-
formed better in most cases, even though it is dynamically
creating release packages for each operation. In two of the
experiments, reconfigure (remove) and update, the Install-

182

Shield process is not actually performing the equivalent
actions and therefore direct comparison is difficult.

9 FUTURE WORK
The current implementation of the Software Dock concen-
trates on the one-to-one aspects of the software pro-
ducer/consumer relationship. There is no inherent limita-
tion in the Software Dock framework for supporting other
aspects of the software producer/consumer relationship.
The most obvious scenario is that of the administrator role
at a consumer site.

In order to support an administrator role, a new collection
of “remote” agents will be created. These remote agents
will behave much like the current agents, except that they
will also be parameterized by consumer site names. With
such a capability, an administrator is able to specify that an
activity, such as instal1 or update, should occur on a spe-
cific site or a specific set of sites.

To further support the administrator role, ‘a new server,
called the interdock, will be introduced. An interdock
server contains a global view of the consumer organization,
such as site domains and global services. With the inter-
dock, administration tasks are simplified and more compli-
cated deployment scenarios are addressable, such as those
of distributed, coordinated software systems.

In addition, the DSD will continue to be extend.ed and ex-
panded. Support for administration policies will be en-
hanced. Arbitrary dependency specification, rather than
just subsystem dependencies, will also be researched.
.Lastly, better support for specialized deployment activities
will be further investigated.

10 CONCLUSIONS
Software deployment is not a single process, such as install,
but rather it is a collection of interrelated processes that are
performed after a software system has been developed and
made available to consumers. Support for software de-
ployment by software producers was neglected until re-
cently. Large network environments, such as the Internet,
offer connectivity that enables software producers to offer
high-level software deployment services to their customers,
services that were previously not possible. By combining
the connectivity of large networks with the deployment
technologies described in this paper, the Software Dock
creates a cooperative framework that supports software
deployment.

The Software Dock supports software deployment proc-
esses by introducing components that represent software

Table 1: Software Dock Comparison Experiments

producers and consumers, release docks and field docks,
respectively. The definition and use of a standard schema
for describing software systems is central to the Software
Dock framework, and it provides, in a declarative form, all
of the knowledge necessary to perform software deploy-
ment processes. Finally, agents are employed to embody
the actual functionality of the deployment processes. The
agents realize the deployment process functionality in a
generic fashion by interpreting the declarative schema de-
scription of the software system.

ACKNOWLEDGMENTS
This material is based upon work sponsored by the Air
Force Materiel Command, Rome Laboratory, and the De-
fense Advanced Research Projects Agency under Contract
Numbers F30602-94-C-0253 and F30602-98-2-0163. The
content of the information does not necessarily reflect the
position or the policy of the Government and no official
endorsement should be inferred.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

9.

E. C. Bailey. “Maximum RPM,” Red Hat Software,
Inc., ISBN: 1-888172-78-9, Feb. 1997.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. “De-
sign of a Scalable Event Notification Service: Interface
and Architecture,” Technical Report, Dept. of Com-
puter Science, University of Colorado, 1998.

A. Carzaniga, A. Fuggetta, R. S. Hall, A. van der
Hoek, D. Heimbigner, A. L. Wolf. “A Characterization
Framework for Software Deployment Technologies,”
Technical Report CU-CS-857-98, Dept. of Computer
Science, University of Colorado, April 1998.

Desktop Management Task Force, “Enabling your
product for manageability with MIF files,” Nov. 1994.

Desktop Management Task Force, “Software Standard
Groups Definition, Version 2.0,” Mar. 27, 1996.
http://www.dmtf.org/techlapps.html.

.I. Estublier and R. Casallas. “The Adele Configuration
Manager,” Configuration Management, Wiley, 1994,
pp. 99-134.

R. S. Hall, D. Heimbigner, and A. L. Wolf. “Require-
ments for Software Deployment Languages and
Schema,” Proc. of the 1998 Int’l Workshop on Soft-
ware Configuration Management, July 1998.

R. S. Hall, D. Heimbigner, and A. L. Wolf. “Evaluat-
ing Software Deployment Languages and Schema,”
Proc. of the 1998 Int’l Conf. on Software Maintenance,
IEEE Computing Society, Nov. 1998.

R. S. Hall, D. Heimbigner, A. van der Hoek, A. L.
Wolf. “An architecture for Post-Development Con-
figuration Management in a Wide-Area Network,”
Proc. of the 1997 bit’1 Conf. on Distributed Configur-
able Systems, IEEE Computing Society, May 1997,
pp. 269-278.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A. van Hoff, H. Partovi, T. Thai. “The Open Software
Description Format (OSD),” Microsoft Corp. and Ma-
rimba, Inc., .1997. http://www.w3.org/TR/NOTE-
OSD.html.

J. Honeycutt. “Using the Windows 95 Registry,” Que
Publishing, Indianapolis, IN, 1996.

InstallShield Corp. InstallShield, 1998.
http://www.installshield.com.

Joint Interoperability and Engineering Organization.
“Defense Information Infrastructure Common Operat-
ing Environment Baseline Specificiations,” Version
3.0, Defense Information Systems Agency, CM-400-
25-05, Oct. 31 1996.
http:Nspider.osfl.disa.mil/cm/baseline/b~se~line3/basel
in3 .pdf

Joint Interoperability and Engineering Organization.
“How to Segment Guide,” Version 4.0, Defense In-
formation Systems Agency, Dec. 30 1996.
http://spider.osfl.disa.mil/cm/how-to/howtoseg.pdf.

Lucent Technologies. Not So Bad Distribution
(NSBD), 1998. http://www.bell-
labs.com/project/nsbd/.

D. Mackenzie, R. McGrath, and N. Friedman. “Auto-
Conf: Generating Automatic Configuration Scripts,”
Free Software Foundation, Inc, April 1994.

Marimba, Inc. “Castanet Product Family,” 1998.
http://www.marimba.comldatasheets/castanet-3-O-
dshtml.

ObjectSpace, Inc. Voyager, 1998.
http://www.objectspace.com.

Open Software Associates. OpenWEB netDeploy,
1998. http:llwww.osa.com.

Tivoli Systems. “Applications Management Specifi-
cation,” Version 2.0, Nov; 5 1997.
http://www.tivoli,comlo~productslhtmllbody_ams~spe
c.html.

A. Tridgell and P. Mackerras. “The rsync algorithm,”
Technical Report TR-CS-96-05, June 1996.
http://cs.anu.edu.au/techreports/l996!index.html.

E. Tryggeseth, B. Gulla, R. Conradi. “Modeling Sys-
tems with Variability using the PROTEUS Configura-
tion Language,” Proceedings of the 1995 International
Symposium on System Configuration Management,
Springer, 1995, pp. 216-240.

Twenty Twenty Software. PC-Install with Internet
Extensions, 1998. http://www.twenty.com.

183

