0% ≤ diff ≤ 30%

all
# 6330425521 244 (2021-04-26 02:40) #dups = 1 def max_new_cases_date(data) : return ( data['dates'][np.argmax(np.sum(data['new_cases'],axis=0),axis=0)] , np.max(np.sum(data['new_cases'],axis=0),axis=0) ) def max_new_cases_province(data,beg_date,end_date) : return (data['province_names'][np.argmax(np.sum(data['new_cases'][::,int(np.where(data['dates']==beg_date)[0]):int(np.where(data['dates']==end_date)[0])+1],axis=1))], np.max(np.sum(data['new_cases'][::,int(np.where(data['dates']==beg_date)[0]):int(np.where(data['dates']==end_date)[0])+1],axis=1))) def max_new_cases_province_by_dates(data) : a = np.ndarray((3,int(data['dates'].shape[0])),dtype=object) a[0]=data['dates'] a[1]=data['province_names'][np.argmax(data['new_cases'],axis=0)] a[2]=np.max(data['new_cases'],axis=0) return a.T def most_similar(data,province_name) : similarity = np.sum( (data['norm_data'] - data['norm_data'][int(np.where(data['province_names']==province_name)[0])])**2 ,axis=1) sec_min = np.argmin(similarity[data['province_names']!=province_name]) return data['province_names'][data['province_names']!=province_name][sec_min] def most_similar_province_pair(data): pass def most_similar_in_period(data, province, beg_date, end_date): pass ### main function# 6330510121 314 (2021-04-26 22:58) %diff = 22.21 def max_new_cases_date(data):return (data['dates'][np.argmax(sum(data['new_cases']))],max(sum(data['new_cases']))) def max_new_cases_province(data, beg_date, end_date):return ((data['province_names'][np.argmax(np.sum(data['new_cases'].T[(np.where(data['dates']==beg_date)[0][0]):(np.where(data['dates']==end_date)[0][0])+1],axis=0))],max(np.sum(data['new_cases'].T[(np.where(data['dates']==beg_date)[0][0]):(np.where(data['dates']==end_date)[0][0])+1],axis=0)))) def max_new_cases_province_by_dates(data): a = np.ndarray((3,len(data['dates'])), dtype=object) a[0]=data['dates'] a[1]=data['province_names'][np.argmax(data['new_cases'],axis=0)] a[2]=np.max(data['new_cases'],axis=0) return print(a.T) def most_similar(data, province): a=np.sum((data['norm_data'][:]-data['norm_data'][np.where(data['province_names']==province)[0][0]])**2,axis=1) a[np.where(data['province_names']==province)[0][0]]+=99 return data['province_names'][np.argmin(a)] def most_similar_province_pair(data): return def most_similar_in_period(data, province, beg_date, end_date): return