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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Quantum computing represents a paradigm shift in how we approach computation, and I am 

deeply inspired by the potential it holds to revolutionize numerous fields. My interest in quantum 

computing is rooted in its ability to solve complex problems that are beyond the reach of classical 

systems. As traditional computing approaches the limits of Moore's Law, quantum computing 

offers a new frontier of possibilities that could drastically improve the efficiency of problem-

solving, particularly in areas such as cryptography, optimization, and machine learning. By 

exploring Grover's Algorithm, I aim to delve into this emerging technology and contribute to its 

advancement, particularly in solving the Boolean Satisfiability Problem (SAT), a foundational 

challenge in both computer science and mathematical logic. 

The SAT problem, being central to many computational tasks, offers an ideal testing ground 

for quantum algorithms. By comparing the performance of Grover's Algorithm with classical 

approaches to the SAT problem, I hope to showcase how quantum computing can significantly 

reduce computational complexity and time. My research seeks to optimize and implement these 

quantum circuits in Qiskit, a powerful tool that bridges the theoretical and practical aspects of 

quantum computing. I believe that such research is essential in understanding how we can make 

quantum computing scalable and accessible for solving real-world problems. Through this work, I 

hope to push the boundaries of current quantum research and inspire further experimentation in this 

field. 

Ultimately, my motivation lies in the belief that quantum computing will play a crucial role in 

shaping the future of technology and human progress. As quantum computing continues to evolve, 

I am confident that it will become an integral part of everyday life, solving problems in medicine, 

energy, finance, and more. Contributing to this field at such an early stage excites me, as it allows 

me to be part of a larger movement that is not only reshaping computing but also positioning 

humanity to tackle some of its greatest challenges. Through this thesis, I aim to play my part in 

demonstrating how quantum computing can be harnessed to benefit society and advance the 

collective understanding of this groundbreaking technology. 

3424301468
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 2 

1.2 Objective 

The objective of this thesis is to explore and implement Grover's Algorithm within quantum 

circuits to address and solve the Boolean Satisfiability Problem (SAT). The research aims to 

evaluate the effectiveness of Grover's Algorithm in improving the efficiency of SAT problem-

solving compared to classical methods, utilizing Qiskit for practical implementation. The study 

will involve designing and optimizing quantum circuits in Qiskit to enhance the performance 

and scalability of SAT problem solutions 

 

1.3 Scope of work 

1. Define the specific types of SAT problems (e.g., 3-SAT or higher) to be used in the study. 

2. Implement quantum circuits in Qiskit for solving the chosen SAT problems using Grover's 

Algorithm. 

3. Implement classical brute-force algorithms for solving the same SAT problems. 

4. Conduct multiple experiments to compare the performance of both methods. 

5. Analyze the results of the experiments to compare the performance of the quantum (Qiskit) 

and classical (brute-force) methods. 

6. Summarize the findings and discuss the implications for the use of quantum computing in 

solving SAT problems. 

 

1.4 Expected result 

The hypothesis of this thesis is that applying Grover's Algorithm to solve the Boolean 

Satisfiability Problem (SAT) using quantum circuits in Qiskit will result in a significant 

improvement in computational efficiency compared to classical algorithms. Specifically, it is 

anticipated that Grover's Algorithm will provide a quadratic speedup in finding satisfying 

assignments by leveraging quantum parallelism, which should be evident through reduced 

computational time and resources. This hypothesis is grounded in the theoretical advantage of 

Grover's Algorithm for unstructured search problems and the potential for optimized quantum 

circuit design in Qiskit to enhance this advantage. 

3424301468
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 3 

1.5 Research plan 

1. Conduct a literature review on the SAT problem and refine the research question focusing 

on 3-SAT and higher variations. 

2. Study both classical brute-force algorithms and Grover's Algorithm for solving SAT 

problems and familiarize with Qiskit for quantum simulations. 

3. Implement classical brute-force algorithms and Grover’s Algorithm in Qiskit, ensuring 

both methods are optimized for fair comparison. 

4. Run experiments on both approaches using different SAT problem complexities and 

collect performance data. 

5. Summarize findings, discussing implications for quantum computing and proposing 

directions for future research. 

6. Complete the thesis with a clear presentation of results and submit for review and feedback. 

 

1.6 Contribution 

The main contribution of this thesis is the practical evaluation of Grover’s Algorithm for 

solving Boolean satisfiability problems (3-SAT, 4-SAT, and 5-SAT) using both quantum 

simulations and real quantum hardware. While Grover’s Algorithm is theoretically known to 

offer a quadratic speedup over classical search algorithms, this study bridges the gap between 

theory and practical application by implementing and testing the algorithm using Qiskit on 

IBM’s quantum simulator and the IBM Sherbrooke quantum processor. The thesis presents a 

comparative analysis between quantum and classical brute-force approaches, highlighting how 

Grover's Algorithm performs under real-world hardware constraints. In addition to 

implementing the SAT-to-quantum oracle translation using Qiskit's PhaseOracle, the research 

explores how execution time and success rate vary with increasing problem complexity. The 

collected experimental data is used to visualize performance trends and to extrapolate the 

potential scalability of Grover’s Algorithm as quantum hardware evolves. This work 

contributes to the growing field of quantum computing by providing empirical evidence of both 

the potential and current limitations of quantum algorithms for NP-complete problems like 

SAT and offers a foundation for future research into more advanced or scalable quantum SAT 

solvers. 

3424301468



C
U
 
i
T
h
e
s
i
s
 
6
6
7
0
0
3
7
5
2
1
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
2
8
0
7
2
5
6
8
 
1
3
:
2
9
:
2
4
 
/
 
s
e
q
:
 
2
4

 4 

 

1.7 Justification for Excluding Heuristic Methods 

Although heuristic SAT solvers can be highly efficient in practice, they are not guaranteed to 

find a solution for every satisfiable formula and cannot prove unsatisfiability. This thesis 

focuses exclusively on complete methods, namely, brute-force search and Grover’s quantum 

algorithm—which are capable of solving all SAT instances, regardless of satisfiability. This 

choice aligns with the research objective of comparing exhaustive classical and quantum 

approaches under a consistent framework of completeness and worst-case guarantees. Heuristic 

methods are acknowledged for their practical relevance but are outside the scope of this study. 

 

CHAPTER 2 BACKGROUND KNOWLEDGE 

This section is divided into four parts. First, it will cover the Boolean Satisfiability Problem 

(SAT), providing a fundamental understanding of its complexity and relevance in computational 

theory. Second, it will discuss Classical Approaches to SAT, focusing on traditional methods such 

as brute-force and its limitations in solving larger problems. The third section will introduce 

Grover's Algorithm, explaining how quantum computing offers a potential speedup for solving 

SAT problems compared to classical methods. Finally, the fourth part will explore Quantum 

Computing and Qiskit, outlining the principles of quantum computation and the use of the Qiskit 

framework to simulate and test quantum algorithms in this study. 

 

2.1 Boolean Satisfiability Problem (SAT) 

The Satisfiability (SAT) problem is one of the most critical issues in computational theory, 

particularly in logic, constraint satisfaction, and various areas such as VLSI design and machine 

learning. SAT is the task of determining whether there exists an assignment of truth values to 

variables that makes a given Boolean formula satisfiable. This formula is typically expressed in 

Conjunctive Normal Form (CNF), where clauses are composed of literals (variables or their 

negations) connected by logical OR, and the overall formula is a conjunction (AND) of these 

clauses. 

SAT is central to a family of NP-complete problems, meaning that while a solution can be 

verified quickly, finding the solution itself may require non-deterministic polynomial time in the 

3424301468
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 5 

worst case. It has broad applications, including optimization, artificial intelligence, and circuit 

design. Traditional methods for solving SAT focus on treating it as a decision problem, employing 

algorithms such as resolution-based techniques. However, more recent approaches have 

transformed the SAT problem into an optimization problem, where the objective is to minimize the 

number of unsatisfied clauses. This allows the use of iterative optimization techniques, including 

local search methods, which have shown increased efficiency for specific classes of SAT formulas 

compared to classical approaches [1] 

 

2.2 Classical Approaches to SAT 

Classically, SAT problems are often solved using algorithms like the brute-force method, 

which explores every possible combination of truth values, making it highly inefficient for large 

problems. More sophisticated algorithms, like the Davis-Putnam-Logemann-Loveland (DPLL)  

algorithm [2] and its variations, attempt to reduce the search space by recursively simplifying the 

problem. However, even these optimized algorithms struggle with the computational demand as 

the problem size increases. SAT solvers are widely used, but they have limitations when dealing 

with large, complex instances due to the exponential time complexity associated with NP-complete 

problems. 

 

2.3 Grover’s Algorithm 

Grover’s Algorithm, introduced by Lov Grover in 1996 [3], is a quantum search algorithm 

that offers a quadratic speedup over classical search algorithms. It is designed to search through an 

unsorted database or solution space of size N in O(√N) time, making it a powerful tool for solving 

problems like SAT. While classical brute-force methods for SAT operate in exponential time 

(O(2^n) for n variables), Grover’s Algorithm can reduce the time complexity to O(√2^n), offering 

a significant performance advantage, particularly for large problem instances. Grover’s Algorithm 

is particularly suited for structured search problems and demonstrates the potential of quantum 

computing to solve NP-complete problems more efficiently than classical methods. 
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2.4 Quantum Computing and Qiskit 

Quantum computing leverages the principles of superposition and entanglement to perform 

operations on quantum bits (qubits), which can represent both 0 and 1 simultaneously. This allows 

quantum computers to process vast amounts of data in parallel, which classical computers cannot 

achieve [4]. Qiskit is an open-source quantum computing framework developed by IBM [5], which 

provides tools for designing, simulating, and running quantum circuits. Qiskit’s quantum simulators 

enable the testing of quantum algorithms, such as Grover’s, in a controlled environment before 

deploying them on actual quantum hardware. The framework is essential for experimenting with 

quantum algorithms and comparing their performance to classical methods. 

 

2.5 Quantum Entanglement  

Quantum entanglement, a foundational concept in quantum mechanics, refers to the non-

classical correlations between subsystems of a compound quantum system. Initially recognized by 

Einstein, Podolsky, and Rosen, it took over 70 years to be fully appreciated as a tangible resource 

with profound implications for quantum processes. Entanglement plays a central role in quantum 

cryptography, teleportation, and dense coding, offering potential for advances in quantum 

communication and computation. Despite its complexity and environmental fragility, entanglement 

is robust in theoretical frameworks, with tools like Bell inequalities and entanglement witnesses 

used for its detection and characterization. The irreversibility of entanglement manipulations, 

particularly in the context of bound entanglement, highlights its unique role in quantum 

communication and computation [6]. 

 

2.6 NP-Complete 

NP-Complete problems are a pivotal class within computational complexity theory [7]. A 

problem is in NP if, given a solution, it can be verified in polynomial time. Any problem in NP can 

be transformed into an NP-Complete problem in polynomial time. A problem P is NP-Complete if 

it is in NP and every problem Q in NP can be reduced to P using a polynomial-time transformation. 

This indicates that if any NP-Complete problem can be solved in polynomial time, all NP problems 

can also be solved in polynomial time, effectively establishing that P = NP [8]. 
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CHAPTER 3 LITERATURE REVIEW 

3.1 Satisfiability Problem (SAT) 

In the field of computational complexity, the Satisfiability Problem (SAT) plays a central 

role due to its wide applicability in logic, optimization, artificial intelligence, and computational 

theory. The work of Thomas J. Schaefer in "The Complexity of Satisfiability Problems" [9] made 

a significant contribution to this area by classifying a broad range of SAT problems and 

demonstrating that each problem in this infinite class is either polynomial-time solvable or NP-

complete, with no intermediate complexity classes. 

Schaefer’s paper specifically explores the distinction between SAT instances with clauses 

restricted to two literals, which are efficiently solvable in polynomial time, and SAT instances with 

three literals per clause, which are proven to be NP-complete. This establishes a foundational result: 

SAT problems with larger clause sizes are generally computationally harder and belong to the NP-

complete class, for which no efficient (polynomial-time) solution is known unless P=NP. Schaefer's 

work broadens this understanding by presenting a classification theorem that applies to an infinite 

family of SAT problems. The classification determines whether a given SAT problem is in the 

polynomial-time decidable class or NP-complete, depending on the specific structure and 

constraints of the propositional formulas. 

Additionally, Schaefer extends this analysis to quantified SAT problems, a more complex 

version involving quantifiers, and demonstrates that these problems are either solvable in 

polynomial time or require exponential space. The results from this paper serve as a framework for 

identifying new NP-complete problems, as well as polynomial-time problems, offering a deeper 

understanding of computational complexity in logic-based problem solving. Schaefer’s 

classification theorem has been a critical tool in the study of satisfiability problems and has inspired 

extensive research in both theoretical and practical aspects of computational complexity. 

 

3.2 The Significance of Quantum Computing 

The field of quantum computing has emerged as a revolutionary area of research, blending 

concepts from classical information theory, computer science, and quantum physics. In a paper, 

Quantum Computing [10], Andrew Steane highlights the pivotal role quantum computing plays in 
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reshaping our understanding of computation and the natural world, particularly by integrating the 

concept of quantum information into the computational domain. 

Steane begins by positioning quantum computing within the broader framework of 

information theory, tracing its roots back to mid-20th century developments in classical information 

theory and computer science. Classical theories of computation, such as Turing machines and 

Shannon’s information theory, provide the foundation for understanding quantum computing's 

departure from classical systems. The difference is most notably captured in the Einstein, Podolsky, 

and Rosen (EPR) experiment and the EPR-Bell correlations [11], which distinguish quantum from 

classical physics. Quantum entanglement, as Steane notes, is a core component in these 

divergences, enabling new forms of computation and information transfer. 

A central theme in Steane’s review is the quantum bit (qubit), which serves as the 

fundamental unit of quantum information. Unlike classical bits, which are binary and exist as 0 or 

1, qubits can exist in superpositions of states. This principle underlies the significant 

 

3.3 Exploring Grover's Algorithm 

In recent years, quantum computing has emerged as a transformative field with the 

potential to outperform classical algorithms in various applications, particularly in data processing 

and optimization. One notable quantum algorithm is Grover's algorithm, which offers a quadratic 

speedup for unstructured search problems compared to classical counterparts. Grover’s algorithm 

operates on a quantum superposition of states, allowing it to search through N items in 

approximately √N queries, a significant advantage over the O(N) time complexity required by 

classical search algorithms. 

The theoretical underpinnings of Grover’s algorithm demonstrate its applicability across 

various domains, including cryptography, database searching, and optimization problems. As the 

data landscape expands, with datasets reaching and surpassing petabytes, the demand for efficient 

algorithms like Grover’s is increasingly pressing. This need is particularly pronounced in areas such 

as machine learning and artificial intelligence, where rapid data processing is crucial. 

Recent studies have focused on implementing Grover’s algorithm on real quantum hardware, such 

as IBM's quantum computers. Mandviwalla et al. explore the practical application of Grover's 

algorithm through multiple implementations on IBM Q devices, providing empirical results that 
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reflect the capabilities and limitations of current quantum technology. Their research highlights the 

challenges of achieving theoretical accuracy in practical applications, where factors such as qubit 

coherence and error rates play critical roles [12]. 

 

3.4 Grover's Algorithm's Impact on SAT Problems 

The satisfiability problem, particularly in its NP-complete form, poses significant 

challenges in classical computing. Specifically, determining whether a given Boolean formula in 

conjunctive normal form (CNF) is satisfiable involves searching through an exponential number of 

potential variable assignments. Grover's algorithm can be employed to enhance the efficiency of 

this search process, offering a promising approach to tackle the SAT problem. 

Cheng and Tao (2024) investigate the application of Grover's algorithm specifically for 3-

SAT, a variant of SAT where each clause contains exactly three literals. They highlight the 

limitations imposed by current quantum technology, particularly the number of stable qubits 

available for practical implementations. The authors point out that the performance of Grover's 

algorithm is directly linked to the size of the oracle used and the number of repeated calls to it. This 

creates a constraint on the number of qubits that can be effectively employed without sacrificing 

performance [13]. 

 

3.5 Applications of Grover's Algorithm Beyond SAT Problems 

One notable application of Grover's algorithm is in database search and pattern matching. 

Tezuka et al. (2024) proposes a novel approach that implements Grover's algorithm for image 

pattern matching, demonstrating its potential to enhance data retrieval processes significantly. The 

authors utilize an approximate amplitude encoding method in a shallow quantum circuit, enabling 

efficient data loading and amplitude amplification. This adaptation addresses the challenges 

previously faced in realizing the original motivations behind Grover's algorithm in practical settings 

[14]. 

The algorithm operates by encoding the data in a quantum state that resembles the query, 

followed by an amplitude amplification process independent of the target data index. This approach 

not only highlights the algorithm's capability in traditional database search scenarios but also 
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showcases its application in more complex contexts such as image processing, where pattern 

recognition and matching are crucial. 

 

3.6 Heuristic Method Limitations 

The study by Costa et al. (2024), "Assessing Quantum and Classical Approaches to 

Combinatorial Optimization: Testing Quadratic Speed-ups for Heuristic Algorithms," explores the 

limitations of heuristic approaches such as WalkSAT and DOLL when applied to combinatorial 

problems like SAT. These heuristic algorithms are commonly used to find near-optimal or locally 

optimal solutions but lack guarantees of finding the global optimum or all possible solutions. For 

instance, WalkSAT uses a randomized search strategy that makes local variable flips to navigate 

the solution space. However, it can easily become trapped in local optima, making it ineffective in 

many cases. Because these methods generally explore only a limited portion of the search space, 

they risk missing valid solutions and may perform poorly on certain types of instances [15]. 

In contrast, Grover’s algorithm offers a more robust alternative by enabling a quantum-

enhanced, structured search through the entire solution space. With a high probability of success 

and the ability to guarantee the correct solution if repeated sufficiently, Grover’s approach differs 

fundamentally from heuristics. While heuristic methods provide approximations, Grover’s 

algorithm is designed for exact, exhaustive search, making direct comparisons between them 

methodologically unsound (Costa et al., 2024). 

Furthermore, heuristic algorithms are not ideal benchmarks when evaluating the 

performance of quantum algorithms like Grover’s against classical brute-force methods. Effective 

benchmarking requires consistency, reproducibility, and completeness—criteria heuristics do not 

reliably meet due to their instance-specific behavior, probabilistic nature, and lack of completeness 

guarantees. In contrast, brute-force search, though computationally expensive, is exhaustive and 

deterministic, providing a clear and unbiased baseline. Grover’s algorithm enhances this exhaustive 

process through quantum amplitude amplification, yielding a quadratic speedup over classical 

brute-force. Therefore, comparing quantum algorithms to heuristics can lead to misleading 

conclusions, as it blends algorithmic performance with heuristics-specific tuning and randomness, 

rather than isolating true quantum advantages. 
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3.7 Heuristic Approaches for SAT Solving 

While this thesis focuses on complete methods that guarantee solutions or proofs of 

unsatisfiability, heuristic algorithms have been widely studied and successfully applied to solve 

many SAT instances efficiently in practice. Heuristic solvers do not guarantee solving every 

instance but often provide significant speed advantages on large or structured problems. 

A recent notable example is the work by Cen et al. [16], which proposes FastFourierSAT, 

a novel heuristic SAT solver that leverages GPU-accelerated continuous local search techniques. 

By representing Boolean variables as continuous values and applying fast Fourier transform (FFT) 

operations to efficiently explore the solution space, FastFourierSAT achieves remarkable runtime 

improvements compared to traditional local search and complete solvers. 

The authors demonstrate that FastFourierSAT can solve large-scale SAT benchmarks, 

including industrial and randomly generated instances, with speedups up to two orders of 

magnitude on modern GPUs. Their experiments highlight that continuous optimization combined 

with hardware acceleration enables heuristic solvers to effectively handle SAT problems previously 

considered challenging. 

This evidence supports the position that heuristic methods constitute a valuable class of 

SAT solvers in practical scenarios, complementing the complete approaches studied in this thesis. 

 

3.8 Quantum Supremacy 

Arute et al. (2019) demonstrated quantum supremacy by utilizing a noisy quantum 

processor to solve a specific random circuit sampling task, outperforming classical methods. This 

achievement marked a significant milestone in quantum computing, illustrating that quantum 

systems, despite being imperfect and subject to noise, can still provide a computational advantage 

for certain problems. While the quantum processor used in this experiment was not error-corrected, 

the results emphasize the potential of quantum computing to surpass classical methods in specific 

contexts, even with current noisy hardware. The experiment highlights the importance of 
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continuing to explore the capabilities of quantum systems in their present noisy state, as it offers 

valuable insights into the future development of quantum computing [17]. 

 

3.9 Differences Between Boolean SAT-3, SAT-4, and SAT-5 and Critical Transition 

Boolean satisfiability problems, or SAT problems, are fundamental in computational 

complexity and involve determining if there exists an assignment of truth values that satisfies a 

given Boolean formula. The k-SAT problems, such as 3-SAT, 4-SAT, and 5-SAT, differ based on 

the number of literals in each clause. In 3-SAT, each clause contains exactly three literals, while in 

4-SAT and 5-SAT, clauses contain four and five literals respectively. All these problems are NP-

complete for k≥3, but increasing k tends to make individual clauses more complex and can 

influence the density and structure of the formula. A critical concept related to these problems is 

the phase transition, or critical transition, which refers to a sharp change in the satisfiability property 

of randomly generated SAT instances as the ratio of clauses to variables crosses a specific threshold. 

For 3-SAT, this critical ratio is approximately 4.26; below this value, most formulas are satisfiable, 

while above it, they become almost unsatisfiable. The location of this phase transition shifts for 4-

SAT and 5-SAT, generally moving to higher clause-to-variable ratios due to the increased clause 

length. This transition is important because problem hardness peaks near the critical point, making 

SAT instances hardest to solve around this region. Understanding these transitions has significant 

implications for designing algorithms and studying computational hardness. The pioneering work 

by Monasson et al. provides a detailed analysis of these phase transitions in SAT problems, linking 

computational complexity to statistical physics phenomena [18].   
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CHAPTER 4 EXPERIMENTAL METHOLOGY 

In this chapter, we outline the experimental methodology employed to evaluate the 

performance of Grover's algorithm on the satisfiability problems (3-SAT, 4-SAT, and 5-SAT). 

Utilizing Qiskit, we conduct experiments on both a quantum simulator and actual quantum 

hardware, when feasible. This allows us to compare the efficiency of Grover's algorithm against 

classical brute-force methods in solving these SAT problems. 

We will detail the selection of SAT instances, the implementation of Grover's algorithm, 

and the execution of classical algorithms. Performance metrics will be established to quantify the 

execution time and success rates of each approach. The results will be visualized through graphical 

representations, illustrating how the size of the SAT problem impacts computational speed. 

Additionally, we will discuss predictions regarding the scalability of quantum computing, 

particularly focusing on how an increase in the number of qubits might enhance performance 

relative to classical methods. This investigation aims to provide insights into the potential 

advantages of quantum computing in solving NP-complete problems, highlighting the future 

implications of advancements in quantum hardware. 

 

4.1 Overview of the Experimental Setup 

For the quantum simulations, we employed Qiskit, an open-source quantum computing 

framework, running on Google Colab with the Qiskit Aer Simulator as the backend. This 

environment allowed us to efficiently prototype and test Grover's algorithm across different SAT 

problem instances. The flexibility of Qiskit enables the creation of quantum circuits tailored to the 

specific requirements of each problem, facilitating quick iterations and optimizations. 

To evaluate the performance of Grover's algorithm on actual quantum hardware, we used 

IBM's quantum processor, specifically the IBM Quantum System One, codenamed "Sherbrooke." 

This platform provides access to real quantum devices, allowing us to compare results obtained 

from simulations with those executed on a physical quantum computer. The Sherbrooke device 

offers a limited number of qubits, which is crucial for the implementation of Grover's algorithm, 

particularly for larger SAT problems. 

For the classical brute-force approach, we implemented the SAT solving algorithm using 

Python in Google Colab. This setup enabled us to efficiently explore all possible combinations of 
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variable assignments to determine the satisfiability of each SAT instance. By running the classical 

algorithm alongside the quantum implementations, we aimed to draw direct comparisons between 

their performance metrics. 

The experiments were designed to collect data on execution time and success rates for each 

algorithm across varying problem sizes. This comprehensive approach enables us to analyze the 

impact of problem size on computational speed and to predict the advantages of quantum 

computing as the number of qubits increases. 

 

4.2 Description of the SAT Instances 

In this section, we describe the structure and generation of the Boolean Satisfiability Problem 

(SAT) instances used in our experiments. Specifically, we focus on the 3-SAT, 4-SAT, and 5-SAT 

problems, which vary in complexity based on the number of literals per clause. Each SAT instance 

consists of a Boolean formula expressed in Conjunctive Normal Form (CNF), where the formula is 

a conjunction (AND) of clauses, and each clause is a disjunction (OR) of literals. A literal is either 

a variable or its negation. 

 

4.2.1 3-SAT Problem 

The 3-SAT problem is a special case of the SAT problem where each clause contains 

exactly three literals. It is one of the most well-known NP-complete problems, widely used in 

computational complexity research. 

Example of a 3-SAT problem: 

 

 
Figure 1: 3-SAT problem 

 

In this example, the formula is satisfiable if there exists a truth assignment for the variables x1, x2, 

x3, x4, x5 that makes the entire formula true. The challenge is to find a satisfying assignment or to 

prove that no such assignment exists. 
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4.2.2 4-SAT Problem 

The 4-SAT problem extends 3-SAT by increasing the number of literals per clause to four. 

As the number of literals per clause increases, the complexity of finding a solution generally 

increases. 

Example of a 4-SAT problem: 

 

 
Figure 2: 4-SAT problem 

 

Like the 3-SAT problem, the task is to determine whether there is a truth assignment for x1, x2, x3, 

x4, x5 that satisfies all the clauses. 

 

4.2.3 5-SAT Problem 

The 5-SAT problem is a further extension where each clause contains five literals. This 

increases complexity even more, making it a more challenging problem to solve. 

Example of a 5-SAT problem: 

 

 
Figure 3: 5-SAT problem 

 

In this case, the problem is to determine whether a truth assignment for the variables x1, x2, x3, x4, 

x5, x6 can make the entire formula true. 

 

4.3 Implementation of Grover's Algorithm 

In this section, we outline the process used to implement Grover’s algorithm to solve the 

3-SAT, 4-SAT, and 5-SAT problems. Grover's algorithm is a quantum search algorithm that can 

be used to find solutions to satisfiability problems efficiently, offering quadratic speedup over 

classical search algorithms. The implementation is done using Qiskit, IBM's quantum computing 

framework, and is structured as follows. 
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4.3.1 Expressing SAT Problems 

To solve SAT problems using Grover’s algorithm, we first represent each SAT instance in 

a human-readable format known as the Boolean string format. This format expresses the SAT 

problem as a conjunction (AND) of disjunctions (OR), where each clause consists of literals 

represented as variables or their negations. 

 

4.3.2 Using Qiskit's PhaseOracle 

The next step is to translate the Boolean SAT formula into a quantum circuit using the PhaseOracle 

function provided by Qiskit. The PhaseOracle takes the SAT problem expressed in string format 

and generates a corresponding quantum oracle, which marks the solutions (satisfying assignments) 

of the SAT problem. 

 

4.3.3 Applying Grover's Operator 

Once the oracle is created, we apply Grover’s algorithm to search for a satisfying solution. 

After that, we prepare a register of qubits. Each qubit corresponds to one of the variables in the 

SAT problem. Finally, A Hadamard gate is applied to each qubit to create an equal superposition 

of all possible states. This allows the algorithm to explore all possible variable assignments in 

parallel. 

 

4.3.4 Transpiling the Circuit 

Before executing the quantum circuit, it needs to be optimized and compiled for the target 

quantum hardware. The transpiler in Qiskit is responsible for mapping the high-level circuit onto 

the hardware while minimizing gate errors and decoherence [19]. In our implementation, we set the 

optimization level to 3 to achieve the highest degree of optimization for both the simulator and the 

quantum hardware. 

The transpiler reduces the gate count and optimizes the circuit layout, which is crucial for 

achieving accurate results, especially on real quantum hardware with limited qubit coherence time. 
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4.4 Experimental Procedure 

This section outlines the procedure for conducting experiments to solve 3-SAT, 4-SAT, 

and 5-SAT problems using both quantum and classical methods. The goal is to compare the 

performance of Grover's algorithm implemented in Qiskit on a quantum simulator and actual 

quantum hardware against classical brute-force algorithms implemented in C. 

 

4.4.1 Quantum Experimentation with Qiskit 

The first set of experiments is conducted using the Qiskit framework to implement 

Grover’s algorithm on a quantum simulator as well as on IBM’s Sherbrooke quantum hardware. 

 

4.4.2 Classical Brute-Force Experimentation 

To compare the quantum results with classical methods, a brute-force algorithm is 

implemented in Python. The brute-force algorithm systematically checks every possible 

combination of variable assignments to find the solution that satisfies the SAT problem. 

 

4.4.3 Comparison 

After gathering the experimental results from both quantum and classical approaches, the 

data will be compared in terms of execution time and accuracy. 

 Quantum Execution Time - Grover’s algorithm was executed on both the Qiskit Aer 

simulator and IBM’s quantum hardware (IBM Sherbrooke). The execution time was 

plotted against the size of the SAT problem (measured by the number of variables and 

clauses). 

o Qiskit Aer Simulator: Execution times increased modestly with problem size. The 

simulator consistently returned correct results with high accuracy across 3-SAT, 

4-SAT, and 5-SAT problems. However, execution times were still significantly 

longer than classical brute force for small instances, largely due to the overhead 

of quantum circuit simulation. 

o IBM Sherbrooke Hardware: Real hardware execution times were orders of 

magnitude slower than both the simulator and classical methods, primarily due to 

queue delays, circuit compilation time, and limited coherence times. Accuracy 
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was also significantly lower, with success rates dropping as problem size 

increased. This is attributed to noise, gate errors, and decoherence inherent to 

current noisy intermediate-scale quantum (NISQ) devices. 

 

 
The chart compares the execution time of solving SAT problems using three approaches: classical 

brute-force (C implementation), Qiskit simulator, and IBM quantum hardware. The x-axis represents 

the size of the SAT problem (based on the number of variables and clauses), while the y-axis shows 

execution time in seconds. 

 

 Classical Execution Time - The brute-force SAT solver implemented in C consistently 

achieved the fastest execution times across all tested problem sizes. It also returned correct 

results 100% of the time, confirming its reliability for small SAT instances. Execution time 

scaled exponentially, as expected, with the size of the problem, but remained manageable 

for 3-SAT to 5-SAT cases. 

Accuracy and Success Rate 

o Classical Solver: Maintained 100% accuracy across all problem sizes. 

o Qiskit Simulator: Demonstrated near-perfect accuracy, with success rates 

exceeding 95% even as problem complexity increased. This indicates the 

simulator's reliability for modeling Grover’s algorithm in a noiseless environment. 

o Quantum Hardware: Showed success rates ranging from 60% to 80% for 3-SAT 

problems, which declined sharply for 4-SAT and 5-SAT instances. Error 

accumulation due to gate noise and limited coherence was a major limiting factor. 
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This chart illustrates the accuracy (or success rate) of solving SAT problems using the classical brute-

force method, Qiskit simulator, and IBM quantum hardware. The x-axis shows the SAT problem size, 

while the y-axis represents the percentage of correct solutions found. 

 

 Plotting the Results - The execution times for both quantum and classical approaches will 

be plotted on a graph to visualize the difference in scaling as the SAT problem size 

increases. The chart will help illustrate how quantum methods scale with increasing 

problem size in comparison to classical brute-force methods. 

 Extrapolation for Larger SAT Problems - Based on the collected data, we will predict how 

the performance would change for larger SAT problems (such as 6-SAT or beyond) if 

quantum computers with a higher number of qubits were available. This prediction will be 

made by extrapolating the trends observed from both the quantum and classical 

experiments. 

 

4.5 Data Collection and Visualization 

In this section, we outline the methods employed for data collection and visualization of the 

experimental results obtained from both the quantum and classical computations. 

 

4.5.1 Data Collection 

Data collection was performed systematically during the experiments, ensuring that key 

metrics were recorded for each test case. For the quantum implementations, we gathered data on 
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execution times from both the Qiskit simulator and the IBM Sherbrooke quantum processor. Key 

metrics included: 

 Execution Time - The total time taken for the algorithm to complete, measured in 

milliseconds 

 Success Rate - The percentage of successful runs that resulted in the correct output for the 

given SAT instance 

 

4.5.2 Data Visualization 

To facilitate the analysis of the data collected, we utilized graphical representations. 

Various types of visualizations will be employed, including: 

 Bar Charts - To compare the execution times of Grover's algorithm against the classical 

method for each problem size 

 Line Graphs - To illustrate trends in execution time as the size of the SAT problem 

increases, highlighting the potential benefits of quantum speedup 

These visualizations will aid in understanding how the performance of Grover's algorithm 

scales with problem size and the implication of increased qubit counts on computational 

efficiency. By analyzing these results, we aim to derive conclusions regarding the potential of 

quantum computing to outperform classical methods in solving NP-complete problems. 

 

4.6 Limitations and Challenges 

While the experiments conducted in this thesis offer valuable insights into the performance 

of Grover's algorithm for solving SAT problems, there are several key limitations and challenges 

that affect the scope and accuracy of the results: 

 

4.6.1 Limited Qubit Availability 

One of the most significant limitations of this study is the restricted number of qubits 

available on current quantum hardware. As Grover’s algorithm requires an increasing number of 

qubits to represent larger SAT problems (such as 6-SAT or higher), the available quantum 

computers, such as IBM Sherbrooke, do not have enough qubits to experiment with high-
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complexity SAT instances. This limitation prevents us from exploring higher-order k-SAT 

problems and fully testing the scalability of Grover’s algorithm on such problems. 

 

4.6.2 Quantum Hardware Constraints 

Quantum computers available to the public, such as those provided by IBM, often have 

limited access times. The restricted usage time for the quantum hardware means that only a limited 

number of SAT problem instances could be run and tested, making it difficult to conduct large-

scale experiments or repeat experiments extensively to improve accuracy. Additionally, the current 

error rates in quantum hardware can lead to less reliable results, further contributing to the 

challenges of performing high-precision experiments. 

 

4.6.3 Inaccuracy and Noise in Quantum Results 

Due to noise and decoherence in quantum systems, the results of the quantum experiments 

may not always be accurate or consistent with theoretical expectations [20]. While Grover’s 

algorithm is designed to provide quadratic speedup, this advantage can be diminished on real 

quantum hardware by issues like gate errors and readout errors. As a result, the outcomes presented 

in this thesis are more indicative of the potential future performance of quantum computers rather 

than an exact measure of their current capabilities. 

 

4.6.4 Limited Problem Scope 

The study focuses on 3-SAT, 4-SAT, and 5-SAT problems, which are relatively small 

instances due to the limitations of both classical and quantum computing resources. As a result, the 

experimental data may not fully represent how Grover’s algorithm would perform on larger, real-

world SAT problems. While the results provide insight into how increasing problem size affects 

execution time, the conclusions drawn here are more predictive and hypothetical for future 

experiments with more powerful quantum hardware. 

 

4.6.5 Focus on Predictive Data 

Given the limitations mentioned above, this thesis emphasizes the collection of data to 

make predictions about the future of quantum computing rather than delivering concrete, definitive 
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results. The experiments conducted serve as a preliminary foundation for future research. The 

predictions made in this thesis are based on extrapolations of the data collected from small-scale 

experiments, and more comprehensive studies are required once quantum computers with more 

qubits and greater stability become available. 

 

4.6.6 Limitation of Heuristic Methods in Grover vs. Brute Force Benchmark 

Heuristic methods, while often effective for classical SAT solving by exploiting problem-

specific structures or patterns, are not directly comparable to Grover’s algorithm in this benchmark 

due to fundamental differences in approach and guarantees. Grover’s algorithm provides a 

guaranteed quadratic speedup for unstructured search problems, operating under the assumption 

that no exploitable structure is known beforehand. In contrast, heuristic classical methods rely 

heavily on domain-specific optimizations that can lead to variable performance and may not scale 

predictably across all problem instances. This makes it challenging to establish a fair and consistent 

baseline for comparison. Moreover, heuristics can sometimes fail to guarantee correctness or 

completeness, whereas Grover’s algorithm systematically amplifies the probability of the correct 

solution. As a result, benchmarking Grover’s algorithm against heuristic methods risks conflating 

fundamentally different problem-solving paradigms, limiting the clarity of performance insights 

[21]. 

 

4.6.7 Factors Affecting Accuracy and Speed of Grover’s Algorithm in SAT Solving 

The decrease in accuracy observed on IBM quantum hardware is primarily due to quantum 

noise, which includes factors like decoherence, gate errors, and measurement inaccuracies. As SAT 

problem sizes increase, the quantum circuits used for Grover’s algorithm become deeper and more 

complex, making them more susceptible to these noise sources. This leads to a reduced success rate 

in finding the correct solution, especially when compared to the idealized performance seen in 

simulations. 

While there are techniques available to address these issues such as zero-noise 

extrapolation or measurement error correction and quantum error correction—these methods 

introduce significant overhead. They often require additional circuit executions, increased qubit 

3424301468



C
U
 
i
T
h
e
s
i
s
 
6
6
7
0
0
3
7
5
2
1
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
2
8
0
7
2
5
6
8
 
1
3
:
2
9
:
2
4
 
/
 
s
e
q
:
 
2
4

 23 

resources, or complex calibration steps. Given the limited qubit count and short coherence times of 

current quantum devices, especially those used in this experiment, these techniques are not practical 

or scalable for the SAT problem sizes tested. 

Moreover, incorporating such methods would complicate the experimental setup and make 

it difficult to fairly compare quantum and classical approaches under similar conditions. Therefore, 

to maintain a clear and unbiased evaluation, the experiment used standard, uncorrected 

implementations of Grover’s algorithm, highlighting the real-world limitations of current quantum 

hardware. [3]. 
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CHAPTER 5 EXPERIMENTAL RESULTS 

In this chapter, we present the results of our experiments comparing classical and quantum 

algorithms for solving the k-SAT problem. The focus will be on the data collected from these 

experiments, which provide insights into the performance of each approach. For detailed data and 

analysis, please refer to the Appendices. 

 

5.1 Disclaimer 

It is important to note the following disclaimers regarding the accuracy of the data 

collected. 

 

5.1.1 Limited Number of Problems 

The experiments were conducted over a short period, resulting in a limited number of 

problem instances for testing. 

 

5.1.2 Fixed Shots in Quantum Algorithm 

For the quantum algorithm, we used a fixed number of shots (1024) with a custom 

parameter setup that may not be optimized. 

 

5.1.3 Execution Time Accuracy 

The execution times reported for the real quantum hardware may not be entirely accurate, 

as we utilized time data from the built-in metrics function, which displays times in seconds without 

floating-point precision 

 

5.1.4 Fixed Optimization Levels 

A fixed optimization level (3) was used for both the simulator and actual hardware, which 

may affect the performance results. 

 

5.2 Conclusion 

This study sets out to compare the performance of Grover’s algorithm, implemented via 

Qiskit on both a quantum simulator and real IBM quantum hardware, against a classical brute-force 
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SAT solver written in C. The primary objective was to evaluate execution time, accuracy, and 

scalability across different computational platforms for solving SAT problems ranging from 3-SAT 

to 5-SAT. The experimental results provide valuable insight into the current state of quantum 

computing and its practical implications for combinatorial problem-solving. 

 

The most immediate finding from this experiment is the clear performance advantage of 

classical methods. The brute-force solver consistently delivered the fastest execution times and 

perfect accuracy, even as the SAT problem size increased. This is unsurprising, given that classical 

processors are highly optimized for such deterministic tasks, and modern CPUs can efficiently 

explore small search spaces. For 3-SAT to 5-SAT problems, the classical method remains the most 

viable approach in terms of both speed and correctness. 

 

In contrast, Grover’s algorithm, though theoretically offering a quadratic speedup, revealed 

several limitations in practical implementation. On the Qiskit simulator, the algorithm achieved 

near-perfect accuracy, closely matching theoretical expectations. However, the execution time on 

the simulator was significantly slower than the classical method, primarily due to the overhead of 

simulating quantum gates and circuits on classical hardware. Nonetheless, the simulator provides a 

reliable environment for testing quantum algorithms in ideal conditions and serves as an essential 

tool for prototyping and theoretical exploration. 

 

While noise and decoherence remain significant obstacles in practical implementations of 

Grover’s algorithm, recent research suggests that error mitigation techniques such as optimized 

iteration counts, and noise-aware control methods can improve its resilience on noisy intermediate-

scale quantum (NISQ) devices. These approaches help maintain the algorithm’s advantages even 

when hardware noise is present, offering promising pathways to enhance performance as quantum 

hardware continues to evolve [22]. Nevertheless, more robust quantum error correction and 

improved hardware stability are crucial for realizing Grover’s full potential in solving large-scale 

SAT problems. 
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If the coherence time of qubits is significantly increased, quantum circuits can execute 

deeper algorithms with reduced error accumulation, directly enhancing the performance of 

Grover’s algorithm. Longer coherence times allow more Grover iterations to be performed without 

decoherence disrupting the computation, thereby improving both the success probability and 

accuracy of solutions. This advancement would enable quantum processors to handle larger SAT 

instances more reliably, bringing theoretical speedups closer to practical application. As Preskill 

(2018) emphasizes, extending coherence times is a crucial step toward transitioning from noisy 

intermediate-scale quantum (NISQ) devices to fault-tolerant quantum computing capable of solving 

real-world problems [23]. 

 

Given the limitations mentioned above, this paper emphasizes the collection of data to 

make predictions about the future of quantum computing rather than delivering concrete, definitive 

results. The experiments conducted serve as a preliminary foundation for future research. The 

predictions made in this paper are based on extrapolations of the data collected from small-scale 

experiments, and more comprehensive studies are required once quantum computers with more 

qubits and greater stability become available. 
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APPENDIX A: Experiment Data on k-SAT Problem Solving 

 

The following tables present the data recorded during experiments on k-SAT problem-

solving using quantum and classical methods. The methods compared include the Qiskit simulator, 

real quantum hardware, and a classical brute-force approach. Please note that the accuracy of the 

classical brute-force method is consistently 100% due to its exhaustive search process, while the 

success rate for quantum methods may vary based on hardware and computational parameters. 

 

Problem ID Type Expression 

01 3-SAT (a | ~b | c) & (b | ~c | ~d) & 

(~a | c | d) 

02 3-SAT (a | ~b | c) & (b | c | ~d) & (~a 

| ~c | d) 

03 3-SAT (a | ~b | c) & (b | ~c | d) & (~a 

| ~c | d) 

04 3-SAT (a | ~b | c) & (b | d | ~c) & (~a 

| ~d | c) 

05 3-SAT (a | b | ~c) & (d | ~a | c) & (~b 

| ~c | d) 

06 4-SAT (a | ~b | c | ~d) & (e | ~a | b | 

~c) & (a | ~b | d | e) & (~a | c | 

~ d | b) & (a | ~b | c | ~e) & (a 

| ~b | ~d | ~e) & (b | c | ~e | d) 

07 4-SAT (a | ~b | c | ~d) & (~e | ~a | b | 

~c) & (a | ~b | d | e) & (~a | c | 

~ d | b) & (a | ~b | c | ~e) & 

(~a | ~b | ~d | ~e) & (b | c | ~e 

| d) 

08 4-SAT (a | ~b | c | d) & (~e | ~a | b | 

~c) & (a | ~b | d | e) & (a | ~c | 
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~ d | b) & (a | ~b | c | ~e) & 

(~a | ~b | ~d | ~e) & (b | c | ~e 

| d) 

09 4-SAT  (a | ~b | c | d) & (e | ~a | b | c) 

& (a | ~b | d | e) & (a | ~c | ~ d 

| b) & (a | ~b | c | ~e) & (a | ~b 

| ~d | ~e) & (b | c | ~e | d) 

10 4-SAT (a | ~b | c | d) & (~e | ~a | b | 

c) & (a | ~b | d | e) & (a | ~c | 

~ d | b) & (a | ~b | c | ~e) & (a 

| ~b | d | ~e) & (b | c | ~e | d) 

11 5-SAT (a | ~b | c | d | ~e) & (f | ~a | b 

| ~c | e) & (a | ~c | d | ~f | b) & 

(a | ~b | ~c | e | f) & (~b | c | d 

| ~e | ~f) & (b | c | ~e | ~f | ~a) 

& (~b | ~c | d | e | f) & (~a | b | 

~d | e | ~f) & (~a | ~b | ~c | f) 

& (a | b | ~e | f) 

12 5-SAT (~a | ~b | c | d | e) & (~f | ~a | 

b | ~c | e) & (a | ~c | d | ~f | b) 

& (a | ~b | ~c | e | f) & (~b | c | 

d | ~e | ~f) & (b | c | ~e | ~f | 

~a) & (~b | ~c | d | e | f) & (~a 

| b | ~d | e | ~f) & (~a | ~b | ~c 

| f) & (a | ~b | ~e | f) 

13 5-SAT (a | b | c | d | e) & (~f | ~a | b | 

~c | e) & (a | c | d | ~f | b) & (a 

| ~b | ~c | e | f) & (~b | c | d | 

~e | ~f) & (b | c | ~e | ~f | ~a) 

& (~b | ~c | d | e | f) & (~a | b | 
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~d | e | ~f) & (~a | ~b | ~c | f) 

& (a | ~b | ~e | f) 

14 5-SAT (~a | b | c | d | e) & (f | ~a | b | 

~c | e) & (a | c | d | f | ~b) & (a 

| b | c | ~e | ~f) & (~b | c | d | 

~e | ~f) & (b | c | ~e | ~f | ~a) 

& (~b | ~c | d | e | f) & (~a | b | 

~d | e | ~f) & (~a | ~b | ~c | f) 

& (a | b | ~e | ~f) 

15 5-SAT (a | ~b | c | ~d | e) & (f | a | ~b 

| c | ~e) & (a | ~c | d | f | b) & 

(~a | b | c | e | ~f) & (~b | c | d 

| ~e | ~f) & (b | c | ~e | ~f | ~a) 

& (~b | ~c | d | e | f) & (~a | b | 

~d | e | ~f) & (a | b | ~c | f) & 

(~a | b | ~e | f) 

 

Proble

m ID 

Method Run 

Time(s) 

Quantu

m Depth 

Qubit 

Usag

e 

Accurac

y 

Result Date(Y

-m-d) 

01 Classical Brute 

Force 

0.000523 - - 100.00 

% 

See 

Appendi

x B, 

Figure 

B1 

2024-

11-03 

01 Qiskit 

Simulator 

0.00206415

4 

28 4 98.34 % See 

Appendi

x B, 

Figure 

B2 

2024-

11-03 

3424301468



C
U
 
i
T
h
e
s
i
s
 
6
6
7
0
0
3
7
5
2
1
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
2
8
0
7
2
5
6
8
 
1
3
:
2
9
:
2
4
 
/
 
s
e
q
:
 
2
4

 33 

01 ibm_sherbrook

e 

2 513 4 60.94 % See 

Appendi

x B, 

Figure 

B3 

2024-

11-25 

02 Classical Brute 

Force 

0.000694 - - 100.00 

% 

See 

Appendi

x B, 

Figure 

B4 

2024-

11-03 

02 Qiskit 

Simulator 

0.00358089

1 

34 4 97.36 % See 

Appendi

x B, 

Figure 

B5 

2024-

11-03 

02 ibm_sherbrook

e 

2 533 4 60.35 % See 

Appendi

x B, 

Figure 

B6 

2024-

11-25 

03 Classical Brute 

Force 

0.001352 - - 100.00 

% 

See 

Appendi

x B, 

Figure 

B7 

2024-

11-03 

03 Qiskit 

Simulator 

0.00226511

6 

58 4 97.66 % See 

Appendi

x B, 

Figure 

B8 

2024-

11-03 
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03 ibm_sherbrook

e 

2 668 4 66.60 % See 

Appendi

x B, 

Figure 

B9 

2024-

11-25 

04 Classical Brute 

Force 

0.000539 - - 100.00 

% 

See 

Appendi

x B, 

Figure 

B10 

 

04 Qiskit 

Simulator 

0.00234958

2 

28 4 96.88 % See 

Appendi

x B, 

Figure 

B11 

2024-

11-11 

04 ibm_sherbrook

e 

2 490 4 61.04 % See 

Appendi

x B, 

Figure 

B12 

2024-

11-25 

05 Classical Brute 

Force 

0.000894 - - 100.00 

% 

See 

Appendi

x B, 

Figure 

B13 

2024-

11-19 

05 Qiskit 

Simulator 

0.01998279

6 

30 4 97.66 % See 

Appendi

x B, 

Figure 

B14 

2024-

11-19 
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05 ibm_sherbrook

e 
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APPENDIX B: Experiment Results 

 

This appendix presents a detailed screenshot of the results obtained from the experiments 

conducted on the k-SAT problem. 

 

 
Figure B1 

 

 

Figure B2 
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Figure B4 
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Figure B7 
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Figure B10 

 

 

Figure B11 

 

 

Figure B12 

 

3424301468



C
U
 
i
T
h
e
s
i
s
 
6
6
7
0
0
3
7
5
2
1
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
2
8
0
7
2
5
6
8
 
1
3
:
2
9
:
2
4
 
/
 
s
e
q
:
 
2
4

 44 

 

Figure B13 

 

 

Figure B14 

 

 

Figure B15 

3424301468



C
U
 
i
T
h
e
s
i
s
 
6
6
7
0
0
3
7
5
2
1
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
2
8
0
7
2
5
6
8
 
1
3
:
2
9
:
2
4
 
/
 
s
e
q
:
 
2
4

 45 

 

Figure B16 
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Figure B19 
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Figure B22 
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Figure B25 
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Figure B28 
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Figure B31 
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Figure B33 
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Figure B35 
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Figure B37 
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Figure B39 
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Figure B42 
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Figure B45
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