
Algorithm Visualization System : An Overview of Internal Structure 1

Somchai Prasitjutrakul Wittaya Watcharawittaykul
Dept. of Computer Engineering

Faculty of Engineering
Chulalongkorn University

Bangkok, THAILAND
email: somchaip@chulkn.chula.ac.th

Division of Computer Science
School of Applied Statistics

National Institute of Development Administration
Bangkok, THAILAND

email: wittaya@as.nida.ac.th

                                                          

1This research is supported by the National Electronics and Computer Technology Center.
   Reprinted from Proc. of  Third ASEAN Regional Seminar on Microelectronics & Information Technology, Aug. 1994

Abstract

Algorithm visualization is a research area that 
explores presentation techniques for visualizing 
algorithm behavior. Complementing asymptotic analysis, 
algorithm visualization presents one with abstract 
behavioral models in terms of animated views, which 
helps viewers see behavioral aspects and leads to more 
understanding at a higher abstract level.  This paper 
presents an internal structure of an algorithm 
visualization system under Microsoft Windows where 
multiple execution threads can be synchronized and 
behavioral view can be displayed simultaneously. The 
design aims to be structured, systematic, and easy to use.

I. Introduction

Algorithm visualization is a research area 
investigating presentation techniques for visualizing 
algorithm behavior. Interesting aspects relating to 
algorithm behavior involve dynamic aspects of data,  
program executions, and other computational operations. 
Direct measurement of these aspects usually provides 
absolute numerical values that do not reflect the 
algorithm's behavior. A better approach is to exploit the 
asymptotic analysis to analyze the algorithm complexity. 
Although this approach is currently widely used, it needs 
strong mathematical background and experience. 
Appreciating algorithm behavior is usually difficult 
because of the inability to see through mathematical 
functions.

Complementing the asymptotic analysis, algorithm 
visualization presents one with abstract behavioral 
models in terms of animated views. Each view represents 
an interesting aspects of the behavior. Because 
interesting aspects can be separated and shown 
simultaneously, overall understanding of the algorithm 
behavior can be achieved easily. One can try changing 
algorithm inputs, controlling algorithm and animation 
speed,  and then observing the results.  Moreover, one 
can even try visualizing more than one algorithm solving 

the same problem instance in order to compare algorithm 
performance.

This paper presents an internal structure of an 
algorithm visualization system under Microsoft Windows 
where multiple execution threads can be synchronized 
and behavioral view can be displayed simultaneously. 
The design aims to be structured, systematic, and easy to 
use. The rest of the paper is as follows. Section 2 
presents the related work to algorithm visualization. A 
background on Microsoft Windows features is outlined in 
section 3. Section 4 presents algorithm visualization 
system components and how they interact. A brief 
demonstration is given in section 5. And then the paper 
concludes in section 6.

II. Related Work

The idea of having tools to help one understands 
how an algorithm works is dated back in the mid '70s. 
The first approach is to record the computer-generated 
images on film, for instances, Bell Labs' film on list 
processing [1], Booth's film on the associated algorithms 
of the PQ-trees [2], and Beacker's Sorting Out Sorting [3] 
which takes three years to make the 30-minute film. 
Algorithm movies show the film in the exact form where 
it was produced, so viewers can not interact or 
experiments with the algorithm they are watching.

The second approach is to have a system with the 
ability to graphically display internal program's data 
structures.  Being able to observe what data are being 
kept and how they change helps viewer appreciates 
certain aspects of the algorithm. This feature is generally 
used for debugging programs where programmer want to 
know when the data are invalid. Incense [4], GDBX [5], 
PROVIDE [6] are examples of systems supporting this 
feature.

Although graphical display of data structures can 
reveal what data look like to the viewers, they do not 
show how data structures in a program related and do not 
exhibit program execution status. Algorithm animation 
system is another approach . It allows programmers to 



insert special functions to be called when certain aspects 
of program are worth observing. Viewers can change 
program input parameters,  select appropriate views of 
data or programs, and then observe the results. This kind 
of systems includes Yarwood's [7], De Boer's [8], 
BALSA-I [9], Zeus [10], Tango [11], Pavene [12]

III. Windows TM

Microsoft Windows is an operating environment 
running on top of DOS in IBM-compatible personal 
computers. The environment is currently the most 
popular for the PCs, this is because of consistent 
graphical user interface, device-independent graphics, 
multitasking capability, and the use of dynamic linking 
library.

Windows programs are event-driven. When an 
event occurs (e.g., mouse click, mouse move, timer tick) 
an associated message is generated. Associated with each 
application is an application message queue that keeps 
pending messages waiting to be processed by the 
application. That is each application consists of a main 
function and a set of functions corresponding to 
associated messages.  When a message arrives, it gets 
dispatched to an appropriate function. The function 
reacts to the message it got, and then goes back to wait 
for other messages. Since Windows is a non-preemptive 
multitasking system, computationally-intensive processes 
must yield control to other applications from time to time 
in order not to hold CPU for its own [13].

IV. Algorithm Visualization System

The main logic structure of the system consists of 
an algorithm module that accepts input from an input 
generator module and then produces image and 
animation corresponding to the program action and 
behavior to the view module (see Fig 1). In case that 
more than one algorithm is visualized (i.e., for 
performance comparisons among algorithms which are 
solving the same problem instance), the executions must 
be synchronized by the synchronizer. The synchronizer 
must be fair so that the comparison in terms of time is 
relatively correct.
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Fig. 1. Algorithm Visualization System Structure

Converter

From the structure presented above, the algorithm 
and the view are too closely tightened. That is the 
algorithm designer has to know exactly what kind of view 
they currently are. This makes additions or modification 
of views harder, since we need to modify the algorithm as 
well. To remedy this problem and clarify the 
responsibilities the algorithm designer and the view 
designer, we introduce an converter (see Fig. 2). The 
converter converts event messages from the algorithms to 
a sequence of commands each associated view reacts.  
Notice that there may be more than one view that accept 
the same commands e.g., a view whose purpose is to 
display value of a number can be either displaying the 
number itself, plotting a curve of a function of this 
number and time, or representing a  value by an intensity 
of color.
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Fig. 2. Converter
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Fig. 3. Converting an output event to view's commands

Fig. 3. shows an example of converting an output 
event to view's commands. In this example, a user want 
to visualize Quicksort by observing the data contents 
through Stick and Point view and observing the number 
of inversion through ShowNum view. When there is any 
data exchange by the algorithm, it sends out an output 
event. Converters detect the event and then send out a set 
of view's commands to the associated views.  So we can 
see that the algorithm designer only pays attention to 



what interesting events of the algorithm are. And the 
view designer only pays attention to the details of how 
picture and animation can be done according to a certain 
set of specified view's commands. And it is the 
responsibility of the converter to glue both part together. 
According to this scheme, a view can be used by 
different algorithms for different purposes.

Binder

To further separate each module apart, we 
indirectly tighten each module via a binder (Fig. 4). The 
information about which algorithm, input generator, 
converters, and views the user choose are all stored in the 
binder local binding tree (an example is shown in Fig. 5). 
All messages generated will be sent to binder and will get 
rerouted to the associated modules. Therefore each 
module only waits for command messages, reacts on the 
commands, and sends command messages out (if any) 
and does not have to worry about where the command 
message it got is from and where the command message 
it sends out is to. The binding tree is built and updated 
according to selection choices chosen from the user via 
the control center.
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Fig 5. Binding Tree

How does the relationship among modules in the 
binding tree come from ?  This relationship is specified 
by the algorithm designer in a form of configuration file. 
An example of the configuration file for a sorting 

program is shown below. The file lists all modules which 
can be selected for the algorithm. Here, there is one input 
generator and four views available. Each view consists of 
the name of executable files for the view and its 
associated converter. By default, pre-selected modules 
specified in the [default]  section are loaded upon 
selecting the algorithm.

[directories]
; search path for each components
inputgen=c:\avis\inputgen
view=c:\avis\view
converter=c:\avis\sort\convertr

[inputgens]
1=List, glist.exe

[views]
1=Point, clist.exe, vdot.exe
2=Stick, clist.exe, vstick.exe
3=Inversion, cinverse.exe, vshownum.exe
4=#comparisons, cnumcmp.exe,
vshownum.exe

[default]
inputgen=List, glist.exe
view=Point, clist.exe, vdot.exe
view=Stick, clist.exe, vstick.exe

Parallel Call Mechanism

Multiple views can be shown for visualizing an 
algorithm. Therefore updating views needs to be done 
simultaneously (at least to the user's perception). If the 
binder sends out commands to each view sequentially,  
the views will be jerkily updated. To achieve smooth 
view update, the system provides a parallel call 
mechanism. It allows the binder to send out command in 
parallel to associated modules, then waits for all the 
actions to be completed before returns control to the 
caller. The following code illustrates how the parallel call 
is done under Windows.

static int   count ;
PSendCommand( Alg , Command  )
{
 count  = 0;

  for each convertr Cnv assoc w/algorithm Alg  {
    PostMessage( Cnv, Command );
   count  = count  + 1;
 }
 while ( count  != 0 ) YieldControl();
}
PRespond()
{
  count  = count  - 1;
}

Suppose an algorithm wants to send out command to its 
associated converters, it calls the PSendCommand  
function when the function returns, every converter must 
complete its job. The PSendCommand actually sends out 
command via the PostMessage  Windows function, 
which puts the command message to the target 
converters' application queues. Notice that we have a 
variable named count  that increases its value by one for 
each command posted to a converter, and decreases its 
value by one when any converter finishes its job (when a 



converter finishes the command received, it must call the 
PRespond  function). Therefore, right after posting the 
command to all the associated converter, the 
PSendCommand waits for value of count  to reach zero. 
and then returns control to the caller algorithm.  During 
the waiting loop we need to call YieldControl  function 
to let other processes of the system run since Windows is 
non-preemptive.

Synchronizer

Since the system allows multiple algorithm 
visualizations, it must provide an algorithm synchroni-
zation mechanism. This is to guarantee that algorithms 
running at the same time each has a share equal 
opportunity to execute in the environment. Relative time 
spent by algorithms must reflect algorithm speed. That  
an algorithm finishes earlier than the others means it is 
faster. This job is taken care by the synchronizer with 
helps from the algorithm designer. Before writing a 
program to implement an algorithm, the designer needs 
to define what basic operation of the algorithm is. The 
basic operation generally is an operation of the algorithm 
whose operation count reflects execution time. For 
example, a basic operation for a sorting algorithm would 
be the comparison operation. When the basic operation is 
defined, whenever the program executes any basic 
operation, it must call SyncNotify  function inform the 
synchronizer that it passed one more basic operation as 
shown below.

Alg_SelectionSort_Code( hAlg )
{

int   i, n, iMaxVal, iMaxPos, iData[MAXN];

n = InputEvent_HowManyKeys();
for (i=0; i<n; i++)

     InputEvent_ReadKey( iData[i] );
for (i=0; i<n; i++)

     OutputEvent_NewKey( i,iData[i] );
for (i=n-1; i>=1 i--) {
  iMaxPos = i;
  for (j=0; j<=i; j++) {

 if ( iData[iMaxPos] < iData[j] )
         iMaxPos = j;

 SyncNotify( hAlg );
  }
  swap( iData, i, iMaxPos );
  OutputEvent_Swap( i, iMaxPos );
}

}

Each algorithm has a time slot in the synchronizer. The 
time slots are initialized to a number represent time 
quantum at the beginning and when all algorithms have 
executed one more basic operation. A time quantum 
decreases its value by one if its associated algorithm 
passed one basic operation. Whenever the quantum of an 
algorithm reaches zero, the synchronizer holds the 
execution of the algorithm and yields control to others. 
The holding will be released if all the slots are zero and 
time quantums are reloaded and the algorithms resume 
their work. (See the code below.)

SyncNotify( hAlg )
{
  if ( Quantum[hAlg]-- != 0 ) return;
  NumAlgsLeft--;

  while ( NumAlgsLeft != 0 ) YieldControl();
  SyncInit();
}

 Since the synchronizer acts just like a conductor 
giving a rhythm to all the algorithms.  It, therefore, 
indirectly controls speed of all the algorithms . This is 
done by controlling the holding duration. If the holding 
only releases when user click a certain button on the 
control panel, it becomes a single-step control.  So 
pausing the execution is achieved by holding the 
execution forever, and single step is done by releasing 
the holding and go to the pausing stage in the next round.

V. Examples

To demonstrate how algorithm visualization helps  
viewers appreciate the insight of algorithms (albeit the 
fact that views cannot be animated on paper), we choose 
various sorting algorithms to be presented here in this 
section since the sorting problem is very well-defined and 
well-known. A list of four hundred data is to be sorted. A 
view named Points  is used as a window presenting the 
list. Each datum is represented by a point where its y-
coordinate is proportional to its numeric value and its x-
coordinate is its position in the list. In the example, we 
assume that initial value of the data are randomly 
generated and ascending sort order is expected.

Let take a look at Heapsort algorithm in Fig. 6. The 
principle of Heapsort is to iteratively select a datum 
whose value is maximum among all the data not yet 
selected and then put the datum on the right-most 
position among all the positions not yet having data.  The 
data not yet selected are kept in a Heap, a data structure 
very well-suited for deleting the maxima.  Starting from 
the initial positions shown in Fig 6a. Time must be spent 
on building the heap illustrated in Fig. 6b where the heap 
is partially built. Building heap is completed in Fig. 6c. 
(Notice the left-most element is always the maximum 
one.) Then the maximum selection process is iterated as 
shown in Fig. 6d and 6e. Finally, the sorting is finished in 
Fig. 6f. We can observe how data are partitioned into a 
heap on the left side (which gets smaller and smaller) and 
a sorted data on the right  side which gets longer and 
longer. The interesting thing is if an already sorted list is 
sorted using Heapsort,  the corresponding visualization 
views are shown in Fig 6. It seems like the Heapsort is 
wasting its time building a heap which destroys the initial 
sorted order of data, and then relocates data to form a 
sorted data. The sequence of view snapshots from start to 
finish are Fig. 6f, 6g, 6h, 6i, 6j (here the heap is 
completely built), 6i, 6h, 6g, and Fig. 6f.

VI. Conclusion

This paper describes the internal structure of an 
algorithm visualization system running under Windows 
operating environment. The input generator module 



generates a problem instance to the algorithm module 
which in turns produces events. The events are 
interpreted and converted to a list of commands for the 
view modules by the converters. All the mentioned 
modules are glued together via the binding tree and 
parallel call services offered by the binder module where 
data, events, and commands are routed to the correct 
destinations. For a multiple algorithm visualization 
session, the synchronizer controls the execution of each 
algorithm.  The research is currently exploring the 
abstract behavioral models for various graph, numerical 
method, computational geometry, and VLSI design 
algorithms. A good algorithm visualization system can be 
a powerful tool for studying algorithm analysis and 
design.
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 Fig. 6. A visualization of Heapsort algorithm.


