
Algorithm Visualization System : An Overview of Internal Structure 1

Somchai Prasitjutrakul Wittaya Watcharawittaykul
Dept. of Computer Engineering

Faculty of Engineering
Chulalongkorn University

Bangkok, THAILAND
email: somchaip@chulkn.chula.ac.th

Division of Computer Science
School of Applied Statistics

National Institute of Development Administration
Bangkok, THAILAND

email: wittaya@as.nida.ac.th

1This research is supported by the National Electronics and Computer Technology Center.
 Reprinted from Proc. of Third ASEAN Regional Seminar on Microelectronics & Information Technology, Aug. 1994

Abstract

Algorithm visualization is a research area that
explores presentation techniques for visualizing
algorithm behavior. Complementing asymptotic analysis,
algorithm visualization presents one with abstract
behavioral models in terms of animated views, which
helps viewers see behavioral aspects and leads to more
understanding at a higher abstract level. This paper
presents an internal structure of an algorithm
visualization system under Microsoft Windows where
multiple execution threads can be synchronized and
behavioral view can be displayed simultaneously. The
design aims to be structured, systematic, and easy to use.

I. Introduction

Algorithm visualization is a research area
investigating presentation techniques for visualizing
algorithm behavior. Interesting aspects relating to
algorithm behavior involve dynamic aspects of data,
program executions, and other computational operations.
Direct measurement of these aspects usually provides
absolute numerical values that do not reflect the
algorithm's behavior. A better approach is to exploit the
asymptotic analysis to analyze the algorithm complexity.
Although this approach is currently widely used, it needs
strong mathematical background and experience.
Appreciating algorithm behavior is usually difficult
because of the inability to see through mathematical
functions.

Complementing the asymptotic analysis, algorithm
visualization presents one with abstract behavioral
models in terms of animated views. Each view represents
an interesting aspects of the behavior. Because
interesting aspects can be separated and shown
simultaneously, overall understanding of the algorithm
behavior can be achieved easily. One can try changing
algorithm inputs, controlling algorithm and animation
speed, and then observing the results. Moreover, one
can even try visualizing more than one algorithm solving

the same problem instance in order to compare algorithm
performance.

This paper presents an internal structure of an
algorithm visualization system under Microsoft Windows
where multiple execution threads can be synchronized
and behavioral view can be displayed simultaneously.
The design aims to be structured, systematic, and easy to
use. The rest of the paper is as follows. Section 2
presents the related work to algorithm visualization. A
background on Microsoft Windows features is outlined in
section 3. Section 4 presents algorithm visualization
system components and how they interact. A brief
demonstration is given in section 5. And then the paper
concludes in section 6.

II. Related Work

The idea of having tools to help one understands
how an algorithm works is dated back in the mid '70s.
The first approach is to record the computer-generated
images on film, for instances, Bell Labs' film on list
processing [1], Booth's film on the associated algorithms
of the PQ-trees [2], and Beacker's Sorting Out Sorting [3]
which takes three years to make the 30-minute film.
Algorithm movies show the film in the exact form where
it was produced, so viewers can not interact or
experiments with the algorithm they are watching.

The second approach is to have a system with the
ability to graphically display internal program's data
structures. Being able to observe what data are being
kept and how they change helps viewer appreciates
certain aspects of the algorithm. This feature is generally
used for debugging programs where programmer want to
know when the data are invalid. Incense [4], GDBX [5],
PROVIDE [6] are examples of systems supporting this
feature.

Although graphical display of data structures can
reveal what data look like to the viewers, they do not
show how data structures in a program related and do not
exhibit program execution status. Algorithm animation
system is another approach . It allows programmers to

insert special functions to be called when certain aspects
of program are worth observing. Viewers can change
program input parameters, select appropriate views of
data or programs, and then observe the results. This kind
of systems includes Yarwood's [7], De Boer's [8],
BALSA-I [9], Zeus [10], Tango [11], Pavene [12]

III. Windows TM

Microsoft Windows is an operating environment
running on top of DOS in IBM-compatible personal
computers. The environment is currently the most
popular for the PCs, this is because of consistent
graphical user interface, device-independent graphics,
multitasking capability, and the use of dynamic linking
library.

Windows programs are event-driven. When an
event occurs (e.g., mouse click, mouse move, timer tick)
an associated message is generated. Associated with each
application is an application message queue that keeps
pending messages waiting to be processed by the
application. That is each application consists of a main
function and a set of functions corresponding to
associated messages. When a message arrives, it gets
dispatched to an appropriate function. The function
reacts to the message it got, and then goes back to wait
for other messages. Since Windows is a non-preemptive
multitasking system, computationally-intensive processes
must yield control to other applications from time to time
in order not to hold CPU for its own [13].

IV. Algorithm Visualization System

The main logic structure of the system consists of
an algorithm module that accepts input from an input
generator module and then produces image and
animation corresponding to the program action and
behavior to the view module (see Fig 1). In case that
more than one algorithm is visualized (i.e., for
performance comparisons among algorithms which are
solving the same problem instance), the executions must
be synchronized by the synchronizer. The synchronizer
must be fair so that the comparison in terms of time is
relatively correct.

Input
Generator

Algorithm Synchronizer

View

Fig. 1. Algorithm Visualization System Structure

Converter

From the structure presented above, the algorithm
and the view are too closely tightened. That is the
algorithm designer has to know exactly what kind of view
they currently are. This makes additions or modification
of views harder, since we need to modify the algorithm as
well. To remedy this problem and clarify the
responsibilities the algorithm designer and the view
designer, we introduce an converter (see Fig. 2). The
converter converts event messages from the algorithms to
a sequence of commands each associated view reacts.
Notice that there may be more than one view that accept
the same commands e.g., a view whose purpose is to
display value of a number can be either displaying the
number itself, plotting a curve of a function of this
number and time, or representing a value by an intensity
of color.

Input
Generator

Algorithm

 Converter

 View

Synchronizer

Fig. 2. Converter

Algorithm : QuickSort

Converter : List

View : Stick View : Point

Converter : Inversion

View : ShowNum

OutputEvent_Swap(i,j)

VList_Clear(i,d(i))
VList_Clear(j,d(j))

VList_Set(i,d(j))
VList_Set(j,d(i))

VShowNum_Set(inv)

InputGen : List

Fig. 3. Converting an output event to view's commands

Fig. 3. shows an example of converting an output
event to view's commands. In this example, a user want
to visualize Quicksort by observing the data contents
through Stick and Point view and observing the number
of inversion through ShowNum view. When there is any
data exchange by the algorithm, it sends out an output
event. Converters detect the event and then send out a set
of view's commands to the associated views. So we can
see that the algorithm designer only pays attention to

what interesting events of the algorithm are. And the
view designer only pays attention to the details of how
picture and animation can be done according to a certain
set of specified view's commands. And it is the
responsibility of the converter to glue both part together.
According to this scheme, a view can be used by
different algorithms for different purposes.

Binder

To further separate each module apart, we
indirectly tighten each module via a binder (Fig. 4). The
information about which algorithm, input generator,
converters, and views the user choose are all stored in the
binder local binding tree (an example is shown in Fig. 5).
All messages generated will be sent to binder and will get
rerouted to the associated modules. Therefore each
module only waits for command messages, reacts on the
commands, and sends command messages out (if any)
and does not have to worry about where the command
message it got is from and where the command message
it sends out is to. The binding tree is built and updated
according to selection choices chosen from the user via
the control center.

Synchronizer

Binder

Input
Generator

Algorithm

Converter

View

DLL

EXE

DLLEXE

EXE

EXE

Control Panel

EXE

Fig. 4. Binder

A

I

C C

V V V

A

I

C

V

I

V

C

V

C

A

Visualization Session

I : Input generator, A : Algorithm, C : Converter, V : View

Fig 5. Binding Tree

How does the relationship among modules in the
binding tree come from ? This relationship is specified
by the algorithm designer in a form of configuration file.
An example of the configuration file for a sorting

program is shown below. The file lists all modules which
can be selected for the algorithm. Here, there is one input
generator and four views available. Each view consists of
the name of executable files for the view and its
associated converter. By default, pre-selected modules
specified in the [default] section are loaded upon
selecting the algorithm.

[directories]
; search path for each components
inputgen=c:\avis\inputgen
view=c:\avis\view
converter=c:\avis\sort\convertr

[inputgens]
1=List, glist.exe

[views]
1=Point, clist.exe, vdot.exe
2=Stick, clist.exe, vstick.exe
3=Inversion, cinverse.exe, vshownum.exe
4=#comparisons, cnumcmp.exe,
vshownum.exe

[default]
inputgen=List, glist.exe
view=Point, clist.exe, vdot.exe
view=Stick, clist.exe, vstick.exe

Parallel Call Mechanism

Multiple views can be shown for visualizing an
algorithm. Therefore updating views needs to be done
simultaneously (at least to the user's perception). If the
binder sends out commands to each view sequentially,
the views will be jerkily updated. To achieve smooth
view update, the system provides a parallel call
mechanism. It allows the binder to send out command in
parallel to associated modules, then waits for all the
actions to be completed before returns control to the
caller. The following code illustrates how the parallel call
is done under Windows.

static int count ;
PSendCommand(Alg , Command)
{
 count = 0;

 for each convertr Cnv assoc w/algorithm Alg {
 PostMessage(Cnv, Command);
 count = count + 1;
 }
 while (count != 0) YieldControl();
}
PRespond()
{
 count = count - 1;
}

Suppose an algorithm wants to send out command to its
associated converters, it calls the PSendCommand
function when the function returns, every converter must
complete its job. The PSendCommand actually sends out
command via the PostMessage Windows function,
which puts the command message to the target
converters' application queues. Notice that we have a
variable named count that increases its value by one for
each command posted to a converter, and decreases its
value by one when any converter finishes its job (when a

converter finishes the command received, it must call the
PRespond function). Therefore, right after posting the
command to all the associated converter, the
PSendCommand waits for value of count to reach zero.
and then returns control to the caller algorithm. During
the waiting loop we need to call YieldControl function
to let other processes of the system run since Windows is
non-preemptive.

Synchronizer

Since the system allows multiple algorithm
visualizations, it must provide an algorithm synchroni-
zation mechanism. This is to guarantee that algorithms
running at the same time each has a share equal
opportunity to execute in the environment. Relative time
spent by algorithms must reflect algorithm speed. That
an algorithm finishes earlier than the others means it is
faster. This job is taken care by the synchronizer with
helps from the algorithm designer. Before writing a
program to implement an algorithm, the designer needs
to define what basic operation of the algorithm is. The
basic operation generally is an operation of the algorithm
whose operation count reflects execution time. For
example, a basic operation for a sorting algorithm would
be the comparison operation. When the basic operation is
defined, whenever the program executes any basic
operation, it must call SyncNotify function inform the
synchronizer that it passed one more basic operation as
shown below.

Alg_SelectionSort_Code(hAlg)
{

int i, n, iMaxVal, iMaxPos, iData[MAXN];

n = InputEvent_HowManyKeys();
for (i=0; i<n; i++)

 InputEvent_ReadKey(iData[i]);
for (i=0; i<n; i++)

 OutputEvent_NewKey(i,iData[i]);
for (i=n-1; i>=1 i--) {
 iMaxPos = i;
 for (j=0; j<=i; j++) {

 if (iData[iMaxPos] < iData[j])
 iMaxPos = j;

 SyncNotify(hAlg);
 }
 swap(iData, i, iMaxPos);
 OutputEvent_Swap(i, iMaxPos);
}

}

Each algorithm has a time slot in the synchronizer. The
time slots are initialized to a number represent time
quantum at the beginning and when all algorithms have
executed one more basic operation. A time quantum
decreases its value by one if its associated algorithm
passed one basic operation. Whenever the quantum of an
algorithm reaches zero, the synchronizer holds the
execution of the algorithm and yields control to others.
The holding will be released if all the slots are zero and
time quantums are reloaded and the algorithms resume
their work. (See the code below.)

SyncNotify(hAlg)
{
 if (Quantum[hAlg]-- != 0) return;
 NumAlgsLeft--;

 while (NumAlgsLeft != 0) YieldControl();
 SyncInit();
}

 Since the synchronizer acts just like a conductor
giving a rhythm to all the algorithms. It, therefore,
indirectly controls speed of all the algorithms . This is
done by controlling the holding duration. If the holding
only releases when user click a certain button on the
control panel, it becomes a single-step control. So
pausing the execution is achieved by holding the
execution forever, and single step is done by releasing
the holding and go to the pausing stage in the next round.

V. Examples

To demonstrate how algorithm visualization helps
viewers appreciate the insight of algorithms (albeit the
fact that views cannot be animated on paper), we choose
various sorting algorithms to be presented here in this
section since the sorting problem is very well-defined and
well-known. A list of four hundred data is to be sorted. A
view named Points is used as a window presenting the
list. Each datum is represented by a point where its y-
coordinate is proportional to its numeric value and its x-
coordinate is its position in the list. In the example, we
assume that initial value of the data are randomly
generated and ascending sort order is expected.

Let take a look at Heapsort algorithm in Fig. 6. The
principle of Heapsort is to iteratively select a datum
whose value is maximum among all the data not yet
selected and then put the datum on the right-most
position among all the positions not yet having data. The
data not yet selected are kept in a Heap, a data structure
very well-suited for deleting the maxima. Starting from
the initial positions shown in Fig 6a. Time must be spent
on building the heap illustrated in Fig. 6b where the heap
is partially built. Building heap is completed in Fig. 6c.
(Notice the left-most element is always the maximum
one.) Then the maximum selection process is iterated as
shown in Fig. 6d and 6e. Finally, the sorting is finished in
Fig. 6f. We can observe how data are partitioned into a
heap on the left side (which gets smaller and smaller) and
a sorted data on the right side which gets longer and
longer. The interesting thing is if an already sorted list is
sorted using Heapsort, the corresponding visualization
views are shown in Fig 6. It seems like the Heapsort is
wasting its time building a heap which destroys the initial
sorted order of data, and then relocates data to form a
sorted data. The sequence of view snapshots from start to
finish are Fig. 6f, 6g, 6h, 6i, 6j (here the heap is
completely built), 6i, 6h, 6g, and Fig. 6f.

VI. Conclusion

This paper describes the internal structure of an
algorithm visualization system running under Windows
operating environment. The input generator module

generates a problem instance to the algorithm module
which in turns produces events. The events are
interpreted and converted to a list of commands for the
view modules by the converters. All the mentioned
modules are glued together via the binding tree and
parallel call services offered by the binder module where
data, events, and commands are routed to the correct
destinations. For a multiple algorithm visualization
session, the synchronizer controls the execution of each
algorithm. The research is currently exploring the
abstract behavioral models for various graph, numerical
method, computational geometry, and VLSI design
algorithms. A good algorithm visualization system can be
a powerful tool for studying algorithm analysis and
design.

References

[1] Kenneth C. Knowlton. L6: Bell Telephone
Laboratories Low-Level Linked List Language, two
16mm black and white sound film, 1966

[2] Kellog S. Booth, PQ Trees, 16mm color silent film,
12 minutes, 1975

[3] Ronald M. Baecker and David Sherman, Sorting Out
Sorting, 16mm color sound film, 30 minutes, 1981

[4] Brad A. Myers, "Incense: A System for Displaying
Data Structures," Computer Grpahics, Vol 17, No.3,
July 1983, 115-125

[5] David B. Baskerville, "Graphic Presentation of Data
Structures in the DBX Debugger," Report No.

UCB/CSD 86/260, University of California at
Berkeley, Berkeley, CA, October 1985

[6] Thomas G. Moher, "PROVIDE: a Process
Visualization and Debugging Environment,"
Technical Report, University of Illinois at Chicago,
Chicago, IL July 1985

[7] Edward Yarwood, Toward Program Illustration,
M.Sc. Thesis, Dept. of Computer Science,
University of Toronto, Toronto, ON, 1974.

[8] James M. De Boer, A System for the Animation of
Micro-PL/I Programs, M.Sc. Thesis, Dept. of
Computer Science, University of Toronto, Toronto,
ON, 1974.

[9] Marc H. Brown, Algorithm Animation, The MIT
Press, Cambridge, MA, 1988.

[10] Marc H. Brown, "Zeus: A System for Algorithm
Animation and MultiView Editing," Proc. IEEE
Wokshop Visual Languages, IEEE CS Press, CA,
1991, pp. 4-9.

[11] J. T. Stasko, "Tango: A Framwork and System for
Algorithm Animation," Computer, Vol. 23, No. 9,
Sept. 1990, pp. 27-39.

[12] G.-C. Roman et al., "Pavene: A System for
Declarative Visualization of Concurrent
Computations," J. Visual Languages and
Computing, Vol. 3, No. 2, June 1992, pp. 161-193.

[13] Charles Petzold, Progamming in Windows 3.1 3rd
Edition, Microsoft Press, 1992

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

 Fig. 6. A visualization of Heapsort algorithm.

