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ABSTRACT

An algorithm for the global routing of a multiterminal net is presented. The 
algorithm based on the A*-search technique considers all the unconnected terminals 
simultaneously during the search for the minimum-cost path. The algorithm does not 
choose any specific terminal as the target to be connected, but rather allows the minimum-
cost path to proceed in the minimum-cost direction and it eventually hits the appropriate 
target terminal. The cost of a path is the estimated total net length of the minimum Steiner 
tree connecting all the terminals. The experimental results show that a larger number of 
shorter global routes is achieved by the algorithm in comparison to the results obtained 
from previous approaches.

1. INTRODUCTION

In custom chip design, global routing is a process of determining the set of 
channels (which are the routing areas between modules) through which each signal net 
will pass. One problem in global routing is to determine the shortest route for connecting 
a given signal net. The shortest global route for a two-terminal net can be determined by 
using the Lee-Moore algorithm 1, the Dijkstra algorithm 2, or the A*-search algorithm 3. 
For a multiterminal net, the global routing problem can be transformed to the problem of 
finding the minimum rectilinear Steiner tree on a routing graph, which is an NP-complete 
problem 4.

For the multiterminal-net global routing problem, most of the previous algorithms 
connect pre-selected vertices one at a time to the previously constructed connection tree 
(by using the shortest path algorithm) 3,5,6,7,8. The main drawback of this approach is 
caused by the fact that the next target vertex to be connected is pre-selected without any 
knowledge of the structure of the routing graph. (The closest vertex to the connection tree 
of the already connected vertices is usually selected as the target vertex based on Prim's 
minimum spanning tree algorithm 9.) Moreover, the shortest path from the connection tree 
to the selected target vertex does not necessarily yield the minimum total length when all 
the terminals are connected. This is because the shortest path found may not be shared by 
other later paths for the unconnected terminals. This is because the unconnected terminals  
are not considered during the shortest path search process.



This paper presents an algorithm for finding a global route for a multiterminal net 
minimizing the total length of the global route. It can be used as part of a custom IC chip 
design system. The algorithm is a simple, modified version of the A*-search global 
routing algorithm 3. Terminals are connected one at a time as usual, but the algorithm does 
not commit itself to connect any specific terminal. Rather, it considers all the 
unconnected terminals simultaneously during the search by estimating the lower-bound 
total length of the Steiner tree connecting all the unconnected terminals, and using this 
length to guide the path search process. The rest of the paper is organized as follows. In 
Section 2, we briefly describe the routing graph used in the routing process. The global 
routing algorithm is presented in detail in Section 3. Section 4 presents the experimental 
results for the algorithm. The conclusion is given in Section 5.

2. ROUTING GRAPH

In custom chip design methodology, a signal net is allowed to pass through 
channels, which are routing areas between the modules. A commonly used routing graph, 
which is constructed from the channels and their intersections 6,10, is used during the 
global routing. Each edge of the routing graph corresponds to a subchannel and each 
vertex represents the intersections between channels (see Figure 1). Before routing a 
signal net, a set of additional vertices (which represent the signal terminals) are added to 
the routing graph. The extra vertex (which will be called a terminal vertex) representing a 
signal terminal is added to the nearest routing edge (Figure 1). These extra vertices are 
deleted after a global route of the net is determined. By using this routing graph, 
determining a global route for a net becomes equivalent to finding a Steiner tree 
connecting all the terminal vertices on the routing graph.

Figure 1. Routing graph with additional terminal vertices of a signal.



3. THE ALGORITHM

Given a routing graph G = (V,E) where V is a set of vertices and E is a set of 
edges, along with a set of terminal vertices T = {t1,t2,...,tn}, T ��V, the global routing 
algorithm determines a Steiner tree on graph G having all the terminal vertices, which 
minimizes the total edge length of the tree. The algorithm begins by selecting a single 
terminal vertex to be considered as a source-vertex group and then searches for the 
minimum-cost path. Each time the minimum-cost path reaches a new terminal vertex, that 
new terminal vertex is added to the source-vertex group which contains all the vertices of 
the existing minimum-cost path and the algorithm proceeds to find the new minimum-
cost path. This process continues until all the terminal vertices are included in the source-
vertex group.

The cost of a path is taken to be the estimated lower bound length of the minimum 
Steiner tree connecting all the unconnected terminal vertices. Given :

1. a connection tree, Vsrc, which is the source-vertex group,

2. the minimum-cost path P(v) having total length of Lp(v), starting from a vertex in 
Vsrc and ending at a vertex v (we call v the front-end vertex of path P(v) ), and

3. a set of unconnected terminal vertices Tu,

the lower bound length of interconnections, L* , needed to connect from Vsrc to all the 
vertices in Tu using path P(v), can be determined as follows.
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where Lmin(ti) is the length of the edge connecting terminal vertex ti of the minimum 
spanning tree obtained from the following procedure (see Figure 2).

GetMSTEdgeLength( Vsrc, v, Tu ) {
V'src = Vsrc � P(v);   T'u = Tu
do {

(ti, w) = GetTwoClosestVertices( T'u , V'src )
where ti � T'u  and  w � V'src

Lmin(ti) = RectDist(  ti , w )
V'src = V'src ��{  ti }
T'u = T'u - { ti }

} while ( T'u ����)
return( Lmin() )

}

Hwang 11 showed that the ratio of the length of a minimum rectilinear Steiner tree 
to a minimum rectilinear spanning tree is no greater than 2/3. Therefore, we first 
determine the minimum rectilinear spanning tree used for connecting Vsrc ��P(v) and Tu. 
Then the lower bound length of interconnections needs to connect from Vsrc to Tu using 
the path P(v) is the length of the path P(v), which is Lp(v), plus 2/3 of the total length of 
all of the edges of the minimum rectilinear spanning tree. (Note that for the function 



RectDist(x,y), if x and y are adjacent, it equals to the length of the edge connecting x and 
y, otherwise, it is a lower bound length of the path from x to y.)

Figure 2. Total net length estimation.

Rather than recomputing Lmin(ti) by reconstructing the minimum rectilinear 
spanning tree each time L*  is needed, Lmin(ti) can be incrementally updated in order to 
reduce the computation time. Let L'min(v,ti) be the Lmin(ti) of a path ending at vertex v. 
L'min(v,ti) and Lp(v) can be determined from L'min(w,ti) and Lp(w) where vertex w is the 
parent vertex of v on the path as shown below. (RectDist(w,v) is the rectilinear distance 
between w and v).
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where Lp(v)  =  Lp(w)  +  RectDist(w, v)

L'min(v, ti)  =  Min{  RectDist(v, ti) , L'min(w, ti)  }

Notice that when there is a path P(v) whose front-end vertex v does not change 
any L'min of parent vertex of v (in other words, vertex v dose not change the structure of 
the previous minimum spanning tree), L* (v) = L* (w) + RectDist(w,v). The additional 
value of RectDist(w,v) provides no information about the unconnected terminal vertices 
which can be used to guide the searching process. This can causes the search to wander to 
some unnecessary vertices and increases the search time. To avoid this situation, we add a 
value��min(v) (shown below) which depends on how far away the vertex v is from the 
unconnected terminal vertices when the vertex v does not change the previous minimum 
spanning tree (the new L*  is denoted as L** ).
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where �min(v)  =  Min {  RectDist(v, ti) - L'min(v, ti) }      ��ti, ti ��Tu

Note that when the vertex v decreases some L'min of parent vertex of v, (i.e., v
becomes the closest vertex to some unconnected terminal vertex), the value of �min(v) is 



zero. And when there is only one unconnected terminal vertex, the searching process 
becomes equivalent to the A*-search 3 by using �min(v) and not multiplying the 2/3 factor 
( i.e., Lp(v) + L'min(v, ti) + �min(v) = Lp(v) + RectDist(v, ti) )

The global routing algorithm presented here uses a simple, modified version of the 
A*-search technique by using L** (v) as a cost during the search process. The minimum-
cost path which is expanded from one vertex to the other is implemented by using a 
priority list, OPEN, and a list, CLOSED 3. The CLOSED list contains vertices considered 
to be part of the minimum-cost path found so far. The OPEN list contains vertices being 
expanded from the vertices in the CLOSED list. Elements in the OPEN list are ordered in 
such a way that the first element of the list has the smallest cost.

Given a connection tree, Vsrc, and a set of unconnected terminal vertices, Tu, the 
global routing algorithm first puts each of the vertices of Vsrc, along with its cost, into the 
OPEN list. Then it proceeds by taking the first vertex of the OPEN list, w, from the list. 
Next the L**  of each of the child (adjacent) vertices of w (except the parent vertex of w) 
is evaluated and put into the OPEN list, and vertex w is put into the CLOSED list. 
Whenever a terminal vertex is taken from the front of the OPEN list, it means that the 
minimum-cost path has encountered that terminal vertex. The minimum-cost path can 
then be determined by tracing the vertex in the CLOSED list. All the vertices of the 
minimum-cost path, including the new terminal vertex, are added into the source group
Vsrc. Then the path search process resumes with the new Vsrc and the remaining Tu.

In order to calculate L**  as described above and used as a cost during path 
searching, a vertex v in either the OPEN or CLOSED list is associated with the values of 
L** (v), Lp(v), L'min(v,ti), and Parent(v), which is the vertex from where v is expanded.

The global routing algorithm for finding a rectilinear Steiner tree connecting all 
terminal vertices in T is shown below.

GlobalRouting( T )
tsrc = RandomlyChooseATerminalVertex( T )
Vsrc = { tsrc }; Tu = T - { tsrc }
Lmin() = GetMSTEdgeLength( Vsrc , tsrc , Tu )
do {

Empty the OPEN and CLOSED lists
for each v �Vsrc {

( -, Lmin(), L**  ) = ComputeVertexAttributes( v, 0, Lmin(), Tu )
SetVertexAttributes( v, NULL, 0, Lmin(), L** , Tu )
Put v into the OPEN list

}
w = GetOPENList()
while ( w ��Tu ) {

for each vertex v adjacent to w AND v � Parent(w) AND v �Vsrc {
( Lp, Lmin(), L**  ) = ComputeVertexAttributes( v, Lp(w), L'min(w), Tu )
if ( L**  < L** (v) ) {



if ( v � OPEN  OR v � CLOSED ) {
SetVertexAttributes( v, w, Lp, Lmin(), L** , Tu )
if ( v � OPEN ) remove v from the OPEN list
else remove v from the CLOSED list
Put v into the OPEN list

}
} else {

if ( v 	 OPEN  AND v 	 CLOSED ) {
SetVertexAttributes( v, w, Lp, Lmin(), L** , Tu )
Put v into the OPEN list

}
}

}
Put w into the CLOSED list
w = GetOPENList()

}
Put w into the CLOSED list
Vsrc = Vsrc ��{ vertices traced back from w in the CLOSED list }
Tu = Tu - {w}
Lmin() = L'min(w)

} while ( Tu ��� )
}

ComputeVertexAttributes( v, Lp(w), L''min(), Tu )
Lp = Lp(w)+ RectDist( Parent(v) , v ) /* w is the parent vertex of v */
for each ti � Tu

Lmin(ti) = Min {  RectDist(v, ti), L''min(ti) }
�min(v) = Min { RectDist(v, ti) - Lmin(ti) } ��ti, ti ��Tu
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return( (Lp , Lmin() , L**  ) )
}
SetVertexAttributes( v, parent, Lp, Lmin(), L** , Tu ) {

Parent(v) = parent
Lp(v) = Lp ;   L** (v) = L**
for each ti � Tu

L'min(v, ti) = Lmin(ti)
}

The value of L'min(ti), �min(v), and L**  are all based on function RectDist which 
is used to estimate the lower bound connection length between two given vertices. 
Because the connection path can only be routed along the routing edges, the value of 
RectDist  may sometimes mislead the search process. For example in Figures 3, length of 
the shortest path between vertices v and ti is much longer than the rectilinear distance 
between both vertices. To avoid this situation as much as possible, a one-step look ahead 
in the routing graph is used to estimate the shortest connection path between two given 



vertices. Given a vertex v (whose parent vertex is Parent(v)) and a terminal vertex ti, the 
estimated shortest length between v and ti, RectDist1(v, ti), can be computed as follows.

RectDist1(v, ti)  =  Min { RectDist(v, u) + RectDist(u, ti) }      ��u, u � A(v)

where A(v) is a set of adjacent vertices of v excluding Parent(w). RectDist1(v, ti) is used 
for the computations of Lmin(ti) and �min(v) in the procedure ComputeVertex-
Attributes .

Figure 3. The shortest path from v to ti is longer than the RectDist(v, ti)

4. EXPERIMENTAL RESULTS

To demonstrate the superiority of the global router presented here over the 
previous work, three different routing graphs were used for the experiment. For each 
routing graph, eight sets of one thousand randomly generated multiterminal nets were 
routed with the global routing algorithm presented here and compared with the global 
routing results using the Clow's algorithm 3 as shown in Table 1. The results are also 
compared with the results obtained by using the Hsu's algorithm 7 (in Table 2) which is an 
improved-version of Clow's work obtained by modeling the unconnected terminal vertices 
as magnets which attract the path search process. For example (Table 2), 491 routes of 
1000 9-terminal nets in Graph #2 produced from our algorithm are shorter than the routes 
obtained from Hsu's, and 109 routes produced from ours are longer. Figure 4 shows a 
distribution histogram of the differences between net lengths obtained from our algorithm 
and those obtained from Hsu's for the 1000 9-terminal nets (where a minus sign means 
that shorter net lengths from our algorithm were obtained). The experimental results show 
that our algorithm produces a larger number of shorter routes than the routes obtained 
from the other algorithms. Figures 5 shows the global route examples  for 2 signal nets 
obtained from the three algorithms. It is obvious from the figure that our algorithm 
performs better than the others because most of the connection paths are shared by one 
another instead of having the shortest path from one terminal to the other. For example, 
for the global route on the right side of Figure 5, after terminals 1, 5, and 2 were 
connected, terminal 3 was selected to be the next target in both (5a.2) and (5b.2) and a 
shortest path connection was made. In (5c.2) however, a different path was chosen which 
is longer than that in (5a.2) and (5b.2), but the overall length is shorter because both 
terminals 3 and 4 were considered during the routing process.



#terminals
Graph #1

(44 vertices 64 edges)
Graph #2

(87 vertices 129 edges)
Graph #3

(41 vertices 60 edges)
%better %worse %better %worse %better %worse

3 11.6 3.5 15.8 3.6 10.3 2.3
4 20.1 4.7 28.5 5.1 20.8 3.8
5 25.5 5.9 32.2 7.6 26.2 6.0
6 31.5 7.5 38.0 9.2 30.0 8.7
7 35.3 8.3 45.4 8.9 33.4 8.5
8 36.8 8.8 48.8 11.1 38.5 8.3
9 40.2 9.1 52.7 9.9 40.5 8.6
10 41.4 10.5 53.8 11.4 43.2 8.6

Table 1. Comparison of global routes between our algorithm and the Clow's algorithm.

#terminals
Graph #1

(44 vertices 64 edges)
Graph #2

(87 vertices 129 edges)
Graph #3

(41 vertices 60 edges)
%better %worse %better %worse %better %worse

3 10.3 3.5 13.3 3.7 8.8 2.5
4 18.9 5.2 23.5 5.8 19.0 4.1
5 23.7 6.4 28.2 8.1 24.3 6.6
6 30.0 7.6 34.7 10.4 28.5 8.8
7 33.4 9.0 41.8 10.2 31.6 8.8
8 35.7 9.6 45.7 12.8 36.8 8.9
9 39.4 9.2 49.1 10.9 39.5 8.8
10 39.9 10.6 51.2 11.8 42.1 8.8

Table 2. Comparison of the global routes between our algorithm and the Hsu's algorithm.

Figure 4. Distribution of the differences in net length of 1000 routes
obtained from our algorithm and obtained from Hsu's algorithm.



Example 1 Example 2

(5a.1) 21918 
m. (5a.2) 20809 
m.

(5b.1) 21203 
m. (5b.2) 19988 
m.

(5c.1) 20493 
m. (5c.2) 19300  
m.

Figure 5. Two global route examples from (a) Clow's, (b) Hsu's, and (c) our algorithm.

5. CONCLUSIONS

This paper presents a new algorithm for finding a global route for a multiterminal 
net which minimizes the total net length, and is useful as part of a custom chip design 
methodology. The algorithm is a simple, modified version of the A*-search global routing 
algorithm 3. It considers all the unconnected terminals simultaneously during the search 
for the minimum-cost path. The algorithm does not pre-select any specific terminal as the 
target to be connected, but rather allows the minimum-cost path to proceed in the 
minimum-cost direction and eventually hits the appropriate target. The connection path 
searching process use the estimated total net length of the minimum Steiner tree 
connecting all the terminals as the cost of a path. The length is determined by 
incrementally updating a previously obtained minimum rectilinear spanning tree and 
converting the total length of the tree to the lower-bound length of the minimum 



rectilinear Steiner tree as presented by Hwang 11. The experimental results show that a 
larger number of shorter global routes is achieved by the algorithm in comparison to the 
results obtained from previous approaches.
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