Important Features
of Java

and implementing data structures and algorithms. The Java Collections

Framework—part of the package java.uti—has implementations of a con-
siderable number of data structures and algorithms. Subsequent chapters will focus
on what the framework is and how to use the framework in your programs. For this
information to make sense to you, you will need to be familiar with certain aspects
of Java that we present in this chapter. Some of what follows may be a review for
you; some may be brand new. All the material is needed, either for the framework
itself or to enable you to use the framework in your programming projects. W

T his is a book about programming: specifically, about understanding, using,

CHAPTER OBJECTIVES

1. Review the fundamentals of classes, objects, and messages.
2. Compare a developer’s view of a class with a user’s view of that class.

3. Follow the sequence of events related to maintaining a graphical user interface
(GUI) window.

4. Understand how polymorphic references can be created through inheritance.

5. Be able to create try blocks and catch blocks to handle exceptions.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A class combines
variables with
methods that act on
those variables.

A method description
provides everything a
user needs to know
about a method.

CHAPTER 1 Important Features of Java

1.1 | CLASSES

A class consists of variables called fields together with methods that operate on
those fields. A class encapsulates the passive components (fields) and active com-
ponents (methods) into a single entity. This encapsulation increases program modu-
larity: by isolating a class from the rest of the program, we make the program easier
to understand and to modify.

Suppose that in trying to solve some problem, we decide that we need to work
with calendar dates. We will create a class called CalendarDate. (This has nothing
to do with either the Calendar or Date classes in the package java.util.) The class
CalendarDate will consist of one or more fields to hold a date and of methods that
act on those fields. Initially, we need not worry about choosing the fields that will
represent a date. Since we, and maybe others after us, will be using CalendarDate,
we need to determine the responsibilities of CalendarDate. That is, what is the class
expected to provide to its users? Perhaps initially the only responsibilities are to

Construct a date, given a month, day, and year

Determine if a given date is valid

Return the next date after a given date

Return the date previous to the given date

Return the day of the week (such as Tuesday) on which a given date occurs

SN

Determine if a given date is prior to some other date

1.1.1 Method Descriptions

A class’s responsibilities are refined into method descriptions: the explicit informa-
tion a user will need in order to invoke the method. Each method description will
have three parts: a precondition, a postcondition, and a method heading followed by
a semicolon. A precondition is an assumption about the state of the program just
prior to the execution of the method. A postcondition is a claim about the state of
the program just after the execution of the method, provided the precondition was
true beforehand. The precondition and postcondition are stated in terms of the call-
ing object and formal parameters.
For example, here is the method description for the isValid() method:

/I Postcondition: true has been returned if the date is legal: the year must be

/! an integer between 1800 and 2200, inclusive; the month

// must be an integer between 1 and 12, inclusive; the day

/ must be an integer between 1 and the maximum number of
/ days for the given month and year, inclusive. Otherwise,

/I false has been returned.

public boolean isValid();

There is no precondition given because nothing special is assumed about the state of
the program prior to a call to the method. Technically, the precondition is simply

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

true. But we will omit writing the precondition when that occurs. Every method
should accomplish something, so the postcondition will always be given explicitly.
In the postcondition, “the date” refers to the calling object, that is, the object that
invoked this method. In the method heading, the value returned is of type boolean,
the method identifier is isValid() and there are no formal parameters.

Given a class, an object—sometimes called an instance of the class—is a
variable that has the fields of that class and can call the methods of that class.
In Java, objects are always accessed indirectly, through references. For example, if
we define

CalendarDate thisDate;
then thisDate is a reference to an object of type CalendarDate. If we later write

if (thisDate.isValid())

System.out.println ("The date is valid.");
else

System.out.printin ("The date is not valid.");

then the isValid() method is being invoked by the object referenced by thisDate. The
output will be determined by the boolean value returned by that isValid() method. In
general, the syntax for a method invocation consists of an object reference followed
by a dot followed by the method identifier followed by a parenthesized argument
list. In object-oriented parlance, a message is the invocation of a method by an
object. For example, the following message returns the date that immediately fol-
lows the calling object’s date:

thisDate.next()

In this message, the next() method in the CalendarDate class is being invoked by the
object referenced by thisDate. The term message is meant to suggest that a com-
munication is being sent from one part of a program to another part. For example,
the message thisDate.next() may be sent from a method in some class other than the
CalendarDate class.

When we refine the responsibilities for CalendarDate’s methods, we get the fol-
lowing method descriptions:

/I Postcondition: this CalendarDate has been constructed from year, month
/! and day.
public CalendarDate (int year, int month, int day);

/I Postcondition: true has been returned if the date is legal: the year must be

I an integer between 1800 and 2200, inclusive; the month

/! must be an integer between 1 and 12, inclusive; the day

I must be an integer between 1 and the maximum number of
/! days for the given month and year, inclusive. Otherwise,

/ false has been returned.

public boolean isValid();

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CHAPTER 1 Important Features of Java

Example Suppose currentDate is a reference to an object in the class
CalendarDate. If the values of the fields in that object represent Febru-
ary 29, 2000, then currentDate.isValid() would return true. But if the val-
ues of the fields in currentDate represent February 29, 2001, then current
Date.isValid() would return false.

// Precondition: The date is valid.
// Postcondition: The next date has been returned.
public CalendarDate next();

Example Suppose date is a reference to an object in the class Calen-
darDate. If the values of that object’s fields represent February 29, 2000,
then the message date.next() would return a reference to a date repre-
senting March 1, 2000. What would happen if the object referenced by
date had an invalid value and date.next() were called? Because an
invalid date would not satisfy the precondition, the result would be
undefined. That is, there may be no date returned, a nonsense date
returned, a program crash, etc. The user of a class has the responsibility
of making sure a method’s precondition is satisfied before calling the
method. For example, a user could proceed as follows:

if (date.isValid())
... date.next() . ..
else
System.out.printin ("Invalid date");

Additionally, the developer of a class is responsible for making sure the
method descriptions provide sufficient information for a user of the class.

/I Precondition: The date is valid.
/I Postcondition: The previous date has been returned.
public CalendarDate previous();

/I Precondition: The date is valid.

/I Postcondition: The day of the week—"Sunday", "Monday", and so on—on
/ which the date falls has been returned.

public String dayOfWeek();

/I Precondition: The calling object and otherDate are valid dates.

/I Postcondition: true has been returned if the calling object’s date precedes
/! otherDate’s date. Otherwise, false has been returned.
public boolean isPriorTo (Date otherDate);

Example Suppose that currentDate is a reference to a CalendarDate
object whose field values represent March 27, 2003, and that startDate

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES 5
is a reference to a CalendarDate object whose fields represent January
1, 2004. Then
currentDate.isPriorTo (startDate)

would return true.

A complete CalendarDate class, along with a CalendarTester class to validate
the above methods, is available in the chapters/chl directory. You can run the cor-
responding project to find out, for example, on what day of the week you were born.

This view of a class is the user’s perspective, focusing on what information
about the class is needed by users of the class. In the next section, we will look at
the developer’s perspective and compare the two perspectives.

1.1.2 Data Abstraction

So far, we have concentrated on method descriptions, that is, what the class provides

to users, rather than on the class’s fields and method definitions, that is, how the Data abstraction is
class is defined. This separation—called data abstraction—of what from how is an the separation of what
essential feature of object-oriented programming. Users of the CalendarDate class ¢ class provides to
will not care about how a date is represented or how the methods are defined. The usersf rom ,how the
fields—that is, the representation of the date—may take one of the following forms, class is defined.

or may be something entirely different:

int fields month, day, and year with values such as 2 for month, 28 for day,
and 2002 for year

An int field myDate with a value such as 02282002

A String field myDate with a value such as “02282002”

Similarly, there may be a choice of method definitions for some of the methods.
For example, there are several choices for the definition of the isValid() method. The
following definition assumes int fields month, day, and year. Some of the work is
delegated to daysInMonth(), a helper' method.

public boolean isValid() {

final int MAX_MONTH = 12;
final int MIN_YEAR = 1800;
final int MAX_YEAR = 2200;

if (month < 1 || month > MAX_MONTH || day < 1 || year < MIN_YEAR ||
year > MAX_YEAR)
return false;
return day <= daysInMonth();

} // method isValid

'A helper method is not accessible by users of a class but performs some task for one or more methods
in the class.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CHAPTER 1 Important Features of Java

Here is the definition of the helper method daysinMonth:

/I Precondition: 1 <= month <= 12; 1800 <= year <= 2200.
/I Postcondition: the number of days in the given month and year has been
1 returned.

private int daysinMonth() {

if (month == 4 || month == 6 || month == 9 || month == 11)
return 30; // 30 days hath September, April, June and November

else if (month == 1 || month == 3 || month == 5 || month == 7 ||
month == 8 || month == 10 || month == 12)
return 31; // January, March, May, July, August, October,
December

else if(year % 4 != 0 || (year % 100 == 0 && year % 400 != 0))
return 28; // one year is slightly less than 365.25 days
return 29;

} // method daysinMonth

Such details would be of no help when you are trying to develop a class that
uses CalendarDate. And it may be that someone else has already completed the def-
inition of the CalendarDate class. Then you should use that CalendarDate class,
rather than creating extra work for yourself. But even if you must define the
CalendarDate class yourself, you can postpone that work until after you have com-
pleted the development of the classes that use the CalendarDate class. By working
with CalendarDate’s method descriptions, you increase the independence of those
other classes: their effectiveness will not be affected by any changes to the Calendar
Date class that do not affect the method descriptions.

When users focus on what a class provides rather than on the implementation
details of that class, they are applying the principle of data abstraction:

Principle of Data Abstraction A user’s code should not access the imple-

mentation details of the class used.

One important application of the principle of data abstraction is that if class A
uses class B, then class A’s methods should not access class B’s fields. In fact, class
B’s fields should be accessed only in class B’s methods. This turns out to be a ben-
efit to users because their code will be unaffected if the developer of class B decides
to replace the old fields with new ones. For example, suppose the following defini-
tion is made outside of the CalendarDate class:

CalendarDate currentDate;
Then an expression such as

currentDate.month

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

would be a violation of the principle of data abstraction because whether or not the
CalendarDate class has a month field is an implementation detail. Even if the
CalendarDate class currently has a month field, and even if that field has public visi-
bility, the developer is free to make any changes to the CalendarDate class that do not
affect the method descriptions. For example, the developer could have a single field:

String myDate;

We noted earlier that the principle of data abstraction is a benefit to users of a
class because they are freed from reliance on implementation details of that class.
This assumes, of course, that the class’s method descriptions provide all the infor-
mation that a user of that class needs. The developer of a class should create meth-
ods with sufficient functionality that users need not rely on any implementation
details. That functionality should be clearly spelled out in the method descriptions.

The precondition and postcondition of a method are part of an implicit contract
between the developer and the user. The terms of the contract are as follows:

If the user of the method ensures that the precondition is true before the method is
invoked, the developer guarantees that the postcondition will be true at the end of the
execution of the method.

In the sections on visibility modifiers and exceptions, we will see how these two fea-
tures of Java enable the developer of a class to force users of that class to invoke the
methods properly.

We can summarize our discussion of classes so far by saying that from the
developer’s perspective, a class consists of fields and the definitions of methods that
act on those fields. A user’s view is an abstraction of this: A class consists of method
descriptions.

The Java Collections Framework is, basically, a hierarchy of thoroughly tested
classes that are useful in a variety of applications. The programs in this book will use
the Java Collections Framework, so those programs will not rely on the definitions
of the framework’s methods. We will provide method descriptions and an overview
of most of the classes. To give you experience in reading the code of professional
programmers, you will also get to study the details of the method definitions.

The next section continues our discussion of method descriptions and method
definitions with another example.

1.1.3 An Employee Class

For another example of a class, let’s create a class called Employee for the employ-
ees in a company. The information available on each employee consists of the
employee’s name and gross pay. The responsibilities of the Employee class are to

1. [Initialize an employee’s name to a blank and gross pay to 0.00
2. Initialize an employee’s name and gross pay from a String

3. Determine if the input sentinel has been reached (the sentinel has the name
“*%%” and a gross pay of —1.00)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CHAPTER 1 Important Features of Java

4. Determine if an employee’s gross pay is greater than some other employee’s
gross pay
5. Convert an employee’s name and gross pay to a String suitable for output.

The method descriptions are as follows:

/I Postcondition: this employee’s name has the value
/ the value 0.00.
public Employee();

and gross pay has

Note In the above postcondition, and in the postconditions that follow,
“employee” refers to the calling object.

/I Precondition: s is not null.

/I Postcondition: this employee has been initialized from s, which consists

/ of a name and gross pay, with at least one blank in between.
public Employee (String s);

/I Postcondition: true has been returned if this employee is the input sentinel.
/! Otherwise, false has been returned.
public boolean isSentinel();

/I Postcondition: true has been returned if this employee’s gross pay is

/ greater than that of otherEmployee. Otherwise, false has
1 been returned.

public boolean makesMoreThan (Employee otherEmployee);

/I Postcondition: a String representation of this employee’s name and gross
I pay has been returned in the form <name $gross pay>.
public String toString();

The Employee class’s method descriptions are all that a user of the class will
need. A developer of the class, on the other hand, must decide what fields to have
and then define the methods. For example, a developer may well decide to have two
fields: the employee’s name (a String) and grossPay (a double). The complete
method definitions might then be as given in the following:

import java.util.”;
class Employee {
private static final String EMPTY_STRING = "";
private static final String NAME_SENTINEL = "***";
private static final double GROSS_PAY_SENTINEL = —1.00;

private String name;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 1 CLASSES
private double grossPay;

/I Postcondition: this employee has been initialized: the name is an
I empty string and the gross pay is 0.00.
public Employee(){

name = EMPTY_STRING;

} /1 default constructor

/I Postcondition: this employee has been initialized from s, which consists of
I a name and gross pay, with at least one blank in between.
public Employee (String s) {

StringTokenizer tokens = new StringTokenizer (s);

name = tokens.nextToken();

grossPay = Double.parseDouble (tokens.nextToken());

} /I constructor with String parameter

/I Postcondition: true has been returned if this employee is the sentinel.
// Otherwise, false has been returned.
public boolean isSentinel() {

if (name.equals (NAME_SENTINEL) && grossPay ==
GROSS_PAY_SENTINEL)
return true;
return false;

} // method isSentinel
/I Postcondition: if this employee’s gross pay is larger than otherEmployee’s
/ gross pay, true has been returned. Otherwise, false has

/! been returned.
public boolean makesMoreThan (Employee otherEmployee) {

return grossPay > otherEmployee.grossPay;

} // method makesMoreThan

/I Postcondition: a String representation of this employee’s name and gross
I pay has been returned in the form <name $gross pay>.
public String toString() {

final String DOLLAR_SIGN = " $";
return (name + DOLLAR_SIGN + grossPay);

} // method toString()
} // class Employee

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10

CHAPTER 1 Important Features of Java

Now that we have a complete class to look at, we can consider some of the
details of classes in general.

1.1.4 Local Variables and Fields

Variables declared within a method—including the method’s formal parameters—
are called local variables. A field is a variable that is declared inside a class but
outside of the class’s methods. Local variables can be accessed only within the
method in which they are declared. For example, here is the definition of the
makesMoreThan method of the Employee class:

public boolean makesMoreThan (Employee otherEmployee) {
return grossPay > otherEmployee.grossPay;
} // method makesMoreThan

This method has one local variable: the formal parameter otherEmployee. The spec-
ified type is the class identifier Employee. In Java, when the specified type is a class,
the variable is a reference to an object in that class. So otherEmployee is a reference
to an object from the class Employee. That is, the variable otherEmployee will con-
tain the address of an Employee object. For example, if that Employee object’s name
and gross pay were “Knoll,Mike” and 42000.00, we could draw the following:

otherEmployee name grossPay

— | 42000.00

¢

Knoll,Mike

In the above picture, we use an arrow from otherEmployee to the object referenced
by otherEmployee. That referenced object has two fields: a reference to a String
object, and a double.

1.1.5 Constructors

A constructor is a method that is invoked when an instance of a class is created. The
purpose of a constructor is to initialize the object instantiated. A constructor has the
same identifier as the class, and a constructor has no return type. For example, the
Employee class above has two constructors. Their definitions are

/I Postcondition: this employee has been initialized: the name is an
/ empty string and the gross pay is 0.00.
public Employee() {

name = EMPTY_STRING;

} // default constructor

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

/I Postcondition: this employee has been initialized from s, which
/! consists of a name and gross pay.
public Employee (String s) {

StringTokenizer tokens = new StringTokenizer (s);
name = tokens.nextToken();
grossPay = Double.parseDouble (tokens.nextToken());

} /1 constructor with String parameter

The first of these two constructors has no parameters and is called the default con-
structor. Whenever a constructor is called, for example,

new Employee();

all the class’s fields are automatically initialized according to their types. In the case
of Employee, the name field is initialized to a null reference and grossPay is ini-
tialized to 0.0. Similarly, fields of type int are initialized to O, and fields of type
boolean are initialized to false. The body of the constructor can then override those
initializations. For example, the default constructor above assigns to name a refer-
ence to an empty String object—its value is "".

The constructor with a parameter has two local variables: s and tokens. That
constructor overrides the default initializations for both name and grossPay.

If you neglect to include any constructors in a class, the Java compiler will
automatically provide a default constructor, which performs the automatic field ini-
tializations just discussed. But if you include any constructor, the compiler will not
provide a default constructor, and this omission can have an impact on inheritance,
as discussed in the section on inheritance.

1.1.6 Instance Variables and Static Variables

In a class, the term member refers to either a field or method. Let’s look at some of
the different kinds of members. There are two kinds of fields. An instance variable
is a field associated with an object—that is, with an instance of a class. For example,
in the Employee class, name and grossPay are instance variables. Each Employee
object will have its own pair of instance variables. If we declare

Employee oldEmployee,
currentEmployee,
newEmployee;

then the object referenced by oldEmployee will have its own copy of the instance
variables name and grossPay, and the objects referenced by currentEmployee and
newEmployee will have their own copies also.

In addition to instance variables, which are associated with a particular object in
a class, we can declare static variables, which are associated with the class itself. The
space for a static variable—also called a class variable—is shared by all instances of
the class. A variable is designated as a static variable by the modifier static, which is
a reserved word. For example, if a count field is to maintain information about all

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11

A default constructor
is a constructor with
no parameters.

12

CHAPTER 1 Important Features of Java

objects in a class Student, we could declare the field count to be a static variable in
the Student class:

static int count;

Java also allows static methods. A static method is associated with the class
itself. For example, every project must have a class with a static main method.

A static member, that is, a static variable or static method, is declared with the
modifier static. To access a static member inside its class, the member identifier
alone is sufficient. For example, the above static field count could be accessed in a
method in the Student class as follows:

count++;

In order to access a static member outside of its class, the class identifier itself is
used as the qualifier. For example, outside of the class Student, we could write:

if (Student.count == 0)

We will use the static modifier for any constant that is defined outside of a
class’s methods. The reason is that the constant cannot change for the individual
objects in the class, so we might as well have just one copy of the constant for all
objects, instead of one copy for each object. Here, from the above declaration of the
Employee class, is an example of a static constant:

private static final double GROSS_PAY_SENTINEL = —1.00;

The static modifier is not available within a method. For example, in the above
declaration of the toString() method in the Employee class, we had:

final String DOLLAR_SIGN =" $";
return (name + DOLLAR_SIGN + grossPay);

It would have been illegal to use the static modifier for this constant.

1.1.7 Visibility Modifiers

A visibility modifier is a reserved word that determines where a class or class mem-
ber can be accessed. The two most important visibility modifiers are

private Accessible only within the given class
public Accessible anywhere

In Java, there can be at most one public class per file, that is, at most one class with
the visibility modifier public. Also, the name of that public class must be the same
as the name of the file—without the .java extension. At the beginning of the file,
there must be import statements for any package (or file) needed by the file but not
part of the project. An exception is made for java.lang.*, which is automatically
imported for any file.

Typically, a class’s methods will be public so they can be accessed outside of
the class. Of course, that access will rely only on the methods’ descriptions, not on

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

the methods’ definitions. Occasionally, a “helper” method is used to simplify the
work of another method. That helper method should not be accessed outside of the
class, so its visibility modifier will be private.

In order to promote data abstraction, the developer of a class should not have
public fields. For now, all fields will be declared as private. Later in this chapter, we
will encounter another visibility modifier, protected, which represents a sort of
compromise between public and private.

A member with no visibility modifier is said to have default visibility. A mem-
ber with default visibility can be accessed by any object (or class, in the case of a
static member) in the same package as the class in which the member is declared.
That is why default visibility is sometimes referred to as “package-friendly visi-
bility.” Java has a “default” package consisting of all classes that are not part of
any package but are either in the current directory or in a directory listed in the
CLASSPATH variable. So, for example, classes in the same directory can access
each other’s default-visibility members.

1.1.8 Graphical User Interfaces

The Employee class does not include any input or output statements. Input and out-
put of employee information are the responsibility of classes that use the Employee
class. This separation—of the Employee class from input-output details—increases
the flexibility of the Employee class because it can then be used in a variety of input-
output environments, such as console input-output or file input-output.

In the next section, we will begin the development of a Company class that uses
the Employee class. The Company class will handle the input and output of employee
information. For input and output, we will utilize a graphical user interface (GUI).
If you have not used a GUI before, you might want to invest some time in studying
the sample GUI in Appendix 2. That is the same GUI we will be using for this appli-
cation and, in fact, the same GUI we will be using for every other application! Here
are the essential features of programs that use this GUI:

1. The program does not use the readLine method to read keyboard input or the
System.out.printin method for screen output.

2. Instead, the GUI class creates a window with one input line and any number of
output lines.

3. The associated GUIListener class has an actionPerformed method that is auto-
matically invoked when the user of the program presses the Enter key after
entering a string in the input line. That actionPerformed method invokes the
processinput method in the Company class.

4. The processInput method—with a String parameter—produces a name and
gross pay from the String.

5. The GUI class has a print and a printin method for output to the GUI-created
window.

6. Neither the GUI class nor the GUIListener class is in java.util.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13

14

The processInput
method is executed
every time a new input
line is entered.

CHAPTER 1 Important Features of Java

1.1.9 The Company Class

Suppose we want to determine who is the best-paid employee in a company. We
will create a Company class that uses the Employee class. The responsibilities of the
Company class are to initialize a Company and to process the input—determine if the
current employee is the best-paid so far; if the current employee is the sentinel, the
name and gross pay of the best-paid employee are printed. We refine these responsi-
bilities into method descriptions for a constructor and processinput methods:

/I Postcondition: this company has been initialized.
public Company();

/I Postcondition: the input string s, consisting of the name and gross pay of

I one employee in this company, has been processed against
I what had been the best-paid employee in this company. If s
/! was the sentinel, the name and gross pay of the best-paid

/ employee have been printed.

public void processinput (String s);

The details of these Company methods are covered in Lab 1, which combines the
Employee, Company, and GUI classes into a complete project.

LAB Lab 1: The CompanyMain Project.

All Labs Are Optional LAB

As noted earlier, we should use existing classes whenever possible. What if a
class has most, but not all, of what is needed for an application? We could simply
scrap the existing class and develop our own, but that would be time-consuming and
inefficient. Another option is to copy the needed parts of the existing class and incor-
porate those parts into a new class that we develop. The danger with that option is that
those parts may be incorrect or inefficient. If the developer of the original class
replaces the incorrect or inefficient code, our class would still be erroneous or ineffi-
cient. A better alternative is to use inheritance, which is explained in the next section.

1.1.10 Inheritance

We should write program components that are reusable. For example, instead of
defining a method that calculates the average gross pay of 10 employees, it would
have wider applicability to define a method that calculates the average gross pay of
any number of employees. By writing reusable code, we not only save time, but we
also avoid the risk of incorrectly modifying the existing code.

One way that reusability can be applied to classes is through a special and pow-
erful property of classes: inheritance. Inheritance is the ability to define a new class
that includes all the fields and some or all of the methods of an existing class. The

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

previously existing class is called the superclass or base class. The new class, which
may declare new fields and methods, is called the subclass or derived class. A sub-
class may also override existing methods by giving them method definitions that dif-
fer from those in the superclass.

As an example of how inheritance works, let’s start with the class Employee.
Suppose that several applications use Employee. A new application involves finding
the best-paid hourly employee. For this application, the input consists of the
employee’s name, hours worked (an int), and pay rate (a double). The gross pay is
the hours worked times the pay rate.

We could alter Employee by adding hoursWorked and payRate fields and mod-
ifying the methods. But it is risky to modify, for the sake of a new application, a
class that is being used successfully in existing applications. The underlying concept
is known as the open-closed principle:

The Open-Closed Principle Every class should be open (extendible through
inheritance) and closed (stable for existing applications).

Instead of rewriting Employee, we will create HourlyEmployee, a subclass of
Employee. To indicate that a class is a subclass of another class, the subclass iden-
tifier is immediately followed by the reserved word extends. For example, we can
declare the HourlyEmployee class to be a subclass of Employee as follows:

class HourlyEmployee extends Employee {

Each HourlyEmployee object will have the information from Employee—name
and gross pay—as well as hours worked and pay rate.

Some of Employee’s methods—makesMoreThan and toString—are inherited as
is by HourlyEmployee. The isSentinel method and the constructor that has a String
parameter are overridden because the input line will contain a name, hours worked,
and pay rate. For example, here is a definition of the constructor-with-parameter:

/I Postcondition: this HourlyEmployee has been initialized from s, which

/! consists of a name, hours worked and pay rate, with at least
1 one blank in between each of those components.

public HourlyEmployee (String s) {

StringTokenizer tokens = new StringTokenizer (s);
name = tokens.nextToken();

hoursWorked = Integer.parselnt (tokens.nextToken());
payRate = Double.parseDouble (tokens.nextToken());

grossPay = hoursWorked * payRate;

} // constructor with parameter

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15

16

CHAPTER 1 Important Features of Java

1.1.11 The protected Visibility Modifier

Notice that in the above constructor for HourlyEmployee, the name and grossPay
fields from the Employee class are treated as if they were declared as fields in the
HourlyEmployee class. In order for this phenomenon to work, the visibility modifier
for those fields in Employee is changed from private to protected:

protected String name;
protected double grossPay;

These declarations enable any subclass of Employee to access the name and
grossPay fields as if they were declared within the subclass itself. This makes sense
because an HourlyEmployee object is an Employee object as well. So the Hourly
Employee class actually has four fields: two inherited and two explicitly declared in
HourlyEmployee.

The subclass HourlyEmployee automatically inherits all the fields, from
Employee, that have the protected modifier. Later on, if a subclass of HourlyEmployee
is created, we would want that subclass’s methods to be able to inherit the
HourlyEmployee fields—as well as the Employee fields. So the declarations of the
HourlyEmployee fields hoursWorked and payRate also have the protected modifier:

protected int hoursWorked;
protected double payRate;

In general, if an identifier (for a field, constant or method) in a class has
protected visibility, that identifier can be accessed in any class that is in the same
package as the given class. So any class—whether or not a subclass—that is in the
same package as Employee can access the name and grossPay fields of an Employee
object. And all classes that are not in a specific package are considered to be part of
the same default package.

Does protectedness transfer across packages? Yes, but only within a subclass,
and only for objects whose type is that subclass. For a bare-bones illustration, sup-
pose we have class A declared in package APackage:

package APackage;
public class A {

protected int t;
}// class A

Also, suppose that classes C and D are subclasses of A and that C and D are in a dif-
ferent package from A. Then within class D, the t field is treated as if it were declared
in D instead of in A. Here are possible declarations for classes C and D:

import APackage.”;

public class C extends A {}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

Class D is declared in another file:
import APackage.”;

public class D extends A {

public void meth() {

D d = new D();
dt=1;// ok
t=2;// ok

A a = new A();
a.t = 3; //illegal
Cc new C();
c.t = 4; // illegal

} method meth
}// class D

In D’s method meth(), the assignment to d.t is legal because t is treated as if it were
declared in D instead of in A. For the very same reason, the assignment to the call-
ing object’s t field is legal in the statement:

t=2;

And, also because t is treated as if it were declared in D, the assignments to a.t and
c.t are illegal.

When you get to studying the Java Collections Framework, you will notice that
many fields have default visibility—they do not have any visibility modifier. As
noted above, fields with default visibility are “package friendly”; that is, they can be
accessed in any class in the same package and cannot be accessed in any class in a
different package. As a consequence, your projects will probably not be able to cre-
ate subclasses of the classes in the Java Collections Framework.

With few exceptions, subclassing across package boundaries is discouraged in
the Java Collections Framework. Why? The main reason is philosophical: a belief
that the efficiency to users of the subclass is not worth the risk to the integrity of the
subclass if the superclass is subsequently modified. This danger is not merely hypo-
thetical. In Java 1.1, a class in java.security subclassed the Hashtable class. In Java
2, the Hashtable class was modified, and this opened a security hole in the subclass.
The bottom line is that subclassing represents more of a commitment than mere use.
So even if a class permits subclassing, it is not necessarily the wisest choice.

For the sake of completeness, here is the HourlyEmployee class:

public class HourlyEmployee extends Employee {
protected static final int HOURS_WORKED_SENTINEL = —1;
protected static final double PAY_RATE_SENTINEL = —1.00;

protected int hoursWorked;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17

18

CHAPTER 1 Important Features of Java
protected double payRate;

/I Postcondition: this HourlyEmployee has been initialized.
public HourlyEmployee() {}

/I Postcondition: this HourlyEmployee has been initialized from s,
/! which contains a name, hours worked and pay rate,
/ with at least one blank in between those components.
public HourlyEmployee (String s) {

StringTokenizer tokens = new StringTokenizer (s);

name = tokens.nextToken();
hoursWorked = Integer.parselnt (tokens.nextToken());
payRate = Double.parseDouble (tokens.nextToken());

grossPay = hoursWorked * payRate;

} // constructor

/I Postcondition: true has been returned if the employee is the sentinel.
/! Otherwise, false has been returned.
public boolean isSentinel() {

if (name.equals (NAME_SENTINEL)
&& hoursWorked == HOURS_WORKED_SENTINEL
&& payRate == PAY_RATE_SENTINEL)
return true;
return false;
} // method isSentinel

} // class HourlyEmployee

The next section continues our discussion of inheritance by examining the inter-
play between inheritance and constructors.

1.1.12 Inheritance and Constructors

Constructors provide initialization for instances of a given class. For that reason, con-
structors are never inherited. But whenever a subclass constructor is called, the exe-
cution of the subclass constructor starts with an automatic call to the superclass’s
default constructor. This ensures that at least the default initialization of fields from
the superclass will occur. For example, the Employee class’s default constructor is
automatically invoked at the beginning of any call to an HourlyEmployee constructor.

What if the superclass has a constructor but no default constructor? Then the
first statement in any subclass constructor must explicitly call the superclass con-
structor. A call to a superclass constructor consists of the reserved word super fol-
lowed by the argument list, in parentheses. For example, suppose some class B’s

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

only constructor has an int parameter. If C is a subclass of B and has a constructor
with a String parameter, that constructor must start out by invoking B’s constructor:

public C (String s) {

super (Integer.parselnt (s)); // explicitly calls B’s int-parameter constructor

So if a superclass explicitly defines a default (that is, zero-parameter) construc-
tor, there are no restrictions on its subclasses. Similarly, if the superclass does not
define any constructors, the compiler will automatically provide a default construc-
tor, and there are no restrictions on the subclasses. But if a superclass defines at least
one constructor and does not define a default constructor, the first statement in any
subclass’s constructor must explicitly invoke a superclass constructor.

Just as the Company class used Employee, the problem of finding the best-paid
hourly employee requires that we create Company2, which uses the HourlyEmployee
class. Company2, a subclass of the Company class described earlier, differs only
slightly from the Company class. Most notably, the processInput method is overrid-
den because the object defined in that class is

HourlyEmployee employee = new HourlyEmployee(s);
instead of

Employee employee = new Employee (s);
Here is the Company2 class:

public class Company2 extends Company {

protected static final String SENTINEL_MESSAGE =
"The sentinels are ***, -1 and -1.00.\n\n";

protected static final String INPUT_PROMPT =
"\nIn the Input line, please enter a name (with no blanks), " +
"\nhours worked and pay rate, followed by the Enter key.";

/I Postcondition: this company has been initialized.
public Company2() {
gui.clear();//make the output area blank.
gui.printin (SENTINEL_MESSAGE);
gui.printin (INPUT_PROMPT);

} /1 default constructor

/I Precondition: s is not null.
/I Postcondition: the hourly-employee’s information has been extracted

/! from s and, if the sentinel, the best-paid hourly
/ employee has been printed. Otherwise, that information
/ has been used to, possibly, update the best-paid-so-far

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19

CHAPTER 1 Important Features of Java

/ hourly-employee.
public void processinput (String s) {

gui.println (s);
HourlyEmployee employee = new HourlyEmployee (s);
if (lemployee.isSentinel()) {

atLeastOneEmployee = true;

if (employee.makesMoreThan (bestPaid))
bestPaid = employee;

gui.printin (INPUT_PROMPT);

} // not the sentinel
else
printBestPaid();

} // processinput

} // class Company2

In the Company2 class, both the constructor and the processinput method have
an interesting feature. Let’s look at the constructor first. As noted earlier, whenever
a subclass’s constructor is called, the first statement executed is always a call to the
superclass’s default constructor. The Company class’s default constructor initializes
bestPaid, constructs a GUI window, and outputs a couple of lines to that window’s
output area. So the Company2 class’s constructor needs to clear that output area and
print the new prompt and sentinel messages. The clearing is accomplished in the
clear() method, which sets the output area’s text to blanks.

In the processinput method, the curious statement is the assignment statement:

bestPaid = employee;

It seems that the types do not agree: the type of bestPaid is reference-to-Employee,
but the type of employee is reference-to-HourlyEmployee. Such an assignment is
legal because an HourlyEmployee is an Employee. In general, we have the subclass
substitution rule:

Subclass Substitution Rule \Whenever a reference-to-superclass-object is
called for in an expression, a reference-to-subclass-object may be substituted.

For another example, suppose that class Y is a subclass of class X. The following is legal:

X' x = new X();
Yy = new Y();
X=Y;

In this last assignment, a reference-to-X is called for in the expression on the right-
hand side, so a reference-to-Y may be substituted: a Y is an X.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

But the reverse assignment is illegal:

X' x = new X();
Yy = new Y();
y = x; // illegal

On the right-hand side of this last assignment, the compiler expects a reference-to-
Y, so a reference-to-X is unacceptable: an X is not a Y. Note that the left-hand side
of an assignment statement must consist of a variable, not an expression, so the sub-
class substitution rule does not apply to the left-hand side.

Now suppose we had the following:

X x = new X();
Yy = new Y();

X=Y;
y=X

After the assignment of y to X, X contains a reference to a Y object. But the assignment:
y=X

still generates a compile-time error because the declared type of x is still reference-

to-X. We can avoid a compile-time error in this situation with a cast: the temporary
conversion of an expression’s type to another type. The syntax for a cast is:

(the new type)expression

For example, we could cast x’s type to Y as follows:
X x = new X();
Yy = new Y();

X=Y;
y = (Y)x

This last assignment passes muster with the compiler because the right-hand side now
has type reference-to-Y. And there is no problem at run-time either because—from the
previous assignment of y to x—the value on the right-hand side really is a reference-
to-Y. But the following—acceptable to the compiler—generates a ClassCastException
at run-time:

X x = new X();
Yy = new Y();
y = ()%

The run-time problem is that x is actually pointing to an X object, not to a Y object.
The complete project, CompanyMain2, is in the chapters/chl directory. Lab 2’s
project illustrates another subclass of Employee.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21

22

CHAPTER 1 Important Features of Java

LAB Lab 2: The SalariedEmployee Class.

All Labs Are Optional LAB

In the above example, the superclass Employee has only one subclass,
HourlyEmployee, and Company’s only subclass is Company2. In some situations
there may be an entire hierarchy of classes. For example, in Java, an exception is an
object created by an unusual condition, typically, an attempt at invalid processing.
Here is part of Java’s exception hierarchy:

Exception

IOException RuntimeException

T T

ArithmeticException IndexOutOfBoundsException NullPointerException
ArraylndexOutOfBoundsException StringindexOutOfBoundsException

For example, if a program attempts to divide by zero, an ArithmeticException object will
be constructed, and if you attempt to use an uninitialized object, a NullPointerException
object will be constructed. Exception handling is discussed later in this chapter.

You will often encounter the following situation. You are developing a class B,
and you realize that the methods of some other class, A, will be helpful. One possi-
bility is for B to inherit all of A; that is, B will be a subclass of A. Then all of A’s
methods are available to B. An alternative is to define, in class B, a field whose class
is A. Then the methods of A can be invoked by that field. It is important to grasp the
distinction between these two ways to access the class A.

Inheritance describes an is-a relationship. An object of the subclass Hourly
Employee will be an object of the superclass Employee, so we can say that an
HourlyEmployee is an Employee. An ArithmeticException is a RunTimeException. A
NullPointerException is a RunTimeException. It is also true that a RunTimeException
is an Exception, so an ArithmeticException is an Exception. To put it mathematically,
the relation is a is transitive.

On the other hand, the fields in a class constitute a has-a relationship to the
class. For example, the name field in the Employee class is of type (reference to)
String, so we can say an Employee object has a String. Also, as you learned in Lab
2, the bestPaid field in the Company class is of type (reference to) Employee, so we
can say a Company object has an Employee.

Typically, if class B shares the overall functionality of A, then inheritance of A
by B is preferable. But if there is only one component of B that will benefit from A’s
methods, the better alternative will be to define an A object as a field in class B. That

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

object can invoke the relevant methods from class A. Often, the choice is not clear-
cut, so experience is your best guide. We will encounter this problem in Chapters 5
and 7.

With an object-oriented approach, the emphasis is not so much on developing
the program as a whole but on developing modular program-parts, namely, classes.
These classes not only make the program easier to understand and to maintain, but
they are reusable for other programs as well. A further advantage to this approach is
that decisions about a class can easily be modified. We first decide what classes will
be needed. And because each class interacts with other classes through its method
descriptions, we can change the class’s fields and method definitions as desired as
long as the method descriptions remain intact.

There are three essential features of object-oriented programming: the encapsu-
lation of fields and methods into a single entity, the inheritance of a class’s fields
and methods by subclasses, and polymorphism, discussed in the next section.

1.1.13 Polymorphism

One of the major aids to code reuse in object-oriented languages is polymorphism.
Polymorphism—from the Greek words for “many” and “shapes”—is the ability of
a reference to refer to different objects. For a simple example of this surprisingly
useful concept, suppose D is a subclass of A and that D overrides A’s scan method.
If found is a boolean variable whose value is determined at run-time, we could have
the following:

A a; // ais a reference to an object of type A, the superclass

if (found)

a = new A();
else

a = new D(); // a is a reference to an object of type D, the subclass
a.scan();

In the message a.scan(), which version of scan is being invoked? That determina-
tion cannot be made at compile-time because until run-time, it cannot be determined
whether a is a reference to an A object or to a D object. To put it another way, a is a
polymorphic reference.

For a slightly longer but more revealing example, let’s go back to the Company
class. That class had a processinput method. Later, we created a subclass, Company2,
with a slightly modified version of processinput. Namely, the new version had a dif-
ferent input prompt and constructed an HourlyEmployee object instead of an
Employee object. Now suppose we wanted to combine the two applications. For
employee input, the name and gross pay are entered; for hourly-employee input, the
name, hours worked, and pay rate are entered.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23

With polymorphism,
the method invoked in
a message depends on
the run-time type of
the object that invoked
the method.

24

CHAPTER 1 Important Features of Java

Here is a CompanyAll class to handle the combined application:
import java.util.*;
public class CompanyAll implements Process {

protected static final String SENTINEL_MESSAGE =
"The sentinels for employee input are *** and -1.00.\n" +
"The sentinels for hourly-employee input are ***, —1 and —1.00.";

protected static final String EMPLOYEE_PROMPT =
"\n\nIn the Input line, please enter a name (with no blanks), " +
"\nand gross pay, followed by the Enter key.";

protected static final String HOURLY_PROMPT =
“\n\nIn the Input line, please enter a name (with no blanks), " +
"\nhours worked and pay rate, followed by the Enter key.";

protected static final String GENERIC_PROMPT =
"“\nFor employee input:" + EMPLOYEE_PROMPT +
“\n\nFor hourly-employee input:" + HOURLY_PROMPT;

protected Employee bestPaid;
protected GUI gui;

protected boolean atlLeastOneEmployee;

/I Postcondition: this company has been initialized.
public CompanyAll() {

bestPaid = new Employee();
atLeastOneEmployee = false;

gui = new GUI (this);

gui.printin (SENTINEL_MESSAGE);
gui.printin (GENERIC_PROMPT);

} // default constructor
/I Postcondition: the input string s—consisting of either an employee or an
I hourly employee—has been processed against what had

/! been this company’s best-paid employee.
public void processinput (String s) {

final String ERROR =
"\nError: the input is incorrect.\n";

Employee employee;
String prompt;

gui.println (s);
int count = new StringTokenizer (s).countTokens();

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

if (count '=2 && count != 3)
gui.printin (ERROR + GENERIC_PROMPT);
else {

if (count == 2) {// 2 input fields for an employee

employee = new Employee (s);
prompt = EMPLOYEE_PROMPT;

} // employee input

else { // 3 input fields for an hourly employee
employee = new HourlyEmployee (s);
prompt = HOURLY_PROMPT;

} // hourly-employee input

if (lemployee.isSentinel()) {
atLeastOneEmployee = true;
if (employee.makesMoreThan (bestPaid))

bestPaid = employee;

gui.println (prompt);

} /I not the sentinel

else
printBestPaid();

}// 2 or 3 tokens
} // processinput

/I Postcondition: this Company’s best-paid employee has been printed out.
protected void printBestPaid() {

final String NO_INPUT_MESSAGE =
"“\n\n"\nERROR: there were no employees in the input.";

final String BEST_PAID_MESSAGE =
"“\n\n\nThe best-paid employee (and gross pay) is ";

final String CLOSE_WINDOW_PROMPT =
"\n\nPlease close this window when you are ready.";

if (atLeastOneEmployee)
gui.printin (BEST_PAID_MESSAGE + bestPaid);
else
gui.printin (NO_INPUT_MESSAGE);
gui.printin (CLOSE_WINDOW_PROMPT);
gui.freeze();

} // method printBestPaid
} // class CompanyAll
In this example, it is legal to write

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26

CHAPTER 1 Important Features of Java

employee = new Employee (s);

So, by the subclass substitution rule, it is also legal to write
employee = new HourlyEmployee (s);

Now consider the meaning of a subsequent message such as
lemployee.isSentinel()

The version of the isSentinel() method executed depends on the type of the object
that employee is currently referencing. For example, if the input string s has only
two tokens, then employee is assigned a reference to an Employee object, so the
Employee class’s version of isSentinel() is invoked. On the other hand, if the input
string s has three tokens, then employee is assigned a reference to an Hourly
Employee object, so the HourlyEmployee class’s version of isSentinel() is invoked.

In this example, employee is a polymorphic reference: the object referred to can
be an Employee or an HourlyEmployee, and this information is not available until
run-time. This illustrates an essential aspect of polymorphism:

When a message is sent, the version of the method invoked depends on the type of the
object, not on the type of the reference.

What is important here is that polymorphism allows code reuse for methods related
by inheritance. We did not need to explicitly call the two versions of the isSentinel()
method.

The code for the CompanyAll class raises a question: How can the Java compiler
generate the appropriate bytecode for a message such as employee.isSentinel()?
Another way to phrase the same question is this: How can the method identifier
isSentinel be bound to the correct version—in Employee or HourlyEmployee—at
compile-time when the necessary information is not available until run-time? The
answer is simple: the binding cannot be done at compile-time but must be delayed
until run-time! A method that is bound to its method identifier at run-time is called
a virtual method.

In Java, almost all methods are virtual. The only exceptions are for static meth-
ods (because they are associated with a class itself rather than an object) and for final
methods (the final modifier signifies that the method cannot be overridden in sub-
classes). This delayed binding—also called dyramic binding or late binding—of
method identifiers to methods is one of the reasons that Java programs execute more
slowly than programs in some other languages.

It turns out that polymorphism is a key feature of the Java language and makes
the Java Collections Framework possible. We will have more to say about this in
Chapter 2.

The CompanyAll class utilized the Company and Employee classes. Would it be
correct to say that users of the Company and Employee classes had to obey the prin-
ciple of data abstraction? The next section considers the extent to which a language
can allow developers of a class to force users of that class to obey the principle of
data abstraction.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

1.1.14 Information Hiding

The principle of data abstraction states that a user’s code should not access the
implementation details of the class used. By following that principle, the user’s code
is protected from changes to those implementation details, such as a change in fields
or method definitions.

Protection is further enhanced if a user’s code is prohibited from accessing the
implementation details of the class used. Information hiding means making the
implementation details of a class inaccessible to code that uses that class. The bur-
den of obeying the principle of data abstraction falls on users, whereas information
hiding is a language feature that allows class developers to keep users from violat-
ing the principle of data abstraction.

As you saw in Labs 1 and 2, Java supports information hiding through the use
of the private, protected, and default-visibility modifiers for methods, fields, and
constants. Through its visibility modifiers, Java forces users to access class members
only to the extent permitted by the developers.

Java also has a feature that enables developers to make sure that a method’s pre-
condition is satisfied before a user can invoke that method: the exception mecha-
nism. But that is just one aspect of exceptions. In the next section, you will learn
more about exceptions, especially, how to handle them. Java’s exception-handling
mechanism provides programmers with significant control over what happens when
€ITOr'S OCCUT.

1.1.15 Exception Handling

Recall that an exception is an object created by an unusual condition, typically, an
attempt at invalid processing. When an exception object is constructed, the normal
flow of control is halted; the exception is said to be thrown. Control is immediately
transferred to code—either in the current method or in some other method—that
“handles” the exception. The exception handling usually depends on the particular
exception and may involve printing an error message, terminating the program, tak-
ing other action, or maybe doing nothing.

A robust program is one that does not terminate unexpectedly from invalid user
input. We almost always prefer programs that—instead of “crashing”—allow recovery
from an error such as the input of 7.0 instead of 7.0 for a double. Java’s exception-han-
dling feature allows the programmer to avoid almost all unexpected terminations.

For an example of how exceptions can be handled by the programmer, suppose
we have a block of code with one or more array references. Using the reserved words
try and catch, we “try” to execute the block of code and “catch” an Arraylndex
OutOfBounds exception if one occurs. Here is the code—the parenthetical expression
after the word catch gives the specific exception class and an object in that class:

final int ARRAY_SIZE = 5;
int[] a = new int [ARRAY_SIZE];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27

CHAPTER 1 Important Features of Java

inti = 0;
try {
i =3
alil =2;
i =5;
alil]=12;
i = —1; // This statement will never be executed.
alil=1;
Y try
catch (ArraylndexOutOfBoundsException exception) {

gui.println (exception + "i =" + i);
} // catch

gui.printin ("continuing");

Because the array indices range from O to 4, an exception is thrown when i, with a
value of 5, is used as an array index. When that exception is thrown during the exe-
cution of the try block, the rest of the try block is ignored and control is transferred
to the catch block—the catch block must immediately follow the try block. In this
example, the output would be

java.lang.ArrayindexOutOfBoundsException: i = 5
continuing

The fact that “continuing” is printed indicates that there is no abnormal termination:
the remainder of the program is executed.

You could avoid the throwing of an exception by testing each array index before
making the array reference:

if (i >= 0 && i < ARRAY_SIZE)

. . . do something with/to a [i]
else
gui.println (i + " is an illegal array reference.");

But to do this for every array reference would unnecessarily clutter up your code.
The “try . . . catch” mechanism provides a single place to handle all illegal indices
in a block of code.

Immediately after a try block there must be at least one catch block. What if
you had several possible exceptions in a block of code? No problem! You simply
use several catch blocks. For example:

try {

Y try
catch (ArrayOutOfBoundsException except1) {

} // catch array indexes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES
catch (NullPointerException except2) {

} /] catch null pointers

Exceptions can be explicitly thrown by the programmer. For example, suppose
we have a method that searches part of an array scores for givenScore, and two of
the formal parameters are start and finish, the bounds of the indices to be searched.
If either start is less than zero or finish is greater than or equal to scores.length, we
want to throw an exception and print an appropriate message. The mechanism for
throwing the exception is the throw statement, which can be placed anywhere a
statement is allowed. For example, the code may be

if (start < 0 |l finish >= scores.length)
throw new lllegalArgumentException ("start too small or finish too big");

If the given condition is true, the throw statement is executed, which creates a
new instance of the exception class lllegalArgumentException. If the throw statement
is in a try block, you could set up a catch block to handle this exception:

catch (lllegalArgumentException e) {
/I whatever
} /] catch

If there are no applicable catch blocks to handle this exception, the program will
terminate with the output message:

java.lang.lllegalArgumentException: start too small or finish too big

In this example, having the exception explicitly raised may be better than hav-
ing the ArraylndexOutOfBoundsException thrown in subsequent code:

try {
for (int i = start; i <= finish; i++)
if (scores [i] == givenScore)
return i;
return —1;
Y try

catch (ArraylndexOutOfBoundsException e) {
/I whatever
} // catch

The problem with the ArraylndexOutOfBoundsException is that, even if finish is
too large, the exception will not be thrown unless i is too large—that is, unless the
givenScore was not found at an earlier index. The user might not want the search to
be conducted if finish is too large. That is why it is better, in this situation, to have
the lllegalArgumentException explicitly thrown, as previously done.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29

30 CHAPTER 1 Important Features of Java

A user can even create new exception classes, for example,
import java.io.”;

public class ProcrastiPhobiaException extends RuntimeException {

public ProcrastiPhobiaException () {
System.out.printin ("Start projects early!");

} // default constructor

} // class ProcrastiPhobiaException
To throw this exception, we write:
throw new ProcrastiPhobiaException();

This creates a new instance of the class ProcrastiPhobiaException. Assume
there is no catch block to handle this exception. Then the program would terminate
with the output:

Start projects early!
java.lang.reflect.InvocationTargetException: ProcrastiPhobiaException

1.1.16 Propagating Exceptions

What happens if an exception, such as NumberFormatException, is thrown in a
method that does not catch that exception? Then control is transferred back to the
calling method: the method that called the method that threw the exception. This
transferring of control is known as propagating the exception. For example, we can
have the following:

public void printAverage() {
try {
gui.println (getAverage());

Y try
catch (ArithmeticException e) {

gui.println ("Attempt to divide by 0. " + €)
} // catch
} // method printAverage
public double getAverage() {
double sum = 35.3;
intn=0;
return sum/ n;

} // method getAverage

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1.1 | CLASSES

The exception is thrown in the method getAverage() but is caught in the method
printAverage(). The output will be

Attempt to divide by 0. java.lang.ArithmeticException: / by zero

If the calling method does not handle the exception, then the exception is prop-
agated back to the calling method of the calling method itself. Ultimately, if the
exception has not been caught even in the main method, the program will terminate
abnormally and a message describing the exception will be printed. The advantage
to propagating an exception is that the exception can be handled at a higher level in
the program. Decisions to change how the exception is handled can be made in one
place, rather than scattered throughout the program. Also, the higher level might
have facilities not available at lower levels, such as a GUI class.

An important category of exception is the checked exception, such as when a
file is not found or the end-of-file marker is encountered while input is being read.
If a method contains a statement whose execution may throw a checked exception,
the exception can be caught within the method itself. But if not, the compiler
requires—to allow propagation of the exception—that a throws clause be appended
to the method heading. We might have

public void sample() throws IOException {

This indicates that the sample method might throw an IOException. If so, the excep-
tion will be propagated back to the method that called sample. That calling method
must either catch IOException or append the same throws clause to its method head-
ing. And so on.

For example, here is a simple program that illustrates how checked exceptions
can be handled (the two classes are in different files):

import java.io.”;
public class ExceptionMain {
public static void main (String[] args) {
ExceptionHandling.try1();
} // method main

/I class ExceptionMain

public class ExceptionHandling {
public static void try1() {

System.out.printin ("start of try1");
try {

try2();

Y try
catch (IOException e) {

System.out.printin (e + "something went wrong with 10");

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31

CHAPTER 1 Important Features of Java

} // catch
System.out.printin ("end of try1");

} // method try1

public static void try2() throws IOException {

System.out.printin ("start of try2");

try3();
System.out.printin ("end of try2");

} // method try2

public static void try3() throws IOException {

System.out.printin ("start of try3");
throw new IOException ("lO error in method try3: ");

} // method try3

} // class ExceptionHandling

The IOException is explicitly raised in try3 but not caught there. So the throws clause

after try3’s heading ensures that the exception is propagated back to try3’s calling

method: try2. Then try2 propagates the exception back to try1, which catches the

exception. So the main method need not have either a throws clause or a catch block.
The output of this program will be

start of try1

start of try2

start of try3

java.io.lOException: 10 error in method try3: something went wrong with 10
end of try1

A checked exception must be caught or specified in a throws clause, and the
compiler “checks” to make sure this has been done. Which exceptions are checked,
and which are unchecked? Subclasses of RuntimeException—NumberFormat
Exception, NullPointerException, IndexOutOfBoundsException, and so on—are
unchecked; all other exceptions are checked. The motivation behind this is that a
RuntimeException, such as NullPointerException or NumberFormatException, can
occur in almost any method. So appending a throws clause to the heading of such a
method would burden the developer of the method without providing any helpful
information to the reader of that method.

Exceptions also play a role in the user-developer relationship. The developer of
a method can throw an exception if the precondition is violated, and this forces the
user to ensure the precondition is true prior to method invocation. For example, we
might have the following:

/I Precondition: n >= 0. Otherwise, lllegalArgumentException will be thrown.
// Postcondition: the factorial of n has been returned.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

EXERCISES

public void factorial (int n) {
if (n <0)
throw new lllegalArgumentException();
} // method factorial

In Lab 3, you will modify the SalariedEmployee class from Lab 2 to handle
exceptions.

33

LAB Lab 3: An Example of Exception Handling.

All Labs Are Optional

LAB

SUMMARY

This chapter presents the Java material you will need in subsequent chapters. We
started with a brief review of classes and objects. The three essential features of an
object-oriented language are

1. Encapsulation of fields and methods into a single entity, the class

2. Inheritance of a class’s fields and methods by subclasses
3. Polymorphism, the ability of a reference to refer to different objects

Data abstraction—the separation of method descriptions from field and method
definitions—is a way for users of a class to protect their code from being affected
by changes in the implementation details of that class. Java, with its private, pro-
tected, and default visibility, supports information hiding, whereby the developer of
a class can prohibit users’ code from accessing implementation details of the class.
Java’s exception-throwing mechanism provides another way for developers to force
users to invoke methods properly. The exception-handling facilities promote robust
programs: they do not terminate unexpectedly from invalid user input.

EXERCISES

1.1 In the CalendarDate class, develop a method description for a daysLeft
InMonth method. If, for example, myDate is a reference to a CalendarDate
object whose date is February 13, 2003, then

myDate.daysLeftinMonth()

will return 15.

1.2 Define the daysLeftinMonth() method from the method description devel-
oped in Exercise 1.1. Assume the CalendarDate class has int fields day,
month, and year.

1.3 Here is a simple class—but with method descriptions instead of method
definitions—to find the highest age in the input and to print out that age:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

34 CHAPTER 1 Important Features of Java

14

1.5

import java.util.”;
public class Age implements Process {

protected static final String INPUT_PROMPT =
"\nln the Input line, please enter an age; the sentinel is *;

protected static final int SENTINEL = -1;

protected static final String HHGHEST_MESSAGE =
"“\n\n\nThe highest age is ";

GUI gui;

int age,
highestAge;

/I Postcondition: this Age has been initialized.
public Age();

/I Postcondition: the input string s, consisting of an age, has been
/ processed against the highest age so far.
public void processinput (String s);

/I Postcondition: the highest age has been printed.
private void printHighest();

}// class Age

a. Fill in the method definitions for the Age class.

b. Test your Age class by developing a project and running the project.

c. Modify your Age class to handle NumberFormatException—if the String
read in is not an integer.

With the Age class in Exercise 1.3a as a guide, develop a Salary class to read
in salaries from the input until the sentinel (—1.00) is reached and to print
out how many of those salaries are above average. The average salary is the
total of the salaries divided by the number of salaries. Assume there will be
at most 100 salaries in the input. Use an array to hold the salaries.

Suppose Y and Z are subclasses of X, and we have

X x = new X();
Yy = new Y();
Zz = new Z();
X =z

Which one of the following assignments would be legal both at compile-time
and at run-time?

a. z=(2x;
b. z=x;

c. z=(X)x;
d y=(Mx

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

EXERCISES

Create a small project to validate your claim.

1.6 Given the classes below (and the usual GUI,GUIListener and Process
classes), determine the output when the project is run. Assume each class is
in a separate file.

public class PolyMain {
public static void main (String args[]) {
Poly poly = new Poly();
} // method main

} /I class PolyMain

public class Poly implements Process {

protected static final String INPUT_PROMPT =
"In the Input Line, please enter 0 or a non-zero integer.";

protected GUI gui;
public Poly() {

gui = new GUI (this);
gui.printin (INPUT_PROMPT);

} // constructor

public void processinput (String s) {
Aa;

int code = Integer.parselnt (s);

if (code == 0)
a = new A();

else // non-zero int entered
a = new D();

gui.printin (a);
} // method processinput

} // class Poly

public class A

{ public String toString() {
return "A";
} // method toString
}// class A

public class D extends A {

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35

36

CHAPTER 1 Important Features of Java

public String toString() {
return "D";
} // method toString
}// class D

1.7 The following class does not do much. It prompts the end-user to enter a
file name; when the file name is entered, that file—if it exists—is opened.
Modify the class so that if there is no file by the given name, the end-user
is reprompted. The program should not terminate until the end-user enters
the name of an existing file.

import java.io.”;

public class FileOpener implements Process {

protected final String PROMPT =
"\nIn the Input line, please enter a file name.";

protected GUI gui;

/I Postcondition: this FileOpener has been initialized.
public FileOpener() {

gui = new GUI (this);
gui.printin (PROMPT);

} // default constructor

/I Postcondition: The input string s has been processed.
public void processinput (String s) {

final String CLOSE_WINDOW_PROMPT = "The execution of
this project is complete." + Please close this window
when you are ready.";

BufferedReader fileReader = new BufferedReader (new
FileReader (s));

gui.printin (CLOSE_WINDOW_PROMPT);

gui.freeze();

} // method processinput

} // class FileOpener

Hint Try to open the file, and catch the FileNotFoundException.

1.8 If a class, such as Company, constructs a GUI window, the class’s only pub-
lic methods should be its own constructor and processinput. Explain.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PROGRAMMING PROJECT 1.1 37

PROGRAMMING PROJECT 1.1

Developing and Using a Sequence Class

In this project, you will get to be a developer of a class, and then become a user of that
class. To start with, here are method descriptions for a Sequence class that holds a
sequence of Integers:

/I Precondition: n >= 1. Otherwise an lllegalAgrumentException object will be
thrown.

/I Postcondition: this is an empty Sequence that will hold at most n Integers.

public Sequence (int n);

/I Postcondition: the number of Integers currently in this Sequence has been
/ returned.
public int size();

/I Precondition: this Sequence will hold at least one more Integer. Otherwise,

/ an lllegalStateException object will be thrown.

/I Postcondition: anint has been appended (inserted at the end of) this Sequence.
public void append (Integer anint);

/I Precondition: this Sequence has at least k Integers. Otherwise, an

/ IndexOutOfBoundsException object will be thrown.

/I Postcondition: the element at position k in this Sequence has been returned.
public Integer get (int k);

/I Precondition: this Sequence has at least k Integers. Otherwise, an
/ IndexOutOfBoundsException object will be thrown.
/I Postcondition: the element at position k in this Sequence has been changed to
/ newInt.
public void set (int k, Integer newInt);
Part 1
Define the methods in the Sequence class.

Hint Use the following fields:

protected Integer|] data;
protected int size; / the number of elements in the Sequence object, not the
/I capacity of the data array.

(continued on next page)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CHAPTER 1 Important Features of Java

(continued from previous page)

Part 2

Create a SequenceTester class that implements the Process interface. The
SequenceTester class will resemble the Company class, with a gui field and a process
Input (String s) method. There will also be a field:

protected Sequence sequence;

The processinput method should consist of a try block and three catch blocks (to print
a message for lllegalArgumentException, lllegalStateException, and IndexOutOf Bounds
Exception). In the processinput method, if s is not the sentinel (“***”), s is converted to
an Integer and appended to sequence. When the sentinel is reached, the minimum and
maximum Integers in Sequence are printed, all occurrences of 13 are changed to 31, and
then the number of Integers in Sequence between 18 and 65, inclusive, is printed. Also,
for each of the four Sequence methods that can throw an exception, make a call that will
throw the exception.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

