
An I/O Pad Assignment Algorithm for IC Design

Somchai Prasitjutrakul

Department of Computer Engineering, Chulalongkorn University
Phayatai Rd. Bangkok 10330, THAILAND

ABSTRACT

This paper presents an algorithm for I/O pad assignment used to assign off-chip I/O's
to pads (at the chip periphery) prior to the module placement process. Both timing and
geometrical constraints are transformed into connection strengths which represent proximity
relationships for the off-chip I/O's of the network. An objective function for the I/O pad
assignment problem is proposed and experimentally shown to be almost monotonically
increasing with the cost of the module placement. An algorithm for minimizing the objective
function using a heuristic constructive assignment followed by iterative improvements was
experimentally shown to produce solutions comparable to solutions using the simulated
annealing technique, but requiring far less computation time.

1. INTRODUCTION

When using a physical analogy (e.g. force, energy, resistive network) or mathematical
programming methods to model and solve the module placement problem, fixed assignment
of off-chip I/O's to pads is usually required prior to placing the modules 1,2,3,4,5,6,7,8,9. This is
so because well-defined relative positions of the modules are obtained when the off-chip I/O
positions are fixed, whereas all modules collapse to the center of the chip (assuming no
repulsive force is used) when they are not. It is obvious that different I/O pad assignments
will usually lead to different placement results. In other words, the quality of the module
placement result depends heavily on the preassignment of I/O pads 2 as shown for the
example in Figure 1.

In this paper, an I/O pad assignment algorithm is presented. The algorithm transforms
the entire network into a new network consisting only of off-chip I/O's and their
relationships. The relationships (weights) among the off-chip I/O's indicate the proximities of
the I/O's, and are derived from the path-delay constraints and the structure (which considers
both module sizes and their interconnections) of the original network. Then an objective

function representing the I/O pad assignment problem is minimized. The objective function
(similar to a quadratic assignment problem) is formulated by using the weights among the
I/O's and the distances between pads (distributed at the chip periphery) in such a way that it
will lead to the minimum cost for the subsequent placement process. These steps are
discussed in the following sections.

Figure 1. Module placement results with different I/O pad assignments

2. OFF-CHIP I/O PROXIMITY RELATIONSHIPS

The main objective of the I/O pad assignment process is to find an assignment which
produces a minimum cost placement when the actual module placement is done. In the initial
module placement 1, the objective function to be minimized is the total normalized wire delay
of all paths, which can be transformed to a total weighted wire delay as shown below. (Let dw
be delay of wire w and Dmaxp be maximum allowable wire delay of path p which is obtained
from the difference between the given maximum delay of path p and total delay of modules
on path p.)

F
Dmax

d
p

w
w pp

= ⋅










∈∀

∑∑ 1

wirepath

 = ⋅

















∑∑
∀

d
Dmaxw

p
w

pw path
passing thru

wire

1

 ()= ⋅
∀
∑ d cw w

wwire

where c
Dmaxw

p
w

p

= ∑
path

passing thru

1

Let n be the number of modules including off-chip I/O's (for simplicity, off-chip I/O's
are assumed to be modules) of the network, and Mio be the set of off-chip I/O's. Let C and S
be n�n matrices where cij of C and sij of S represent the proximity relationships between
modules i and j based on the timing constraints and geometrical constraints, respectively. For
any connected modules i and j, cij = � cw for all the wires w connecting modules i and j. For
any non-connected modules i and j, cij can be computed from the following assumptions. Let
uij be the expected distance between modules i and j where uij is inversely proportional to cij
(i.e., the stronger the connection strength, the shorter the distance between modules). From
the triangular inequality property, for any modules i, j, k uij � uik + ukj (i.e., c c cij ik kj

− − −≤ +1 1 1).

Setting { }c c cij
k

ik kj
−

∀

− −= +1 1 1min satisfies the above distance property so that it can be used for

computing the connection strengths of non-connected modules based on timing information.

sij is a value indicating the maximum allowable distance between modules i and j so
that any two modules located on any path from i to j can be placed adjacent to one another.
Let Lk be the estimated width of module k (a module is modeled by using a circle whose area
is the same as estimated module area, therefore Lk is assumed to be equal to the diameter of
the corresponding circle 1). For any connected modules i and j, sij = 0. For any non-connected

modules i and j, { }s s L sij
k

ik k kj= + +
∀

min i.e., when i and j are to be placed, it is preferred

that the distance between both modules be as close to sij as possible.

Since only the relationships between off-chip I/O's are needed in the objective
function (described later), the matrices C and S, whose elements sij and cij , i�Mio, j�Mio, can
be determined by using the shortest path algorithm 10. For matrix C, let graph Gc = (Vc, Ec)
(see Figure 2b). Vc is a set of vertices representing modules. There is an edge between
vertices vi and vj if there is a signal net connecting modules i and j. Associated with each

edge is the value cij
−1 where cij = � cw for all the wires w connecting modules i and j. Let Vcio

be the set of vertices representing all the off-chip I/O's. The problem is to determine the
shortest path among all the vertices of Vcio. Therefore, cij is equal to the reciprocal of the
distance of the shortest path from vi and vj where i and j are off-chip I/O's.

a f

b g

c d

e

1 2

5

3

6

4

(a) A module network

cac
−1 ccd

−1 cdf
−1

cce
−1

cbe
−1 ceg

−1

va vc vd vf

vb ve vg

(b) Graph Gc

v1 v2 v3

v4

v5 v6

Lc Ld

Le

Lc
Lc

Le

Le

(c) Graph Gs

Figure 2. Examples of graphs Gc and Gs .

For matrix S, let graph Gs = (Vs, Es) (see Figure 2c). Vs is a set of vertices where vp is
a vertex representing signal p. There is an edge between vertices vp and vq if both signals p
and q are connected to the same module. Associated with each edge is the width of the
corresponding module. Let Vsio be the set of vertices representing signal nets which are
connected to I/O's. The problem is to determine the shortest path among all the vertices of
Vsio. Therefore, sij is equal to the distance of the shortest path from vp to vq where I/O i
connectes to signal p and I/O j connects to signal q.

3. OBJECTIVE FUNCTION

Let P be a set of pads, and U be a �P� � �P� matrix where an element ukl of U is the
Euclidean distance between pads k and l. Given a possible assignment of off-chip I/O's to
pads, p, where I/O i is assigned to pad p(i), an objective function, Q, for the I/O pad
assignment problem is defined as follows :

Q c W s uij ij p i p j
i j i j

i j M io

= ⋅
∀ ≠

∈

∑ (,) .() ()
, :

,

Function W defined below represents the cost for assignment I/O i to pad p(i) and I/O j to pad
p(j) based on the geometrical constraints.

W s u
u

sij p i p j
p i p j

ij

(,)() ()
() ()=













2

The above function W suggests that if up(i)p(j) is greater than sij , it means that some connected
modules on a path between off-chip I/O's i and j cannot be placed adjacent to one another
because the distance between the I/O's i and j, up(i)p(j) exceeds the maximum allowable
distance specified by sij . Therefore there is a penalty when up(i)p(j) is greater than sij (by using
the square function).

In order to show that the objective function Q of the I/O pad assignment problem has
the characteristics close to the ideal objective function, a set of one hundred different I/O pad
assignments were fed into the initial module placement process presented in our previous
work 1 to obtain module placements based on each of the given I/O pad assignments. Then
the costs of the obtained module placements, F (each of which is the summation of the
normalized total wire delays), were plotted against the costs of the I/O pad assignments, Q.
Five different examples were used for the experiment. The plots of the F and Q relationships
for all the examples are shown in Figure 3.

An ideal I/O pad assignment objective function should have a monotonically
increasing relationship to the cost of subsequent module placement. All of the plots in Figure
3 exhibit an almost ideal relationship. In other words, the I/O pad assignment having the
minimum value of Q is likely to yield the minimum cost for the subsequent module
placement.

4. OPTIMIZATION TECHNIQUE

Given the matrices S and C along with distance matrix U, the I/O pad assignment
problem is to find an assignment with minimum cost function Q.

minimize

where

∀ ∀ ≠
∈

⋅

=

∑
i p i

ij p i p j
i j i j

i j M

ij
ij

ij

c u

c
c

s

io

, ()
() ()

, :
,

'

'

2

2

This optimization problem is similar to the quadratic assignment problem. A simple
constructive assignment similar to the pair-linking method 11, followed by an iterative
improvement method, is used to determine the minimum-cost assignment. There are two
operations used during the iterative improvement phase. The first operation is to move an I/O
to be adjacent to another I/O when both I/O's connect to the same module. The other
operation is to swap the pad positions of two selected I/O's.

Figure 3. The costs of I/O pad assignment (x-axis) versus
 the costs of module placements (y-axis)

The algorithm starts by choosing an I/O which has the maximum c'ij and placing it on
a pad if there is no pre-placed pad. Then the next I/O is selected and placed one I/O at a time.
The I/O which has the largest number of already placed I/O's connected to the same module
is chosen first since we prefer to have I/O's which connect to the same module plcaed close
together. In case of a tie, the I/O which has the maximum c'ij is chosen. The selected I/O is
placed closed to a placed I/O where their c'ij is maximum in order to minimize the cost
function. When all the I/O's are placed, additional iterative improvement is applied to the
current assignment by trying to move two I/O's which connect to the same module so that
they are placed adjacent to each other. The other iterative improvement operation is to swap
any two I/O's. The new assignment is accepted only when its cost is better than the cost of the
previous assignment.

IO2PadAssignement
{

if (there is no pre-placed I/O) {
Choose an I/O i having the maximum c'ij
Assign I/O i to a pad.

}
do {

Choose I/O i having the maximum number of already placed I/O's
 which connect to the same module as i does.
If there is a tie, choose i having the maximum c'ij where j is a placed I/O.
Placed i as close to j as possible where j is a placed I/O and c'ij is max.

} until (all the I/O's are placed)
Iterative improvement by moving operation.
Iterative improvement by swapping operation.

}

5. EXPERIMENTAL RESULTS

In order to show the effectiveness of the optimization procedure described in the last
section, a simulated annealing 12 procedure (SA - shown below), optimizing the cost of the
I/O pad assignment problem, was implemented. There are two operations used for obtaining
the new solution during the SA algorithm. First operation is swapping two I/O's. The other is
moving one I/O to be adjacent to another I/O. (This operation involves shifting the location
of I/O's located between the two selected I/O's.) Notes that the starting temperature is
obtained by swapping random pairs of I/O's for one hundred times and setting the starting
temperature to be the average of the cost increase.

SA
{

set the initial random assignment
Temp � GetInitialTemp()
NumTries � 100 � (# of IO's)
NumLimit � 10 � (# of IO's)
Cost � ComputerCost()
do {

do {
randomly select two I/O's i and j
if (RandomNo() � 0.5) {

if (RandomNo() � 0.5)
Move i to the right of j

else
Move i to the left of j

} else {
Swap positions of i and j

}
NewCost � ComputeCost()
�E � NewCost - Cost

if (�E < 0 OR RandomNo() < e(-�E/Temp))
Cost � NewCost

else
Restore previous assignment

} until (#new assignment > NumLimit OR #Loops > NumTries)
Temp � 0.97 � Temp

} until (no new assignment OR freezing point is reached)
}

The same five examples used in the previous section were used here to compare the
results obtained using the simulated annealing technique with those obtained using the simple
heuristic procedure presented in the last section. The results are shown in Table 1. With far
less computation time, the results of the heuristic method are only slightly worse than the
results from SA. It was observed that all of the results from SA have all of the I/O's which
connect to the same modules placed close to each other, which corresponds to the heuristic
used in the proposed procedure.

Ex #mods #I/Os #Nets Assignement cost (Q) Time (seconds)
SA Heuristics %difference SA Heuristics

ex3 20 8 29 82.23 82.23 0.00 559.0 0.87
ex4 30 24 63 270.18 270.63 +0.17 7696.5 6.68
ex5 15 8 30 46.34 47.66 +2.86 183.7 0.82
ex6 25 20 53 2390.74 2570.08 +7.50 4671.8 5.00
ex7 20 24 82 54766.52 57378.40 +4.77 7882.1 18.37

Table 1.

6. CONCLUSION

In this paper, a procedure for I/O pad assignment has been presented which is used to
assign off-chip I/O's to pads prior to the module placement process. Both timing and
geometrical constraints are transformed into connection strengths which represent proximity
relationships for the off-chip I/O's of the network. An objective function for the I/O pad
assignment problem is proposed and experimentally shown to be almost monotonically
increasing with the cost of the module placement. An algorithm for minimizing the objective
function using a heuristic constructive assignment followed by iterative improvements was
experimentally shown to produce solutions comparable to solutions using the simulated
annealing technique, but requiring far less computation time.

7. REFERENCES

1. Prasitjutrakul, S. and Kubitz, W.J., "Path-Delay Constrained Floorplanning: A
Mathematical Programming Approach for Initial Placement", Proc. 26th Design
Automation Conf., pp.364-369, 1989.

2. Tsay, R., Kuh, E., and Hsu, C., "PROUD: A Fast Sea-of-Gates Placement Algorithm",
Proc. International Conf. on Computer-Aided Design, pp.318-323, 1988.

3. Wipfler, G., Wiesel, M., and Mlynski, D., "A Combined Force and Cur Algorithm for
Hierarchical VLSI Layout", Proc. 19th Design Automation Conf., pp.671-676, 1982.

4. Checng, C. and Khu, E., "Module Placement Based on Resistive Network Optimization",
IEEE Trans. on Computer-Aided Deisgn, Vol.3, No.3, pp.218-225, 1988.

5. Sha, L. and Dutton, R., "An Analytical Algorithm for Placement of Arbitrarily Sized
Rectangular Blocks", Proc. 22nd Design Automation Conf., pp.602-608, 1985.

6. Chi, M., "An Automatic Rectilinear Partitioning Procedure for Standard Cells", Proc.
24th Design Automaion Conf., pp.50-55, 1987 .

7. Kleinhans, J., Sigl, G., and Johannes, M., "GORDIAN: A New Global Optimization /
Rectangle Dissection Method for Cell Placement", Proc. International Conf. on
Computer-Aided Design, pp.506-509, 1988.

8. Ohmura, M., Isumoto, H., and et at., "A New Floorplanning Method with Global Routing
Based on Functional Partitioning", Proc. International Symp. on Circuits and Systems,
pp. 1697-1700, 1988.

9. Pillage, L.T. and Rohrer, R.A., "A Quadratic Metric with a Simple Solution Scheme for
Initial Placement", Proc. 25th Design Automation Conf., pp.324-329, 1988.

10. Dijkstra, E.W., "A Note on Two Problems in Connection with Graphs", Numerische
Math, Vol.1, pp.269-271, 1957.

11. Hanan, M. and Kurtzberg, M., "Placement Techniques", Design Automation of Digital
Systems, Vol.1, ed. M.A. Breuer, Prentice Hall Inc., pp.324-342, 1972.

12. Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., "Optimization by Simulated Annealing",
Science, Vol.220, No.4598, pp.671-680, May 1983.

