
 JPROFILE102:

A System for Experimental Analysis of Algorithms

Tanin Krajangthong and Somchai Prasitjutrakul

Department of Computer Engineering

Chulalongkorn University

Bangkok, Thailand

Abstract— This paper presents a system called JPROFILE102 used

for experimental analysis of algorithms. The system accepts

algorithms implemented as Java methods along with experiment

parameters specifying characteristics and sizes of input data. The

objective is to count the number of times each source code

instruction gets executed during the experiments. Source-code

instrumentation technique is used by parsing the source code to

obtain its associated abstract syntax tree, traversing the tree,

inserting extra counting instructions at instruction nodes and

finally transforming the tree back into an instrumented source

code ready for experiments. To correctly handle method calls in

the code (especially recursive calls), a separate run-time call stack

has to be implemented to keep non-duplicated counter IDs in the

call chain. All profiling data obtained from the experiments are

summarized and reformatted into an HTML page with two

views. One shows a histogram of execution counts. The other

shows line plots of selected instruction counts vs. input data size

to visualize efficiency behavior of the algorithm. The system is

embedded into a Java IDE and effectively used as a teaching aid

in several algorithm analysis courses.

Keywords- analysis of algorithm, experimental analysis

I. INTRODUCTION

An algorithm is a step by step instruction describing a
procedure for solving a problem. We analyze an algorithm in
order to determine the amount of computational resources
(usually time and memory space) needed by the algorithm to
solve its corresponding problem. Algorithms are designed to
work with any size of problem instances. Therefore, algorithms
are analyzed to show the relationship of instance sizes, instance
characteristics and the amount of computational resources
expressing the algorithm efficiencies [1]. Because a problem
can normally be solved by different algorithms, algorithm
analysis must be done to compare their efficiencies and choose
the most efficient one.

Since algorithms are usually not machine-specific, the
analysis of time complexity is carried out by counting the
number of executions of basic operations (rather than
measuring the execution time) required as a function of input
sizes. This counting can be done mathematically or
experimentally [2]. Sums, recurrence relations and generating
functions are among mathematical tools widely used to
mathematically model and analyze algorithms [1]. Some
algorithms can be analyzed to have the exact closed form of the

functions, some algorithms can only be analyzed asymp-
totically to determine tight growth rate bounds of the functions
however, some algorithms are hard to analyze without using
advanced mathematical tools [3].

Another approach to analyze algorithms is to do it
experimentally. This is done by implementing the algorithm,
executing it using specific set of inputs and measuring
computational resources under interests. Not only the approach
can be used to verify the mathematical analysis result (as a
posteriori) and to compare efficiencies of actual algorithm
implementations, it can also be used to gain insight behavior of
the algorithm when it is hard to analyze mathematically [4].

In this paper, we present a system called JPROFILE102 that
facilitates the process of experimental analysis of algorithms.
The system accepts an algorithm implemented in a Java
method along with some parameters specifying experimental
behavior. JPROFILE102 addresses two problems in algorithm
analysis. First, counting the number of execution steps of all
operations is too time-consuming for human. Therefore, one
normally needs to specify “hotspot” (most-frequently executed)
operations before doing the analysis (as our previous system
JPROFILE101 [5] requires users to manually specify operations of
interest) but this is not always an easy task. Hence, JPROFILE102
simply inserts instrumenting instructions to each operation to
monitor all operations in the algorithm automatically. Using all
instruction count data, we are able to determine the hotspot
operations and further analyze the algorithm behavior.

Second, there are some housekeeping routines that have to
be done repeatedly when one experimentally analyzes
algorithms, for examples, setting and updating instrumenting
counters, feeding various input data to the algorithm and, a
very important task, summarizing and presenting profiling
information in graphical forms. These routines are built into
JPROFILE102 to facilitate the experiments by using experimental
annotation code to instruct experimental engine to do as
specified.

This paper is organized as follows. Section II presents
related work in experimental analysis tools and methodologies.
Section III elaborates the internal structure, source code
instrumentation and output results of JPROFILE102. Some usage
examples that we have effectively used are presented in
Section IV and the paper concludes in Section V.

II. RELATED WORK

One of the widely used tools for detail analysis of resource
consumption during program execution is Profiler [6]. It helps
developers to identify program hotspots in order to optimize
the part of program that affects overall performance. In Java
platform, there are JVMPI [7] and JVMTI [8] providing
services for profiling Java execution. In [9], they present
Timing API that helps develop tools for doing experimental
analysis. It measures the actual execution times of various
algorithms with the same input data set in order to compare
their efficiencies. The system provides modules that require
some integration work in order to perform experiments.

Rather than measuring the execution time, profiling can be
done by code instrumentation that inserts counting instructions
in codes to count the number of times the codes are executed.
JP [10] and ByCounter [11] do the work in bytecode level. JP
instruments the bytecodes by performing basic block analysis
to compute control graph and then inserting bytecode counting
instructions within the basic blocks. Since different bytecode
instructions have different execution time, ByCounter counts
the number of executed bytecodes separately for each opcode
to better estimates the total running time (each bytecode is one
byte in length, so there are at most 256 counters). These
profilers provides timing statistics for total execution and for
each method (or function), but not at the specific instruction
within the method.

Another approach is to instrument at source-code level used
in JPROFILE101 [5]. Users are required to manually insert
counting instructions at the source code along with experiment
parameters. Fig. 1 shows an example of instrumenting Bubble
sort algorithm written in Java using a //@Profiler.count++
line to count the number of comparisons done in the following
line. The method is tagged with the system’s @Profile
annotation to specify an input data generator and data sizes
used during experiments. The Profiler.begin() at the main
method starts the JPROFILE101 controller engine which
automatically performs experiments. Fig. 2 is the line graph
showing the counting results and their associated input data
sizes. Since JPROFILE101 requires users to manually tag specific
instructions to be instrumented, this is not an easy task to do for
novices and sometimes hard to do for complicated algorithms.

III. JPROFILE102

JPROFILE102, presented in this paper, utilizes a core module
of JPROFILE101 by adding pre- and post-processing steps as
shown in Fig. 3. In the pre-processing step (INSTRUMENT), the
provided source code of the algorithm is instrumented by
automatically insert counting instructions for all instructions in
the source code. The instrumented code is then fed to
JPROFILE101 to perform experiments according to the specified
input data generators and sizes. All the profiling data obtained
from JPROFILE101 are read back to the post-processing step
(PRESENT) to summarize and present results in two different
views (Fig. 4). One is a count histogram for instructions of the
source code. (The histogram is shown as horizontal bars
overlaid on each line of source codes.) This view lets the user
identify the hotspot instruction in the algorithm that can
mathematically be analyzed in details, if desired. The other

view shows line plots of execution counts for any selected
instructions as a function of input sizes. (Fig. 4 shows two line
plots of the number of data comparisons and the number of
data movements in BubbleSort algorithm.) This gives us the
growth rate of functions to better understand behavior of the
algorithm efficiency.

 import jprofile101.*;

 public class BubbleSort {

 @Profile(
 inputs = {Util.RandomIntArray.class},

 from=0, to=100, step=2, repeat=30
)

 static void bubbleSort(int[] d){

 for (int k=d.length-1; k>0; k--) {

 for (int i = 0; i < k; i++) {

 Profiler.count++; // <---------

 if (d[i] > d[i+1]) {

 int t = d[i];

 d[i] = d[i+1];

 d[i+1] = t;

 }

 }

 }

 }

 public static void main(String[] args) {

 Profiler.begin("BubbleSort");

 }

 }

Figure 1. BubbleSort with counting instruction and experiment parameters

Figure 2. Couting results from the BubbleSort experiments in Fig. 1

Figure 3. JPROFILE102 Structure.

Figure 4. Two output views of JPROFILE102.

JPROFILE102
source

code
instrumented

source code

JPROFILE101

INSTRUMENT

profiling data

PRESENT

A. Source Code Instrumentation

The big advantage of JPROFILE102 over JPROFILE101 is that
users do not have to specify the hotspot instruction in the
algorithm. JPROFILE102 just instruments every instruction and
the most-frequently executed instruction after experiments will
become the hotspot. Source code instrumentation is done by
parsing the source code into an abstract syntax tree (AST)
[12], traversing the AST, inserting a counting instruction at
each instruction node of the tree along the traversal path and
turning the AST back to an instrumented-version of the
original source code. Fig. 5 shows heapSort method along
with its associated AST (a simplified version of AST is shown
here). Each node in the AST represents a construct in the
source code. For example, the node labeled 12:for represents
the for construct at line #12. Each child node represents each
instruction in its block, e.g., the 12:for node has two children,
13:swap and 14: heapify.

08: static void heapSort(int[] d) {

09: int n = d.length;

10: for (int k=n-1; k>=0; k--)

11: heapify(d, k, size);

12: for (int k=n-1; k>0; k--) {

13: swap(d, 0, k);

14: heapify(d, 0, --n);

15: }

16: }

17: static void swap(int[] d, int a, int b) {

18: int t = d[a]; d[a] = d[b]; d[b] = t;

19: }

20: static void heapify(int[] d, int p, int n) {

 ...

28: }

Figure 5. An abstract syntax tree of the heapSort method.

Counting instructions are easily inserted to the left of each
node as traversing the AST in preorder fashion. We keep all
instruction counters in an array and use the preorder numbers
of the original AST nodes as indices of the array. Fig 6 shows
the instrumented AST where nodes colored in gray and labeled
with k++ represent the increment of the counter #k.

Figure 6. The instrumented AST.

Two special cases must be taken into consideration, First is
the for and while statements. We need to increment its counter
both before and after the statements to correctly instrument the
conditions in for and while. Otherwise the for and while will
be counted only once when entering the loop but not when
testing the condition (for examples, see the 2++ and 4++ nodes
in Fig. 6).

Another special case is method calls. Any instruction
executed in a method has to increase both its associated counter
and the counter of the instruction calling that method. For
heapSort shown in Fig. 5, executing instructions inside
heapify method must also increment the counter of
11:heapify (which is 3++) if this heapify has been called
from line #11, or increment the counter of 14:heapify (which
is 6++) if called from line #14. Actually, we need to increment
all counters in the caller chain. This is done by having a call
stack to keep the caller counter IDs, pushing the current caller
counter ID to the stack at method entry and popping the stack
at all method exits. Fig. 7 shows the instrumented heapSort
method. The profiler.inc(k) shown in the code is to
increment counter #k, profiler.enterMethod() is inserted at
the beginning of method and profiler.exitMethod() is
inserted before every return statement including the closed
brace of any return-void method.

08: static void heapSort(int[] d) {
 profiler.enterMethod();
09: profiler.inc(1); int n = d.length;
10: profiler.inc(2); for (int k=n-1; k>=0; k--)
 { profiler.inc(2);
11: profiler.inc(3); heapify(d, k, size);
 }
12: profiler.inc(4); for (int k=n-1; k>0; k--)
 { profiler.inc(4); {
13: profiler.inc(5); swap(d, 0, k);
14: profiler.inc(6); heapify(d, 0, --n);
15: }
 }
 profiler.exitMethod();

16: }

17: static void swap(int[] d, int a, int b) {

 profiler.enterMethod();

 ...

 profiler.exitMethod();

19: }

20: static void heapify(int[] d, int p, int n) {

 profiler.enterMethod();

 ...

 profiler.exitMethod();

28: }

Figure 7. Instrumented heapSort method.

Fig. 8 shows detail operations of the inc, enterMethod and
exitMethod methods. We keep the lastest counter ID which
just gets incremented (in inc) so that it will be pushed to the
stack (in enterMethod) if the statement is a method call.
Special care must be taken for recursive calls to avoid multiple
counting the recursive call statements. In enterMethod, we do
not push in the stack any caller counter ID that is already in the
stack. However, something must be pushed so that it will get
popped in exitMethod. In this case, we have a dummy counter
ID to get pushed. And also in inc, we need to avoid double
increment counter of the statement whose counter is in the
stack.

10:for 12:for

13:swap 14:heapify 11:heapify

08:heapSort

09:=

10:for 12:for

13:swap 14:heapify 11:heapify

08:heapSort

09:= 1++ 2++ 4++

3++ 5++ 6++ 2++ 4++

class Profiler {

 private static final int DUMMY = 0;

 private int [] stack;

 private int tos = -1;

 private int curCounterID = DUMMY;

 private int [] counters;

 // ... constructors are not shown here ...

 public void inc(int k) {

 // increment all counters in stack

 curCounterID = k;

 boolean kInStack = false;

 for (int i = 0; i <= tos; i++) {

 counters[stack[i]]++;

 if (curCounterID == stack[i]) kInStack = true;

 }

 // if k is in stack, don’t count twice

 if (!kInStack) counters[k]++;

 }

 public void enterMethod() {

 boolean recursiveCall = false;

 for (int i=0; !recursiveCall && i <= tos; i++) {

 recursiveCall = (stack[i] == curCounter);

 }
 // push DUMMY ID, if it’s a recursive call

 stack[++tos]=recursiveCall ? DUMMY :curCounterID;

 }

 public void exitMethod() {

 tos--; // pop the stack

 }

 ...

Figure 8. Details of methods used in profiling.

B. Presenting Profiling Data

After source-code-instrumentation phase, the code is then
compiled and executed repeatedly using different input data
and sizes as specified by experiment parameters using
@Profile method annotation. All the profiling data of all
instructions in the source code are summarized and reformatted
into an HTML page with two views, one is an instruction count
histogram for each instruction of the source code, the other is
line plots of execution counts for selected instructions as a
function of input sizes. Users can select specific source-code
lines of interest on the histogram view to update the line-plot
view for comparison.

Fig. 9 shows the two result views from an experiment of
heapSort algorithm. The algorithm consists of two main steps,
building a heap (lines 10 – 11) and repeatedly removing the
max (lines 12 – 15). Both steps utilize the heapify method and
look almost identical in the code. However, we can observe
either the histogram or the line-plots to conclude that the
second step takes significantly more time than the first one.

Figure 9. The two result pages from JPROFILE102.

By looking at the two line plots in Fig. 9, we seem to believe
that both lines grow linearly with different slopes. In this case,
JPROFILE102 lets us enter formulas to re-compute the values for
y-axis so that the lines may look differently. Initially, the
system uses execution counts as values for the y-axis. This is
specified in a text box at the lower left of Fig. 9 as f(n,c) = c
where n is data size (x-axis) and c is execution count. If we
change the formula, e.g., to f(n,c) = c/n, Fig.9 becomes Fig.
10. The lower line for c/n is constant which means that the
original line in Fig. 9 must be linear whereas the upper line
grows like log function in Fig.10. This leads us to believe that
the original one in Fig. 9 grows as an n log n function (which
can be verified analytically to be true for heapSort).

Figure 10. Users can supply a formula to recompute values of the y-axis.

IV. USAGE EXAMPLES

We have integrated JPROFILE102 into JLAB [13], an integrated
Java program development environment used for teaching
programming. Users can edit, test and profile Java programs
implementing algorithms of interest. By pressing CTRL + SHIFT +

F5, the system will automatically activate JPROFILE102. If no
@Profile annotation is provided, the program will run and be
profiled starting at its main method and only a histogram of
instruction execution counts is presented. Otherwise the
method annotated with @Profile will be called and profiled
with different input data as specified. This section presents
some small-size examples that we have used effectively in
teaching algorithm analysis and led to more class discussions.

FindMax: It is easy to show that finding a maximum value in
an array of size n requires n – 1 comparisons. However, it is
not obvious that how many times the max variable in the
program changes its value. It can range from 1 to n depending
on the input array. Fig. 11 shows a plot of the number of such
changes when finding the maximum in random-value arrays
that grows like a log n function.

Figure 11. The max variable changes its value about log n times on average.

FindMinAndMax: Finding both min and max values of an array
can be done by dividing the array into two parts, recursively
finding min and max of each part and then comparing the
results from both parts to obtain the min and max of the bigger
part. We usually divide input instances in half when using
divide and conquer techniques. However, Fig. 12 shows that
dividing the array in half (the upper zigzag line) takes more
comparisons than dividing it into 2 elements on the left part
and the rest on the right part (the lower straight line).

Figure 12. Dividing in half does more work than dividing in 2 and n-2

(details of the two methods are not shown here).

FibonacciNumbers: Writing a recursive code for the well-
known Fibonacci recurrence is very straightforward. However,
due to the nature of overlapping subproblems, the code runs
very slowly. Fig. 13 shows an exponential growth-rate of the
execution time when finding Fibonacci numbers recursively.

Figure 13. Computing Fibonacci numbers recursively takes exponential times.

RandomizedLinearSearch: Most programmers seem to search
sequentially from left to right in an array without hesitation.
JPROFILE102 shows that on average, it compares about a half of
array elements in successful search as shown in Fig. 14.

Figure 14. Simple linear search compares about a half of the list

Questions may arise, e.g., “why don’t we search it the other
way around?” or “why don’t we search it either way,
depending on the outcome of a coin toss?” A quick analysis
shows that with the randomized linear search, the worst

expected number of comparisons is n/2 when the target
element is at the middle of the array. This might lead us to
believe that the randomized version may improve the number
of comparisons on average. However, a quick experiment with
JPROFILE102 showed (in Fig. 15) that a randomly choosing
between a left-to-right and right-to-left searches compares
about the same average number of probes needed in the simple
left-to-right search. (In this example, we need to sum the
number of data comparison instructions at line #11 and #14.
This can be done by selecting both lines at the source code and
checking the “sum selected lines” checkbox on the left as shown
in Fig. 15.)

Figure 15. Randomized linear search probes about the same as the simple one.

V. CONCLUSION

We have presented JPROFILE102, a system that can be used
in experimental analysis of algorithms. Rather than let users
manually specify operations of their interest and then perform
the instruction profiling as done in our previous work in
JPROFILE101. JPROFILE102 automatically instruments every
source-code level instructions and then performs the profiling
of all the instructions. These profiling data are useful not only
for identifying hotspots of the algorithm, but also for studying
algorithm behavior. Experiments can be set to execute the code
repeatedly with different sizes of input data. The execution
counts are plotted against data sizes to see the growth rate of
execution times of each instruction in the code. This gives us
an estimate of algorithm efficiency so that we can further
mathematically analyze. JPROFILE102 is embedded into JLAB,
a simple and small Java IDE, to quickly do experimental
analysis after correctly implementing algorithms of interest.
We have effectively used the system as a teaching aid in
several algorithm analysis courses. The system is available for
download at http://www.cp.eng.chula.a.th/~somchai/JLab

REFERENCES

[1] R. Sedgewick and P. Flajolet, An Introduction to the Analysis of

Algorithms, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1996.

[2] D. Johnson, A Theoretician’s Guide to the Experimental Analysis of
Algorithms, 1-36, November. 25, 2001.

[3] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to
Algorithms, 2nd ed. The MIT Press, 2003.

[4] G. Brassard and P. Bratley, Fundamentals of Algorithmics, Prentice
Hall, 1996.

[5] W. Nilla-or and S. Prasitjutrakul, JProfile101 : Controller for Experi-

mental Analysis of Algorithms, NCIT2009, National Conference on
Information Technology, 2009.

[6] S. Liang and D.Viswanathan, Comprehensive Profiling Support in the
Java Virtual Machine, The USENIX Association, 1999.

[7] Oracle Inc. Java Virtual Machine Profiler Interface [Online]. Available:
http://docs.oracle.com/javase/1.5.0/docs/guide/jvmpi/jvmpi.html, 2011

[8] Oracle Inc. Java Virtual Machine Tool Interface [Online]. Available:
http://docs.oracle.com/javase/1.5.0/docs/guide/jvmti/jvmti.html, 2011

[9] A. Duffy and T. Dowling, Algorithm Analysis, National University of
Ireland, Maynooth, Ireland, Dept. of CS. Technical Report, 2003.

[10] W. Binde and J. Hulaas, Exact and Portable Profiling for the JVM Using

Bytecode Instruction Counting, ENTCS (Electronic Notes in
Theoretical Computer Science), 164(3), 45-64, 2006.

[11] M. Kuperberg, M. Krogmann and R. Reussner, ByCounter : Portable

Runtime Counting of Bytecode Instructions and Method Invocations,
ETAPS 11th Euro. Joint Conf. on Theory and Practice of Software, 2008.

[12] A. Tucker, Programming Languages: Principles and Paradigms, 2nd ed.,
McGraw-Hill, 2007.

[13] S. Prasitjutrakul, JLab : An Integrated Java Program Development Tool
[Online]. Avaiable http://www.cp.eng.chula.ac.th/~somchai/JLab

