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Abstract— This paper presents a system called JPROFILE102 used 

for experimental analysis of algorithms. The system accepts 

algorithms implemented as Java methods along with experiment 

parameters specifying characteristics and sizes of input data. The 

objective is to count the number of times each source code 

instruction gets executed during the experiments. Source-code 

instrumentation technique is used by parsing the source code to 

obtain its associated abstract syntax tree, traversing the tree, 

inserting extra counting instructions at instruction nodes and 

finally transforming the tree back into an instrumented source 

code ready for experiments. To correctly handle method calls in 

the code (especially recursive calls), a separate run-time call stack 

has to be implemented to keep non-duplicated counter IDs in the 

call chain. All profiling data obtained from the experiments are 

summarized and reformatted into an HTML page with two 

views. One shows a histogram of execution counts. The other 

shows line plots of selected instruction counts vs. input data size 

to visualize efficiency behavior of the algorithm. The system is 

embedded into a Java IDE and effectively used as a teaching aid 

in several algorithm analysis courses. 
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I.  INTRODUCTION 

An algorithm is a step by step instruction describing a 
procedure for solving a problem. We analyze an algorithm in 
order to determine the amount of computational resources 
(usually time and memory space) needed by the algorithm to 
solve its corresponding problem. Algorithms are designed to 
work with any size of problem instances. Therefore, algorithms 
are analyzed to show the relationship of instance sizes, instance 
characteristics and the amount of computational resources 
expressing the algorithm efficiencies [1]. Because a problem 
can normally be solved by different algorithms, algorithm 
analysis must be done to compare their efficiencies and choose 
the most efficient one. 

Since algorithms are usually not machine-specific, the 
analysis of time complexity is carried out by counting the 
number of executions of basic operations (rather than 
measuring the execution time) required as a function of input 
sizes. This counting can be done mathematically or 
experimentally [2]. Sums, recurrence relations and generating 
functions are among mathematical tools widely used to 
mathematically model and analyze algorithms [1]. Some 
algorithms can be analyzed to have the exact closed form of the 

functions, some algorithms can only be analyzed asymp-
totically to determine tight growth rate bounds of the functions 
however, some algorithms are hard to analyze without using 
advanced mathematical tools [3].   

Another approach to analyze algorithms is to do it 
experimentally. This is done by implementing the algorithm, 
executing it using specific set of inputs and measuring 
computational resources under interests. Not only the approach 
can be used to verify the mathematical analysis result (as a 
posteriori) and to compare efficiencies of actual algorithm 
implementations, it can also be used to gain insight behavior of 
the algorithm when it is hard to analyze mathematically [4].   

In this paper, we present a system called JPROFILE102 that 
facilitates the process of experimental analysis of algorithms. 
The system accepts an algorithm implemented in a Java 
method along with some parameters specifying experimental 
behavior. JPROFILE102 addresses two problems in algorithm 
analysis. First, counting the number of execution steps of all 
operations is too time-consuming for human. Therefore, one 
normally needs to specify “hotspot” (most-frequently executed) 
operations before doing the analysis (as our previous system 
JPROFILE101 [5] requires users to manually specify operations of 
interest) but this is not always an easy task. Hence, JPROFILE102 
simply inserts instrumenting instructions to each operation to 
monitor all operations in the algorithm automatically. Using all 
instruction count data, we are able to determine the hotspot 
operations and further analyze the algorithm behavior. 

Second, there are some housekeeping routines that have to 
be done repeatedly when one experimentally analyzes 
algorithms, for examples, setting and updating instrumenting 
counters, feeding various input data to the algorithm and, a 
very important task, summarizing and presenting profiling 
information in graphical forms. These routines are built into 
JPROFILE102 to facilitate the experiments by using experimental 
annotation code to instruct experimental engine to do as 
specified.  

This paper is organized as follows. Section II presents 
related work in experimental analysis tools and methodologies. 
Section III elaborates the internal structure, source code 
instrumentation and output results of JPROFILE102. Some usage 
examples that we have effectively used are presented in 
Section IV and the paper concludes in Section V. 



II. RELATED WORK 

One of the widely used tools for detail analysis of resource 
consumption during program execution is Profiler [6]. It helps 
developers to identify program hotspots in order to optimize 
the part of program that affects overall performance.  In Java 
platform, there are JVMPI [7] and JVMTI [8] providing 
services for profiling Java execution. In [9], they present 
Timing API that helps develop tools for doing experimental 
analysis. It measures the actual execution times of various 
algorithms with the same input data set in order to compare 
their efficiencies. The system provides modules that require 
some integration work in order to perform experiments.  

Rather than measuring the execution time, profiling can be 
done by code instrumentation that inserts counting instructions 
in codes to count the number of times the codes are executed. 
JP [10] and ByCounter [11] do the work in bytecode level. JP 
instruments the bytecodes by performing basic block analysis 
to compute control graph and then inserting bytecode counting 
instructions within the basic blocks. Since different bytecode 
instructions have different execution time, ByCounter counts 
the number of executed bytecodes separately for each opcode 
to better estimates the total running time (each bytecode is one 
byte in length, so there are at most 256 counters). These 
profilers provides timing statistics for total execution and for 
each method (or function), but not at the specific instruction 
within the method. 

Another approach is to instrument at source-code level used 
in JPROFILE101 [5]. Users are required to manually insert 
counting instructions at the source code along with experiment 
parameters. Fig. 1 shows an example of instrumenting Bubble 
sort algorithm written in Java using a //@Profiler.count++ 
line to count the number of comparisons done in the following 
line. The method is tagged with the system’s @Profile 
annotation to specify an input data generator and data sizes 
used during experiments. The Profiler.begin() at the main 
method starts the JPROFILE101 controller engine which 
automatically performs experiments. Fig. 2 is the line graph 
showing the counting results and their associated input data 
sizes. Since JPROFILE101 requires users to manually tag specific 
instructions to be instrumented, this is not an easy task to do for 
novices and sometimes hard to do for complicated algorithms. 

III. JPROFILE102 

JPROFILE102, presented in this paper, utilizes a core module 
of JPROFILE101 by adding pre- and post-processing steps as 
shown in Fig. 3. In the pre-processing step (INSTRUMENT), the 
provided source code of the algorithm is instrumented by 
automatically insert counting instructions for all instructions in 
the source code. The instrumented code is then fed to 
JPROFILE101 to perform experiments according to the specified 
input data generators and sizes. All the profiling data obtained 
from JPROFILE101  are read back to the post-processing step 
(PRESENT) to summarize and present results in two different 
views (Fig. 4). One is a count histogram for instructions of the 
source code. (The histogram is shown as horizontal bars 
overlaid on each line of source codes.) This view lets the user 
identify the hotspot instruction in the algorithm that can 
mathematically be analyzed in details, if desired. The other 

view shows line plots of execution counts for any selected 
instructions as a function of input sizes. (Fig. 4 shows two line 
plots of the number of data comparisons and the number of 
data movements in BubbleSort algorithm.) This gives us the 
growth rate of functions to better understand behavior of the 
algorithm efficiency.   

 import jprofile101.*; 

 public class BubbleSort { 

   @Profile( 
     inputs = {Util.RandomIntArray.class}, 

     from=0, to=100, step=2, repeat=30 
   ) 

   static void bubbleSort(int[] d){ 

     for (int k=d.length-1; k>0; k--) { 

       for (int i = 0; i < k; i++) { 

         Profiler.count++;    // <--------- 

         if (d[i] > d[i+1]) { 

           int t = d[i]; 

           d[i] = d[i+1]; 

           d[i+1] = t; 

         } 

       } 

     } 

   } 

   public static void main(String[] args) { 

     Profiler.begin("BubbleSort"); 

   } 

 } 

Figure 1.  BubbleSort with counting instruction and experiment parameters 

 

Figure 2.  Couting results from the BubbleSort experiments in Fig. 1 

 
Figure 3.  JPROFILE102 Structure. 

 

Figure 4.  Two output views of JPROFILE102. 
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A. Source Code Instrumentation 

The big advantage of JPROFILE102 over JPROFILE101 is that 
users do not have to specify the hotspot instruction in the 
algorithm. JPROFILE102 just instruments every instruction and 
the most-frequently executed instruction after experiments will 
become the hotspot. Source code instrumentation is done by 
parsing the source code into an abstract syntax tree (AST) 
[12], traversing the AST, inserting a counting instruction at 
each instruction node of the tree along the traversal path and 
turning the AST back to an instrumented-version of the 
original source code. Fig. 5 shows heapSort method along 
with its associated AST (a simplified version of AST is shown 
here). Each node in the AST represents a construct in the 
source code. For example, the node labeled 12:for represents 
the for construct at line #12. Each child node represents each 
instruction in its block, e.g., the 12:for node has two children, 
13:swap and 14: heapify.  

08: static void heapSort(int[] d) { 

09:   int n = d.length; 

10:   for (int k=n-1; k>=0; k--) 

11:     heapify(d, k, size); 

12:   for (int k=n-1; k>0; k--) { 

13:     swap(d, 0, k); 

14:     heapify(d, 0, --n); 

15:   } 

16: } 

17: static void swap(int[] d, int a, int b) { 

18:   int t = d[a]; d[a] = d[b]; d[b] = t; 

19: } 

20: static void heapify(int[] d, int p, int n) { 

      ... 

28: } 

     

Figure 5.  An abstract syntax tree of the heapSort method. 

Counting instructions are easily inserted to the left of each 
node as traversing the AST in preorder fashion. We keep all 
instruction counters in an array and use the preorder numbers 
of the original AST nodes as indices of the array. Fig 6 shows 
the instrumented AST where nodes colored in gray and labeled 
with k++ represent the increment of the counter #k. 

 

Figure 6.  The instrumented AST. 

Two special cases must be taken into consideration, First is 
the for and while statements. We need to increment its counter 
both before and after the statements to correctly instrument the 
conditions in for and while. Otherwise the for and while will 
be counted only once when entering the loop but not when 
testing the condition (for examples, see the 2++ and 4++ nodes 
in  Fig. 6). 

Another special case is method calls. Any instruction 
executed in a method has to increase both its associated counter 
and the counter of the instruction calling that method. For 
heapSort shown in Fig. 5, executing instructions inside 
heapify method must also increment the counter of 
11:heapify (which is 3++) if this heapify has been called 
from line #11, or increment the counter of 14:heapify (which 
is 6++) if called from line #14. Actually, we need to increment 
all counters in the caller chain. This is done by having a call 
stack to keep the caller counter IDs, pushing the current caller 
counter ID to the stack at method entry and popping the stack 
at all method exits. Fig. 7 shows the instrumented heapSort 
method. The profiler.inc(k) shown in the code is to 
increment counter #k,  profiler.enterMethod() is inserted at 
the beginning of method and profiler.exitMethod() is 
inserted before every return statement including the closed 
brace of any return-void method. 

08: static void heapSort(int[] d) { 
      profiler.enterMethod(); 
09:   profiler.inc(1);    int n = d.length;       
10:   profiler.inc(2);    for (int k=n-1; k>=0; k--) 
      { profiler.inc(2); 
11:     profiler.inc(3);    heapify(d, k, size); 
      }       
12:   profiler.inc(4);    for (int k=n-1; k>0; k--)  
      { profiler.inc(4);  { 
13:     profiler.inc(5);    swap(d, 0, k); 
14:     profiler.inc(6);    heapify(d, 0, --n); 
15:                       } 
      } 
      profiler.exitMethod(); 

16: } 

17: static void swap(int[] d, int a, int b) { 

      profiler.enterMethod(); 

      ... 

      profiler.exitMethod(); 

19: } 

20: static void heapify(int[] d, int p, int n) { 

      profiler.enterMethod(); 

      ... 

      profiler.exitMethod(); 

28: } 

Figure 7.  Instrumented heapSort method.  

Fig. 8 shows detail operations of the inc, enterMethod and 
exitMethod methods. We keep the lastest counter ID which 
just gets incremented (in inc) so that it will be pushed to the 
stack (in enterMethod) if the statement is a method call. 
Special care must be taken for recursive calls to avoid multiple 
counting the recursive call statements. In enterMethod, we do 
not push in the stack any caller counter ID that is already in the 
stack. However, something must be pushed so that it will get 
popped in exitMethod. In this case, we have a dummy counter 
ID to get pushed. And also in inc, we need to avoid double 
increment counter of the statement whose counter is in the 
stack. 

10:for 12:for 

13:swap 14:heapify 11:heapify 

08:heapSort 

09:= 

10:for 12:for 

13:swap 14:heapify 11:heapify 

08:heapSort 

09:= 1++ 2++ 4++ 

3++ 5++ 6++ 2++ 4++ 



class Profiler { 

 private static final int DUMMY = 0; 

 private int [] stack; 

 private int tos = -1; 

 private int curCounterID = DUMMY; 

 private int [] counters; 

 // ... constructors are not shown here ... 

 public void inc(int k) { 

   // increment all counters in stack 

   curCounterID = k; 

   boolean kInStack = false; 

   for (int i = 0; i <= tos; i++) { 

     counters[stack[i]]++; 

     if (curCounterID == stack[i]) kInStack = true; 

   } 

   // if k is in stack, don’t count twice 

   if (!kInStack) counters[k]++; 

 } 

 public void enterMethod() { 

   boolean recursiveCall = false; 

   for (int i=0; !recursiveCall && i <= tos; i++) { 

     recursiveCall = (stack[i] == curCounter); 

   } 
   // push DUMMY ID, if it’s a recursive call 

   stack[++tos]=recursiveCall ? DUMMY :curCounterID; 

 } 

 public void exitMethod() { 

   tos--; // pop the stack 

 } 

 ... 

Figure 8.  Details of methods used in profiling.  

B. Presenting Profiling Data 

After source-code-instrumentation phase, the code is then 
compiled and executed repeatedly using different input data 
and sizes as specified by experiment parameters using 
@Profile method annotation. All the profiling data of all 
instructions in the source code are summarized and reformatted 
into an HTML page with two views, one is an instruction count 
histogram for each instruction of the source code, the other is 
line plots of execution counts for selected instructions as a 
function of input sizes. Users can select specific source-code 
lines of interest on the histogram view to update the line-plot 
view for comparison. 

Fig. 9 shows the two result views from an experiment of 
heapSort algorithm. The algorithm consists of two main steps, 
building a heap (lines 10 – 11) and repeatedly removing the 
max (lines 12 – 15). Both steps utilize the heapify method and 
look almost identical in the code. However, we can observe 
either the histogram or the line-plots to conclude that the 
second step takes significantly more time than the first one. 

 

Figure 9.  The two result pages from JPROFILE102.  

By looking at the two line plots in Fig. 9, we seem to believe 
that both lines grow linearly with different slopes. In this case, 
JPROFILE102 lets us enter formulas to re-compute the values for 
y-axis so that the lines may look differently. Initially, the 
system uses execution counts as values for the y-axis. This is 
specified in a text box at the lower left of Fig. 9 as f(n,c) = c 
where n is data size (x-axis) and c is execution count.  If we 
change the formula, e.g., to f(n,c) = c/n, Fig.9 becomes Fig. 
10. The lower line for c/n is constant which means that the 
original line in Fig. 9 must be linear whereas the upper line 
grows like log function in Fig.10. This leads us to believe that 
the original one in Fig. 9 grows as an n log n function (which 
can be verified analytically to be true for heapSort). 

 
Figure 10.  Users can supply a formula to recompute values of the y-axis. 

IV. USAGE EXAMPLES 

We have integrated JPROFILE102 into JLAB [13], an integrated 
Java program development environment used for teaching 
programming. Users can edit, test and profile Java programs 
implementing algorithms of interest. By pressing CTRL + SHIFT + 

F5, the system will automatically activate JPROFILE102. If no 
@Profile annotation is provided, the program will run and be 
profiled starting at its main method and only a histogram of 
instruction execution counts is presented. Otherwise the 
method annotated with @Profile will be called and profiled 
with different input data as specified. This section presents 
some small-size examples that we have used effectively in 
teaching algorithm analysis and led to more class discussions. 

FindMax: It is easy to show that finding a maximum value in 
an array of size n requires n – 1 comparisons. However, it is 
not obvious that how many times the max variable in the 
program changes its value. It can range from 1 to n depending 
on the input array. Fig. 11 shows a plot of the number of such 
changes when finding the maximum in random-value arrays 
that grows like a log n function. 

 
Figure 11.  The max variable changes its value about log n times on average.  



FindMinAndMax: Finding both min and max values of an array 
can be done by dividing the array into two parts, recursively 
finding min and max of each part and then comparing the 
results from both parts to obtain the min and max of the bigger 
part. We usually divide input instances in half when using 
divide and conquer techniques. However, Fig. 12 shows that 
dividing the array in half (the upper zigzag line) takes more 
comparisons than dividing it into 2 elements on the left part 
and the rest on the right part (the lower straight line).  

 

Figure 12.  Dividing in half does more work than dividing in 2 and n-2 

(details of the two methods are not shown here).  

FibonacciNumbers: Writing a recursive code for the well-
known Fibonacci recurrence is very straightforward. However, 
due to the nature of overlapping subproblems, the code runs 
very slowly. Fig. 13 shows an exponential growth-rate of the 
execution time when finding Fibonacci numbers recursively. 

 
Figure 13.  Computing Fibonacci numbers recursively takes exponential times. 

RandomizedLinearSearch: Most programmers seem to search 
sequentially from left to right in an array without hesitation.  
JPROFILE102 shows that on average, it compares about a half of 
array elements in successful search as shown in Fig. 14. 

 
Figure 14.  Simple linear search compares about a half of the list 

Questions may arise, e.g., “why don’t we search it the other 
way around?” or “why don’t we search it either way, 
depending on the outcome of a coin toss?” A quick analysis 
shows that with the randomized linear search, the worst 

expected number of comparisons is n/2 when the target 
element is at the middle of the array. This might lead us to 
believe that the randomized version may improve the number 
of comparisons on average. However, a quick experiment with 
JPROFILE102 showed (in Fig. 15) that a randomly choosing 
between a left-to-right and right-to-left searches compares 
about the same average number of probes needed in the simple 
left-to-right search. (In this example, we need to sum the 
number of data comparison instructions at line #11 and #14. 
This can be done by selecting both lines at the source code and 
checking the “sum selected lines” checkbox on the left as shown 
in Fig. 15.)  

 

Figure 15.  Randomized linear search probes about the same as the simple one.  

V. CONCLUSION 

We have presented JPROFILE102, a system that can be used 
in experimental analysis of algorithms. Rather than let users 
manually specify operations of their interest and then perform 
the instruction profiling as done in our previous work in 
JPROFILE101. JPROFILE102 automatically instruments every 
source-code level instructions and then performs the profiling 
of all the instructions. These profiling data are useful not only 
for identifying hotspots of the algorithm, but also for studying 
algorithm behavior. Experiments can be set to execute the code 
repeatedly with different sizes of input data. The execution 
counts are plotted against data sizes to see the growth rate of 
execution times of each instruction in the code. This gives us 
an estimate of algorithm efficiency so that we can further 
mathematically analyze. JPROFILE102 is embedded into JLAB, 
a simple and small Java IDE, to quickly do experimental 
analysis after correctly implementing algorithms of interest. 
We have effectively used the system as a teaching aid in 
several algorithm analysis courses. The system is available for 
download at http://www.cp.eng.chula.a.th/~somchai/JLab 
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