
การทําแคชใหเหมาะที่สุดสําหรับแฟลชทรานสเลชันเลเยอร

นายพีระ ตนธีรวงศ

วิทยานิพนธน้ีเป็นสวนหน่ึงของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวิทยาลัย
ปีการศึกษา 2557

ลิขสิทธิข์องจุฬาลงกรณมหาวิทยาลัย

OPTIMIZING CACHE FOR FLASH TRANSLATION LAYER

Mr.Peera Thontirawong

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2014

Copyright of Chulalongkorn University

Thesis Title OPTIMIZING CACHE FOR FLASH TRANSLATION LAYER

By Mr.Peera Thontirawong

Field of Study Computer Engineering

Thesis Advisor Professor Prabhas Chongstitvatana, Ph.D.

Thesis Co-advisor Assistant Professor Mongkol Ekpanyapong, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctoral Degree

. Dean of the Faculty of Engineering

(Professor Bundhit Eua-arporn, Ph.D.)

THESIS COMMITTEE

. Chairman

(Associate Professor Somchai Prasitjutrakul, Ph.D.)

. Thesis Advisor

(Professor Prabhas Chongstitvatana, Ph.D.)

. Thesis Co-advisor

(Assistant Professor Mongkol Ekpanyapong, Ph.D.)

. Examiner

(Assistant Professor Setha Pan-ngum, Ph.D.)

. Examiner

(Assistant Professor Thanarat Chalidabhongse, Ph.D.)

. External Examiner

(Assistant Professor Kemathat Vibhatavanij, Ph.D.)

iv

พีระ ตนธีรวงศ: การทําแคชใหเหมาะที่สุดสําหรับแฟลชทรานสเลชันเลเยอร. (OPTI-

MIZING CACHE FOR FLASH TRANSLATION LAYER) อ.ที่ปรึกษาวิทยานิพนธ
หลัก : ศ. ดร. ประภาส จงสถิตยวัฒนา, อ.ที่ปรึกษาวิทยานิพนธรวม : ผศ. ดร. มงคล
เอกปัญญาพงศ, 110 หน า.

ภาควิชาวิศวกรรมคอมพิวเตอร . . ลายมือชื่อนิสิต .
สาขาวิชาวิศวกรรมคอมพิวเตอร . . ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธหลัก
ปีการศึกษา2557 ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธรวม

v

5171821021: MAJOR COMPUTER ENGINEERING

KEYWORDS: FLASH MEMORY / FLASH TRANSLATION LAYER / ASYMMETRI-

CAL ACCESS TIME / CACHE MEMORY / ADDRESS TRANSLATION / GARBAGE

COLLECTION / CACHE REPLACEMENT POLICY / SPATIAL LOCALITY

PEERA THONTIRAWONG : OPTIMIZING CACHE FOR FLASH TRANSLA-

TION LAYER. ADVISOR : PROF. PRABHAS CHONGSTITVATANA, Ph.D.,

CO-ADVISOR : ASST. PROF. MONGKOL EKPANYAPONG, Ph.D., 110 pp.

Flash memory is ubiquitous and it can be found in many devices. It surpasses hard

disk in various ways. However, flash memory is not perfect; it contains several limitations

owing to its characteristics. The most important limitation is that it is not suitable for

in-place update. In order to overcome many limitations, a flash memory device employs a

flash translation layer (FTL) to manage data locations. The main component in the FTL

is a mapping table as it handles out-of-place update by performing address translation.

The concept of the address translation is comparable to the virtual memory but the sizes

of both address spaces managed by the FTL are identical. With limited spatial resource,

cache is mandatory for fine-grained mapping table. Nevertheless, the characteristics of

flash memory directly influence cache performance, for example, asymmetrical access

times between read and write. The optimization is therefore required. In this dissertation,

the novel cache techniques for FTL will be presented. The optimization will be focused

on asymmetrical access times and the main goal will be address translation time while

reducing spatial overhead.

Department :Computer Engineering . . . Student’s Signature .

Field of Study :Computer Engineering . . Advisor’s Signature .

Academic Year :2014 Co-advisor’s Signature

Contents
Page

Abstract (Thai) . iv

Abstract (English) . v

Acknowledgements . vi

Contents . vii

List of Tables . xi

List of Figures . xii

Chapter

1 Introduction . 1

1.1 Design Goals for Optimizing Cache for Flash Translation Layer 3

1.2 Scope . 4

1.3 Dissertation Organization . 4

2 Background . 5

2.1 NAND Flash Memory . 5

2.1.1 Principle Operations . 5

2.1.2 Organization . 6

2.1.3 Characteristics . 7

2.1.4 Single-Level Cell (SLC) and Multi-Level Cell (MLC) 8

2.1.4.1 MLC Constraints . 8

2.2 Flash Translation Layer . 9

3 Literature Reviews . 14

3.1 Block-Level FTL and Page-Level FTL . 14

3.2 Log Buffer-Based FTL . 15

3.3 Demand-Based FTL . 17

4 Performance Evaluation Methodology . 20

4.1 Performance Metrics . 20

4.1.1 Cache Performance . 20

4.1.2 FTL Performance . 21

4.1.2.1 SRAM Overhead . 22

viii

Chapter Page

4.1.2.2 Translation Performance . 22

4.1.2.3 Block Utilization . 23

4.1.2.4 Garbage Collection Performance 23

4.1.2.5 Fault Tolerance . 23

4.2 Simulator . 24

4.2.1 Assumptions and Constraints . 25

4.3 Benchmarks . 26

4.3.1 SPC Benchmarks . 27

4.3.2 MSRC Benchmarks . 27

5 SCFTL: An Efficient Caching Strategy for Flash Translation Layer . . . 29

5.1 Design of SCFTL . 30

5.1.1 Two-Level Address Translation . 31

5.1.2 Efficient Caching Strategy . 31

5.1.2.1 Spatial Locality Exploitation . 32

5.1.2.2 Cache Replacement Policy . 34

5.2 Performance Evaluation . 35

5.2.1 Cache Performance . 36

5.2.2 Translation Performance . 38

5.2.3 Block Utilization . 40

5.2.4 Garbage Collection Performance . 40

5.3 Analysis of Cache Performance . 41

5.3.1 D-NRU Replacement Policy . 41

5.3.2 Spatial Locality Exploitation Techniques 43

5.4 Summary . 46

6 3DFTL: Zero Writes Demand-Based FTL . 47

6.1 Demand-based three-level address translation 47

6.1.1 Three-Level Address Translation . 48

6.1.2 Compression . 48

6.1.3 Cache . 49

ix

Chapter Page

6.1.4 Example . 50

6.2 Performance Evaluation . 50

6.2.1 Cache Performance . 51

6.2.2 Effect of Compression Technique . 52

6.2.3 Translation Performance . 53

6.2.4 Block Utilization . 54

6.2.5 Garbage Collection Performance . 55

6.2.6 Recovery . 55

6.3 Summary . 56

7 Scalability . 61

7.1 Cache performance . 61

7.2 Translation Performance . 63

7.3 Block Utilization . 64

7.4 Garbage Collection Performance . 64

8 ILog: Fast Garbage Collection and Recovery for 3DFTL 66

8.1 Design of ILog . 69

8.1.1 Invalidation . 70

8.1.2 Validation . 71

8.1.3 Recovery . 71

8.1.4 Integration with 3DFTL . 72

8.2 Performance Evaluation . 73

8.2.1 Validation and Invalidation Performance 74

8.2.2 Translation Performance . 76

8.2.3 Block Utilization . 76

8.2.4 Garbage Collection Performance . 77

8.2.5 Recovery Performance . 77

8.3 Summary . 78

9 Conclusion . 88

x

Chapter Page

9.1 Dissertation Contributions . 88

9.2 Discussion on Future Works . 89

Appendix . 92

Biography . 95

xi

List of Tables

Table Page

4.1 8GB MLC NAND Flash Memory Specifications ? 25

4.2 Summarized Statistic of SPC Benchmarks . 27

4.3 Description of MSRC servers . 28

4.4 Summarized Statistic of MSRC Benchmarks . 28

5.1 Victim Selection Orders of D-NRU . 35

5.2 The configurations of FTLs for Chapter 5 experiments. 37

5.3 The configurations of other FTLs. 37

6.1 The configurations of FTLs for Chapter 6 experiments. 51

7.1 The cache size of FTLs for Chapter 7 experiments. 61

7.2 The controlled configurations of FTLs for Chapter 7 experiments. 62

8.1 The configurations of FTLs for Chapter 8 experiments. 74

8.2 Invalidation Overhead of ILog . 75

xii

List of Figures

Figure Page

2.1 A flash memory cell . 5

2.2 A block of four-page NAND flash memory . 6

2.3 An orgainization of NAND flash memory . 7

2.4 Probability distribution of SLC voltage . 8

2.5 Probability distribution of MLC voltage . 9

2.6 An overview of FTL . 10

2.7 A flowchart of read request handling . 12

2.8 A flowchart of write request handling . 13

3.1 Three types of merge operation ? . 15

3.2 An example of address translation in Superblock-based FTL ? 16

3.3 An example of address translation in DFTL ? . 17

3.4 An example of cache with consecutive field. 18

3.5 An example of address translation in CDFTL ? 19

4.1 An overview of the simulator . 24

5.1 An example of the SCFTL address translation. Suppose a logical address

of the request is 11, and each translation page contains eight physical

addresses; the index and offset of the logical address is 1 and 3, respectively.

(1) The access of the logical address 11 incurs a cache miss in CMT, and

the first cache entry is selected as a victim. Writing back does not occur,

as the victim is not modified. Then, (2) the two-level address translation is

begun, and the translation page 1 is located at the page number 4. (3) The

translation page is read from the flash memory, and (4) the physical address

of the request is found at the offset 3. (5) Instead of storing only one

mapping entry in CMT, the consecutive physical addresses of the logical

addresses 10 and 12 are fetched and stored together with the logical address

11. (6) Assume that the spatial size is four; another mapping entry 13 will

be fetched to CMT. Since this is a spatial fetching, the third cache entry is

selected as a victim instead of the second cache entry, which has MC value

lower than the threshold. 32

5.2 Four cases of CMT update in SCFTL: (a) normal update, (b) lower bound

update (c), upper bound update, and (d) middle update. 34

xiii

Figure Page

5.3 Cache performance of 20KB + 128KB DFTL . 38

5.4 Cache performance of 20KB + 128KB CDFTL 38

5.5 Cache performance of 20KB + 128KB SCFTL 39

5.6 Cache performance of 20KB + 128KB FTLs . 39

5.7 Normalized average system response time of 20KB + 128KB FTLs on SPC

benchmarks . 40

5.8 Normalized average system response time of 20KB + 128KB FTLs on

MSRC benchmarks (OS volumes) . 40

5.9 Normalized average system response time of 20KB + 128KB FTLs on

MSRC benchmarks (data volumes) . 41

5.10 Normalized average system response time of 20KB + 128KB FTLs 41

5.11 Block utilization of 20KB + 128KB FTLs . 42

5.12 Valid page move rate of 20KB + 128KB FTLs 42

5.13 Cache performance of SCFTL with LRU, NRU, and D-NRU replacement

policies . 43

5.14 Number of modified translation page written per cache access of SCFTL

with LRU, NRU, and D-NRU replacement policies 43

5.15 Cache performance of SCFTL with varied size of large cache entry technique . 44

5.16 Cache performance of SCFTL with varied number of small cache entry technique 44

5.17 Cache performance of SCFTL with varied maximum value of consecutive

field technique . 45

5.18 Cache performance of SCFTL with varied number of small entry and 5-bit

consecutive field techniques . 45

5.19 Ratio of cache miss with penalty of various spatial locality exploitation

techniques . 46

5.20 Ratio of translation page written per page write request of various spatial

locality exploitation techniques . 46

6.1 The example of 3DFTL address translation. 49

6.2 Cache performance of 100KB + 128KB DFTL 52

6.3 Cache performance of 100KB + 128KB CDFTL 52

6.4 Cache performance of 100KB + 128KB SCFTL 53

6.5 Cache performance of 100KB + 128KB 3DFTL 53

xiv

Figure Page

6.6 Cache performance of 100KB + 128KB FTLs . 54

6.7 Ratio of compressed-spare-area pages written . 54

6.8 Ratio of address translation levels of 3DFTL with compression techniue 55

6.9 Ratio of address translation levels of 3DFTL without compression techniue . . 55

6.10 Ratio of address translation levels . 56

6.11 Average system response time of 100KB + 128KB FTLs on SPC benchmarks . 56

6.12 Average system response time of 100KB + 128KB FTLs on MSRC bench-

marks (OS volumes) . 57

6.13 Average system response time of 100KB + 128KB FTLs on MSRC bench-

marks (data volumes) . 57

6.14 Average system response time of 100KB + 128KB FTLs 58

6.15 Block utilization of 100KB + 128KB FTLs . 58

6.16 Valid page move rate of 100KB + 128KB FTLs 58

6.17 Ratio of pages read during recovery of 100KB + 128KB FTLs on SPC

benchmarks . 59

6.18 Ratio of pages read during recovery of 100KB + 128KB FTLs on MSRC

benchmarks (OS volumes) . 59

6.19 Ratio of pages read during recovery of 100KB + 128KB FTLs on MSRC

benchmarks (data volumes) . 59

6.20 Ratio of pages read during recovery of 100KB + 128KB FTLs 60

7.1 Cache performance of FTLs on various cache size 62

7.2 Average system response time of FTLs on various cache size 63

7.3 Block utilization of FTLs on various cache size 64

7.4 Valid page moved rate of FTLs on various cache size 65

8.1 Pseudo code of a demand-based FTL recovery process 67

8.2 Examples of ILog components . 70

8.3 A flow chart of ILog invalidation process . 79

8.4 Pseudo code of a demand-based FTL with ILog recovery process 80

8.5 Pseudo code of 3DFTL without ILog recovery process 81

8.6 Pseudo code of 3DFTL with ILog recovery process 82

8.7 Number of pages read per valid page moved of 100KB FTLs 83

8.8 Number of pages programed per valid page moved of 100KB FTLs 83

xv

Figure Page

8.9 Average system response time of 100KB FTLs 84

8.10 Average system response time of 3DFTL without invalid flags, 3DFTL with

ILog, and 3DFTL with complete invalid flags . 85

8.11 Block utilization of 100KB FTLs . 85

8.12 Valid page move rate of 100KB FTLs . 86

8.13 Ratio of pages read during recovery of 100KB FTLs 86

8.14 Ratio of pages read in general case recovery of 100KB FTLs 87

CHAPTER I

INTRODUCTION

In computer systems, there are three main components: processor, memory, and I/

O interface. Since the beginning of computer era, the number of transistors on a dense

integrated circuit, e.g., processor, is double every two years according to Moore’s law?,

and the processor performance is expected to double every 18 months ?.

On the contrary, the growth of hard disk drive (HDD), the ferromagnetic-materials-

based memory, performance is outpaced by this growth and the gap is widening . One

reason is the limitation of mechanical movement. However, the advent of flash memory

has broken this performance lock. Flash memory is a non-volatile memory based on

semiconductor technology; thus, its growth is applicable to Moore’s law.

As flash memory outperforms ferromagnetic materials on shock resistance, power

consumption, and, of course, access latency, it is more preferred for data storage of many

computer systems. NAND flash memory is welcomely accepted in mobile computer sys-

tems and portable storage devices, for examples, smartphones, tablets, USB drives, and

memory cards, owing to its small area and high durability. In personal computers (PCs)

and enterprise servers, NAND flash memory was adopted in form of solid-state drive

(SSD). SSDs is gradually replacing ferromagnetic hard disk drives (HDD). For examples,

SSDs are selected as the solely secondary storage in the Macbook Air, the lightweight

laptops, in 2010 and the Macbook Pro with retina display, the high performance laptops,

in 2012 from Apple Inc,. Furthermore, Amazon, Google, and Microsoft began offering

their cloud computing services with options of SSDs as back-end storages in 2014.

However, NAND flash memory also has it own technological limitations that make

itself more complicated to utilize than the traditional storage, e.g., HDD. In-place update

is infeasible for NAND flash memory due to the erase-before-program requirement. Out-

of-place update has to be employed. Moreover, the lifetime of a NAND flash memory cell

is decided by program/erase (P/E) cycles. Frequently erasing a particular part increases

its bit error rate, and eventually the whole memory will become unusable.

2

Amid these problems, a software named flash translation layer (FTL) is imple-

mented for the simplification. FTL handles the out-of-place update and emulates the

traditional block-interfaces for a flash memory device. Other issues related to the man-

agement of the flash memory device are also in charge of FTL.

One of the main modules of FTL is address translation. Its function is to convert

logical addresses, which are used by a file system, to physical addresses in the flash memory

device. Since the conversion is mandatory, the address translation is directly influence

the response time of the flash memory device. In other words, the flash memory device

needs a well-suited FTL to exploit its potential performance.

There are many studies for enhancing an FTL, and one of the famous types of FTL

is demand-based. The demand-based FTL ? is well-known for its speed and little SRAM

overhead, and the general idea behind every demand-based FTL is caching. In order to

efficiently utilize flash memory, a fine-grain mapping table with a lot of information is

required. The fine-grain mapping table allows the address translation to freely select any

location for storing data. However, the fine-grain mapping table heavily demand large

SRAM capacity. Instead of storing the large mapping table inside SRAM, a demand-based

FTL opts for keeping the table in the flash memory device and caching only essential

information in SRAM. Therefore, the fast response time and low SRAM overhead are

achieved.

The performance of a demand-based FTL depends on its cache system. Exploiting

spatial locality is very popular for increasing a demand-based FTL performance ????

since the spatial locality can be found in sequential accesses. With the advancement

of NAND flash memory technology, the smallest accessible unit of NAND flash memory

is very large; blindingly exploiting spatial locality may not increase the performance as

much as expected. On the contrary, the performance might be decreased due to insufficient

cache size.

Besides, the key of any caches is to hide the back-end storage latency. However,

the service times of flash memory operations are asymmetrical. The programming time

of a page is substantially longer than the reading time. In addition, the longest operation

is erasure, which is operated on block basis. Therefore, applying typical cache technique

to a demand-based FTL may not achieve sublime performance, the cache system of a

3

demand-based FTL is needed to be optimized.

In this dissertation, the asymmetrical access time of the flash memory will be put in

the spotlight. Since the programming time is several times slower than reading time, the

penalty of evicting a modified cache entry is significant. To be precise, its can be more

than the cost of evicting an unmodified cache entry and then reading back. Consequently,

not only the cache hit ratio, but the number of evicted modified cache entries also affects

FTL performance.

Finally, we proposed two novel demand-based FTLs with optimized cache system.

The optimization is mainly based on asymmetrical access time of NAND flash memory.

The first FTL is named SCFTL. Its cache is optimized for exploiting spatial locality while

minimizing cache write-back. The cooperation between the spatial locality exploitation

techniques and the novel replacement policy estimates cost and benefit of cache entry

fetching and takes action accordingly.

Then, 3DFTL, the second FTL, completely eliminates cache write-back by embed-

ded a modified cache entry with the data that have to be written. The compression

technique is also employed in order to embedded many mapping entries into each. In

addition, the accelerator, ILog, is also proposed. ILog employs another small cache that

help 3DFTL avoiding unnecessary flash memory accesses. Moreover, it also guarantees

the recovery time of 3DFTL.

1.1 Design Goals for Optimizing Cache for Flash Translation Layer

Aside from exploiting asymmetrical access time, we first set our three goals that

will be used to design and optimize the cache of mapping table in a demand-based FTL:

1. be efficient, the proposed FTL should have fast system response time.

2. be economical, the proposed FTL should not occupy large SRAM capacity.

3. be adaptable, the proposed FTL should be able to work with other FTL functions,

e.g., garbage collection, wear leveling, and load balancing.

4

1.2 Scope

The scope of this dissertation is limited to the following:

• This dissertation is mainly focused on the address translation.

• This dissertation considers only address caching or the cache of mapping table. Data

caching and instruction caching are not covered.

• The proposed FTLs was experimented and evaluated on the simulated 8GB MLC

NAND flash memory, which is described in Chapter 4.

• The performance of the proposed FTLs was evaluated by the selected workload

traces from SPC ? and MSRC ?.

• The FTLs that are the outcome of this dissertation are compared against DFTL ?

and CDFTL ?.

1.3 Dissertation Organization

In this dissertation, the two novel FTLs and one additional technique would be

described. This chapter has introduced the importance of FTL, the motivation of this

dissertation, the design goals, and the scope of this dissertation. The rest of the disser-

tation is organized as follows. Chapter 2 will give more details of NAND flash memory

and FTL. The characteristics, limitations, and constraints of NAND flash memory are

also included. Then, the related works and the state-of-the-art FTLs are in Chapter 3.

Chapter 4 will be the performance evaluation methodology. The performance metrics

that are used by this dissertation, the information and assumptions of the simulator,

and the descriptions of benchmarks are provided. This dissertation works are begun in

Chapter 5. The design and performance of SCFTL, a demand-based FTL with efficient

caching strategy, is presented. Next, Chapter 6 is the details about of 3DFTL. 3DFTL is

a demand-based FTL with zero cache write-back. After that, the scalabilities of SCFTL

and 3DFTL are discussed in Chapter 7. Then, ILog, a garbage collection and recovery

accelerator for 3DFTL, is proposed in Chapter 8. Finally, Chapter 9 will conclude this

dissertation. The contributions is provided and the directions of future works are briefly

discussed.

CHAPTER II

BACKGROUND

2.1 NAND Flash Memory

Flash memory is a non-volatile memory. The technology behind the flash memory is

derived from MOSFET. As shown in Figure 2.1, a cell of flash memory has an additional

floating gate sit below a control gate. The floating gate can trap electrons and acts as

a control gate; hence, the cell can be use as a data storage. NAND flash memory is one

type of the flash memory that the cells are connected as arrays of NAND gates.

Silicon Substrate

Control Gate

Floating Gate

Source Drain

Oxide

Figure 2.1: A flash memory cell

2.1.1 Principle Operations

The NAND flash memory has three basic operations: program, read, and erase. A

page is the smallest unit for reading and programming. A group of consecutive pages

called a block, and it is the smallest unit for erasure.

1. Program In order to program a flash cell, very strong voltage is applied to the

control gate. The very strong voltage makes some electrons passing through layers of

insulator. The passed electrons will be trapped inside the floating gate and therefore

cause a similar effect as constantly applying current to the control gate.

2. Read The stored data can be read out by disconnecting the control gate and letting

the floating gate controls the current. A cell that has electrons trapped inside its

floating gate will let the current pass through, and vice versa.

6

3. Erase Finally, the trapped electrons can be removed by applying very strong voltage

to the substrate while holding the control gate to ground. As a result, the electrons

are pulling out of the floating gate, and the current has to be controlled by the

control gate.

2.1.2 Organization

As illustrated in Figure 2.2, several arrays of cells are grouped together as a block

owing to the physical organization of NAND flash memory. In the block, a group of cells

that have the same position in arrays is called a page. Thus, the number of pages in a

block is determined by the length of arrays. A page is the smallest unit for reading and

programming. A group of consecutive pages called a block, and it is the smallest unit for

erasure.

.............. I/O[0].............

I/O[1]

.............

I/O[2]

.............

I/O[3]

.............

I/O[4]

.............

I/O[5]

.............

I/O[6]

.............

I/O[7]

..

GND Select

.

Page 0 Select

.

Page 1 Select

.

Page 2 Select

.

Page 3 Select

.

Bit Select

Figure 2.2: A block of four-page NAND flash memory

7

Additionally, as blocks are grouped together and form a plane. Each plane has

buffer registers with total size of one page. Since reading or programming a page has to

be done as a whole, but the whole page is too large to be simultaneously transferred via

databus, the registers are served as a buffer for data transfer. In addition, each plane can

be executed in parallel, i.e., planes of a NAND flash memory device are working together

like RAID. Lastly, each die of NAND flash memory contains several planes; however, dies

are sharing the interconnection. An illustration of NAND flash memory organization is

shown in Figure 2.3.

DIE 1

PLANE 0REGISTERS

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 0

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 1

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 2

...

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK m-1

...

PLANE 1REGISTERS

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 0

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 1

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 2

...

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK m-1

...

DIE 0

PLANE 0 REGISTERS

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 0

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 1

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 2

...

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK m-1

...

PLANE 1 REGISTERS

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 0

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 1

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 2

...

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK m-1

...

DIE 2

PLANE 0 REGISTERS

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 0

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 1

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 2

...

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK m-1

...

PLANE 1 REGISTERS

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 0

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 1

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 2

...

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK m-1

...

DIE 3

PLANE 0REGISTERS

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 0

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 1

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 2

...

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK m-1

...

PLANE 1REGISTERS

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 0

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 1

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK 2

...

...

PAGE 0

PAGE n-1

PAGE 2

PAGE 1

BLOCK m-1

...

D
A

T
A

B
U

S

Figure 2.3: An orgainization of NAND flash memory

2.1.3 Characteristics

1. No In-Place Update There are two different operations needed for bringing elec-

trons into and out of the floating gate. In addition, the smallest programming unit is

a page, but the smallest erasure unit is a block; erasing one page will force the entire

block to be erased. As adjacent pages may still have valid data, several operation

will be incurred in order to prevent data loss. Consequently, in-place update is not

feasible for NAND flash memory.

8

2. Limit Number of Program/Erase (P/E) Cycles Programming and erasure

needs applying strong voltage to flash cells that may cause deformation. The error

rate will be increasing after several program and erase operations, and the cells will

be worn-out, eventually.

3. Asymmetrical Read/Write Speed Generally, Programming a page needs signif-

icantly longer time than reading due to its process, which may include verification

and validation. Furthermore, a block erasure also typically takes longer time than

a page programming.

2.1.4 Single-Level Cell (SLC) and Multi-Level Cell (MLC)

Due to the fact that a flash cell actually stores electrons, the stored data have to be

interpreted from the level of voltage readout. Basically, only one level of voltage is used

to classify the value; therefore, each cell value can be either ”1” or ”0” and represents one

bit of data. This type of flash memory is called Single-Level Cell or SLC. Another type is

Multi-Level Cell or MLC. Rather than using only one level, MLC uses at least two levels

to classify the value. In case of two levels, the voltage can be fall into four thresholds.

Hence, two bits of data can be stored. However, MLC is likely to have more errors than

comparable SLC because of smaller thresholds. Consequently, the endurance of MLC is

lower.

.....
1

.
0

. V.

P

Figure 2.4: Probability distribution of SLC voltage

2.1.4.1 MLC Constraints

Due to the nature of NAND flash memory that cells are connected as an array and

control gate of cells of the same page are sharing the wire, programming – or even reading

9

.....
11

.
10

.
01

.
00

. V.

P

Figure 2.5: Probability distribution of MLC voltage

– a cell can disturb nearby cells. In MLC, every cell is very sensitive because of narrower

thresholds; a small disturbance can easily cause an error. Programming an MLC page

has to be more restrict. As a consequence, two more constraints have been added.

1. No Partial Page Programming Every page allows to be programmed only once.

It has to be erased before it is reprogrammed.

2. Sequential Page Programming Every page in each block has to be sequentially

programmed in order to minimize the effect of disturbance on nearby programmed

pages.

2.2 Flash Translation Layer

Flash translation layer or FTL is software that manages the flash memory. It

emulates the simpler I/O interfaces, i.e., read and write, and hides the complication of

flash memory management from the upper level as shown in Figure 2.6. FTL handles

read request or write request from the file system and issues read operation, program

operation, or erase operation to NAND flash memory controller. Also, the logical block

address (LBA), which is normally used by many file system for referring daat location,

is translated to a physical address, e.g., physical page number (PBN) for reading or

programming, or physical block number (PBN) for erasure.

FTL has as many as five main functions because of the characteristics of flash

memory.

1. Address Translation Due to the limitation of flash memory, out-of-place update is

10

NAND Flash Memory

NAND Flash Memory Controller

LBA

WRITE

LBA

READ

PAGE

PROGRAM

BLOCK

ERASE

PAGE

READ

Flash Translation Layer (FTL)

File System

DIE DIE DIE DIE

DIE DIE DIE DIE

Figure 2.6: An overview of FTL

necessary. Consequently, the actual address or physical address of data is different

from its request address or logical address, and translation between these logical

address and physical address is needed. Generally, address translations are achieved

by looking up and updating the mapping tables according to requests.

2. Garbage Collection When the freshly updated data is stored in a new location,

the obsoleted pages are not automatically erased from the flash memory. Since

out-of-place updates keep consuming free pages, a garbage collection is required for

erasing and recycling the outdated pages. As the erase is done on block level, The

function of garbage collection also include moving valid pages to new places before

claiming the block.

3. Wear Leveling The error of each flash cell is higher when its number of P/E

cycles increased. As the name implied, wear leveling avoids overuse or underuse any

particular cell by cycling data around the flash memory. Ideally, the objective of

wear leveling is making every cell worn-out at the same time and therefore yielding

the longest possible flash memory lifetime.

4. Parallelization and Load Balancing A flash device usually contains several flash

memory dies. These dies can handle operations concurrently; hence, parallelization

11

and load balancing is necessary for maximizing the performance.

5. Worn-Out Block Management Since each flash cell varies in endurance, some

cells may worn-out easily than the others. Moreover, some cells might be already

worn-out even though it was just out-of-the-box. As the worn-out cell has higher

error rate, it has to be handle separately.

The request handling flowcharts of a typical FTL are shown in Figure 2.7 and 2.8.

In the beginning, the I/O interface puts the request in command queue (CMD Q) while

keeps the data in the DRAM buffer. When FTL is available, it will retrieve the request

from the command queue and process accordingly. the requested logical block address

(LBA) and the requested size (SIZE) is therefore converted to several consecutive logical

page numbers (LPNs). Then, the LPNs are mapped to PPNs by address translation.

During the mapping, a free physical page number (PPN) will be allocate in case of write

request. After the access to PPN was done, the related metadata are updated, and then

the I/O interface responses to the requester.

12

R
E

S
P

O
N

S
E

READ(LBA, SIZE)
Q

U
E

U
E

T
R

A
N

S
L

A
T

E
A

C
C

E
S

S
U

P
D

A
T

E

NAND Flash Memory

Controller
FTLI/O Interface

BEGIN

Allocate DRAM

Place READ

Command in

CMDQ

Retrieve

Command from

CMDQ

Convert LBA

and SIZE to

LPNs

PPN =

Translate(LPN)

READ(PPN)

Place DATA in

DRAM Buffer

More LPN

END

Response

Figure 2.7: A flowchart of read request handling

13

R
E

S
P

O
N

S
E

WRITE(LBA, SIZE, DATA)

Q
U

E
U

E
T

R
A

N
S

L
A

T
E

A
C

C
E

S
S

U
P

D
A

T
E

NAND Flash Memory

Controller
FTLI/O Interface

BEGIN

Place DATA in

DRAM Buffer

Place WRITE

Command in

CMDQ

Retrieve

Command from

CMDQ

Convert LBA

and SIZE to

LPNs

PPN =

Translate(LPN)

WRITE

(PPN’, DATA)

More LPN

END

Response

PPN’ =

GetEmptyPage()

Update

Mapping Table

Figure 2.8: A flowchart of write request handling

CHAPTER III

LITERATURE REVIEWS

Owing to the characteristic of the flash memory, updates of data have to be done

out-of-place. However, an FTL hides the actual location of data from the upper-level

device to reduce the complication. Hence, an address translation is fundamental, as it is

used for locating the data by mapping the logical address to the physical address.

3.1 Block-Level FTL and Page-Level FTL

There are two basic ways to map addresses. One is at the page level and the other

is at the block level. Assuming a logical page has the same size as a flash page. The

page-level address translation ? will maintain a mapping relationship between pages. In

other words, an FTL with the page-level address translation one-to-one map a logical

page to a physical page.

On the other hand, block-level address translation ? keeps the memory requirement

low by employing block-to-block mapping. It can assign a logical block to a free physical

block while leaving their least significant bits of addresses or page numbers untouched.

In order to maintain one-to-one mapping property, not only the updated page is going to

be written in to a new block but the valid pages in the same block also have to be copied

in to a new block. In consequence, block-level address translation suffers from numerous

valid page copied, which is also called high write amplification.

The tangible benefit of the page-level address translation is its flexibility. Its map-

ping constrains are more relax than the block-level address translation, and therefore high

performance can be achieved easily. However, the trade off is the spatial requirements

of the mapping table. The mapping table of a page-level address translation is several

magnitudes larger than the mapping table of a block-level address translation.

To be compromised, hybrids of these two address translations are invented. Hybrid

address translation combine page-level address translation and block-level address trans-

15

lation together. Even though, hybrid FTLs consist the page-level address translation, the

block-level address translation limits the mapping flexibility degree.

3.2 Log Buffer-Based FTL

The log buffer-based scheme is the widely adopted scheme for hybrid FTLs ??????????.

The log-buffer-based divides flash blocks into data blocks and log blocks. The data blocks

are using block-level mapping, while log blocks, which are fewer, are mapped at the page-

level. The log buffer-based scheme stores the updated pages in log blocks. The copying

of valid pages in the block that contains obsoleted pages is delayed until log blocks are

full. This process of reclaiming log blocks is called merge operation.

There are three types of merge operation: switch merge, partial merge, and full

merge. They are illustrated in Figure 3.1. A switch merge has the lowest operation cost.

All pages in a log block are sorted. The log block can be converted to a data block

instantaneously. In case of a partial merge, every written page in a log block has to be

sorted, but the log block is not fully written. Hence, only unmodified pages have to be

copied to the log block before it can be converted to a data block. In other cases, a log

block has to be full merge that requires allocating new blocks and copying several pages.

Figure 1: Three Types of Merge Operations

DBA which occupies most of the flash memory while each
valid page in the LBA is traced by another page-level map-
ping. The LBA is very small and generally takes less than 5
percent of the entire flash memory. In hybrid FTLs (except
HFTL [17]), the LBA is used to store overwriting data and
different schemes adopt different strategies to merge data in
the LBA to the DBA to generate new space for the LBA.
There are three types of merge operations as illustrated in
Figure 1. A full merge is a general but expensive operation
in which all up-to-date pages need to be copied to a new
allocated block and then old blocks are erased and put back
into the free block pool. The partial and switch merges are
efficient but can only be done in special cases since they can
only be done when pages in the log block or the replacement
block are all free or valid and each valid page is written in
their own place. Although many hybrid FTL schemes try to
do partial or switch merges whenever possible, full merges
are difficult to avoid with different access patterns. This
makes an insuperable bottleneck for all hybrid FTL schemes.
It is also possible to map variable-length continuous logical

pages to continuous physical pages in flash memory. In this
case, granularity can be adjusted dynamically when access
pattern changes. However, since sizes of different mapping
units are not identical and are changing, mapping entries can
only be stored in some type of search tree, and as a result,
the table look-up overhead of variable-length mappings is
higher than other schemes of which the mapping table is
nothing more than a simple address array.

2.3 Page-level FTL Schemes
The first FTL scheme was patented by Ban in 1995 [3]

and was adopted by the PCMCIA as a standard for NOR-
based flash memories several years later [12]. There is one
issue that NOR-based FTLs should handle in the first place.
When a page is overwritten, the relevant entry in flash mem-
ory needs to be updated to keep the operation atomic and
reliable. (Remember that page-level FTL schemes keep an
entire mirror of the mapping table in flash memory to re-
duce the SRAM overhead.) This presents no difficulty to
the NOR-based FTL since NOR-type flash memories can be
programmed in bytes. By assigning a replacement page list
for the relevant mapping page when necessary, this mapping
page can be updated (written in the first free entry of the
same offset in the replacement page list) several times as
long as the length of the list without rewriting the entire
mapping page [12, 9].
DFTL (Demand-based FTL) [10], another page-level FTL

scheme, makes the first attempt to transfer the former NOR-
based FTL to NAND-type flash memories, omitting the re-
placement page part. This scheme, though efficient, faces a
serious reliability problem since all modified information in

the SRAM will be lost if a system failure occurs. In this case,
spare areas of all data pages need to be scanned until the sys-
tem recovers to a consistent state. Therefore, DFTL is not
suitable, we believe, for circumstances where flash memory
is regarded as a permanent and reliable storage device.

2.4 Block-level FTL Schemes
Ban patented two other FTL schemes in 1999 [4, 8, 9].

These schemes are designed for NAND-type flash memories
and also known as the NFTLs. In this paper, they will be
cited as NFTL-1 and NFTL-N. NFTL-1 is designed for flash
memories that have a spare area for each page and NFTL-N
is for devices without such storage.

When a page is overwritten, NFTL-1 first allocates a re-
placement block for the relevant logical block if there is none
and writes overwriting pages one after another from the be-
ginning of the replacement block. Since pages are written
in an out-of-place manner in replacement blocks, NFTL-1
needs to scan all the spare areas in the replacement block
in reversed order to find the most up-to-date version of a
requested page. Fortunately, the spare areas in NAND-type
flash memory are using a different addressing algorithm that
is optimized for fast reference and the overhead of this search
process is relatively low.

On the other hand, since some models of NAND flash
memories have no spare areas to support fast search, NFTL-N
keeps a replacement block list for some of the logical blocks
when necessary and write requests for each logical page are
first handled by the first block in the list and then the next
one, keeping the in-block offset identical with that of the
logical address. If all pages in the list with the request off-
set have been programmed, a new block is allocated and
appended to the back of the list.

2.5 Hybrid FTL Schemes
BAST (Block-Associative Sector Translation) is the first

hybrid FTL scheme proposed in 2002 [15], which is essen-
tially an altered version of NFTL-1. As mentioned ear-
lier, hybrid FTL schemes build a page-level mapping for the
LBA. To keep this table small enough to reside in the SRAM,
BAST limits the total number of replacement blocks (also
known as log blocks). Obviously, the read performance of
BAST is better than NFTL-1 because the SRAM is several
orders of magnitude faster than flash memories. However,
BAST does not work well with random overwrite patterns
which may result in a block thrashing problem [20]. Since
each replacement block can accommodate pages from only
one logical block, BAST can easily run out of free replace-
ment blocks and be forced to reclaim replacement blocks
that have not been filled. Therefore, the utilization ratio of
replacement blocks in BAST is low both theoretically and
experimentally.

To solve the block thrashing problem, another hybrid FTL
scheme named FAST (Fully Associative Sector Translation)
was put forward [20]. FAST goes to the other extreme by
allowing a log block to hold updates from any data block.
Although FAST successfully delays garbage collections as
much as possible, the system-wide latency for reclaiming
a single log block may turn out to be longer than BAST,
since the associativity of log blocks is only limited by the
number of pages in a block. The associativity of a log block
is defined as the number of different data blocks whose most
up-to-date pages are located in the log block. The higher
the associativity of a log block is, the more expensive it is to

3

Figure 3.1: Three types of merge operation ?

The first log buffer-based scheme is BAST ?. The limitation of BAST is that pages

in each log block are tied to only pages from the same data block. FAST ?? elevated

this limitation by allowing mapping of a log page to any data page. However, FAST

suffers from lengthy processing time of a full merge operation because many data blocks

are involved in each log block.

Accordingly, several FTLs aim for reducing the number of data blocks associated

16

with a log block. SAST ? groups consecutive data blocks into sets. Every set has it own

log blocks, and its management is similar to FAST. A-SAST ? is an improve SAST that

a number of data blocks in each set can be adjusted on the fly. Another approach, which

is very simple, is KAST ?. KAST is FAST with the limited number of associated data

block.

There is also an FTL that combines BAST and FAST together. LAST ? classifies

write requests into two types: sequential write requests and random write requests. The

sequential write requests have to be specially taken care in order to increase the possibility

of switch merge and partial merge operations. They are handled by BAST managed log

blocks, while FAST managed log blocks deals with the random write requests.

An extreme log buffer-based FTL is Superblock-based FTL ??. A part of its idea is

rather similar to SAST. Blocks are grouped and named a superblock. However, superblock

does not have data blocks; every block is treated as a log block. Since log blocks are

managed at the page-level, the mapping table this scheme is huge. It has to be divided

into hierarchy, and some are offloaded to the flash memory.

Data

Main area
Spare area

Data

Data

Logical block number

Page global
directory (PGD)

1

6, 24

12

Physical
block 6

Physical
block 0

Superblock
4

0

1

2

3

old

old

old

Data

PMD

PTEs: 0 - 15

PTEs: 32 - 47

PTEs: 16 - 31

PTEs: 48 63

PMD

PMD

PMD

Data

Superblock
5

04

17 12

Superblock
3

0

1

2

3

0

1

2

3

Logical page number

Superblock
Number PGD index PMD index PTE index

Figure 6: An example of the address translation in
the superblock scheme.

Note that the whole page table is divided into four sepa-
rate PTs due to the space limitation of the spare area within
a single page in large block NAND flash memory. The role
of PMD is to locate the up-to-date position of each PT. The
location of the up-to-date PMD is kept track of by PGD.
While PGD is stored in main memory, PMD and PTs are
saved in the spare area of NAND flash memory. Since the
number of entries in PGD is equal to the number of logi-
cal blocks, the memory overhead for PGD is comparable to
other block-mapped FTL schemes.

Figure 6 illustrates an example of address translation per-
formed in the superblock scheme. Suppose that we would
like to find the physical address corresponding to the logi-
cal address whose logical block number is 17 and the logical
page number is 12. The logical block number is divided into
the superblock number 4 and PGD index 1, and the logi-
cal page number is split into PMD index 0 and PTE index
12. As shown in Figure 6, we find the latest PMD for the
logical block 17 from PGD using the superblock number 4
and PGD index 1. Once PMD is read from the spare area,
we extract the first entry from PMD to find the location of
PT0, which holds PTEs from PTE0 to PTE15. Finally, the
location of data can be found by reading PTE12 from PT0.

When a logical page is updated, the up-to-date page-
mapping information is also saved in the spare area of the
same physical page. For instance, suppose that the logical
page that we find in the above example is updated. In this
case, PTE12 is modified to point to the location that the
logical page will be written, and the first PMD entry is also
changed to locate the same physical page since it now has
the new PT0. After the page is written with the modified
PMD and PT0, the second PGD entry is changed to point
to a new location. As the up-to-date PMD and the corre-
sponding PT is stored in flash memory whenever a page is
updated, we can guarantee that each entry of PMD and PT
always points to the valid page.

Since we should read PMD and the corresponding PT
from flash memory every time when we read, write, or copy
a page, we adopt a cache mechanism to reduce the number
of flash read operations. A cache entry consists of PMD and
the associated four PTs that are used to record the page-
mapping information of a single logical block. The number
of cache entries is fixed and we manage those entries with a
least recently used (LRU) replacement scheme. This cache
mechanism is similar to those used in the log block scheme

3 bits 6 bits

06 58

Page index

Block index

20 bytes 5 bytes 18 bytes

Data Information (DI) Page table (PT)

Page middle directory (PMD)

(a) Spare area

1 3 Bytes 3 Bytes 3 Bytes 3 Bytes 3 Bytes 4 Bytes

(b) Data Information

Logical sector numberECC2 ECC3ECC1

Bad block indicator

Error correction code
(ECC) for spare area

Error correction code
(ECC0) for data area

(d) Page middle directory (PMD)

Error correction code

3 bits 6 bits

06 58

Page index
Block index

Page-director entry0

(PDE0)
Page-director entry3

(PDE3)

21 bytes

Physical block mapping table
(PBMT)

3 bits 6 bits

06 58

Page index

Block index

(e) Page table (PT)

3 bits 6 bits

06 58

Page index

Block index

Page table entry0
(PTE0)

Page table entry15
(PTE15)

3 Bytes 3 Bytes 3 Bytes 3 Bytes 3 Bytes 3 Bytes 3 Bytes

(c) Physical block mapping table (PBMT)

PBN2 PBN3 PBN4 PBN5 PBN6PBN0 PBN1

Figure 7: The format of the spare area in the
superblock scheme in order to record the page-
mapping information.

and FAST. Our experiment shows that the small number of
cache entries works quite well (cf. Section 5.5).

Figure 7 depicts the overall layout of the spare area we use
in the superblock scheme. The spare area is divided into four
sections: data information (DI), physical block mapping ta-
ble (PBMT), PMD, and PT, as presented in Figure 7(a). DI
consists of a bad block indicator, 15 bytes of error correction
code (ECC), and a logical sector number (cf. Figure 7(b)).
The logical sector number in DI is typically used for recov-
ery. PBMT is an array of seven physical block numbers as
shown in Figure 7(c). Each PMD has four page directory
entries (PDEs) for locating four PTs (cf. Figure 7(d)), and
each PT consists of 16 PTEs (cf. Figure 7(e)).

In principle, each PDE or PTE needs to point to a physical
location of a page in flash memory, where the location is
identified by the physical block number and the page offset
inside the block. Allowing every PDE or PTE to specify
the physical block number redundantly is not only wasteful
but also impossible due to the limited size of the spare area.
Instead, we adopt an indirect mapping to accommodate the
whole information can be fit into the spare area. In our
superblock scheme, PBMT has an array of actual physical
block numbers allocated for the superblock, and the block
index in PDE or PTE is used to retrieve the proper physical
block number from PBMT. Then the page index is used to
identify the target physical page in the block.

Since there are 64 pages in a physical block of large block
NAND flash memory, 6 bits of page index in PDE or PTE
are sufficient to locate any physical page in a block. The
block index in PDE or PTE is 3 bits, which can indicate
one of eight physical blocks. There are only seven physical
block numbers in PBMT due to space limitation, and the
eighth index has a special meaning. If the block index is

166

Figure 3.2: An example of address translation in Superblock-based FTL ?

Although log buffer-based FTLs provide good trade-off between performance and

memory space, merge operations, which reclaim disorder log blocks, cause high P/E cycles.

Therefore, they are not suitable for MLC NAND flash memory, which has low endurance.

MNFTL ? is an FTL designed for MLC NAND flash memory. MNFTL has two-step

address translation. The first step is looking for the index of the corresponding page

mapping table (PMT) in RAM. The second step reads the PMT from spare area, and

17

then maps the logical page to the physical page according to the PMT entry. MNFTL

employs concentrate-mapping technique to reduce write amplification caused by erase

operation. It uses the block mapping table (BMT) to conduct out-of-place update within

the same block as the replaced one. However, the BMT also limits the number of logical

blocks that can be mapped to a physical block. Therefore, MNFTL is also a hybrid FTL.

3.3 Demand-Based FTL

Though the page-level FTL has substantial advantages, its overwhelmingly large

mapping table makes it infeasible to be implemented. The flexibility of page-level ad-

dress translation obeys in sequential programming order constraint of MLC NAND flash

memory easily. Moreover, page-level FTL allows higher capacity utilization, which leads

to low P/E cycles. Consequently, several page-level FTLs were invented ???????.

In order to implement the page-level address translation in limited RAM space,

DFTL ? stores the enormous page-mapping table in several pages of the flash memory.

The pages are called translation page and can be located by a small mapping table in

RAM. Since retrieving and updating a mapping entry need to access the flash memory,

keeping the mapping table in the flash memory drastically burdens the performance. For

these reasons, DFTL exploits the temporal locality by caching some mapping entries in

RAM. Hence, the number of flash page read operations decreases and translation page

updating can be postponed until a modified mapping entry is evicted. Furthermore, the

postponed updating allows the modified mapping entries of the same translation page to

combine and write together when one of them is evicted. However, the hit ratio of DFTL

is not high because it takes little advantage of the spatial locality.

tally different from log blocks and are only used to store
the address mappings. They require about 0.2% of the entire
flash space and do not require any merges with data blocks.

3.2 Logical to Physical Address Translation

A request is serviced by reading from or writing to pages
in the data blocks while the corresponding mapping updates
are performed in translation blocks. In this sub-section, we
describe various data structures and mechanisms required
for performing address translation.

Input: Request’s Logical Page Number (requestlpn), Request’s Size
(requestsize)

Output: NULL
while requestsize ̸= 0 do

if requestlpn miss in Cached Mapping Table then
if Cached Mapping Table is full then

/* Select entry for eviction using segmented LRU replacement
algorithm */
victimlpn← select victim entry()
if victimlast mod time ̸= victimload time then

/*victimtype : Translation or Data Block
Translation Pagevictim : Physical
Translation-Page Number containing victim entry */
Translation Pagevictim ← consult GTD
(victimlpn)
victimtype← Translation Block
DFTL Service Request(victim)

end
erase entry(victimlpn)

end
Translation Pagerequest ←
consult GTD(requestlpn)
/* Load map entry of the request from flash into Cached Mapping
Table */
load entry(Translation Pagerequest)

end
requesttype ← Data Block
requestppn ←CMT lookup(requestlpn)
DFTL Service Request(request)
requestsize- -

end

Algorithm 1: DFTL Address Translation

Global Mapping Table and Global Translation Directory.
The entire logical-to-physical address translation set is al-
ways maintained on some logically fixed portion of flash and
is referred to as the Global Mapping Table. However, only a
small number of these mappings can be present in SRAM.
These active mappings present in SRAM form the Cached
Mapping Table (CMT). Since out-of-place updates are per-
formed on flash, translation pages get physically scattered
over the entire flash memory. DFTL keeps track of all these
translation pages on flash by using a Global Translation Di-
rectory (GTD). Although GTD is permanently maintained
in the SRAM, it does not pose any significant space over-
head. For example, for a 1GB flash, 1024 translation pages
are needed (each capable of storing 512 mappings), requir-
ing a GTD of about 4KB. Furthermore, storing GTD on non-
volatile storage aids recovery from power-failure [7].

DFTL Address Translation Process. Algorithm 1 de-
scribes the process of address translation for servicing a
request. If the required mapping information for the given
read/write request exists in SRAM (in CMT), it is serviced

1024

Cached Mapping
Table

Global Translation
Directory

3
10
11
1

150
170

260
220

DLPN DPPN
0
1
2
3

21
17

22
15

MVPN MPPN

DLPN =1280

DLPN=1280,
F->V

DPPN=660

Data

OOB

DPPN=661

......
MvPN=2,

F->V

DLPN

-
1280
-

1535

570
-

660
-

420

MPPN=15
DPPN

0

MvPN=0,
V->I

DLPN

1
2
-

511

110
130
440
-

560

MPPN=21
DPPN

0

MvPN=0,
F->V

DLPN

1
2
-

511

110
130
440
-

560

MPPN=23
DPPN

260

(2)

(3)

(4)

23

(5)

(6)

(8)

1280 660 (9)
(10)

......

(11)

Data Block

......

Victim
entry

......

(1)

Translation Block

(7)

Translation PageData Page

Figure 5: (1) Request to DLPN 1280 incurs a miss in Cached
Mapping Table (CMT), (2) Victim entry DLPN 1 is selected, its
corresponding translation page MPPN 21 is located using Global
Translation Directory (GTD), (3)-(4) MPPN 21 is read, updated
(DPPN 130 → DPPN 260) and written to a free translation page
(MPPN 23), (5)-(6) GTD is updated (MPPN 21 → MPPN 23)
and DLPN 1 entry is erased from CMT. (7)-(11) The original
request’s (DLPN 1280) translation page is located on flash (MPPN

15). The mapping entry is loaded into CMT and the request is
serviced. Note that each GTD entry maps 512 logically consecutive
mappings.

directly by reading/writing the data page on flash using this
mapping information. If the information is not present in
SRAM then it needs to be fetched into the CMT from flash.
However, depending on the state of CMT and the replace-
ment algorithm being used, it may entail evicting entries
from SRAM. We use the segmented LRU array cache algo-
rithm [14] for replacement in our implementation. However,
other algorithms such as evicting Least Frequently Used
mappings can also be used.

If the victim chosen by the replacement algorithm has not
been updated since the time it was loaded into SRAM, then
the mapping is simply erased without requiring any extra
operations. This reduces traffic to translation pages by a sig-
nificant amount in read-dominant workloads. In our experi-
ments, approximately 97% of the evictions in read-dominant
TPC-H benchmark did not incur any eviction overheads.
Otherwise, the Global Translation Directory is consulted to
locate the victim’s corresponding translation page on flash.
The page is then read, updated, and re-written to a new phys-
ical location. The corresponding GTD entry is updated to re-
flect the change. Now the incoming request’s translation en-
try is located using the same procedure, read into the CMT
and the requested operation is performed. The example in
Figure 5 illustrates the process of address translation when a
request incurs a CMT miss.

Overhead in DFTL Address Translation. The worst-case
overhead includes two translation page reads (one for the
victim chosen by the replacement algorithm and the other
for the original request) and one translation page write (for
the victim) when a CMT miss occurs. However, our design
choice is rooted deeply in the existence of temporal locality
in workloads which helps in reducing the number of evic-

234

Figure 3.3: An example of address translation in DFTL ?

In order to increase the hit ratio, CAST ? adds a consecutive field into their

18

caches. Consecutive logical addresses that are mapped to consecutive physical addresses

are grouped into single cache block. The example of consecutive field is illustrated in

Figure 3.4. As the physical addresses of the logical addresses 10-12 are consecutive, they

can be kept together in the same cache block by setting the consecutive field (C) to two.

9 40

TAG DATA

10 48

17 51

9 40 0

TAG DATA C

10 48 2

17 51 0

with consecutive field

11 49

12 50

without consecutive field

Figure 3.4: An example of cache with consecutive field.

Owing to the nature of sequential write operations, their physical addresses are more

likely to be consecutive. Hence, adding the consecutive field improves overall performance.

In addition, CAST biases its physical address selection to prefer contiguous data locations

and therefore increases the chance of consecutive addresses.

An idea of consecutive field is also presented in a hybrid FTL named CFTL ?.

CFTL employs LFU cache replacement policy; frequently accessed pages are having better

performance. To accelerate the address translation time of infrequently accessed pages,

CFTL implements a mechanism to detect and convert infrequently accessed page-mapping

entries into block-mapping entries.

To further exploit the spatial locality, S-FTL ? caches a whole translation page as

a single cache block. It also reduces the RAM space needed by compressing cached trans-

lation pages. In contrast, CDFTL ? enhances DFTL by adding a second level cache. The

first level cache is similar to DFTL while the second level cache stores entire translation

pages. Hence, the temporal locality is exploited on the first level cache, while the spatial

locality is handled by the second level cache. Even though caching full translation pages

can guarantee the spatial locality exploitation, it is not suitable for a device with small

RAM capacity because each cached translation page is huge.

19

Global�Translation

Directory�(GTD)

DLPN

15

469

517

127

Cached�Mapping

Table�(CMT)

2878

DPPN UPDA
1

--
0

1

TVPN
0

--
1

255

LOCA
0

--
1

0

TPPN
62

--
36

28

DLPN

769
106768

110770
3

TPPN=28
Valid

DPPN

Cached�Translation

�Page (CTP)

Valid

Data

Data�Blocks Translation�Blocks

FLASH

RAM

TPPN=36 TPPN=28 TPPN=164

DLPN=4

(1)

(2)

(3)

Valid

Data

4 25

(4)

(5)

victim

(8)

(10)

DPPN=25 DPPN=60

(11)

770
Free Valid

110
769 3
768 106

DLPN DPPN

770
Valid Invalid

108
769 3
768 105

DLPN DPPN

5
Free �Valid

37
4 25
3 11

DLPN DPPN

164

(6)

(7)(9)

Figure 3. An example of address translation process in CDFTL scheme. Suppose the DLPN 4 is the requested logical address,

and each translation page stores 3 mappings, then the corresponding TVPN is 1 (4/3=1). (1) Request to DLPN 4 incurs a miss in the

CMT. (2)-(3) Get the location of the requested mapping by consulting the GTD with TVPN 1. (4)-(5) Suppose DLPN 15 is selected

as the victim in the CMT, the requested mapping is fetched into the CMT after kicking the victim out. (6)-(7) Suppose TPPN 28 is

selected as the victim page in the CTP. According to the UPDA in the GTD, TPPN 28 is updated, so it is flushed back into the free

translation page TPPN 164 in flash memory. The original translation page in the flash memory is invalid. (8)-(9) The item TPPN 28

in the GTD is changed to 164. (10) Translation page TPPN 36 is then fetched into the CTP. (11) Data page DPPN 25 is located and

the request is serviced.

need to flush-back the victim to flash memory and update
the GTD simultaneously.

In our scheme, the space overhead incurred by storing
the entire page-level mapping table is negligible compared
with the whole flash space. A 32GB flash memory needs
about 96MB (0.29%)flash space for storing all these map-
pings. For space overhead in RAM, although the GTD is
maintained in RAM permanently, it does not pose many
space overheads. For example, for a 32GB flash, 32768
translation pages are needed, which requires about 128KB
RAM space. As the first-level cache in RAM, the CMT
can be set to different sizes flexibly based on the address
mapping table size that required to be cached. For exam-
ple, it can be set to 128KB, which is about 0.13% of the
whole mapping table size (96MB). Similarly, the CTP size
can also be set according to requirements. If the active map-
ping set is large, we adopt four-way set associative mapping
approach for cache organization in order to keep the cache
efficiency.

3.3 Address Translation Process

Given a requested address mapping, we can get it di-
rectly if it hits in the first-level cache. Otherwise, we need to
consult the location of the translation page which contains

the requested mapping from the GTD. If the requested map-
ping is cached in the CTP, we can find it by searching the
cache. Otherwise, the requested mapping will be read from
flash memory and fetched into the first-level cache accord-
ing to the fetch-in policy discussed in above section, and the
requested translation page will also be fetched into the CTP
correspondingly after the victim be kicked out. In Figure 3,
an example is given for both two level caches miss in the
address translation procedure for CDFTL.

3.4 Read/Write and Garbage Collection

Read or write operation can be performed after obtain-
ing the target data page. With the write operation prop-
agates in the flash memory, free space will decrease. If
the free blocks in whole flash memory reach a threshold,
garbage collector will be invoked. To keep cache synchro-
nization, the mapping slots in both two level caches should
be updated correspondingly when do garbage collection for
data blocks; the mapping slot(s) in the second-level cache
and the global translation directory (GTD) should be up-
dated simultaneously when do garbage collection for the
translation blocks. Since the first-level cache is imple-
mented in four-way set mapping approach while the map-
pings in the second-level cache are sequentially organized,

161

Figure 3.5: An example of address translation in CDFTL ?

CHAPTER IV

PERFORMANCE EVALUATION METHODOLOGY

Before detailing this dissertation works, we would like to describe about the perfor-

mance evaluation methodology that will be used throughout this dissertation. This chap-

ter begins with the performance metrics and follows by the assumptions and constraints

of the simulation. In the end of the chapter, the characteristics of the benchmarks is

described.

4.1 Performance Metrics

Although the main objective of this dissertation is to optimize the cache for a

demand-based FTL, directly measuring the performance of a cache may not reflect the

actual FTL performance. For example, a demand-based FTL that has very high cache

miss ratio but very low cache miss penalty may perform better than a demand-based FTL

that has very low cache miss ratio but very high cache miss penalty. Consequently, the

evaluation will measure not only the cache performance but also the FTL performance.

4.1.1 Cache Performance

Generally, the performance of a cache system is measured by the hit ratio or miss

ratio. The cache hit ratio is the ratio of cache hit per cache access:

CacheHitRatio =
numCacheHit

numCacheAccess
. (4.1)

The cache miss ratio is, on the other hand, the ratio between the number of cache misses

and the number of cache accesses:

CacheMissRatio =
numCacheMiss

numCacheAccess
. (4.2)

The hit or miss ratio can perfectly show the efficiency of cache system; A cache

system that can effectively exploit the access localities of workloads will have higher

21

cache hit ratio or lower cache miss ratio. However, the overall performance, especially in

terms of time, may not be able to predict by only cache hit or miss ratio. The reason is

that the penalty of each cache miss can be differed. There are several research works that

proposed cache performance metrics that are more accurate ?.

Since this dissertation are focusing on the performance of FTL, the complex metrics

are not suitable for analyzing the effect of cache over FTL. Hence, the cache hit or miss

ratio will be used. Moreover, a cache miss will be categorized by it miss penalty. Thus,

there are four classes of cache access:

1. cache hit, A cache hit is a read or write access while its data are being cached;

2. cache miss without penalty, A cache miss without penalty is an access that does

not hit and require neither fetching nor writing-back. A cache write that replaces

unmodified cache entry, for example;

3. cache miss with fetching penalty, A cache miss with fetching penalty is an access

that does not hit; thus, the data have to be fetched from the back-end storage but

will not replace a modified data;

4. cache miss with writing-back penalty, A cache miss with writing-back penalty is an

access that does not hit and evicts a modified cache entry; therefore, the modified

data have to be written back to the back-end storage.

Among these four, a cache hit has the best performance then a cache miss without

penalty. In NAND flash memory, a page reading time is only a tenths of a page programing

time. Therefore, a cache miss with write-back penalty is considered for having the worst

performance out of four classes.

4.1.2 FTL Performance

Since an FTL has many functions, as mentioned in Chapter 2, its performance can

be measured in several aspects. There are five main categories of FTL performance ?:

SRAM overhead, translation performance, block utilization, garbage collection perfor-

mance, and recovery performance.

22

4.1.2.1 SRAM Overhead

Generally, the data of FTL, for instance the mapping table, are kept in SRAM,

which is a valuable resource. Thus, several FTLs also use the flash memory itself to store

FTL data and keep only essential data in SRAM. Making the most out of this valuable

resource is desirable. Since a SRAM overhead of a demand-based FTL can be configured

by adjusting its cache size, the SRAM overhead has to be controlled in each experiment.

4.1.2.2 Translation Performance

One of the principle functions of FTL is address translation that is responsible for

finding data location and also assigning new data location. The translation performance is

determined by how many look-ups or updates required and how long do these operations

taken since they may access the flash memory. Therefore, the translation performance

mostly depends on the choice of algorithm, data structure, and storage.

The translation performance can be measured by average system response time and

average access time. The system response time is the total time from the very beginning

til finished, while the access time is begin when the FTL starts servicing the I/O request.

Therefore, the difference is the I/O queuing time. The average system response time

is the better metric for measuring the overall performance, as it include the impact of

request frequency.

Since the average system response time is workload dependent, the value can be

much varied between benchmarks. In this dissertation, the translation performance is

measured by a normalized average system response time. The normalized average system

response time (NT) is calculated from dividing the measured average system response

time of evaluating FTL (tFTL) by the average system response time of the original page-

level FTL (tPFTL), which keeps the entire page-level mapping table in SRAM:

NT =
tFTL

tPFTL
. (4.3)

Therefore, the normalized average system response time is comparable between bench-

marks. The value lower than 1 means an improvement from the baseline; hence, the lower

value is the better translation performance.

23

4.1.2.3 Block Utilization

Block utilization is a number of pages in a block that was used before the block

is erased. The block utilization of a flash memory can be also measured by a number

of block erasures because an FTL with lower block utilization usually runs out of free

pages and triggers it’s garbage collection more often. Consequently, the FTL that has

better block utilization tends to have longer lifespan. The block utilization (BU) can be

calculated from:

BU =
wIO

e
, (4.4)

where wIO is the number of pages that was requested to be written by I/O and e is the

number of pages erased, which is the number of block erased multiply by the number of

pages in block.

4.1.2.4 Garbage Collection Performance

The performance of garbage collection is determined by the number of valid pages

moved during each garbage collection. The lower number often results in higher perfor-

mance because of fewer pages written and blocks erased. The garbage collection perfor-

mance is defined by valid pages move rate (MR):

MR =
m

e
, (4.5)

where m is the number of valid pages moved by the garbage collection and e is the number

of pages erased. The higher value of MR means the lower garbage collection performance.

4.1.2.5 Fault Tolerance

Flash memory is widely used in embedded and mobile systems. A sudden power

loss, which is unexpected, can be occurred anytime. Since the crucial FTL data is usually

stored in SRAM, mechanisms, such as backup and recovery, for handling data loss have

to be taken in consideration for these systems in order to prevent data corrupted. As the

recovery involves reading many pages in order to reconstruct the latest state of mapping

table, the recovery performance (RP) can be measured by the number of pages read per

24

total number of pages in the recovering flash memory:

RP =
rrecovery

N
, (4.6)

where rrecovery is the number of pages read during recovery and N is the total number of

pages in the flash memory.

4.2 Simulator

Every experimental result in this dissertation was simulated by the customized

simulator based on FlashSim ?. FlashSim is widely adopted by many research works .

The customized simulator is consists of four main components: I/O interface, FTL, NAND

flash memory controller, and NAND flash memory, as shown in Figure 4.1.

NAND Flash Memory Controller

READ / PROGRAM / ERASE

Flash

Translation

Layer

(FTL)

I/O Interface

NAND Flash Memory (1 DIE)

PLANE 0REGISTERS

PAGE 0

PAGE 255

PAGE 2

PAGE 1

BLOCK 0

...

PAGE 0

PAGE 255

PAGE 2

PAGE 1

BLOCK 1

...

PAGE 0

PAGE 255

PAGE 2

PAGE 1

BLOCK 2

...

...

PAGE 0

PAGE 255

PAGE 2

PAGE 1

BLOCK 2047

...

PLANE 1REGISTERS

PAGE 0

PAGE 255

PAGE 2

PAGE 1

BLOCK 0

...

PAGE 0

PAGE 255

PAGE 2

PAGE 1

BLOCK 1

...

PAGE 0

PAGE 255

PAGE 2

PAGE 1

BLOCK 2

...

...

PAGE 0

PAGE 255

PAGE 2

PAGE 1

BLOCK 2047

...

DRAM

(DATA BUFFER)

SRAM

(METADATA)

READ / WRITE

Benchmark

D
A

T
A

B

U
S

D A T A B U S

Figure 4.1: An overview of the simulator

1. I/O interface

The I/ O interface is assumed as a black-box. It generates I/O requests according

to the I/O trace. The generated request will be immediately put on the command

queue, while data is put in the allocated space in the DRAM buffer.

2. FTL

25

The FTL response to queuing I/O requests by converting a request, read or write,

into several commands, read, program, or erase. Then, the command is issued to

the NAND flash memory controller. Also, it has SRAM for temporarily storing

necessary metadata, for instance, mapping table, status of pages and blocks.

3. NAND flash memory controller

The NAND flash memory Controller accepts the command from the FTL. Then,

it accesses the NAND flash memory according to the command and records the

calculated execution time. The data can be transferred directly from and to DRAM

buffer; however, the metadata are passed to the FTL.

4. NAND flash memory

The simulated NAND flash memory is modeled according to the 8GB MLC NAND

flash memory specifications obtained from Micron Technology, Inc ?. The summary

of specifications is provided in Table 4.1. The register in each plane acts as a reading

and programing buffer since the page has to be read or programed as a whole.

Table 4.1: 8GB MLC NAND Flash Memory Specifications ?

Specifications
Die Size 8GB (4,096 blocks)
Die Configuration 2 planes (2,048 + 2,048 blocks)
Plane Configuration 2,048 blocks with 1 8,640-byte register
Block Configuration 256 pages
Page Size 8,192 + 448 bytes (data + spare area)
Page Read Time 75μs
Page Program Time 1,300μs
Block Erase Time 3,800μs
Transfer Rate 50MB/s
Endurance 3,000 P/E cycles
Minimum ECC Requirement 24-bit ECC per 1,080 bytes

4.2.1 Assumptions and Constraints

Since this dissertation is concentrated on applying cache for address translation per-

formance and SRAM overhead, several assumptions have been made and some variables

have been controlled in order to exhibit the impact of the cache on FTL performance.

26

The assumptions and constraints are as follows.

• There are only two types of I/O request: READ and WRITE. Special types of

request, for example TRIM , are not allowed.

• The command queue is a simple FIFO queue. Reordering or aggregating requests

are not allowed.

• The sizes of command queue and DRAM buffer are infinite.

• There is no delay for I/O interface. However, the queuing time depends on avail-

ability of the FTL and NAND flash memory controller.

• The garbage collection is only running on-demand, and the triggering condition is

the same for every FTL.

• The garbage collection selects a recycling block by greedy selection based on the

number of valid pages in the block.

• Wear leveling is disable.

• No parallelization and load-balancing.

• Any special features of the NAND flash memory, e.g., copy-back, two-plane access,

is disable.

• Only one die of the NAND flash memory is simulated.

• the over-provisioning ratio or the ratio of reserved capacity to total capacity is set

to 1/32. the user accessible is 31/32 of total capacity.

• the user accessible pages are 100% filled before starting the simulation.

4.3 Benchmarks

The performance of FTLs will be evaluated by executing several workload traces

selected from two publicly accessible sources: Storage Performance Council (SPC) ? and

Microsoft Research Cambridge (MSRC) ?.

27

4.3.1 SPC Benchmarks

The SPC benchmarks consists of five I/O traces. Two are the I/O traces of OLTP

applications and three traces are obtained from search engines. The summarized statistics

of benchmarks are in Table 4.2.

Table 4.2: Summarized Statistic of SPC Benchmarks

Number Write Average Average Average
Benchmark of Request Size Read Size Write Size

Requests (%) (KB) (KB) (KB)
Financial1 5,334,984 76.84 3.38 2.24 3.72
Financial2 3,699,195 17.65 2.39 2.28 2.92
WebSearch1 227,623 0.05 17.16 17.17 8.00
WebSearch2 964,410 0.05 17.26 17.26 8.00
WebSearch1 899,121 0.07 17.78 17.76 44.63

The request frequency histograms of each benchmark are shown in Figure ??.

4.3.2 MSRC Benchmarks

For MSRC benchmarks, the traces from the enterprise data centers running various

applications are selected. The details of these traces can be found on their publication ?.

MSRC benchmarks ? are I/O traces collected from 13 servers in Microsoft data

center running various enterprise workloads, as shown in Table 4.3, for seven days. Each

server has one OS volume and several data volumes. The total is 36 volumes. However,

only 25 volumes, 13 OS volumes and 12 data volumes, are selected as benchmarks. The

summarized statistics of the selected traces are described in Table 4.4.

As shown in Table 4.4, all of OS volumes and all of their first data volumes are

selected, except ts and wdev. ts does not have any data volumes because it is a terminal

server. On the contrary, wdev2 is selected instead of wdev1 since wdev1 has very few I/O

requests.

The request frequency histograms of each benchmark are shown in Figure ??.

28

Table 4.3: Description of MSRC servers

Server Description
hm Hardware monitoring
mds Media server
prn Print server
proj Project directories
prxy Firewall/web proxy
rsrch Research projects
src1 Source control
src2 Source control
stg Web staging
ts Terminal server
usr User home directories
wdev Test web server
web Web/SQL server

Table 4.4: Summarized Statistic of MSRC Benchmarks

Number Write Average Average Average
Benchmark of Request Size Read Size Write Size

Requests (%) (KB) (KB) (KB)
OS Volumes
hm0 2,610,531 67.07 8.75 6.79 9.72
mds0 1,191,594 88.43 8.80 22.59 7.00
prn0 2,474,978 83.02 8.98 21.89 6.34
proj0 2,805,838 85.40 30.34 14.80 33.00
prxy0 11,822,230 97.79 4.43 6.43 4.38
rsrch0 1,051,948 96.59 8.30 11.40 8.19
src10 3,348,043 21.78 9.68 5.01 26.45
src20 1,429,295 90.33 6.56 6.66 6.54
stg0 1,887,372 86.41 11.06 25.09 8.86
ts0 1,633,021 85.37 8.94 14.72 7.95
usr0 1,622,780 56.62 25.66 45.82 10.20
wdev0 1,022,921 87.11 7.58 7.18 7.64
web0 1,486,663 78.13 12.28 28.42 7.77
Data Volumes
hm1 609,192 4.65 15.16 14.93 19.99
mds1 166,627 48.61 25.42 37.71 12.43
prn1 2,296,084 39.80 7.25 6.54 8.32
proj1 238,890 18.56 36.61 42.72 9.77
prxy1 43,563,576 62.59 9.16 12.28 7.31
rsrch1 9,303 99.94 8.13 4.00 8.13
src11 3,723,809 35.13 14.95 12.76 18.99
src21 209,728 4.77 55.99 58.20 11.86
stg1 688,922 91.11 11.29 41.90 8.30
usr1 112,405 18.05 38.08 45.12 6.10
wdev2 140,988 99.93 9.32 4.19 9.33
web1 105,324 59.20 21.18 36.79 10.43

CHAPTER V

SCFTL: AN EFFICIENT CACHING STRATEGY FOR

FLASH TRANSLATION LAYER

Naturally, the efficiency of any cache system depends on workloads. A cache system

takes advantages of its faster access time and workload localities, e.g., temporal locality

and spatial locality, by buffering data that are likely to be accessed in the near future.

However, the smaller capacity of the cache system cannot hold every data; thus, managing

cached data can significantly affect the performance.

As already mentioned in Chapter 3, the core of a demand-based FTL is the cache

of the page-level mapping table and its performance mostly relies on its cache efficiency.

Since the size of a file can be larger than a flash page and many file systems prefer

allocating contiguous logical pages for storing a large file, accessing it usually has spatial

locality. Thus, many researchers proposed several demand-based FTLs that exploit the

spatial locality ????.

The demand of larger capacity storage is inevitable. Accordingly, a representative

from Micron Technology, Inc. presented that the size of a flash page tends to grow larger ?.

As the page-level mapping table of demand-based FTL is stored in flash pages, a larger

page can contain more mapping entries. Although the cache efficiency might be increased

by retrieving many mapping entries in single page read, caching all of them also needs

larger cache, i.e. SRAM, capacity.

For example, suppose that each page contains 2048 mapping entries, and there

are 2048 sequential reads from logical address 0 to 2047 to the flash memory. In this

example, the performance of two cache scheme will be compared. The first scheme caches

2048 mapping entries per translation page read while the second scheme caches only 64

entries per read. Since 2048 mapping entries can be read at once, caching all 2048 entries

will result in only one cache miss or cache miss ratio of 1/2048. Consequently, only 2049

flash pages was read: one page for 2048 mapping entries and 2048 pages for data.

30

On the other hand, the second scheme will yield the miss ratio of 1/64 or 32 cache

misses in total. Therefore, 2080 pages are read. As one can see, the number of reads is

only 31 pages or about 1.51% more than the first scheme while the difference of spatial

requirements is as high as 32 times.

Although caching many mapping entries in each translation page read might lower

cache misses from sequential accesses, a very long sequential accesses is in fact infrequent.

As published by ?, the median file size is remain 4KB in 2009 even though the average file

size is increasing. Accordingly, S-FTL and CDFTL, which cache entire translation pages,

might gain very little benefit from larger page size. On the contrary, they might not be

able to maintain the same level of performance because the lower number of cache entries

means the higher possibility of evicting a modified cache entry. Additionally, the larger

page size means that fewer pages are needed to store a large file; hence, the number of

sequential accesses may decrease. As a result, the consecutive field technique, which is

implemented in CFTL and CAST, will be less effective.

Given these points, a high performance demand-based FTL requires an appropriate

technique for exploiting spatial locality of mapping table in large-page flash memory.

Consequently, SCFTL, a demand-based FTL with novel cache management techniques,

will be proposed in this chapter.

5.1 Design of SCFTL

SCFTL is a page-level address translation FTL that employs an efficient caching

strategy. It consists of three main components: page-mapping table (PMT), translation

page directory (TPD), and cache mapping table (CMT). In order to achieve the page-

level address translation, SCFTL stores a page-mapping table in several translation pages

(TPs). Each translation page keeps a group of physical page numbers (PPNs) mapped to

consecutive logical addresses or logical page numbers (LPNs). Due to the gigantic flash

page size, each translation page holds thousands of physical page numbers; hence, only

few pages are needed for the complete page-mapping table. TPD keeps the addresses of

every translation page in RAM and indexes them by the most significant bits of logical

addresses. The performance degradation from offloading the mapping table is reduced

by caching several mapping entries in CMT. Furthermore, CMT integrates two spatial

locality exploitation techniques and a customized cache replacement policy in order to

31

enhance its efficiency.

5.1.1 Two-Level Address Translation

As the page-mapping table of SCFTL is kept inside the flash memory, the address

translation has to be done by a two-level process. Generally, the physical address of a

request could be found in CMT; hence, the two-level address translation is not triggered.

However, the two-level address translation will be executed in case of a cache miss.

The two-level address translation splits a logical address into two parts: an index

and an offset. In the first level, TPD converts the index into the location of the related

translation page, and then the translation page is retrieved from the flash memory. After

that, the second level uses the offset, which is a position of the physical address in the

translation page, to extract the physical address from the translation page. Therefore, the

logical address is finally translated to the corresponding physical address. An example of

the two-level address translation is provided in step (2)-(4) of Figure 5.1.

5.1.2 Efficient Caching Strategy

Owing to the localities of PMT accesses, several translation page read operations

can be omitted by caching mapped physical page numbers. However, the efficiency of

CMT does not only depend on the temporal locality; it is also highly influenced by the

spatial locality since the spatial locality can be easily found in sequential accesses, e.g.,

accessing large file.

As the page size grows larger, more mapping entries can be kept inside each page.

This means a demand-based FTL can fetch contiguous mapping entries faster, but stor-

ing all of them will also take a large amount of SRAM capacity. Without larger SRAM,

demand-based FTLs that exploits the spatial locality by caching entire translation pages,

for instance, S-FTL and CDFTL, will run out of SRAM capacity very quickly. Further-

more, a decrease in the number of cache entries means a high probability of evicting a

modified cache entry. Due to the fact that a page programing takes much longer time to

finish than a page reading, frequently evicting modified cache entries is undesirable.

In this section, a using of fundamental technique for exploiting spatial locality is

described. The consecutive field technique is also added for better spatial efficiency.

32

LOGICAL ADDRESS
INDEX OFFSET

11 1 3

0 1 2 3 4 5 6 7
0
1
2 16 17 18 19 20 21 22 23
3
4 8 9 48 49 50 13 53 54
.
.
.
TPs (FLASH MEMORY)

TPD
TP ADDR MC

0
1 4 0
2 2 2
3

V M A TAG DATA C
1 0 0 16 16 0
1 1 0 17 51 0
1 0 1 18 18 1
1 1 1 20 52 0

CMT (BEFORE)

V M A TAG DATA C
1 0 1 10 48 2
1 1 0 17 51 0
1 0 0 13 13 0
1 1 1 20 52 0

CMT (AFTER)

1g-
2g- 3g-

4g
?

5g-
6g-

Figure 5.1: An example of the SCFTL address translation. Suppose a logical address of the
request is 11, and each translation page contains eight physical addresses; the index and offset
of the logical address is 1 and 3, respectively. (1) The access of the logical address 11 incurs
a cache miss in CMT, and the first cache entry is selected as a victim. Writing back does not
occur, as the victim is not modified. Then, (2) the two-level address translation is begun, and
the translation page 1 is located at the page number 4. (3) The translation page is read from
the flash memory, and (4) the physical address of the request is found at the offset 3. (5) Instead
of storing only one mapping entry in CMT, the consecutive physical addresses of the logical
addresses 10 and 12 are fetched and stored together with the logical address 11. (6) Assume
that the spatial size is four; another mapping entry 13 will be fetched to CMT. Since this is a
spatial fetching, the third cache entry is selected as a victim instead of the second cache entry,
which has MC value lower than the threshold.

While both techniques is maintaining numerous choices of cache entry for replacement, a

quintessential but simple replacement policy that prioritized replacing unmodified cache

entries over modified cache entries diligently prevents ineffective translation page pro-

graming.

5.1.2.1 Spatial Locality Exploitation

As a flash page, which is the smallest reading or writing unit, can pack thousands

of mapping entries, caching multiple mapping entries each translation page retrieving is

convenient. However, caching an mapping entry that will not be accessed is wasting the

cache space. In order to avoid caching unused mapping entries, a fine-grained spatial

fetching technique is introduced.

Despite increasing the cache entry size to accommodate more mapping entries,

SCFTL spends several small cache entries to exploit the spatial locality. In addition, as

33

the physical addresses of sequential write operations are likely to be sequentially assigned,

facilitating the consecutive field could save the CMT capacity by combining several se-

quentially mapped entries into one single cache entry. The consecutive field technique

was proposed by ? and its details were described in Chapter 3.

As a result, the chance of cache trashing can be controlled by limiting the amount of

mapping entries cached in each translation page read. Since SCFTL treats each mapping

entry as an individual cache entry, a low demanded mapping entry can be independently

replaced without disturbing others. However, not caching an entire translation page forces

SCFTL to reacquire the translation page before writing back.

Another drawback is come from the consecutive field technique. Cache eviction can

occur when modifying a cache entry even though it was a cache hit because the PPN

of their consecutive mapping entries are no longer consecutive. Henceforth, the cache

entry has to be split. The four cases of cache entry update are shown in Figure 5.2. The

first case is a normal update. The value of consecutive field of the cache entry is zero;

only one mapping entry is contained in this cache entry. Updating the mapping entry

is straightforward. The second case and the third case are happened when the value

of the consecutive field is one or more. In these case, each cache entry contains more

than one mapping entries. The second case is when the head mapping entry is being

modified, while the third case is the modifying of the tail mapping entry. The PPN of the

modifying mapping entry will no longer be consecutive with the others; therefore, another

cache entry is needed. Lastly, the fourth case is modifying a middle mapping entry of the

consecutive mapping entries in a cache entry. Obviously, this situation will break a cache

entry into three cache entries for the head mapping entries, the modifying mapping entry,

and the tail mapping entries. However, the split cache entries can be merged back if their

mapping entries are subjected to sequential write operations as shown in Figure 5.2b. As

SCFTL sequentially program flash pages, only the LPN of the previous programed PPN

will be evaluated in order to merge a freshly modified mapping entry.

Finally, as CMT allows a modified state of a mapping entry, the update of a trans-

lation page can be postponed. Consequently, several modifications of mapping entries

from the same translation page can be combined and written together to minimize the

number of page programing operations, and the effective way to update translation pages

34

9 40 0

TAG DATA C UPDATE

LPN: 9

PPN: 40 → 59

10 48 2

17 51 0

9 59 0

TAG DATA C

10 48 2

17 51 0
(a)

9 59 0

TAG DATA C

10 60 0

TAG DATA C

11 49 1

UPDATE

LPN: 10

PPN: 48 → 60

10 48 2

17 51 0
17 51 0

9 59 0
TAG DATA C

11 49 1

17 51 0

9 59 1
MERGE

LPN: 9 & 10

(b)

9 59 0

TAG DATA C

10 48 1

TAG DATA C

12 60 0

UPDATE

LPN: 12

PPN: 50 → 60

10 48 2

17 51 0
17 51 0

9 59 0

(c)

9 59 0

TAG DATA C

10 48 0

TAG DATA C

11 60 0

UPDATE

LPN: 11

PPN: 49 → 60

10 48 2

17 51 0

17 51 0

9 59 0

12 50 0

(d)

Figure 5.2: Four cases of CMT update in SCFTL: (a) normal update, (b) lower bound update
(c), upper bound update, and (d) middle update.

is introduced in the next subsection.

5.1.2.2 Cache Replacement Policy

In order to decrease the number of translation page write operations, the victim

selection process has to discriminate modified cache entries from others. However, pre-

venting modified cache entries from being a victim in the fully associative cache may cause

inefficient cache capacity utilization. Hence, SCFTL implements a customized cache re-

placement policy named D-NRU.

D-NRU is very similar to NRU ?. Each cache entry contains a 1-bit flag for in-

35

dicating that it was recently accessed. Besides, D-NRU also takes a modified flag into

account when it selects a victim. As the modified mapping entries from the same transla-

tion page can be written back simultaneously, writing the translation page that contains

many modified mapping entries is more economical. Consequently, D-NRU considers the

number of modified mapping entries in each translation page when selects a victim. The

counters (MCs) are attached to TPD as shown in Figure 5.1. Each MC is very tiny, as it

only needs to count until its value reaches the worthwhile threshold.

D-NRU is a combination of two variants of NRU algorithms. The algorithm selec-

tion is based on the type of a mapping entry fetching: normal fetching or spatial fetching.

The normal fetching has high priority, as it is caused by an I/O request. Its victim se-

lection prefers a cache entry that is not recently accessed (¬A), unmodified (¬M), and

modified (M) with high MC value (MCTP), respectively. On the other hand, the spatial

fetching is initiated by spatial locality exploitation. As its mapping entry may not be

reference, the cost of bringing it into the cache should be low. A modified cache entry

that has the MC value lower than the threshold (MCTP < c) will not become the victim

of spatial fetching. Furthermore, the recently accessed flag is not set for the cache entry

that is brought in by spatial fetching. The orders of D-NRU victim selection are provided

in Table 5.1, and examples are illustrated in step (1) and (6) of Figure 5.1.

Table 5.1: Victim Selection Orders of D-NRU

Attributes Normal Fetching Spatial Fetching

¬A ∧ ¬M 1 1
¬A ∧M ∧ (MCTP ≥ c) 2 2
¬A ∧M ∧ (MCTP < c) 3 -

A ∧ ¬M 4 3
A ∧M ∧ (MCTP ≥ c) 5 4
A ∧M ∧ (MCTP < c) 6 -

5.2 Performance Evaluation

In this section, the performance of SCFTL is evaluated and compared against DFTL

and CDFTL. The experiments is done on the simulated 8GB MLC NAND flash memory

as described in Chapter 4.

In these experiments, every cache is fully associative, and each FTL allows about

36

20KB of SRAM to be occupied by the cache. This amount of allowance is on par with

the memory footprint required by a block-mapping table. As CDFTL prefers the second

level cache to be large, the two-level cache of CDFTL is configured to 2KB (CMT) and

16KB (CTP), respectively.

The cache of SCFTL is manage by D-NRU replacement policy with 3-bit MC for

each TP. The maximum value of MC is therefore 7. The consecutive field in each cache

entry is 5 bits, and the number of fetches in each access is limited to 64.

The memory requirements are detailed in Table 5.2. According to Table 4.1, the

total number of pages is 4096× 256. As each page can store 8,192 bytes, 2,048 of 4-byte

PPN can be contained. Therefore, only 512 translation pages, which are about 0.05% of

the total pages, are required for SCFTL, DFTL, and CDFTL.

Since SCFTL keeps TPD and CMT in SRAM, the amount of SRAM needed is

the summation of the requirements of these two components. Each TPD entry contains

a 4-byte translation page number, a 3-bit modified counter, and a modified flag; hence,

only 2.25KB of SRAM is needed for storing 512 TPD entries. On the other hand, each

CMT entry consists of a 4-byte tag, a 4-byte PPN, a 5-bit consecutive field, and 3-bit for

valid, modified, and recently accessed flags; therefore, each CMT entry is 9 bytes. With

2,048 CMT entries, the total size of CMT is 18KB. As a result, SCFTL requires only

20.25KB of SRAM.

Alternatively, DFTL and CDFTL require 18.50KB and 20.20KB of SRAM, respec-

tively. Furthermore, the memory requirements of the original block-level FTL (BFTL),

the original page-level FTL (PFTL), and the log-buffer-based FTL (FAST) with 3% log

blocks are also provided in Table 5.3 for reference purpose.

5.2.1 Cache Performance

In Figure 5.6, SCFTL achieves the average cache miss of 20.68%. Due to the very

small cache size configuration, the average cache miss of DFTL that does not exploit

spatial locality is very high. Its average cache miss is 64.93%, which is significantly worse

than SCFTL by 44.25%. In addition, the average cache miss of CDFTL is 20.46%.

Even though the average miss of CDFTL is very close to the average cache miss

37

Table 5.2: The configurations of FTLs for Chapter 5 experiments.

DFTL CDFTL SCFTL

PMT 512 pages 512 pages 512 pages
GTD 2.00KB 2.19KB 2.25KB
CMT 16.50KB 2.06KB 18.00KB

(2048 entries) (256 entries) (2048 entries)
CTP - 16.00KB -

(2 * 2,048 entries)
GC 128KB 128KB 128KB
Total (without GC) 18.50KB 20.25KB 20.25KB
Total (with GC) 146.50KB 148.20KB 148.25KB

Table 5.3: The configurations of other FTLs.

FTL BFTL FAST PFTL
Type Block-Level Log-Buffered-Based Page-Level

(Hybrid)

BMT 16KB 16KB -
PMT - 256KB 4096KB
GC 0.50KB 4.50KB 128KB
Total (without GC) 16.00KB 272.00KB 4096.00KB
Total (with GC) 16.50KB 276.50KB 4224.00KB

of SCFTL, the cache miss penalties of SCFTL are significantly lower because SCFTL is

aware of the access time difference between reading and programing. Since the penalty

of evicting a modified cache entry is significantly higher than evicting an unmodified one,

the victim selection of SCFTL is biased by D-NRU. Subsequently, the cache miss with

writing-back penalty, which is one or more flash programing operations, or the number

of modified cache entries evicted is only 0.40% for SCFTL, while it is 1.05% and 5.36%

for DFTL and CDFTL, respectively. Furthermore, the cache miss with fetching penalty,

only one flash page read penalty, is 3.62% for SCFTL and 4.95% for CDFTL.

Additionally, the large portion of SCFTL cache misses does not have penalty, as

they are cache misses caused by the garbage collection. While the garbage collection is

relocating valid pages, the valid pages has to be read. Since the old PPN of the valid

page is already known, the address translation may not required; however, a cache entry

is still needed to be allocated for the updated PPN. Thus, the cache is accessed and may

38

need writing-back, but fetching the miss entry is unnecessary.

0%	

20%	

40%	

60%	

80%	

100%	

Fin
an
cia
l1	

We
bS
ea
rch
1	

We
bS
ea
rch
3	

md
s_0
	

pro
j_0
	

rsr
ch
_0
	

src
2_
0	

ts_
0	

wd
ev
_0
	

hm
_1
	

prn
_1
	

prx
y_
1	

src
1_
1	

stg
_1
	

wd
ev
_2
	

CACHE	
 HIT	
 RATE	
 CACHE	
 MISS	
 (0R)	
 RATE	
 CACHE	
 MISS	
 (1R)	
 RATE	

CACHE	
 MISS	
 (2R)	
 RATE	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 5.3: Cache performance of 20KB + 128KB DFTL

0%	

20%	

40%	

60%	

80%	

100%	

Fin
an
cia
l1	

We
bS
ea
rch
1	

We
bS
ea
rch
3	

md
s_0
	

pro
j_0
	

rsr
ch
_0
	

src
2_
0	

ts_
0	

wd
ev
_0
	

hm
_1
	

prn
_1
	

prx
y_
1	

src
1_
1	

stg
_1
	

wd
ev
_2
	

CACHE	
 HIT	
 RATE	
 CACHE	
 MISS	
 (0R)	
 RATE	
 CACHE	
 MISS	
 (1R)	
 RATE	

CACHE	
 MISS	
 (2R)	
 RATE	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 5.4: Cache performance of 20KB + 128KB CDFTL

5.2.2 Translation Performance

In this section, the translation performance, which is the most important metric,

is measured. The translation performance (TP), which is calculated from the average

system response time by (4.3), on each benchmarks are shown in Figure 5.7, 5.8, and

5.9, respectively. Then, the average values are compared in Figure 5.10. Since the shown

values were derived from an average system response time, the lower value is better.

Furthermore, the value of 1 means the average system response time is equal to the

baseline, PFTL.

Due to the exceptional cache performance of SCFTL, its geometric mean of nor-

malized average system response time is only 1.08. On the contrary, the value of DFTL

and CDFTL is worse. Their value are 1.61 and 1.28, respectively. Hence, the speedups

39

0%	

20%	

40%	

60%	

80%	

100%	

Fin
an
cia
l1	

We
bS
ea
rch
1	

We
bS
ea
rch
3	

md
s_0
	

pro
j_0
	

rsr
ch
_0
	

src
2_
0	

ts_
0	

wd
ev
_0
	

hm
_1
	

prn
_1
	

prx
y_
1	

src
1_
1	

stg
_1
	

wd
ev
_2
	

CACHE	
 HIT	
 RATE	
 CACHE	
 MISS	
 (0R)	
 RATE	
 CACHE	
 MISS	
 (1R)	
 RATE	

CACHE	
 MISS	
 (2R)	
 RATE	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 5.5: Cache performance of 20KB + 128KB SCFTL

0%	

20%	

40%	

60%	

80%	

100%	

DFTL	
 CDFTL	
 SCFTL	

CACHE	
 HIT	
 RATE	
 CACHE	
 MISS	
 (0R)	
 RATE	
 CACHE	
 MISS	
 (1R)	
 RATE	

CACHE	
 MISS	
 (2R)	
 RATE	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 5.6: Cache performance of 20KB + 128KB FTLs

of SCFTL from DFTL and CDFTL are 1.50 and 1.19, respectively.

As shown in Figure 5.9, the average system response times of DFTL in mds_1 and

proj_1 benchmarks is very high; the normalized value are 14.44 and 80.88, respectively.

These two benchmarks numerous high frequency sequential accesses, according to Sec-

tion 4.3.2. Since DFTL does not exploit spatial locality, an exceeding long servicing time

due to consecutive cache misses is unavoidable. Consequently, the queuing time is accu-

mulated. On the other hand, the performance of CDFTL is worse in low spatial locality

benchmark because of the high ratio of cache miss with writing-back penalty.

SCFTL on the other hand can still excel on the benchmarks that do not have much

spatial locality although it exploits the spatial locality. The reason is the small cache entry

technique and D-NRU replacement policy that prevent SCFTL from frequently evicting

modified cache entry.

40

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

Financial1	
 Financial2	
 WebSearch1	
 WebSearch2	
 WebSearch3	

DFTL	
 CDFTL	
 SCFTL	

Figure 5.7: Normalized average system response time of 20KB + 128KB FTLs on SPC bench-
marks

0	

0.5	

1	

1.5	

2	

2.5	

hm
_0
	

md
s_0
	

prn
_0
	

pro
j_0
	

prx
y_
0	

rsr
ch
_0
	

src
1_
0	

src
2_
0	

stg
_0
	

ts_
0	

us
r_0
	

wd
ev
_0
	

we
b_
0	

DFTL	
 CDFTL	
 SCFTL	

Figure 5.8: Normalized average system response time of 20KB + 128KB FTLs on MSRC bench-
marks (OS volumes)

5.2.3 Block Utilization

Since the demand-based FTL periodically writes the translation page back to the

flash memory, the number of translation page written-back affect the block utilization. For

SCFTL, the average block utilization is 0.71, which is almost identical with the baseline,

as shown in Figure 5.11. It is significantly higher than 0.61 of CDFTL that has high ratio

of cache miss with flash programing (Miss(RW)).

5.2.4 Garbage Collection Performance

Since all of the FTLs in the experiments are page-level FTLs and they employ

greedy selection for garbage collection, their garbage collection performances are very

similar. The comparison of valid page move rate is shown in Figure 5.12.

41

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

hm
_1
	

md
s_1
	

prn
_1
	

pro
j_1
	

prx
y_
1	

rsr
ch
_1
	

src
1_
1	

src
2_
1	

stg
_1
	

us
r_1
	

wd
ev
_2
	

we
b_
1	

DFTL	
 CDFTL	
 SCFTL	

Figure 5.9: Normalized average system response time of 20KB + 128KB FTLs on MSRC bench-
marks (data volumes)

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

Average	
 of	
 AVG.	
 RES.	
 TIME	

DFTL	
 CDFTL	
 SCFTL	

Figure 5.10: Normalized average system response time of 20KB + 128KB FTLs

5.3 Analysis of Cache Performance

In this section, the analysis of cache performance is separated into two parts: D-

NRU replacement policy and spatial locality exploitation. The first part will compare

D-NRU against traditional replacement policy LRU and NRU. Then, the second part will

shown the efficiency of spatial locality technique that employed by SCFTL.

5.3.1 D-NRU Replacement Policy

The performances of D-NRU replacement policy and other replacement policies are

shown in Figure 5.13. According to the design, D-NRU avoids cache trashing by not

setting a recently accessed flag for spatial fetching, which results in subtle lower cache

miss ratio. In addition, it prevents spatial fetching from replacing low beneficial modified

cache entries. D-NRU also prevents premature cache writing back, which in turn provides

42

0.56	

0.58	

0.6	

0.62	

0.64	

0.66	

0.68	

0.7	

0.72	

Average	
 of	
 BLOCK	
 UTILIZATION	

DFTL	
 CDFTL	
 SCFTL	

Figure 5.11: Block utilization of 20KB + 128KB FTLs

0.247	

0.248	

0.249	

0.25	

0.251	

0.252	

0.253	

0.254	

0.255	

0.256	

0.257	

Average	
 of	
 MOVE	
 RATE	

DFTL	
 CDFTL	
 SCFTL	

Figure 5.12: Valid page move rate of 20KB + 128KB FTLs

additional time to gather more modified mapping entries that can be written-back together

to the same translation page.

Since the spatial locality exploitation of SCFTL is done by several small cache

entries, it is possible to evict multiple cache entries in the same cache access. LRU and

NRU do not aware of this fact and treat each small cache entry fetch equally; therefore,

evicting cache entries originated from more than one modified translation pages in each

cache access can easily happened as shown in Figure 5.14. On the other hand, D-NRU

makes use of the modified counter (MC) of each translation page. It prefers evicting

more modified cache entries from the same translation page to evicting cache entries

from several translation pages. Consequently, the number of translation pages written

per cache access significantly decreases. However, over protecting, which means too few

victim candidates, will also heighten the risk of cache trashing and eventually will result

in higher miss ratio.

43

75%	

80%	

85%	

90%	

95%	

100%	

LRU	
 NRU	
 DNRU1	
 DNRU2	
 DNRU3	
 DNRU4	

CACHE	
 HIT	
 RATE	
 CACHE	
 MISS	
 (0R)	
 RATE	

CACHE	
 MISS	
 (1R)	
 RATE	
 CACHE	
 MISS	
 (2R)	
 RATE	

CACHE	
 MISS	
 (RW)	
 RATE	

Figure 5.13: Cache performance of SCFTL with LRU, NRU, and D-NRU replacement policies

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

LRU	
 NRU	
 DNRU1	
 DNRU2	
 DNRU3	
 DNRU4	

WRITE	
 MAP	
 (M)	
 RATE	
 WRITE	
 MAP	
 (U)	
 RATE	

Figure 5.14: Number of modified translation page written per cache access of SCFTL with LRU,
NRU, and D-NRU replacement policies

5.3.2 Spatial Locality Exploitation Techniques

As already mentioned in the beginning of this chapter, exploiting spatial locality by

employing large cache entry gains little benefit. In contrast, the large cache entry means

fewer number of cache entries per capacity; hence, the cache miss may increase. More

importantly, it also increases the number of translation page written because of fewer

victim candidates. The effect is shown in Figure 5.15.

Consequently, SCFTL employs the small cache entry with consecutive field and

fetching multiple entries instead. The cache performance of each technique is shown in

Figure 5.16 and Figure 5.17. Although both techniques do not reach the same level of

cache miss ratio as large cache entry technique, they have significantly lower cache miss

penalty. The advantage of small cache entry and consecutive field techniques is that they

44

0%	

20%	

40%	

60%	

80%	

100%	

0001	
 0002	
 0004	
 0008	
 0016	
 0032	
 0064	
 0128	
 0256	
 0512	
 1024	
 2048	

Average	
 of	
 CACHE	
 HIT	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (0R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (1R)	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (2R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 5.15: Cache performance of SCFTL with varied size of large cache entry technique

allow the garbage collection to update the PPN of a moved page to the cache without

reading a translation page in case of cache miss. The impact of this advantage is shown

as the cache miss without penalty (MISS (0R)) in the figures. This cannot be happened

for the large cache entry because an cache entry for the PPN of a moved page has to be

completely filled; hence, the PPNs of adjacent LPNs has to be fetched from the translation

page.

0%	

20%	

40%	

60%	

80%	

100%	

0001	
 0002	
 0004	
 0008	
 0016	
 0032	
 0064	
 0128	
 0256	
 0512	
 1024	
 2048	

Average	
 of	
 CACHE	
 HIT	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (0R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (1R)	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (2R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 5.16: Cache performance of SCFTL with varied number of small cache entry technique

The consecutive field technique is indeed very spatially efficient for exploiting spatial

locality, but it cannot be scaled because of the low possibility of large consecutive field.

In contrast, the small cache entry technique is not spatially efficient as the tag to data

ratio of each cache entry is very high. Nevertheless, combining these two together yield a

very efficient technique as they complement each other. The consecutive field technique

lowers the capacity demand while the small cache entry technique keeps fetching more

entries. The cache performance of the combined small cache entry and 5-bit consecutive

45

0%	

20%	

40%	

60%	

80%	

100%	

0001	
 0002	
 0004	
 0008	
 0016	
 0032	
 0064	
 0128	
 0256	
 0512	
 1024	
 2048	

Average	
 of	
 CACHE	
 HIT	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (0R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (1R)	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (2R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 5.17: Cache performance of SCFTL with varied maximum value of consecutive field
technique

field is shown in Figure 5.18.

0%	

20%	

40%	

60%	

80%	

100%	

0001	
 0002	
 0004	
 0008	
 0016	
 0032	
 0064	
 0128	
 0256	
 0512	
 1024	
 2048	

Average	
 of	
 CACHE	
 HIT	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (0R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (1R)	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (2R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 5.18: Cache performance of SCFTL with varied number of small entry and 5-bit consec-
utive field techniques

Finally, the comparison of ratio of cache miss with penalty (MISS (1R) and MISS

(RW)) is shown in Figure 5.19, and the number of translation pages written between

spatial exploitation techniques is illustrated and magnified in Figure 5.20. The best is the

small cache entry with consecutive field technique as expected of the combined technique,

and the worst is the large cache entry technique. Besides, the consecutive field technique

is slightly worse than the small cache entry technique because of the effect of splitting a

consecutive cache entry during update that may cause cache eviction.

46

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

1	
 4	
 16	
 64	
 256	
 1024	

BLOCK	
 FETCH	
 CONSECUTIVE	
 FETCH+CONSECUTIVE	

Figure 5.19: Ratio of cache miss with penalty of various spatial locality exploitation techniques

0	

0.005	

0.01	

0.015	

0.02	

1	
 4	
 16	
 64	
 256	
 1024	

BLOCK	
 FETCH	
 CONSECUTIVE	
 FETCH+CONSECUTIVE	

Figure 5.20: Ratio of translation page written per page write request of various spatial locality
exploitation techniques

5.4 Summary

In this chapter, the high performance demand based FTL named SCFTL was de-

scribed. The cache of SCFTL was optimized for exploiting spatial locality without in-

creasing cache miss penalty, and the result is the small cache entry with consecutive field

technique and D-NRU replacement policy. The spatial locality is exploited by the small

cache entry with consecutive field technique. On the other hand, D-NRU keeps the impact

of the the wide gap of NAND flash memory access time low by doing penalty estimation.

It prevents SCFTL from exploiting spatial locality when the penalty is high and also se-

lects a low penalty cache entry for eviction. As a result, SCFTL outperforms DFTL and

CDFTL by 39.81% and 17.07%, respectively, in terms of average system response time.

CHAPTER VI

3DFTL: ZERO WRITES DEMAND-BASED FTL

In previous chapter, SCFTL, the demand-based FTL with the efficient caching

strategy, is proposed. Even though SCFTL is optimized for lowering the number of

flash memory programing operations, which each has much higher cost that a reading

operation, some flash memory programing operations are still needed. Furthermore, the

consequence of a flash programing operation is that it may need block erasure; thus, a

lengthy garbage collection process is triggered and results in many fluctuations in access

time. In addition, the block utilization also decrease, albeit a little.

Another problem that happened with demand-based FTLs is that an I/O write

request is becoming non-atomic because the modified mapping entry is not immediately

committed to a translation page or the flash memory after the data was programed.

Therefore, the page-level mapping table, which resides in the flash memory, is always

inconsistent with the data until all cached mapping entries are flushing back to the flash

memory. As a consequence, a lengthy process of recovery has to be performed after a

unexpected power-loss, which also means lower fault tolerance.

In this chapter we propose a novel demand-based FTL named 3DFTL. Without

translation pages, updating data does not require additional page programing; hence, it

is inconsistency-free. The cache miss ratio of 3DFTL is kept low by spatial locality ex-

ploitation. In addition, omitting translation page programing also decreases the maximum

cache miss penalty, which in turn improves the average system response time.

6.1 Demand-based three-level address translation

3DFTL is a page-level FTL with a cache for the mapping table. Typically, demand-

based FTLs reduce the spatial requirement of SRAM by moving PMT to data areas of

flash memory pages, which in turn causes the inconsistency problem. To overcome this

obstacle, 3DFTL places the PMT entries in the spare area of the pages that store their

corresponding data instead. As both data and mapping information are stored in the

48

same page, updating is considered as an atomic operation.

Since the spare area is much smaller than the data area, PMT demands more pages

for storing. Adopting the two-level address translation, as same as typical demand-based

FTL, will result in large global translation directory (GTD), which resides in SRAM. In

order to save precious SRAM capacity, 3DFTL decreases the number of GTD entries by

inserting an local translation directory (LTD) between GTD and PMT. In other words,

3DFTL employs three-level address translation via GTD, LTD, and PMT. LTD entries

are also placed in the spare area of pages along with PMT entries.

6.1.1 Three-Level Address Translation

In the first level of address translation, GTD maps an LPN to the PPN of the

corresponding LTD entry, and then the LTD entry points to the PMT entry in the second

level. Consequently, the PPN of the data, which is kept in PMT, can be retrieved in the

third level. Since two read operations are involved, one for an LTD entry and another for

a PMT entry, the address translation could take longer time.

However, the second read operation can be omitted if the required PMT entry is

in the same page as the retrieved LTD entry. In other words, packing more PMT entries

in one page can decrease the number of read operations. Due to the spatial locality of

data write requests, the most significant bits (MSBs) of PPNs of nearby LPNs are having

high likelihood of repetition. 3DFTL takes advantage of this property by employing a

compression technique in order to make room for more PMT entries. A PPN, which is

the content of LTD and PMT entry, is split into two parts: index (MSBs) and offset. A

duplicated index is omitted from the spare area; hence, extra PPNs can be stored.

6.1.2 Compression

As illustrated in Figure 6.1, every spare area has a compression flag for indicating

the format of its metadata. In this example, PPN9 is uncompressed while PPN6 and

PPN11 are compressed. Both formats contain an LPN, LTD entries, and PMT entries;

however, a compressed format can have more PMT entries. An uncompressed format

keeps its contents unaltered since it is used in case of very low compressibility to ensure

mapping integrity.

49

On the other hand, a compressed format stores them as a collection of distinct

indices and several pairs of index position and offset. The creation of a compressed

metadata begins with splitting every PMT entry that associated with the same GTD entry

into index and offset. Then, a PMT entry is replaced with the related LTD entry until

every distinct index can be packed into the compressed format. Since the PPN of a page

has to be known before accessing, keeping it in the spare area is unnecessary. Therefore,

the PPN of the compressing metadata will be replaced by its LPN, which is indispensable

for garbage collection and recovery, in the next step. The LPN is also split into an index

and an offset, but the index is the least significant bits (LSBs). After substituting the

PPN with the LPN, the last step is sorting the indices in chronological order so that LTD

entries, which always equal to their latest PMT entries, can be identified. Furthermore,

the index of the LPN always holds at the first position. Combining with the fact that

offsets are ordered by the LSBs of LPN, the LPN of the compressed metadata can be

recomposed.

1 7 1 4

Valid

Flag

25 30

LTD Position

0

LTD0 LTD1

1 6 6 536 910
6 20

1 6 11 536 911

WRITE

Data = “C”, LPN = 145

(GTD36, LTD0, PMT1)

36 9

GTD
1 16 0 (0,2) (1,2) (0,1) (1,0)

LTD0 LTD1
Index

Compression Flag

0 6 5 9147

1 17 1 (1,2) (0,2) (1,1) (0,1)

“A”

“B”

“C”

ECC

ECC

ECC

Flash Memory

Data Area Spare Area

PPN6

PPN9

PPN11

11

CMT

1

2

3

4

5

6

7
8

9

LPN=144

LPN=145

PMT0 PMT0PMT1 PMT1

PMT0LTDLPN PMT1

PMT0 PMT1GTD

Figure 6.1: The example of 3DFTL address translation.

6.1.3 Cache

Another important component of 3DFTL is a cache of PMT called CMT. The ob-

jective of CMT is to accelerate the address translation by exploiting temporal and spatial

locality. A cache lines resembles an extracted compressed metadata, except that LTD

entries are pointers to their latest PMT entries. Hence, each cache line has sufficient infor-

mation for generating either a compressed or uncompressed metadata without accessing

the flash memory.

50

6.1.4 Example

An example of address translation is illustrated in Figure 6.1. We assume that,

firstly, both LPN and PPN are 8-bit. Secondly, an LPN can be broken into addresses of

6-bit GTD, 1-bit LTD, and 1-bit of PMT. In other words, each GTD entry has two LTD

entries, and each LTD entry has two PMT entries. Lastly, each compressed metadata

is limited to only two distinct indices. In the beginning of a request for writing C at

LPN145 (GTD36, LTD0, and PMT1), 3DFTL searches for GTD36 in CMT and the

lookup results in a cache miss. GTD25 is selected as a victim by LRU policy and can be

evicted immediately because of write-through policy. Since the PPN of LPN145 has not

been cached, a three-level address translation is required. The LTD entries of GTD36 are

located to be in the spare area of PPN9 according to GTD in step 2. PPN9 is read in

step 3 and will be cached in step 4. However, the PPN9 metadata is uncompressed; it

does not contain all PMT entries associated with GTD36. CMT will store the LTD value

in place of the missing PMT entries. As the LPN of this page is 147 (GTD36, LTD1,

PMT1), two PMT entries in PPN9 belong to LTD1. In other words, the PPN of LTD1

is 9, and the PPN6 in the LTD field belongs to LTD0. Since the PMT entries of LTD0 is

in another page, only the second level of the address translation, accessing LTD, can be

done. Next, PPN6 is read for the PMT entries of LTD0 in step 5. The PPN6 metadata

is compressed. This page is PMT0 in LTD0 according to the first index, which is LSBs of

the LPN. Hence, the LPN is 144 and the PMT entries are 6, 2, 5, and 0 after substituting

the first index and the offset of PMT0 in LTD0 by the index and offset of the current

PPN6. In this step, the PPN of LPN145 is known to be 2. The PMT entries of LTD0 will

be merged to the cache line of GTD36 in step 6. In order to update LPN145, PPN2 will

be invalidated and replaced by PPN11, an empty page, in step 7. In step 8, the updated

cache line of GTD36 is compressed and written along with data C to PPN11. Finally,

the record 36 of GTD is updated according to the modification.

6.2 Performance Evaluation

The configuration of FTLs that will be used for evaluating the performance of

3DFTL is provided in Table 6.1. According to Table 4.1, the data area of a page is 8192B

while the spare area is 448B. However, only 112B are usable because of ECC. Therefore,

3DFTL is configured to have 4 LTD entries and 16 PMT entries in an uncompressed spare

51

area, while an compressed spare area has 4 LTD entries and 64 PMT entries by employing

8 25-bit indices. Hence, only 106KB of spare area are needed for compressed mapping

entries, while the uncompressed mapping entries take only 81KB. However, the size of

3DFTL GTD is 64KB. It is much larger than GTD of other demand-based FTLs that

take only about 2KB because the number of valid LTD pages is more than the number

of valid translation pages.

Table 6.1: The configurations of FTLs for Chapter 6 experiments.

DFTL CDFTL SCFTL 3DFTL

PMT 512 pages 512 pages 512 pages spare area
GTD 2.00KB 2.31KB 2.25KB 64.00KB
CMT 99.00KB 33.00KB 99.00KB 32.73KB

12,288 entries 4,096 entries 11,264 entries 128*64 entries
CTP - 64.00KB - -

8*16384 entries - -
GC 128KB 128KB 128KB 128KB
Total (without GC) 101KB 100.31 101.25KB 96.73KB
Total (with GC) 229KB 228.31 229.25KB 224.73KB

6.2.1 Cache Performance

The performance of the smaller cache (32KB) of 3DFTL is compared to the larger

cache (96KB) of other demand-based FTLs. The cache miss ratio of 3DFTL is a little

bit lower than the others because each cache entry of 3DFTL contains 16 to 64 mapping

entries, which is the size that provides good cache miss ratio according to Figure 5.15.

However, the downside of large cache entry technique is that every cache miss has a cache

miss penalty of at least one page read in order to fetch and complete the requested cache

entry. As shown in Figure 6.5, every cache miss that was caused by garbage collection

always has a cache miss penalty of at least one page read despite being already known the

mapping entry. Therefore, the ratio of cache miss with penalty of 3DFTL is higher than

CDFTL and SCFTL as shown in Figure 6.6. Furthermore, 3DFTL also has cache misses

with penalty of two pages read due to the three-level address translation, and they are

as much as 2.53%. However, other FTLs have cache misses with higher penalty of one or

more pages program. They are 0.64%, 0.93%, and 0.09% for DFTL, CDFTL, and SCFTL,

respectively. Programing a page is over ten times slower than reading one, and it may

trigger a garbage collection that requires even longer time. Having zero additional pages

52

programed significantly affects the translation performance as shown in Section 6.2.3.

0%	

20%	

40%	

60%	

80%	

100%	

Fin
an
cia
l1	

We
bS
ea
rch
1	

We
bS
ea
rch
3	

md
s_0
	

pro
j_0
	

rsr
ch
_0
	

src
2_
0	

ts_
0	

wd
ev
_0
	

hm
_1
	

prn
_1
	

prx
y_
1	

src
1_
1	

stg
_1
	

wd
ev
_2
	

CACHE	
 HIT	
 RATE	
 CACHE	
 MISS	
 (0R)	
 RATE	
 CACHE	
 MISS	
 (1R)	
 RATE	

CACHE	
 MISS	
 (2R)	
 RATE	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 6.2: Cache performance of 100KB + 128KB DFTL

0%	

20%	

40%	

60%	

80%	

100%	

Fin
an
cia
l1	

We
bS
ea
rch
1	

We
bS
ea
rch
3	

md
s_0
	

pro
j_0
	

rsr
ch
_0
	

src
2_
0	

ts_
0	

wd
ev
_0
	

hm
_1
	

prn
_1
	

prx
y_
1	

src
1_
1	

stg
_1
	

wd
ev
_2
	

CACHE	
 HIT	
 RATE	
 CACHE	
 MISS	
 (0R)	
 RATE	
 CACHE	
 MISS	
 (1R)	
 RATE	

CACHE	
 MISS	
 (2R)	
 RATE	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 6.3: Cache performance of 100KB + 128KB CDFTL

6.2.2 Effect of Compression Technique

3DFTL employs a compression technique for reducing the cost of retrieving the

last level mapping table or PMT. The compression ratio of pages written is shown in

Figure 6.7. The Compress is the ratio of pages that was written with 64 PMT entries,

while the Uncompress is the ratio of pages that was written with only 16 PMT entries.

Lastly, the Semicompress is the ratio of pages that was written with only 32 or 48 PMT

entries in compressed format. The benchmarks that have higher degree of spatial locality

are easier to compress.

The effect of the compression technique is shown in Figure 6.8 and compared with

Figure 6.9 that is the 3DFTL without compression technique. In 3DFTL without com-

pression technique, CMT entry size is 64 PMT entries but only 16 PMT can be fetched

53

0%	

20%	

40%	

60%	

80%	

100%	

Fin
an
cia
l1	

We
bS
ea
rch
1	

We
bS
ea
rch
3	

md
s_0
	

pro
j_0
	

rsr
ch
_0
	

src
2_
0	

ts_
0	

wd
ev
_0
	

hm
_1
	

prn
_1
	

prx
y_
1	

src
1_
1	

stg
_1
	

wd
ev
_2
	

CACHE	
 HIT	
 RATE	
 CACHE	
 MISS	
 (0R)	
 RATE	
 CACHE	
 MISS	
 (1R)	
 RATE	

CACHE	
 MISS	
 (2R)	
 RATE	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 6.4: Cache performance of 100KB + 128KB SCFTL

0%	

20%	

40%	

60%	

80%	

100%	

Fin
an
cia
l1	

We
bS
ea
rch
1	

We
bS
ea
rch
3	

md
s_0
	

pro
j_0
	

rsr
ch
_0
	

src
2_
0	

ts_
0	

wd
ev
_0
	

hm
_1
	

prn
_1
	

prx
y_
1	

src
1_
1	

stg
_1
	

wd
ev
_2
	

CACHE	
 HIT	
 RATE	
 CACHE	
 MISS	
 (0R)	
 RATE	
 CACHE	
 MISS	
 (1R)	
 RATE	

CACHE	
 MISS	
 (2R)	
 RATE	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 6.5: Cache performance of 100KB + 128KB 3DFTL

in each spare area read. The number of cache miss penalty with two pages read or a full

three-level address translation is much higher than 3DFTL with compression technique.

Moreover, the number of pages read although the LTD entry is cached is also significantly

higher. Excluding the case of LTD entry cache hit, the number of address translation

that was done in the first page read of 3DFTL with compression technique is higher than

without compression technique.

6.2.3 Translation Performance

The translation performance of 3DFTL is illustrated in Figure 6.14. Despite the

higher ratio of cache miss with penalty due to smaller cache size, 3DFTL performs bet-

ter than other FTLs. It shows the speedups of 1.46 and 1.06 from DFTL and CDFTL,

respectively. The wide gap of performance between DFTL and 3DFTL is an effect of spa-

tial locality, which causes many cache misses in DFTL. Comparing 3DFTL with CDFTL,

54

0%	

20%	

40%	

60%	

80%	

100%	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

CACHE	
 HIT	
 RATE	
 CACHE	
 MISS	
 (0R)	
 RATE	
 CACHE	
 MISS	
 (1R)	
 RATE	

CACHE	
 MISS	
 (2R)	
 RATE	
 CACHE	
 MISS	
 (RW)	
 RATE	

Figure 6.6: Cache performance of 100KB + 128KB FTLs

0%	

20%	

40%	

60%	

80%	

100%	

01
_F
ina
nc
ial
1	

03
_W
eb
Se
arc
h1
	

05
_W
eb
Se
arc
h3
	

07
_m
ds
_0
	

09
_p
roj
_0
	

11
_rs
rch
_0
	

13
_sr
c2
_0
	

15
_ts
_0
	

17
_w
de
v_
0	

19
_h
m_
1	

21
_p
rn_
1	

23
_p
rxy
_1
	

25
_sr
c1
_1
	

27
_st
g_
1	

29
_w
de
v_
2	

Average	
 of	
 WRITE	
 COMPRESS	
 Average	
 of	
 WRITE	
 SEMICOMPRESS	

Average	
 of	
 WRITE	
 UNCOMPRESS	

Figure 6.7: Ratio of compressed-spare-area pages written

there are large different in the several benchmarks as shown in Figure 6.12 and 6.13.

These benchmarks have many hotspots of write request, i.e., many logical pages that

had been written many times. Since CDFTL has fewer cache entries but more mapping

entries, cache trashing can happened easier than an FTL that has more cache entries.

However, the translation performance of 3DFTL is only 0.23% better than SCFTL since

SCFTL catches up with 3DFTL by the lower number of cache miss with penalty.

6.2.4 Block Utilization

3DFTL does not introduce any flash memory programing operations; every page

was used for storing data. On the contrary, other demand-based FTLs has to spend

some pages for storing PMT. Hence, the block utilization of 3DFTL is the best among

the demand-based FTLs as demonstrated in Figure 6.15. In fact, the block utilization of

3DFTL is identical to PFTL, the baseline.

55

0%	

20%	

40%	

60%	

80%	

100%	

01
_F
ina
nc
ial
1	

03
_W
eb
Se
arc
h1
	

05
_W
eb
Se
arc
h3
	

07
_m
ds
_0
	

09
_p
roj
_0
	

11
_rs
rch
_0
	

13
_sr
c2
_0
	

15
_ts
_0
	

17
_w
de
v_
0	

19
_h
m_
1	

21
_p
rn_
1	

23
_p
rxy
_1
	

25
_sr
c1
_1
	

27
_st
g_
1	

29
_w
de
v_
2	

Average	
 of	
 CMT	
 DIRECT	
 Average	
 of	
 CMT	
 INDIRECT	

Average	
 of	
 PMT	
 DIRECT	
 Average	
 of	
 PMT	
 INDIRECT	

Figure 6.8: Ratio of address translation levels of 3DFTL with compression techniue

0%	

20%	

40%	

60%	

80%	

100%	

01
_F
ina
nc
ial
1	

03
_W
eb
Se
arc
h1
	

05
_W
eb
Se
arc
h3
	

07
_m
ds
_0
	

09
_p
roj
_0
	

11
_rs
rch
_0
	

13
_sr
c2
_0
	

15
_ts
_0
	

17
_w
de
v_
0	

19
_h
m_
1	

21
_p
rn_
1	

23
_p
rxy
_1
	

25
_sr
c1
_1
	

27
_st
g_
1	

29
_w
de
v_
2	

Average	
 of	
 CMT	
 DIRECT	
 Average	
 of	
 CMT	
 INDIRECT	

Average	
 of	
 PMT	
 DIRECT	
 Average	
 of	
 PMT	
 INDIRECT	

Figure 6.9: Ratio of address translation levels of 3DFTL without compression techniue

6.2.5 Garbage Collection Performance

As the selecting algorithm of the garbage collection is fixed, the performance of

every FTL is equivalent in this aspect. The valid page move rate is shown in Figure 6.16.

6.2.6 Recovery

Even though the size of GTD that required to be recover of 3DFTL is significantly

larger than those of other demand-based FTLs, the PMT of 3DFTL is always consistent

the data. In contrast, the PMT of other demand-based FTLs may inconsistent with the

data; the large PMT is also needed to be verified during recovery.

Consequently, 3DFTL has lower number of pages read during recovery than other

FTLs as illustrated in Figure 6.20. Although 3DFTL exhibits more than two times faster

56

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

with	
 Compression	
 without	
 Compression	

Average	
 of	
 PMT	
 INDIRECT	

Average	
 of	
 PMT	
 DIRECT	

Average	
 of	
 CMT	
 INDIRECT	

Average	
 of	
 CMT	
 DIRECT	

Figure 6.10: Ratio of address translation levels

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

Financial1	
 Financial2	
 WebSearch1	
 WebSearch2	
 WebSearch3	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 6.11: Average system response time of 100KB + 128KB FTLs on SPC benchmarks

than other demand-based FTLs, this results cannot represent general cases as the simu-

lator was configured to make almost available pages being occupied and valid. However,

more recovery details, experimental results and discussions will be in Chapter 8, which

provides an additional recovery technique for 3DFTL.

6.3 Summary

In this chapter, a novel demand-based FTL named 3DFTL is proposed. It does

address translation at the page-level and employs a cache of the mapping table like other

demand-based FTLs. Differently, 3DFTL gets rid of translation pages by utilizing the

spare areas of flash memory pages. Since the mapping information and data are simul-

taneously stored, the inconsistency problem is creased to exist; hence, fault tolerance is

improved. However, keeping the locations of the page-level mapping table that stored in

many little spare areas demands large SRAM. Thus, the three-level address translation

57

0	

0.5	

1	

1.5	

2	

2.5	

hm
_0
	

md
s_0
	

prn
_0
	

pro
j_0
	

prx
y_
0	

rsr
ch
_0
	

src
1_
0	

src
2_
0	

stg
_0
	

ts_
0	

us
r_0
	

wd
ev
_0
	

we
b_
0	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 6.12: Average system response time of 100KB + 128KB FTLs on MSRC benchmarks
(OS volumes)

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

hm
_1
	

md
s_1
	

prn
_1
	

pro
j_1
	

prx
y_
1	

rsr
ch
_1
	

src
1_
1	

src
2_
1	

stg
_1
	

us
r_1
	

wd
ev
_2
	

we
b_
1	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 6.13: Average system response time of 100KB + 128KB FTLs on MSRC benchmarks
(data volumes)

is required for controlling SRAM size. The compression and caching techniques have

been applied in order to exploit the spatial locality. The average cache miss penalty

is very low owing to zero explicit cache write-back operations. To sum up, 3DFTL is

an economical inconsistency-free high-performance demand-based FTL. 3DFTL is more

suitable for managing the flash memory in a high performance mobile device than other

demand-based FTLs.

58

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

Average	
 of	
 AVG.	
 RES.	
 TIME	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 6.14: Average system response time of 100KB + 128KB FTLs

0.64	

0.65	

0.66	

0.67	

0.68	

0.69	

0.7	

0.71	

0.72	

0.73	

Average	
 of	
 BLOCK	
 UTILIZATION	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 6.15: Block utilization of 100KB + 128KB FTLs

0.253	

0.254	

0.255	

0.256	

0.257	

0.258	

0.259	

Average	
 of	
 MOVE	
 RATE	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 6.16: Valid page move rate of 100KB + 128KB FTLs

59

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

Financial1	
 Financial2	
 WebSearch1	
 WebSearch2	
 WebSearch3	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 6.17: Ratio of pages read during recovery of 100KB + 128KB FTLs on SPC benchmarks

0	

0.05	

0.1	

0.15	

0.2	

0.25	

hm
_0
	

md
s_0
	

prn
_0
	

pro
j_0
	

prx
y_
0	

rsr
ch
_0
	

src
1_
0	

src
2_
0	

stg
_0
	

ts_
0	

us
r_0
	

wd
ev
_0
	

we
b_
0	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 6.18: Ratio of pages read during recovery of 100KB + 128KB FTLs on MSRC benchmarks
(OS volumes)

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

0.18	

hm
_1
	

md
s_1
	

prn
_1
	

pro
j_1
	

prx
y_
1	

rsr
ch
_1
	

src
1_
1	

src
2_
1	

stg
_1
	

us
r_1
	

wd
ev
_2
	

we
b_
1	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 6.19: Ratio of pages read during recovery of 100KB + 128KB FTLs on MSRC benchmarks
(data volumes)

60

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

Average	
 of	
 RECOVERY	
 READ	
 RATIO	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 6.20: Ratio of pages read during recovery of 100KB + 128KB FTLs

Table 7.1: The cache size of FTLs for Chapter 7 experiments.

Name
Actual Cache Size (KB)

DFTL CDFTL SCFTL 3DFTL
CMT CMT CTP CMT CMT

2KB 2.06 - - 2.25 2.05
4KB 4.13 - - 4.50 4.09
8KB 8.25 1.03 8.00 9.00 8.18
16KB 16.50 2.06 16.00 18.00 16.37
32KB 33.00 4.13 32.00 36.00 32.73
64KB 66.00 8.25 64.00 72.00 65.47
128KB 132.00 16.50 128.00 144.00 130.94
256KB 264.00 33.00 256.00 288.00 261.88
512KB 528.00 66.00 512.00 576.00 523.75
1024KB 1056.00 132.00 1024.00 1152.00 1047.50
2048KB 2112.00 264.00 2048.00 2304.00 2095.00
4096KB 4224.00 528.00 4096.00 4608.00 4190.00
8192KB 8448.00 1056.00 8192.00 9216.00 8380.00

CHAPTER VII

SCALABILITY

Before going to the next work, we would like to discuss about the cache scalability

of SCFTL and 3DFTL. In this chapter, the cache size of FTLs will be varied without

touching other configurations. The approximate cache size is varied from 2, 4, 8, ..., 8192

KBs. The maximum cache size is 8192KB although the size of PMT is only 4096KB. The

reason is that the size of cache tag and status flags are included in the cache size. The

actual cache sizes of FTLs are shown in Table 7.1, and the sizes of other components are

shown in Table 7.2.

7.1 Cache performance

The average cache performance of FTLs is shown in Figure 7.1. The minimum cache

miss ratio of DFTL is about 0.16 at the cache size of 8192KB that can cache the entire

mapping table. In contrast, CDFTL and SCFTL can achieve this level of performance

62

Table 7.2: The controlled configurations of FTLs for Chapter 7 experiments.

FTL DFTL CDFTL SCFTL 3DFTL

PMT 512 pages 512 pages 512 pages spare area
GTD 2.00KB 2.19KB 2.25KB 64.00KB
GC 128KB 128KB 128KB 128KB
Total 130.00KB 130.19KB 130.25KB 172.00KB

0%	

20%	

40%	

60%	

80%	

100%	

2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	
 2048	
 4096	
 8192	

Average	
 of	
 CACHE	
 HIT	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (0R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (1R)	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (2R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (RW)	
 RATE	

(a) DFTL

0%	

20%	

40%	

60%	

80%	

100%	

2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	
 2048	
 4096	
 8192	

Average	
 of	
 CACHE	
 HIT	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (0R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (1R)	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (2R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (RW)	
 RATE	

(b) CDFTL

0%	

20%	

40%	

60%	

80%	

100%	

2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	
 2048	
 4096	
 8192	

Average	
 of	
 CACHE	
 HIT	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (0R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (1R)	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (2R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (RW)	
 RATE	

(c) SCFTL

0%	

20%	

40%	

60%	

80%	

100%	

2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	
 2048	
 4096	
 8192	

Average	
 of	
 CACHE	
 HIT	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (0R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (1R)	
 RATE	
 Average	
 of	
 CACHE	
 MISS	
 (2R)	
 RATE	

Average	
 of	
 CACHE	
 MISS	
 (RW)	
 RATE	

(d) 3DFTL

Figure 7.1: Cache performance of FTLs on various cache size

with only 64KB cache. Moreover, 3DFTL already has the cache miss ratio lower than 0.16

since 8KB cache configuration. Therefore, we can conclude that only temporal locality

exploitation is insufficient and spatial locality exploitation is very efficient for address

translation.

The differences between cache miss with writing-back penalty ratio of SCFTL and

CDFTL are more than 10 times in every configuration until it shrinking to none. In

63

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

1	
 4	
 16	
 64	
 256	
 1024	
 4096	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 7.2: Average system response time of FTLs on various cache size

addition, the cache miss with writing-back penalty ratio of SCFTL is lower than half of

DFTL in almost every configuration. In other words, the efficient caching strategy of

SCFTL effectively decreases the cache miss with writing-back penalty ratio regardless of

cache size.

The ratio of cache miss with fetching penalty of one page and cache miss with fetch-

ing penalty of two pages is about 3:1 to 4:1 in small cache size. The ratio is significantly

increasing in higher cache size as the number of cached LTD entries increased. Hence, we

could say that the compression in 3DFTL works better with larger cache size; however, it

is efficient enough in small configuration when comparing to other demand-based FTLs.

7.2 Translation Performance

The geometric means of average systems response times of FTLs are shown in Fig-

ure 7.2. The smaller cache size does not have much impact on the translation performance

of SCFTL and 3DFTL because the average miss penalty of both FTLs are very low. Be-

sides, the difference of translation performance between 3DFTL with cache size of only

2KB and enormous 8192KB is only 4.71%. Therefore, SCFTL and, of course, 3DFTL are

suitable for small cache.

The sudden drop of average system response times of DFTL in 4096KB config-

uration came from the registers in each plane of the NAND flash memory. Since our

simulator does not simultaneously utilize multi planes, a translation page can be struck

in the registers of one plane while the data is operating on another plane. In this case, the

next cache miss may directly fetch the translation page from the registers without reread-

64

0.5	

0.7	

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

2.3	

1	
 4	
 16	
 64	
 256	
 1024	
 4096	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 7.3: Block utilization of FTLs on various cache size

ing the actual physical page of NAND flash memory. Hence, the registers are logically

become a second-level cache, and the spatial locality is exploited. As a result, the miss

penalty is much lower, which in turn drastically decreases response times of sequential

requests and queuing times of their subsequent accesses.

7.3 Block Utilization

Since the block utilization is a direct variation of number of blocks erased that is

triggered by page programming, a demand-based FTL that frequently updates translation

pages is expected to have worse block utilization, as shown in Figure 7.3.

7.4 Garbage Collection Performance

Since every FTL has the same garbage collection algorithm, the garbage collection

performance is expected to have minimal difference even though the cache size are varied.

As shown in Figure 7.4, the valid page moved ratios are ranged between 0.247 and 0.261.

In case of 8192KB configuration that does not have any additional pages written,

the ratio of valid page moved depends on page occupied ratio. Thus, 3DFTL has the

lowest valid page moved ratio. As 3DFTL does not have translation pages the ratio is

remain the same for every configuration.

On the contrary, the ratios of other FTLs are decreasing with smaller cache size.

The very small cache size causes the obsoleting of recently programmed translation page

and can result in a translation block with many invalid translation pages. In this case,

65

0.246	

0.248	

0.25	

0.252	

0.254	

0.256	

0.258	

0.26	

0.262	

1	
 4	
 16	
 64	
 256	
 1024	
 4096	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	

Figure 7.4: Valid page moved rate of FTLs on various cache size

the number of blocks erased is increased but the garbage collection can select a block

with many invalid pages for erasure; therefore, the valid page moved ratio is decrease.

However, the ratio in FTLs with medium to large cache size may not decrease and can

even increase from 8192 configuration because the number invalid translation pages in a

block is not that many.

CHAPTER VIII

ILOG: FAST GARBAGE COLLECTION AND

RECOVERY FOR 3DFTL

In Chapter 6, we shown that the performance of 3DFTL is comparable to PFTL

although the SRAM overhead is very little. Since the cache of demand-based FTLs can

be resized and consume less capacity, 3DFTL can have as small cache size as 2KB but

still gets very high translation performance according to Chapter 7.

However, the reduction of SRAM overhead is come from just the size of mapping

table; the size of garbage collection metadata is remaining the same. As already shown

in Table 5.2 and Table 6.1, the metadata required by the garbage collection of a demand-

based FTL always take 128KB of SRAM capacity.

Since the greedy selection of garbage collection requires only the number of invalid

pages of every block for selecting the victim block. The invalid flags of pages can be dis-

carded; hence, the metadata of the garbage collection will demand only 4KB. However,

the garbage collection has to perform a page validation by comparing the LPN and the

PPN with the mapping table, and this method costs one page read operation per each

page validation. Noneless, this overhead statement is not true for demand-based FTLs.

Accessing the mapping table might causes a cache miss, and requires reading the trans-

lation page. Furthermore, a eviction of a modified cache entry, which includes program

operations, might be needed, and it drastically worsen the overall performance.

Another problem that obstructs a page-level FTL from adoption is its lengthy

recovery time. The page-level mapping table of the page-level FTL (PFTL) is stored in

SRAM; thus, the mapping table will is lost with the power-outage. Without a backup of

page-level mapping table, the recovery of a page-level FTL requires to find and read all

valid pages for their LPNs in order to reconstruct the table. This recovery process takes

unacceptable amount of time. For example, reading every page of the 8GB flash memory

using in the experiments takes longer than one minute to finish.

67

1: procedure Recovery(FlashMemory)
2: comment: sort PBN
3: for all PBN ∈ FlashMemory do
4: read the first Page of PBN for BSN
5: if the first page of Block[PBN] is an translation page then
6: add PBN into TranslationBlockList
7: end if
8: end for
9: sort PBN by BSN

10: comment: recover GTD from backup translation pages
11: for all PBN ∈ TranslationBlockList in descending order of BSN do
12: for all PTPN ∈ Block[PBN] in descending order do
13: read LTPN and PSN from Page[PTPN]
14: if GTD[LTPN] is empty then
15: GTD[LTPN]← PTPN
16: MinPSN [LTPN]← PSN
17: end if
18: end for
19: end for

20: comment: recover CMT
21: for all PBN /∈ IPT.PBN ∪ TranslationBlockList in descending order of BSN do
22: for all PPN ∈ Block[PBN] in descending order do
23: if PSN > min(MinPSN) then
24: read LPN and PSN from Page[PPN]
25: convert LPN to LTPN
26: if PSN > MinPSN [LTPN] then
27: if LPN /∈ CMT then
28: cache PPN in CMT
29: end if
30: end if
31: end if
32: end for
33: end for
34: end procedure

Figure 8.1: Pseudo code of a demand-based FTL recovery process

On the other hand, the page-level mapping table of a demand-based FTL, is kept in

a non-volatile flash memory. However, some update mapping information is in the cache

and is lost because of the power-outage. Consequently, the mapping table is inconsistent

with the data, which in turn requires reconstruction. The recovery of a demand-based

FTL involves validating every page as same as PFTL. On the contrary, the translation

pages can be considered as a backup of the mapping table; hence, decrease the number

of pages read. The recovery process begins with identifying the crucial backup point and

then updates the mapping table with every consequent modification. The process can be

described by a pseudo code as shown in Figure 8.1.

68

In the worst case that the crucial backup point cannot be found, the recovering

process has to read as much as m + n pages; where m is the number of blocks and n is

the number of pages, which is the same as the page-level FTL.

Since the recovery does not know which page is invalid, reading invalid pages is

unavoidable. The PPN of an invalid page has to be recorded in the mapping table and

consequently will be replaced by the PPN of the valid page. Even with the complete

information of invalid pages that can skip reading invalid pages, reading every consequent

valid page is still essential. Therefore, the worst number of pages read during recovery is

unaffected.

As mentioned earlier, the additional constraints of MLC NAND flash memory are

sequential page programing and no-partial page programing. Although many FTLs, es-

pecially page-level FTLs, can effortlessly obey the sequential page programing constraint

by enforcing their address translation, overcoming the no-partial page programing con-

straint is a different story. In SLC, an FTL can utilized the partially programs a page

and keeps the updated metadata in the same erasable unit as the data without relocating.

For example, keeping the status of a block, e.g., invalid flags of its pages, can prevent

the garbage collection from exhaustively finding the valid pages that are needed to be

moved, or recording the new location (PPN) of an obsoleted page in the spare area of the

obsoleted page itself can improve fault tolerance and accelerates recovery. In addition,

a demand-based FTL can also append the modification of a translation page without

moving it. However, the advent of MLC NAND flash made the partial page programing

no longer supported; all of these examples are not possible.

In this chapter, an additional technique for 3DFTL called Invalidation Log tech-

nique or ILog is proposed. In spite of slow page-by-page validation, ILog provides a fast

validation technique when validating every page in the same block. Therefore, ILog is

a swift garbage collection and a recovery accelerator for 3DFTL and is compatible with

MLC NAND flash memory constraints. Moreover, ILog does not adhere to 3DFTL. Its

can be applied to other page-level FTLs.

69

8.1 Design of ILog

ILog or Invalidation Log technique has only one objective that is reducing validation

time by validating the entire block simultaneously without keeping the complete sets of

invalid flags in SRAM. In other words, the ILog objective of ILog also means shrinking

SRAM overhead of invalid flags without losing the validation performance. Without

invalid flags, the page validation has to be done by reading all pages in the block for their

LPNs and then comparing the PPNs that are mapped from the LPNs to the PPNs of

read pages. This process is done one-page-by-one-page, but the garbage collection or the

recovery required validating the whole block. If a block contains only one valid page out

of total 256 pages, 256 pages is need to be read and mapped in order to find the valid

one; hence, it is not worthwhile.

The cache principle is applied to invalid flags. In order to reducing SRAM require-

ment, ILog maintain invalid flags in pages of the flash memory called invalidation page

(IP) and cache some of the flags in SRAM. The cache of invalid flags is a queue named

BIFQ. Since the validation is usually done on block-basis, keeping invalid flags of the

same block pages together is more efficient. A group of these flags are called block of

invalid flags (BIF). Therefore, IPs and BIFQ are containers of BIFs, and each BIF can

validate the entire block.

A BIF is originally stored in an IP and is reference by the physical block number

(PBN) of its invalid flags owner. The PBN has to be translated into the PPN of the IP

or the physical invalidation page number (PIPN). However, the number of BIF is very

few and the size of BIF is very small. For example, the simulated 8GB NAND flash

memory ? has only 4,096 BIFs and each BIF is only 35B (3 bytes of PBN and 256 invalid

flags); only 18 IPs are required. Due to limited SRAM capacity, a PBN will be translate

into a 4-byte PIPN by two mapping tables: BIF table (BIFT) and IP table (IPT). BIFT

converts the PBN into the 1-byte LIPN, and then the LIPN is mapped to the PIPN by

IPT This two-table scheme needs only log2(n)
8 m bytes for BIFT despite 4n bytes of one-

table scheme; where m is the number of blocks and n is the number of possible logical

invalidate page number (LIPN) locations. The LIPN is consumed in round-robin; the

space needed by IPT is therefore negligible because it is a very small block-level mapping

table. Moreover the number of invalidated pages is also attached in each record of BIFT

70

BIF 0

1110101101011101...217

PBN Invalid Flags

BIF ...

...

BIF k-1

1011001111011001...456

PBN Invalid Flags

5160

Last BSN

PPN

3108 36

LIPN

(a) Invalidation Page (IP)

Complete

Flag

BIF

0 0001000010000010...217

PBN

(TAG)

Page Invalid Flags

1

Modified

Flag

(b) Block invalid flag queue (BIFQ)

217 230 36

LIPN

Invalid

Counter 12

PBN

310
70

0

255

×256

3108

+...

4095 45 120

0 13 5

...

PIPNBIFT

IPT

LIPN

(c) Block invalid flag table (BIFT) and invalidation page table (IPT)

Figure 8.2: Examples of ILog components

for greedy garbage collection.

Examples of IP, BIFQ, BIFT, and IPT are illustrated in Figure 8.2.

ILog has two basic operations: validation and invalidation, which is described in

the following subsections. Moreover, the reconstruction of BIFT and IPT during recovery

will be detailed in Section 8.1.3

8.1.1 Invalidation

The invalidation process is rather complex since an BIFQ may has to be enqueued.

It is described in Figure 8.3.

The process begins with looking for the corresponding BIF in BIFQ. If the BIF is

already existed in BIFQ, the unmodified BIF will be move to the tail before modification;

otherwise, the head of BIFQ will be evicted. The head BIF has to be written back to the

flash memory if it was modified; hence, the target LIPN is round-robin selected, and its

71

IP is retrieved. very BIF in the retrieved IP has to be validated with BIFT. Then, the

valid BIFs will be merged with their matched BIFs from BIFQ and temporarily stored

before flushing back to the new IP. Since some BIFs is already invalid, the IP will be filled

by modified BIFs from BIFQ. The modified BIFs are selected according by first-modified-

first-out, the head BIF in BIFQ is the first. Moreover, if the selected modified BIF is not

complete, which is identified by its complete flag in BIFT. The paired BIF has to be read

from the corresponding IP before putting it into the new IP. During reading the adjacent

BIFs will be merge into BIFQ. When the new IP is full, it will be programed into the

flash memory and hence obsoleted the old IP. Finally the head BIF can be evicted, and

the new invalid flag can be enqueued.

Indeed, the reading of IP is delayed until the eviction for the purpose of optimiza-

tion. Since a BIF will be used only for validation that generally occurred only once during

garbage collection, there is no need to bring it into the cache. Also, the BIF that have

the full number of invalid pages will be simply erased since it block can be immediately

erased without validation. However, opting out this modification from backing up into

the flash memory may arise the inconsistency, but this problem will be resolved after the

block erasure.

8.1.2 Validation

ILog is optimized for the efficiency of the validation process. Instead of reading all

the pages in a block, ILog can validate every page in the block by just one IP reading since

their invalid flags are gathered in one place BIF. The BIF in IP will be combined with the

BIF in BIFQ to form the up-to-date BIF. However, the some invalid flag of invalidated

pages might not be set as it may be lost and unable to recover. An invalid flag can only

tell that the page status is either invalid or may be valid. Therefore, a remapping has to

be performed after reading the LPN from the suspected page. If it is found invalid, the

invalidation process is begun.

8.1.3 Recovery

As ILog can validate a whole block by only one IP reading, it can help decreasing the

number of pages reading during the recovery. Invalid pages will be skipped and only valid

pages will be read in order to get their metadata. However, the BIFs may not contains

72

the latest information of invalid flags. As previously stated, one reason is that the invalid

flags of freshly erased block were not updated until one of its pages is invalidated. ILog

deals with this problem by keeping the latest BSN to the spare area of each IP. This

number guarantees that every invalid flag in this IP is usable if the BSN of the validating

page, which was marked as invalid by the flag, is not over this number. In other words,

its guarantees that every valid page will not be skipped.

Another reason is that the lost of invalid flags of freshly invalidated pages in BIFQ

due to unexpected power-loss. This results in unset invalid flags and causes unnecessary

pages reading and validating. Nevertheless, the impact is marginal and the recovery will

know that a page is invalid by verifying the LPN and PPN with the recovering mapping

table.

A recovery process of a demand-based FTL with ILog is shown in Figure 8.4. The

process is almost as same as the previous one (Figure 8.1) except that BIFT and IPT

have to be recovered before scanning and the validation is done as block-basis by the

corresponding BIF in IP. A lost invalid flag will be recovered if its page is read as every

read page is subjected to verification by mapping table. However, recovering every lost

invalid flags during recovery is not mandatory since its will be eventually done during

garbage collection.

Nevertheless, integrating ILog with PFTL, DFTL, CDFTL, or even SCFTL will

not drastically change the worst situation. In the worst case, the recovery of these FTLs

with ILog might require reading 2m+ n pages, which is slightly worse than m+ n pages

of the original. Anyhow, ILog still help these FTLs trimming invalid page from being

read.

8.1.4 Integration with 3DFTL

ILog was designed for 3DFTL. The cache, BIFQ, of ILog was optimized for the small

size and few flash memory accesses, especially the programing accesses that is the main

strength of 3DFTL. Moreover, ILog assists 3DFTL to recover faster by avoiding reading

invalid pages. The recovery processes of 3DFTL and 3DFTL with ILog are shown in

Figure 8.5 and Figure 8.6, respectively.

73

Theoretically, if every page in the flash memory is valid, the maximum number of

pages read during recovery of 3DFTL can be approximated only m + n/c pages; where

m is the number of blocks, n is the number of pages, and c is the number of minimum

mapping entries contained a spare area.

Nevertheless, a page can be either valid or invalid, and the worst case is that only

the PPN of the page that was obsoleted by the current one is gained. Hence, the estimated

maximum number of pages read become m+ n/2

On the contrary, ILog needs only one page read for one block validation; therefore,

the estimated maximum number of pages read of 3DFTL with ILog is 2m+(mIP ∗256)+

n/c pages; where mIP is the number of blocks that contain IP.

8.2 Performance Evaluation

The comparison of the original 3DFTL against 3DFTL with ILog will be shown in

this section in order to illustrate the performance of ILog. Also, the performance of DFTL

and CDFTL in the similar configuration will be provided as references. The configuration

of experimented FTLs are as Table 8.1.

The configuration of DFTL, CDFTL, SCFTL, and 3DFTL are almost identical

with their configurations in the previous chapter, except that the invalid flags are not

included in the metadata of their garbage collection and are replaced by 4,096 1-byte

invalid counters. Therefore, their garbage collection have to read and map every page of

the victim block.

On the other hand, 3DFTL with ILog needs about 16KB of SRAM for storing the

garbage collection metadata: 8KB for BIFT and another 8KB for BIFQ. The a 4KB of

invalid counters is already included in the 8KB BIFT. Since the the 16KB metadata of

3DFTL with ILog is larger than those 4KB metadata of the others, the cache (CMT) size

of 3DFTL with Ilog is decreased by 12KB. As a result, the cache size of 3DFTL with ILog

is only 20KB or about 1
5 of DFTL, CDFTL, and SCFTL.

74

Table 8.1: The configurations of FTLs for Chapter 8 experiments.

DFTL CDFTL SCFTL 3DFTL 3DFTL with ILog

PMT 512 pages 512 pages 512 pages spare area spare area
GTD 2.00KB 2.31KB 2.25KB 64.00KB 64.00KB
CMT 99.00KB 33.00KB 99.00KB 32.73KB 20.46KB

12,288 entries 4,096 entries 11,264 entries 128*64 entries 80*64 entries
CTP - 64.00KB - - -

8*16384 entries - - -
GC 4KB 4KB 4KB 4KB 16KB

BIFT: 8KB
BIFQ: 8KB
IP: max. 256 pages

Total 105KB 104.31 105.25KB 100.73KB 100.46KB

8.2.1 Validation and Invalidation Performance

The first performance aspect needed to be evaluated is the additional overhead of

validation and invalidation.

Normally, the invalidation does not have much overhead if the invalid flag is store

in SRAM. However, invalid flags of ILog are not stored in SRAM but the NAND flash

memory in order to reduce SRAM overhead. The performance degradation is avoided

by caching invalid flags in BIFQ. In order to avoid unnecessary read operation, ILog can

caches only an invalid flag or an incomplete BIF in BIFQ. Anyway, BIFQ size is limited,

and the eviction is eventually unavoidable. The overhead of the ILog invalidation process

is shown in Table 8.2. The average ratio of IPs read per page invalidation is only 0.00048,

while the average ratio of IPs written is only 0.00005 pages per page invalidation.

Next, the efficiency of ILog validation is measured by the number of pages read

during garbage collection. The number of pages read includes the data pages read (for

retrieving LPNs and moving), translation pages read (for retrieving PPNs), and inval-

idation pages read (for invalid flags). The comparison of validation efficiency is shown

in Figure 8.7, and also the the numbers of pages written that are the consequence of

cache eviction are shown in Figure 8.8. Nevertheless, several benchmarks was omitted in

this experiments because they have very few block erasures, which means few number of

invalidation. The validation overhead of ILog is very low. The average number of pages

75

Table 8.2: Invalidation Overhead of ILog

Benchmark Read per Invalidation (IPs) Write per Invalidation (IPs)

Financial1 0.001861 0.000292
Financial2 0.002539 0.000318
WebSearch1 0.000000 0.000000
WebSearch2 0.000000 0.000000
WebSearch3 0.000000 0.000000
hm0 0.001318 0.000110
mds0 0.000185 0.000018
prn0 0.000157 0.000012
proj0 0.000092 0.000011
prxy0 0.000014 0.000002
rsrch0 0.000183 0.000017
src10 0.000175 0.000040
src20 0.000538 0.000033
stg0 0.000321 0.000020
ts0 0.000659 0.000038
usr0 0.000129 0.000015
wdev0 0.000181 0.000019
web0 0.000127 0.000014
hm1 0.000000 0.000000
mds1 0.000000 0.000006
prn1 0.005491 0.000428
proj1 0.000000 0.000014
prxy1 0.000014 0.000008
rsrch1 0.000000 0.000000
src11 0.000389 0.000075
src21 0.000000 0.000000
stg1 0.000007 0.000004
usr1 0.000000 0.000000
wdev2 0.000000 0.000000
web1 0.000000 0.000000
Average 0.000479 0.000050

read is only 1.41 per page moved. This number is less than half of other FTLs. Moreover,

the number of write is 1, which is minimum, since 3DFTL does not allow any modified

cache entries.

Specifically, the maximum number of invalidation page read per block erasure is only

1, which could translate to only 1
256 pages read per page moved; therefore, the majority

76

of the additional pages read is caused by cache misses and the reason is the small CMT

of 3DFTL.

8.2.2 Translation Performance

Unsurprisingly, the translation performance of 3DFTL with ILog is the better than

other FTLs that do not have invalid flags. Their normalized average systems response

times are shown in Figure 8.9d. Enhancing ILog give the average speedup of 1.08 to

3DFTL. When looking closely, the performance of 3DFTL with ILog is slightly worse

than of 3DFTL without ILog in some benchmarks that do not have many block erasure;

thus the ILog did not have many chances to perform.

For comparison purpose, the average speedups of 3DFTL with ILog over DFTL,

CDFTL, and SCFTL are 1.61, 1.35, and 1.10, respectively. Furthermore, the performance

of 3DFTL with ILog, which takes only 100.46KB of SRAM, is only 3.90% difference from

the enormous PFTL, albeit 42 times difference in terms of SRAM overhead.

Additionally, the 100KB 3DFTL with ILog is compared to the 212KB 3DFTL that

has every invalid flag in SRAM. The 212KB 3DFTL has the same configuration as the

100KB 3DFTL with ILog that is used throughout this chapter, but every invalid flag of

212KB 3DFTL can be stored in SRAM; thus the validation and invalidation can be done

instantaneously. Nevertheless, the recovery accelerator ability is lost. The comparison is

shown in Figure 8.10. Surprisingly, The 100KB 3DFTL with ILog is only 0.18% faster;

however, the the difference is caused by only proj0, which is a write dominant I/O trace.

In fact, the access time of 3DFTL with ILog is slower than 3DFTL with complete invalid

flags, but the queuing time of 3DFTL with ILog is faster. The faster queuing time is

caused by periodically fewer number of pages moved when the garbage collection select

a block of invalidation pages for erasure. Therefore, it can be concluded that ILog is as

efficient as storing every invalid flag in SRAM. Furthermore, ILog helps 3DFTL recover

faster.

8.2.3 Block Utilization

Adding Ilog to 3DFTL does not have much effect on the block utilization. The

results are almost identical to the 3DFTL without ILog that has larger cache as shown in

77

Figure 8.11. However, there are a large drop in WebSearch1, WebSearch2, and WebSearch3

benchmarks, but these benchmarks have very few number of block erasure; thus, the block

utilization that is a ratio of page-write requests per block erasure is fluctuated.

8.2.4 Garbage Collection Performance

As same as previous chapters, the garbage collection performance is undifferenti-

ated, and the value is about 25% to 26% as shown in Figure 8.12

8.2.5 Recovery Performance

As shown in Figure 8.13, the 3DFTL with ILog can recover faster than others

page-level FTLs. Averagely, it needed to read only 2.61% of total pages to recover from

unexpected shutdown. The speedups of 3DFTL with ILog from 3DFTL, SCFTL, CDFTL,

DFTL, and PFTL are only 1.15, 2.67, 2.67, 2.67, and 38.42, respectively.

However, the normal setup of our simulation cannot shown their worst case situa-

tions since the worst case recovery of PFTL, DFTL, CDFTL, and SCFTL require reading

m + n pages; where m is the number of blocks and n is the number of pages, while the

worst case of 3DFTL is m+n/2 pages. Since every user accessible capacity is fully occu-

pied for the purpose of stressing the address translation and controlling garbage collection

performance, almost pages are valid and very few invalid pages are existed; thus, every

FTL can perform well.

Generally, the storage are not 100% filled, and other FTL functional units can

manipulate the storage. Moreover, the special I/O command, TRIM, enable the file

system to communicate with the FTL and lets the FTL invalidate pages without written

it. This leaves certain amount of invalid pages; hence, the garbage collection can work

efficiently. On the contrary many invalid pages may bring the worst case situation to the

recovery.

Therefore, another experiments had been done for evaluating the recovery in the

more general case. The simulator are configured to fill the storage thoroughly several times

before beginning the simulation, but the number of valid pages can be as minimum as 25%

of total capacity. However, many benchmarks need more space; hence, the number of valid

pages are ranged from 25% to 97%. The recovery results of this setting is in Figure 8.14.

78

3DFTL with ILog can still show its performance with the average number of pages read

during recovery of 1.82% of total capacity. In contrast, other FTLs performances are

much worse than the previous setting with the average number of pages read of 20.78%

for 3DFTL and about 35− 37% for DFTL, CDFTL and SCFTL.

8.3 Summary

ILog is an technique for caching invalid flags, which provides a shortcut for block

validation during the garbage collection. Instead of keeping every invalid flags in SRAM,

ILog keeps only a small portion in SRAM while the complete set is maintained in the flash

memory. Moreover, keeping them in the flash memory, which is a non-volatile memory,

also benefits the recovery as it can correctly identify valid pages without a false negative.

Furthermore, ILog is not a dedicated technique of 3DFTL. It does not need any

information the address translation. The only information that ILog needed is the PPN

of an invalidating page and the PBN of a validating block. Thus, ILog can be applied to

other FTLs.

ILog avoid excessive flash memory reading and programing by delaying them until

necessary. Therefore, by keeping the operation cost low, ILog is very efficient as already

shown in the experimental results. The 3DFTL with ILog is 8.04% faster than the one

without invalid flags and almost indifference from the one that stores every invalid flag in

SRAM in terms of average system response time. To summarize, the speedup of 3DFTL

with ILog is 1.61, 1.35, and 1.10 from DFTL, CDFTL, and SCFTL, respectively.

79

1: procedure Invalidate(PPN)
2: convert PPN to PBN
3: if PBN /∈ BIFQ then
4: if the head of BIFQ is modified then
5: V ictimLIPN ← OldestLIPN
6: V ictimPIPN ← IPT [V ictimLIPN]

7: comment: create new invalidation page
8: read Page[V ictimPIPN]
9: for all BIF ∈ Page[V ictimPIPN] do

10: if BIFT [BIF.PBN] = V ictimLIPN then
11: if BIF.PBN ∈ BIFQ then
12: merge BIF with BIFQ[PBN].BIF
13: set BIFQ[PBN].CompleteF lag
14: end if
15: add BIFQ[PBN].BIF to NewIP
16: clear BIFQ[PBN].ModifiedF lag
17: end if
18: end for

19: comment: fill new invalidation page
20: while NewIP is not full do
21: get NextPBN from head to tail of BIFQ
22: if BIFQ[NextPBN] is modified then
23: if BIFQ[NextPBN] is not complete then
24: NextLIPN ← BIFT [NextPBN].LIPN
25: NextPIPN ← IPT [NextLIPN]
26: read Page[NextPIPN]
27: for all BIF ∈ Page[NextPIPN] do
28: if BIFT [BIF.PBN] = NextLIPN then
29: if BIF.PBN ∈ BIFQ then
30: merge BIF with BIFQ[PBN].BIF
31: set BIFQ[PBN].CompleteF lag
32: end if
33: end if
34: end for
35: end if
36: add BIFQ[NextPBN].BIF to NewIP
37: clear BIFQ[NextPBN].ModifiedF lag
38: BIFT [NextPBN].LIPN ← V ictimLIPN
39: end if
40: end while

41: comment: write-back
42: V ictimPIPN ← GetEmptyPage
43: program NewIP to Page[V ictimPIPN]
44: update IPT
45: end if

46: comment: replacement
47: remove the head of BIFQ
48: add BIF [PBN] to the tail of BIFQ
49: end if

50: comment: invalidation
51: Set BIF [PBN].invalidF lags[PPN] in BIFQ
52: end procedure

Figure 8.3: A flow chart of ILog invalidation process

80

1: procedure Recovery(FlashMemory)
2: comment: sort PBN and Recover IPT
3: for all PBN ∈ FlashMemory do
4: read the first Page of PBN for BSN
5: if the first page of Block[PBN] is an invalidation page then
6: add PBN into IPT
7: else if the first page of Block[PBN] is an translation page then
8: add PBN into TranslationBlockList
9: end if

10: end for
11: sort PBN by BSN

12: comment: recover BIFT
13: for all PBN ∈ IPT.PBN in ascending order of BSN do
14: for all PIPN ∈ Block[PBN] in ascending order do
15: read Page[PIPN]
16: set IPT.LIPN according to Page[PIPN].LIPN
17: for all BIF ∈ Page[PIPN] do
18: BIFT [BIF.PBN].LIPN ← Page[PIPN].LIPN
19: BIFT [BIF.PBN].InvalidCount← Count(BIF.InvalidF lags)
20: end for
21: end for
22: end for

23: comment: recover GTD from backup translation pages
24: for all PBN ∈ TranslationBlockList in descending order of BSN do
25: for all PTPN ∈ Block[PBN] in descending order do
26: read LTPN and PSN from Page[PTPN]
27: if GTD[LTPN] is empty then
28: GTD[LTPN]← PTPN
29: MinPSN [LTPN]← PSN
30: end if
31: end for
32: end for

33: comment: recover CMT
34: for all PBN /∈ IPT.PBN ∪ TranslationBlockList in descending order of BSN do
35: read BIF from Page[IPT.PIPN [BIFT [PBN].LIPN]]
36: for all PPN ∈ Block[PBN] in descending order do
37: if PSN > min(MinPSN) then
38: if PPN /∈ BIF.InvalidF lags then
39: read LPN and PSN from Page[PPN]
40: convert LPN to LTPN
41: if PSN > MinPSN [LTPN] then
42: if LPN /∈ CMT then
43: cache PPN in CMT
44: end if
45: end if
46: end if
47: end if
48: end for
49: end for
50: end procedure

Figure 8.4: Pseudo code of a demand-based FTL with ILog recovery process

81

1: procedure recovery(FlashMemory)
2: comment: Sort PBN
3: for all PBN ∈ FlashMemory do
4: read the first Page of PBN for BSN
5: end for
6: sort PBN by BSN

7: comment: recover GTD
8: for all PBN ∈ FlashMemory in descending order of BSN do
9: for all PPN ∈ Block[PBN] in descending order do

10: if PPN /∈ SkipList then
11: read LPN , LTD, and PMT from Page[PPN]
12: convert LPN to LTPN
13: if GTD[LTPN] is empty then
14: GTD[LTPN]← PPN
15: end if
16: for all PPN ∈ LTD ∪ PMT do
17: add PPN into SkipList
18: end for
19: end if
20: end for
21: end for
22: end procedure

Figure 8.5: Pseudo code of 3DFTL without ILog recovery process

82

1: procedure Recovery(FlashMemory)
2: comment: sort PBN and recover IPT
3: for all PBN ∈ FlashMemory do
4: read the first Page of PBN for BSN
5: if the first page of Block[PBN] is an invalidation page then
6: add PBN into IPT
7: end if
8: end for
9: sort PBN by BSN

10: comment: recover BIFT
11: for all PBN ∈ IPT.PBN in ascending order of BSN do
12: for all PIPN ∈ Block[PBN] in ascending order do
13: read Page[PIPN]
14: set IPT.LIPN according to Page[PIPN].LIPN
15: for all BIF ∈ Page[PIPN] do
16: BIFT [BIF.PBN].LIPN ← Page[PIPN].LIPN
17: BIFT [BIF.PBN].InvalidCount← Count(BIF.InvalidF lags)
18: end for
19: end for
20: end for

21: comment: recover GTD
22: for all PBN /∈ IPT.PBN in descending order of BSN do
23: read BIF from Page[IPT.PIPN [BIFT [PBN].LIPN]]
24: add BIF.InvalidF lags into SkipList
25: for all PPN ∈ Block[PBN] in descending order do
26: if PPN /∈ SkipList then
27: read LPN , LTD, and PMT from Page[PPN]
28: convert LPN to LTPN
29: if GTD[LTPN] is empty then
30: GTD[LTPN]← PPN
31: else
32: add PPN into BIFQ
33: BIFT [PBN].InvalidCount++
34: end if
35: for all SkipPPN ∈ LTD ∪ PMT do
36: add SkipPPN into SkipList
37: end for
38: end if
39: end for
40: end for
41: end procedure

Figure 8.6: Pseudo code of 3DFTL with ILog recovery process

83

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

ERASE	
 READ	
 DATA	
 RATE	
 ERASE	
 READ	
 MAP	
 RATE	
 ERASE	
 READ	
 LOG	
 RATE	

Figure 8.7: Number of pages read per valid page moved of 100KB FTLs

0.9	

0.95	

1	

1.05	

1.1	

1.15	

1.2	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

ERASE	
 WRITE	
 DATA	
 RATE	
 ERASE	
 WRITE	
 MAP	
 RATE	

Figure 8.8: Number of pages programed per valid page moved of 100KB FTLs

84

0	

2	

4	

6	

8	

10	

12	

Financial1	
 Financial2	
 WebSearch1	
 WebSearch2	
 WebSearch3	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(a) SPC benchmarks

0	

0.5	

1	

1.5	

2	

2.5	

hm
_0
	

md
s_0
	

prn
_0
	

pro
j_0
	

prx
y_
0	

rsr
ch
_0
	

src
1_
0	

src
2_
0	

stg
_0
	

ts_
0	

us
r_0
	

wd
ev
_0
	

we
b_
0	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(b) MSRC benchmarks (OS Volumes)

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

hm
_1
	

md
s_1
	

prn
_1
	

pro
j_1
	

prx
y_
1	

rsr
ch
_1
	

src
1_
1	

src
2_
1	

stg
_1
	

us
r_1
	

wd
ev
_2
	

we
b_
1	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(c) MSRC benchmarks (data volumes)

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

Average	
 of	
 AVG.	
 RES.	
 TIME	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(d) Average

Figure 8.9: Average system response time of 100KB FTLs

85

0.98	

1	

1.02	

1.04	

1.06	

1.08	

1.1	

1.12	

1.14	

1.16	

1.18	

1.2	

Financial1	
 Financial2	
 WebSearch1	
 WebSearch2	
 WebSearch3	

3DFTL	
 with	
 complete	
 invalid	
 flags	
 3DFTL	
 with	
 Ilog	

(a) SPC benchmarks

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

hm
_0
	

md
s_0
	

prn
_0
	

pro
j_0
	

prx
y_
0	

rsr
ch
_0
	

src
1_
0	

src
2_
0	

stg
_0
	

ts_
0	

us
r_0
	

wd
ev
_0
	

we
b_
0	

3DFTL	
 with	
 complete	
 invalid	
 flags	
 3DFTL	
 with	
 Ilog	

(b) MSRC benchmarks (OS Volumes)

0.9	

0.95	

1	

1.05	

1.1	

1.15	

1.2	

hm
_1
	

md
s_1
	

prn
_1
	

pro
j_1
	

prx
y_
1	

rsr
ch
_1
	

src
1_
1	

src
2_
1	

stg
_1
	

us
r_1
	

wd
ev
_2
	

we
b_
1	

3DFTL	
 with	
 complete	
 invalid	
 flags	
 3DFTL	
 with	
 Ilog	

(c) MSRC benchmarks (data volumes)

1.0375	

1.038	

1.0385	

1.039	

1.0395	

1.04	

1.0405	

1.041	

Average	

3DFTL	
 with	
 complete	
 invalid	
 flags	
 3DFTL	
 with	
 Ilog	

(d) Average

Figure 8.10: Average system response time of 3DFTL without invalid flags, 3DFTL with ILog,
and 3DFTL with complete invalid flags

0.6	

0.62	

0.64	

0.66	

0.68	

0.7	

0.72	

0.74	

Average	
 of	
 BLOCK	
 UTILIZATION	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

Figure 8.11: Block utilization of 100KB FTLs

86

0.246	

0.248	

0.25	

0.252	

0.254	

0.256	

0.258	

0.26	

0.262	

Average	
 of	
 MOVE	
 RATE	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

Figure 8.12: Valid page move rate of 100KB FTLs

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

Financial1	
 Financial2	
 WebSearch1	
 WebSearch2	
 WebSearch3	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(a) SPC benchmarks

0	

0.05	

0.1	

0.15	

0.2	

0.25	

hm
_0
	

md
s_0
	

prn
_0
	

pro
j_0
	

prx
y_
0	

rsr
ch
_0
	

src
1_
0	

src
2_
0	

stg
_0
	

ts_
0	

us
r_0
	

wd
ev
_0
	

we
b_
0	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(b) MSRC benchmarks (OS Volumes)

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

0.18	

hm
_1
	

md
s_1
	

prn
_1
	

pro
j_1
	

prx
y_
1	

rsr
ch
_1
	

src
1_
1	

src
2_
1	

stg
_1
	

us
r_1
	

wd
ev
_2
	

we
b_
1	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(c) MSRC benchmarks (data volumes)

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

Average	
 of	
 RECOVERY	
 READ	
 RATIO	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(d) Average

Figure 8.13: Ratio of pages read during recovery of 100KB FTLs

87

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Financial1	
 Financial2	
 WebSearch1	
 WebSearch2	
 WebSearch3	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(a) SPC benchmarks

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

hm
_0
	

md
s_0
	

prn
_0
	

pro
j_0
	

prx
y_
0	

rsr
ch
_0
	

src
1_
0	

src
2_
0	

stg
_0
	

ts_
0	

us
r_0
	

wd
ev
_0
	

we
b_
0	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(b) MSRC benchmarks (OS Volumes)

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

hm
_1
	

md
s_1
	

prn
_1
	

pro
j_1
	

prx
y_
1	

rsr
ch
_1
	

src
1_
1	

src
2_
1	

stg
_1
	

us
r_1
	

wd
ev
_2
	

we
b_
1	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(c) MSRC benchmarks (data volumes)

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

AVERAGE	

DFTL	
 CDFTL	
 SCFTL	
 3DFTL	
 CUFTL	

(d) Average

Figure 8.14: Ratio of pages read in general case recovery of 100KB FTLs

CHAPTER IX

CONCLUSION

9.1 Dissertation Contributions

Since NAND flash memory was invented, its adoption has been continuously grow-

ing and eventually became ubiquitous. One of the main factors that drives this growth

is the user-friendly and efficient management of flash translation layer or FTL. In this

dissertation, three novel approaches for demand-based FTL have been proposed and dis-

cussed. To summarize, the contributions of this dissertation are consisted of this three

approaches.

First SCFTL is a novel demand-based FTL that is aware of asymmetrical access time.

It has several techniques working together in order to maximize the benefit of each

translation page programming operation and limit unessential fetches. The result is

very fast response time even though the very small cache size.

Second 3DFTL is also a novel demand-based FTL that is aware of asymmetrical ac-

cess time. By eliminating explicit translation page, 3DFTL utilizes the spare area

of flash memory pages for storing mapping table. A three-level address transla-

tion is employed due to the limited size of each page spare area. However, 3DFTL

decreases the additional page reading operation by caching and compression tech-

niques. Therefore, 3DFTL not only is responsive, but also wears the flash memory

cell slower.

Third ILog is an additional technique for 3DFTL; however, it should be able to adapt

for other FTL as well. The main idea behind ILog is providing block-level validation

for page-level FTL without much increasing overhead. It is a cache of invalid flags,

but an invalid flag is kept for using only once during garbage collection; hence, ILog

also includes this rule in to consideration. It will not fetch any invalid flag until

necessary, and will write-back only unused invalid flags.

89

The proposed FTLs have been thoroughly verified by experiments. The performance

improvement of each is significant as shown in the experimental results. Regardless of the

ILog, 3DFTL is the best in terms of translation performance or average system response

time; however, the large global translation directory (GTD) might make SCFTL more

suitable for a flash memory-based storage with a very limited SRAM. ILog is indispensable

for 3DFTL. With only tiny SRAM and flash memory capacities required, ILog accelerates

not only the garbage collection, but also the recovery. The recovery time is also guaran-

teed; therefore, 3DFTL with ILog is very appropriate for a flash memory-based storage

in enterprise servers and mobile devices.

9.2 Discussion on Future Works

Despite of several benefits, the proposed FTLs still have limitations that could be

improved in the future.

• As already mentioned in the previous section, 3DFTL has a large global translation

directory (GTD). According to the observation, the whole GTD is not accessed

simultaneously. In fact, we found that only parts of it is accessing during a certain

period. Offloading GTD to the flash memory and caching some entries in SRAM

might save the precious SRAM capacity. In addition, the offloaded GTD, which is

in the flash memory, may act as a backup point; hence, the recovery time is hasten.

However, adding GTD cache will result in four-level address translation; hence, its

effectiveness is still opened for validation.

• Integrating ILog with SCFTL – or other page-level FTLs – should be practical, but it

still has not been done. Therefore, the enhancement has not been verified although

we expects a significant improvement over the non-enhanced SCFTL. Moreover,

maintaining both translation page and invalidation page may arise complications.

• The scalability of ILog has not been studied, but we are not expecting performance

improvement from an increasing cache, BIFQ, size. On the contrary, the increased

in the number of pages read during recovery is more concerned.

• Wear leveling was not focused in this dissertation, but it would be interesting to

see the suitable one for these FTLs. In addition, our preliminary results found that

classifying hot and cold pages might drastically improve translation performance.

90

• Also, load balancing and parallelization are not focused in this dissertation. The

scheduling of operations during a cache miss in multi-plane and multi-die flash mem-

ory should be explored.

• Finally, applying these technique to a file system or having the OS assisting these

FTL are still in question.

