
A Multi-terminal Net Routing Algorithm for IC Design

Somchai Prasitjutrakul

Department of Computer Engineering, Chulalongkorn University
Phayatai Rd. Bangkok 10330, THAILAND

ABSTRACT

An algorithm for the global routing of a multiterminal net is presented. The
algorithm based on the A*-search technique considers all the unconnected terminals
simultaneously during the search for the minimum-cost path. The algorithm does not
choose any specific terminal as the target to be connected, but rather allows the minimum-
cost path to proceed in the minimum-cost direction and it eventually hits the appropriate
target terminal. The cost of a path is the estimated total net length of the minimum Steiner
tree connecting all the terminals. The experimental results show that a larger number of
shorter global routes is achieved by the algorithm in comparison to the results obtained
from previous approaches.

1. INTRODUCTION

In custom chip design, global routing is a process of determining the set of
channels (which are the routing areas between modules) through which each signal net
will pass. One problem in global routing is to determine the shortest route for connecting
a given signal net. The shortest global route for a two-terminal net can be determined by
using the Lee-Moore algorithm 1, the Dijkstra algorithm 2, or the A*-search algorithm 3.
For a multiterminal net, the global routing problem can be transformed to the problem of
finding the minimum rectilinear Steiner tree on a routing graph, which is an NP-complete
problem 4.

For the multiterminal-net global routing problem, most of the previous algorithms
connect pre-selected vertices one at a time to the previously constructed connection tree
(by using the shortest path algorithm) 3,5,6,7,8. The main drawback of this approach is
caused by the fact that the next target vertex to be connected is pre-selected without any
knowledge of the structure of the routing graph. (The closest vertex to the connection tree
of the already connected vertices is usually selected as the target vertex based on Prim's
minimum spanning tree algorithm 9.) Moreover, the shortest path from the connection tree
to the selected target vertex does not necessarily yield the minimum total length when all
the terminals are connected. This is because the shortest path found may not be shared by
other later paths for the unconnected terminals. This is because the unconnected terminals
are not considered during the shortest path search process.

This paper presents an algorithm for finding a global route for a multiterminal net
minimizing the total length of the global route. It can be used as part of a custom IC chip
design system. The algorithm is a simple, modified version of the A*-search global
routing algorithm 3. Terminals are connected one at a time as usual, but the algorithm does
not commit itself to connect any specific terminal. Rather, it considers all the
unconnected terminals simultaneously during the search by estimating the lower-bound
total length of the Steiner tree connecting all the unconnected terminals, and using this
length to guide the path search process. The rest of the paper is organized as follows. In
Section 2, we briefly describe the routing graph used in the routing process. The global
routing algorithm is presented in detail in Section 3. Section 4 presents the experimental
results for the algorithm. The conclusion is given in Section 5.

2. ROUTING GRAPH

In custom chip design methodology, a signal net is allowed to pass through
channels, which are routing areas between the modules. A commonly used routing graph,
which is constructed from the channels and their intersections 6,10, is used during the
global routing. Each edge of the routing graph corresponds to a subchannel and each
vertex represents the intersections between channels (see Figure 1). Before routing a
signal net, a set of additional vertices (which represent the signal terminals) are added to
the routing graph. The extra vertex (which will be called a terminal vertex) representing a
signal terminal is added to the nearest routing edge (Figure 1). These extra vertices are
deleted after a global route of the net is determined. By using this routing graph,
determining a global route for a net becomes equivalent to finding a Steiner tree
connecting all the terminal vertices on the routing graph.

Figure 1. Routing graph with additional terminal vertices of a signal.

3. THE ALGORITHM

Given a routing graph G = (V,E) where V is a set of vertices and E is a set of
edges, along with a set of terminal vertices T = {t1,t2,...,tn}, T ��V, the global routing
algorithm determines a Steiner tree on graph G having all the terminal vertices, which
minimizes the total edge length of the tree. The algorithm begins by selecting a single
terminal vertex to be considered as a source-vertex group and then searches for the
minimum-cost path. Each time the minimum-cost path reaches a new terminal vertex, that
new terminal vertex is added to the source-vertex group which contains all the vertices of
the existing minimum-cost path and the algorithm proceeds to find the new minimum-
cost path. This process continues until all the terminal vertices are included in the source-
vertex group.

The cost of a path is taken to be the estimated lower bound length of the minimum
Steiner tree connecting all the unconnected terminal vertices. Given :

1. a connection tree, Vsrc, which is the source-vertex group,

2. the minimum-cost path P(v) having total length of Lp(v), starting from a vertex in
Vsrc and ending at a vertex v (we call v the front-end vertex of path P(v)), and

3. a set of unconnected terminal vertices Tu,

the lower bound length of interconnections, L* , needed to connect from Vsrc to all the
vertices in Tu using path P(v), can be determined as follows.

L v L v L tp min i
t t Ti i u

*() () ()
,

= +
∀ ∈
∑2

3

where Lmin(ti) is the length of the edge connecting terminal vertex ti of the minimum
spanning tree obtained from the following procedure (see Figure 2).

GetMSTEdgeLength(Vsrc, v, Tu) {
V'src = Vsrc � P(v); T'u = Tu
do {

(ti, w) = GetTwoClosestVertices(T'u , V'src)
where ti � T'u and w � V'src

Lmin(ti) = RectDist(ti , w)
V'src = V'src ��{ ti }
T'u = T'u - { ti }

} while (T'u ����)
return(Lmin())

}

Hwang 11 showed that the ratio of the length of a minimum rectilinear Steiner tree
to a minimum rectilinear spanning tree is no greater than 2/3. Therefore, we first
determine the minimum rectilinear spanning tree used for connecting Vsrc ��P(v) and Tu.
Then the lower bound length of interconnections needs to connect from Vsrc to Tu using
the path P(v) is the length of the path P(v), which is Lp(v), plus 2/3 of the total length of
all of the edges of the minimum rectilinear spanning tree. (Note that for the function

RectDist(x,y), if x and y are adjacent, it equals to the length of the edge connecting x and
y, otherwise, it is a lower bound length of the path from x to y.)

Figure 2. Total net length estimation.

Rather than recomputing Lmin(ti) by reconstructing the minimum rectilinear
spanning tree each time L* is needed, Lmin(ti) can be incrementally updated in order to
reduce the computation time. Let L'min(v,ti) be the Lmin(ti) of a path ending at vertex v.
L'min(v,ti) and Lp(v) can be determined from L'min(w,ti) and Lp(w) where vertex w is the
parent vertex of v on the path as shown below. (RectDist(w,v) is the rectilinear distance
between w and v).

L v L v L v tp min i
t t Ti i u

*() () ' (,)
,

= +
∀ ∈
∑2

3

where Lp(v) = Lp(w) + RectDist(w, v)

L'min(v, ti) = Min{ RectDist(v, ti) , L'min(w, ti) }

Notice that when there is a path P(v) whose front-end vertex v does not change
any L'min of parent vertex of v (in other words, vertex v dose not change the structure of
the previous minimum spanning tree), L* (v) = L* (w) + RectDist(w,v). The additional
value of RectDist(w,v) provides no information about the unconnected terminal vertices
which can be used to guide the searching process. This can causes the search to wander to
some unnecessary vertices and increases the search time. To avoid this situation, we add a
value��min(v) (shown below) which depends on how far away the vertex v is from the
unconnected terminal vertices when the vertex v does not change the previous minimum
spanning tree (the new L* is denoted as L**).

L v

L v v L v t if T

L v L v t v otherwise

p min min i
t t T

u

p min i min

i i u**()

() () ' (,)

() ' (,) ()

,
=

+ +












>

+ +













∀ ∈
∑2

3
1∆

∆

where �min(v) = Min { RectDist(v, ti) - L'min(v, ti) } ��ti, ti ��Tu

Note that when the vertex v decreases some L'min of parent vertex of v, (i.e., v
becomes the closest vertex to some unconnected terminal vertex), the value of �min(v) is

zero. And when there is only one unconnected terminal vertex, the searching process
becomes equivalent to the A*-search 3 by using �min(v) and not multiplying the 2/3 factor
(i.e., Lp(v) + L'min(v, ti) + �min(v) = Lp(v) + RectDist(v, ti))

The global routing algorithm presented here uses a simple, modified version of the
A*-search technique by using L** (v) as a cost during the search process. The minimum-
cost path which is expanded from one vertex to the other is implemented by using a
priority list, OPEN, and a list, CLOSED 3. The CLOSED list contains vertices considered
to be part of the minimum-cost path found so far. The OPEN list contains vertices being
expanded from the vertices in the CLOSED list. Elements in the OPEN list are ordered in
such a way that the first element of the list has the smallest cost.

Given a connection tree, Vsrc, and a set of unconnected terminal vertices, Tu, the
global routing algorithm first puts each of the vertices of Vsrc, along with its cost, into the
OPEN list. Then it proceeds by taking the first vertex of the OPEN list, w, from the list.
Next the L** of each of the child (adjacent) vertices of w (except the parent vertex of w)
is evaluated and put into the OPEN list, and vertex w is put into the CLOSED list.
Whenever a terminal vertex is taken from the front of the OPEN list, it means that the
minimum-cost path has encountered that terminal vertex. The minimum-cost path can
then be determined by tracing the vertex in the CLOSED list. All the vertices of the
minimum-cost path, including the new terminal vertex, are added into the source group
Vsrc. Then the path search process resumes with the new Vsrc and the remaining Tu.

In order to calculate L** as described above and used as a cost during path
searching, a vertex v in either the OPEN or CLOSED list is associated with the values of
L** (v), Lp(v), L'min(v,ti), and Parent(v), which is the vertex from where v is expanded.

The global routing algorithm for finding a rectilinear Steiner tree connecting all
terminal vertices in T is shown below.

GlobalRouting(T)
tsrc = RandomlyChooseATerminalVertex(T)
Vsrc = { tsrc }; Tu = T - { tsrc }
Lmin() = GetMSTEdgeLength(Vsrc , tsrc , Tu)
do {

Empty the OPEN and CLOSED lists
for each v �Vsrc {

(-, Lmin(), L**) = ComputeVertexAttributes(v, 0, Lmin(), Tu)
SetVertexAttributes(v, NULL, 0, Lmin(), L** , Tu)
Put v into the OPEN list

}
w = GetOPENList()
while (w ��Tu) {

for each vertex v adjacent to w AND v � Parent(w) AND v �Vsrc {
(Lp, Lmin(), L**) = ComputeVertexAttributes(v, Lp(w), L'min(w), Tu)
if (L** < L** (v)) {

if (v � OPEN OR v � CLOSED) {
SetVertexAttributes(v, w, Lp, Lmin(), L** , Tu)
if (v � OPEN) remove v from the OPEN list
else remove v from the CLOSED list
Put v into the OPEN list

}
} else {

if (v 	 OPEN AND v 	 CLOSED) {
SetVertexAttributes(v, w, Lp, Lmin(), L** , Tu)
Put v into the OPEN list

}
}

}
Put w into the CLOSED list
w = GetOPENList()

}
Put w into the CLOSED list
Vsrc = Vsrc ��{ vertices traced back from w in the CLOSED list }
Tu = Tu - {w}
Lmin() = L'min(w)

} while (Tu ���)
}

ComputeVertexAttributes(v, Lp(w), L''min(), Tu)
Lp = Lp(w)+ RectDist(Parent(v) , v) /* w is the parent vertex of v */
for each ti � Tu

Lmin(ti) = Min { RectDist(v, ti), L''min(ti) }
�min(v) = Min { RectDist(v, ti) - Lmin(ti) } ��ti, ti ��Tu

L

L v L t if T

L L t v otherwise

p min min i
t t T

u

p min i min

i i u**

() ()

() ()

,
=

+ +












>

+ +













∀ ∈
∑2

3
1∆

∆

return((Lp , Lmin() , L**))
}
SetVertexAttributes(v, parent, Lp, Lmin(), L** , Tu) {

Parent(v) = parent
Lp(v) = Lp ; L** (v) = L**
for each ti � Tu

L'min(v, ti) = Lmin(ti)
}

The value of L'min(ti), �min(v), and L** are all based on function RectDist which
is used to estimate the lower bound connection length between two given vertices.
Because the connection path can only be routed along the routing edges, the value of
RectDist may sometimes mislead the search process. For example in Figures 3, length of
the shortest path between vertices v and ti is much longer than the rectilinear distance
between both vertices. To avoid this situation as much as possible, a one-step look ahead
in the routing graph is used to estimate the shortest connection path between two given

vertices. Given a vertex v (whose parent vertex is Parent(v)) and a terminal vertex ti, the
estimated shortest length between v and ti, RectDist1(v, ti), can be computed as follows.

RectDist1(v, ti) = Min { RectDist(v, u) + RectDist(u, ti) } ��u, u � A(v)

where A(v) is a set of adjacent vertices of v excluding Parent(w). RectDist1(v, ti) is used
for the computations of Lmin(ti) and �min(v) in the procedure ComputeVertex-
Attributes .

Figure 3. The shortest path from v to ti is longer than the RectDist(v, ti)

4. EXPERIMENTAL RESULTS

To demonstrate the superiority of the global router presented here over the
previous work, three different routing graphs were used for the experiment. For each
routing graph, eight sets of one thousand randomly generated multiterminal nets were
routed with the global routing algorithm presented here and compared with the global
routing results using the Clow's algorithm 3 as shown in Table 1. The results are also
compared with the results obtained by using the Hsu's algorithm 7 (in Table 2) which is an
improved-version of Clow's work obtained by modeling the unconnected terminal vertices
as magnets which attract the path search process. For example (Table 2), 491 routes of
1000 9-terminal nets in Graph #2 produced from our algorithm are shorter than the routes
obtained from Hsu's, and 109 routes produced from ours are longer. Figure 4 shows a
distribution histogram of the differences between net lengths obtained from our algorithm
and those obtained from Hsu's for the 1000 9-terminal nets (where a minus sign means
that shorter net lengths from our algorithm were obtained). The experimental results show
that our algorithm produces a larger number of shorter routes than the routes obtained
from the other algorithms. Figures 5 shows the global route examples for 2 signal nets
obtained from the three algorithms. It is obvious from the figure that our algorithm
performs better than the others because most of the connection paths are shared by one
another instead of having the shortest path from one terminal to the other. For example,
for the global route on the right side of Figure 5, after terminals 1, 5, and 2 were
connected, terminal 3 was selected to be the next target in both (5a.2) and (5b.2) and a
shortest path connection was made. In (5c.2) however, a different path was chosen which
is longer than that in (5a.2) and (5b.2), but the overall length is shorter because both
terminals 3 and 4 were considered during the routing process.

#terminals
Graph #1

(44 vertices 64 edges)
Graph #2

(87 vertices 129 edges)
Graph #3

(41 vertices 60 edges)
%better %worse %better %worse %better %worse

3 11.6 3.5 15.8 3.6 10.3 2.3
4 20.1 4.7 28.5 5.1 20.8 3.8
5 25.5 5.9 32.2 7.6 26.2 6.0
6 31.5 7.5 38.0 9.2 30.0 8.7
7 35.3 8.3 45.4 8.9 33.4 8.5
8 36.8 8.8 48.8 11.1 38.5 8.3
9 40.2 9.1 52.7 9.9 40.5 8.6
10 41.4 10.5 53.8 11.4 43.2 8.6

Table 1. Comparison of global routes between our algorithm and the Clow's algorithm.

#terminals
Graph #1

(44 vertices 64 edges)
Graph #2

(87 vertices 129 edges)
Graph #3

(41 vertices 60 edges)
%better %worse %better %worse %better %worse

3 10.3 3.5 13.3 3.7 8.8 2.5
4 18.9 5.2 23.5 5.8 19.0 4.1
5 23.7 6.4 28.2 8.1 24.3 6.6
6 30.0 7.6 34.7 10.4 28.5 8.8
7 33.4 9.0 41.8 10.2 31.6 8.8
8 35.7 9.6 45.7 12.8 36.8 8.9
9 39.4 9.2 49.1 10.9 39.5 8.8
10 39.9 10.6 51.2 11.8 42.1 8.8

Table 2. Comparison of the global routes between our algorithm and the Hsu's algorithm.

Figure 4. Distribution of the differences in net length of 1000 routes
obtained from our algorithm and obtained from Hsu's algorithm.

Example 1 Example 2

(5a.1) 21918
m. (5a.2) 20809
m.

(5b.1) 21203
m. (5b.2) 19988
m.

(5c.1) 20493
m. (5c.2) 19300
m.

Figure 5. Two global route examples from (a) Clow's, (b) Hsu's, and (c) our algorithm.

5. CONCLUSIONS

This paper presents a new algorithm for finding a global route for a multiterminal
net which minimizes the total net length, and is useful as part of a custom chip design
methodology. The algorithm is a simple, modified version of the A*-search global routing
algorithm 3. It considers all the unconnected terminals simultaneously during the search
for the minimum-cost path. The algorithm does not pre-select any specific terminal as the
target to be connected, but rather allows the minimum-cost path to proceed in the
minimum-cost direction and eventually hits the appropriate target. The connection path
searching process use the estimated total net length of the minimum Steiner tree
connecting all the terminals as the cost of a path. The length is determined by
incrementally updating a previously obtained minimum rectilinear spanning tree and
converting the total length of the tree to the lower-bound length of the minimum

rectilinear Steiner tree as presented by Hwang 11. The experimental results show that a
larger number of shorter global routes is achieved by the algorithm in comparison to the
results obtained from previous approaches.

6. REFERENCES

1. Lee, C.Y., "An Algorithm for Path Connection and Its Applications", IRE Trans. on
Electronic Computers, Vol. 2, No. 4, 346-365, 1961.

2. Dijkstra, E.N., "A Note on Two Problems in Connexion with Graphs" Numer. Math,
Vol. 1, 269-271, 1959.

3. Clow, G.W., "A Global Routing Algorithm for General Cells", ACM/IEEE Proc. 21st
Design Automation Conf, 45-51, 1984

4. Garey, M.R. and Johnson, G.S., "The Rectilinear Steiner Tree Problem is NP-
complete", SIAM Journal of Applied Mathematics, Vol. 32, 826-834, 1977.

5. Chopra, S., "An Efficient Method for Custom Integrated Circuit Global Routing"
,Proc. Custom Integrated Circuit Conf, 11.3.1-11.3.6, 1988.

6. Fukui, M., Yamamoto, A., and et. al., "A Block Interconnection Algorithm for
Hierarchical Layout System", IEEE Trans on Computer-Aided Design, Vol. CAD-6,
No. 3, 383-391, 1988.

7. Hsu, Y.C., Pan, Y., and Kubitz, W.J., "A Path Selection Global Router" ACM/IEEE
Proc. 24th Design Automation Conf., 641-644, 1987.

8. Kimura, S., Kuba, N., Chiba, T., and Nishioka, I., "An Automatic Routing Scheme for
General Cell LSI", IEEE Trans on Computer-Aided Design, Vol. CAD-2, No. 4, 285-
292, 1983.

9. Prim, R.C., "Shortest Connection Networks and Some Generalizations", Bell System
Tech., Vol. 36, 1389-1401, 1957.

10. Dai, W., Asano, T., and Khu, E.S., "Routing Region Definition and Ordering Scheme
for Building-Block Layout", IEEE Trans. on Computer-Aided Design, Vol. CAD-6.
No. 3, 189-197, 1985

11. Hwang, F.K., "On Steiner Minimal Trees with Rectilinear Distance", SIAM Journal of
Applied Mathematics, Vol. 30, No. 1, 104-114, 1976.

