
Automatic Indexing for Thai Text with Unknown Words

 using Trie Structure

*

Witoon Kanlayanawat and Somchai Prasitjutrakul

Department of Computer Engineering

Chulalongkorn University

Bangkok 10330, Thailand

Phone : (66-2)-218-3743, Fax : (66-2)-215-3554, E-Mail : somchaip@computer.org

* This research was supported by the Thai Government Research Fund.

Abstract

In this paper, we present an automatic indexing

for Thai text retrieval system where given

documents can have words that are unknown to

the system’s dictionary. Trie structure is used

as a main file structure for indexing which

supports word, pattern, and approximate

searching. Since there is no explicit inter-word

delimiter in Thai text, we also propose a word

segmentation algorithm that segments a given

text to a set of words and sistrings (semi-

infinite strings) of unknown words for adding

to the trie. The algorithm first finds a set of

words maximally matching all the sistrings of a

given text. Then it constructs an overlapping

graph whose shortest paths represent a smallest

list of words minimizing unknown strings of

the text. By using our proposed dictionary-

based word segmentation algorithm which can

deal with unknown words, along with the use of

trie structure to store the index, precision and

recall of the retrieval can be enhanced.

1. Introduction

Text retrieval has become one of the most

essential tools for managing information as

computer-generated documents get published

and computers get connected locally and

globally, especially with the advent of the

World Wide Web and CD-ROM. Traditionally,

there are four major techniques, full text

scanning, inversion, signature file, and

clustering for text retrieval. A detail survey of

these technique can be found in [2], [3], [10],

[14]. Full text scanning locates the documents

by searching through all documents for the

specified string pattern. The technique does not

need additional space for index but the search

time is linearly proportional to the size of text.

In inversion technique, keywords for all the

documents are stored in alphabetical order in an

index file (which can be implemented using

sorted array, B-tree, or trie structures). For each

keyword, there is a list of pointers (kept in a

posting file) to associated documents. The

technique is easy to implement and gives fast

response time. However, it does suffers from

the high storage overhead for the index. In

signature file technique, each document has an

associated signature which is a bit string

created by using hashing on its words and

superimposed coding. Then signatures of all the

documents are stored in a separate file called

signature file which is much smaller than the

original document files and thus a search for

signature pattern is much faster than a search

for string pattern. Since it uses a signature as a

representation of a document, it introduces a

notion of false hit where a matched signature

does not always mean that the corresponding

string pattern matches. In clustering technique,

similar documents are grouped together to form

clusters to improve the efficiency and

effectiveness of retrieval.

When building the database for text

retrieval, text in each document is segmented

into words which are optionally compared

against a stoplist (a list of words having no

index value). Non-stoplist words are then

stemmed so that variations of the same words

are represented with only one pattern. Then,

each of the stemmed word is assigned a weight

used during the search to rank retrieved

documents. Finally, stemmed words along with

their weights and locations are kept into the

database.

Segmenting a given text into words is a

nontrivial task in Thai (and other Asian

languages) text processing since there is no

explicit inter-word delimiter. There are

currently two approaches in Thai word

segmentation, rule-based and dictionary-based

approaches. The rule-based approach uses a set

of extensively studied rules for Thai syllable

[1],[13],[15]. Although the technique achieves

high precision in syllable segmentation, it is not

suitable for indexing application since it is

word not syllable that is required to create the

index. The dictionary-based approach matches

words in dictionary or lexicon with a given

text. The matching can use longest-word-

matching greedy strategy [16], least-number-of-

matched-words strategy [17], or statistical data

of word tags [7]. The word segmentation gets

more complicated if the text to be segmented

contains some unknown words (we define the

unknown words to be words not kept in the

dictionary being used) which can be proper

names, transliterated words, words with

spelling error, etc.

In this paper, we present an automatic

indexing for Thai text retrieval system. By

using our proposed dictionary-based word

segmentation algorithm which can deal with

unknown words, along with the use of trie

structure to store the index, precision and recall

of retrieval can be enhanced. The word

segmentation algorithm constructs an

overlapping graph whose shortest path

represents a smallest list of words minimizing

unknown strings of the given text. The words

and unknown strings obtained then determines

corresponding locations of sistrings (semi-

infinite strings) to be kept in a trie structure.

Trie structure is reviewed in Section 2. Detail

of our word segmentation algorithm is

described in Section 3. Section 4 summarizes

the entire automatic indexing and retrieval.

Conclusion of the paper is given in Section 5.

2. Trie Structures

Tries have been used for indexing large texts

[4],[8],[9]. Tries are trees whose edges

represent letters of the alphabet encoding the

data. Therefore a word is represented as a path

from root to leaf. Tries support efficient prefix

searching (prefix searching is a searching for

any word matching a given prefix) since all

words sharing a prefix share the same path

from root to an internal nodes. In addition,

approximate matching can also be efficiently

performed in trie structure which is applicable

for searching text with error [12].

Implementations of trie structures on secondary

storage can be found in [9],[11]. In this work,

we use trie structures to store both the

dictionary and index of all of the documents.

Text : �����������	
��������
Segmented words : ������

 ���
 ��	

��
 ������

�

����

� �

�� �� 	

�	
���

Figure 1. An example of a trie

Figure 1 shows an example of a trie

consisting of segmented word from a text.

Locations of the words are stored in its

corresponding external node of the trie. When

searching for a word, we follow branches

determined from characters of the word. For

example, to search for ������, we first go to the

left branch (�), go down (�), and then go to the

right branch (�) where we hit an external node

whose content matches characters of the rest of

the word (���). Therefore the search time is

proportional to the word length.

Gonnet [5] defined a semi-infinite

string, or sistring, to be a suffix of the text

starting at some position. Figure 2 shows the

first four sistrings of a given text. A text of

length n can have at most n sistrings. All of the

sistrings can be stored in a trie where the search

procedure remains the same as described

before. However, it is obvious that we can

eliminate many useless sistrings whose starting

locations are not the beginning of the word. In

[6], sistrings of Thai text whose starting

location can potentially be words (using word

formation rule-based approach) are stored in a

PAT tree [5] (which is a special binary trie).

Although, the concepts of storing sistring gives

high recall (i.e., it is unlikely to miss any

occurrences of the given search word), but the

precision of retrieval will be low if we keep too

much useless sistrings (i.e., many retrieved

documents are not what we actually want) since

the search acts like a pattern matching without

knowing the notion of word. For example, the

phrase in Figure 2 will match the search word

�� in spite that it is not a word in the phrase.

Text : �����������	
��������

Sistrings : �����������	
��������

: ����������	
��������

: ���������	
��������

: ��������	
��������

Figure 2 Examples of sistrings

However, sistring can be used where

we can not determine word boundaries as will

be presented in the next section.

3. Word Segmentation Algorithm

Given a text, our word segmentation algorithm

uses dictionary-based approach to find a

smallest list consisting of known words and

minimal unknown words. The known words are

directly stored in the trie whereas the unknown

words are stored in the trie as a set of sistrings

whose starting locations are determined to

potentially be syllable boundary using rule-

based approach.

Let T be a given text to be segmented,

Ti be a sistring of T starting at the i-th

character, Ti,j be a substring of T consisting of

the i-th thru j-th characters, and D be a

dictionary.

The algorithm consists of four steps as

follows :

1. For each Ti , i = 1,...,n, find a word, wi , in D

satisfying the following conditions :

� wi maximally matches Ti . Let i�= i�1+

length of wi. Therefore wi = Ti,i� .

� wi is not a substring of any wj where j< i

For example, T = �����
��
�!�"#�"$��%�!&'#"

!��%�!(�!�)�� we have wi’s as shown in

Figure 3. (Other sistrings of T not shown in

the figure have their wi’s equal to null

strings.)

i Ti wi

1 ����������	�
��
����	���
	����	��	����� ���

4 �������	�
��
����	���
	����	��	����� ��

5 ������	�
��
����	���
	����	��	����� ��

9 ��	�
��
����	���
	����	��	����� ��	

13
��
����	���
	����	��	�����
�

16
����	���
	����	��	�����
����	

20 ��	���
	����	��	����� ��	���

24 ��
	����	��	����� ��
	

26
	����	��	�����
	�

27 	����	��	����� 	����	

33 ��	����� ��	�����

Figure 3 Example shows wi’s for sistrings

2. Construct an overlapping graph (which is a

weighted directed graph) G =(V,E) where

� V = {wi | wi obtained from step 1, wi

� �, 1� i � n }

� E = { (wi, wj) | wi is adjacent to or

overlap with wj , i < j }

weight of an edge (wi, wj) is

determined from cases shown in

Table 1 :

The first case is the most favorable one

where two words are adjacent. In case 2, we

have two overlapping words which can be

further segmented yielding segmentations

with no unknown strings. For example,

"$��%�!&'#" (w1 = "$��%�! and w4 = %�!&'#")

can be segmented to "$�� + %�!&'#" or

"$��%�! + &'#". Case 3 represents cases

where two overlapping words can be

segmented yielding some segmentations

having unknown strings . For example, �-.	�

�/� (w1 = �-.	�� and w5 = ��/�) can be

segmented to �-.	� + �/�, �-.	�� + 1, or �-.	 +

��/�. The last case (with the highest weight)

represents cases where two overlapping

words can be segmented yielding

segmentations with unknown strings. Notice

that cases 3 and 4 are used to handle text

with errors. For example, �-.	��/� may

actually be �-.	���/� where the � is missing

in the text. In this situation, case 3 keeps the

�-.	�� in addition to �-.	� and �/�.

Table 1. Edge weighting for overlapping and

adjacent words

Weights

of (wi, wj)

Conditions

1 1 if i�+1 = j, i.e., wi is adjacent

to wj

2 10 if j � i� and Ti, j-1 and Ti�+1, j

are all in the dictionary.

3 100 if j � i� and there exists a

position k, j-1 � k � i� , such

that both Ti, k, and Tk+1, j� are in

the dictionary.

4 1000 otherwise

From the example in step 1, we can

construct the corresponding overlapping

graph as shown in Figure 4.

1

10

1000

1

10

100

100

1

10001000

w5
w4

w33w27
w16

w20

w13w9
w1

w26

w24

���

������
 ���� ��� ������

� �������

� �����

��
��
�

Figure 4 The overlapping graph for a text

����������	�
��
����	���
	����	��	�����

3. For each component of the graph, find a

shortest path from the leftmost to the

rightmost nodes of the component. Let W =

{wi | wi has its corresponding node on the

shortest paths obtained }. From the above

example, we get W = {w1, w4, w5, w9, w13,

w16, w20, w27, w33 }

4. In this step, we determine W�, a set of

segmented words, and U�, a set of sistrings

for unknown words as follows.

4.1 Let U be a set of unknown strings. U

can be determined as follows :

4.1.1 For each edge (wi, wj) with

weight of 1000 on the shortest

path (these are the two unknown

strings discussed in case 4 of

Table 1), we add Ti,j-1 and Ti�+1,j�

to U. From the above example,

they are � and
 (determined

from edge (w4, w5)).

4.1.2 For each pair of nodes wi and wj

belonging to different

components of G, i < j, and there

is no wk � W, where i < k < j, we

add Ti�+1, j-1 to U.

From the above example, they

are ��, �, and �.

4.1.3 We concatenate each string Tj, k

obtained from the two steps

above to a word wi � W which is

adjacent to the left of Tj, k in T.

From the above example, U = {

����, ��
, �
��,
�!�, "#� }.

4.1.4 This step combines any strings in

U that overlap or adjacent to

each others. From the above

example, U= {�����
��
�!�"#� }.

Then, U� consists of sistrings Ti ,

Ti+1,..., Tk of string Ti, k � U.

This step deals with unknown words

which can be proper names,

transliterated words, words with

spelling error, etc. These words usually

can be segmented to known words with

some unknown strings in between.

Since we do not know the exact word

boundary of these unknowns, they are

kept as sistrings in the trie. (Actually,

we also apply syllable segmentation

rules to eliminate some useless

sistrings from the set U�.)

4.2 Let W* = W � {wi | wi being used to

form unknown string in step 4.1.3}.

Starting with W� = W* , for any wi and

wj of W*

� satisfying case 2 in Table 1, we add

Ti, j-1 and Ti�+1, j� to W�. From the

above example, they are "$�� and

&'#" determined from w16 and w20.

� satisfying case 3 in Table 1, we add

Ti, k, and Tk+1, j� to W� where k is

defined in Table 1.

From the word segmentation algorithm

just described, we obtained W�, a set of known

segmented words, and U�, a set of sistrings of

unknown words, to be kept in the trie. From the

above example given a text T = �����
��
�!�"#�

"$��%�!&'#"!��%�!(�!�)��, we obtain W� =

{"$��%�!, %�!&'#", !��%�!, (�!�)��, "$��, &'#"}

and U� = { Ti | Ti is sistring of string �����
��

�!�"#� in T } to be stored in the index trie.

Performances of the four steps of the

algorithm are as follows. Step 1 maximally

matches each sistring of T to words in

dictionary. There are n sistrings of T (n is the

number of characters in T). Since our

dictionary is also kept in a trie structure. Then

it takes O(nk) where k is the maximum length

of word in the dictionary. Step 2 constructs

graph G=(V,E) which takes O(|V|+|E|). The

worst case (happens when there are n wi’s

where all of them overlap each other which is

very unlikely) is O(n2
). Step 3 finds a shortest

path for each component which is O(n
2
). And

the last step, re-scanning the string for

unknown strings, takes O(n). Therefore the

word segmentation algorithm takes worst case

time of O(nk + n2
) or O(n

2
) where k < n for a

long sentence.

4. Thai Text Retrieval

From the trie structure along with the word

segmentation algorithm presented, documents

can be indexed by first parsing the document

for explicit sentence or phrase delimiters e.g.,

space, then these sentences or phrases are

segmented to obtain a set of words and a set of

sistrings of unknown words. The two sets can

be fed to other text processing modules such as

word filtering, stoplist, stemming, and weight

assignment before adding to the index trie.

For the retrieval phrase, user’s query

words must be segmented using the same

algorithm so that an obtained set of words and

sistrings are used for querying the trie structure.

5. Conclusion

An automatic indexing for Thai text retrieval

system was presented in this paper where given

documents can have words that are unknown to

the system’s dictionary. Unknown words can be

misspelled words, proper words, transliterated

words, etc. The fundamental file structure used

for keeping index is trie which supports both

word, pattern, and approximate matching. A

word segmentation algorithm was also

proposed for segmenting a given text to a set of

words and sistrings of unknown words for

adding to the trie. The algorithm finds a

smallest set of words and sistrings with the

objective of minimizing number of sistrings to

enhance retrieval precision. While the use of

sistring for unknown words enhances the

retrieval recalls.

References

[1] S. Charnyapornpong, “A Thai Syllable

Separation Algorithm,” M.Eng. Thesis,

Asian Institute of Technology, Aug. 1983.

[2] C. Faloutsos and D.W. Oard, “A Survey of

Information Retrieval and Filtering

Methods,” Technical Report CS-TR-3514,

University of Maryland, College Park,

August 1995.

[3] W. B. Frakes and R. Baeza-Yates eds.,

Information Retrieval : Data Structures

and Algorithms, Englewood Cliffs, N.J. :

Prentice-Hall.

[4] G. Gonnet, “Unstructured Data Bases or

Very Efficient Text Searching,” ACM

PODS, vol. 2, pp. 117-124, 1983.

[5] G. Gonnet, R. Baeza-Yates, and T. Snider

“New Indices for Text: PAT Trees and PAT

Arrays,” in Information Retrieval : Data

Structures and Alforithms, ed., W. B.

Frakes and R. Baeza-Yates, Englewood

Cliffs, N.J. : Prentice-Hall

[6] P. Jindavimonlert, “A Thai Text Retrieval

System using the PAT tree,” M.Sc. Thesis,

Department of Computer Engineering

Chulalongkorn University, 1996.

[7] A. Kawtrakul, C. Thumkanon, and S.

Seriburi, “A Statistical Approach to Thai

Word Filtering,” Proc. of the second

Symposium on Natural Language

Processing, pp. 398-406, 1995

[8] U. Manber and G. Myers, “Suffix Arrays:

A New Method for On-line String

Searches,” First ACM-SIAM Symp. on

Discrete Algorithms, pp. 319-327, San

Francisco, 1990.

[9] T.H. Merrett and H. Shang, “Trie Methods

for Representing Text,” Proc Fourth Int’l

Conf., FODO’93, LNCS 730, pp. 130-145,

Chicago: Springer-Verlag, Oct. 1993.

[10] G. Salton and M.J. McGill, Introduction to

Modern Information Retrieval. McGraw-

Hill, 1983

[11] H. Shang, “Trie Methods for Text and

Spatial Data on Secondary Storage,” Ph.D.

Dissertation, School of Computer Science,

McGill University, Nov. 1994.

[12] H. Shang and T.H. Merrett, “Tries for

Approximate String Matching,” IEEE

Trans. on Knowledge and Data Eng., Vol.

8, No. 4, pp. 540-547, Aug. 1996.

[13] D. Sintupunpratum and C. Bandhitanont,

“Thai Word Processing (in Thai)”, Proc.

of the second Symposium on Natural

Language Processing in Thailand, pp. 322-

376, March 1993.

[14] I.H. Witten, A. Moffat, and T.C. Bell,

Managing Gigabytes : Compressing and

Indexing Documents and Images, N.Y.,

Van Nostrand Reinhold.

[15] D. Sawamibhadhi, “Implementation of

Thai Grammar Analysis Software under

UNIX system (in Thai)”, Thammasart

Univ., 1990.

[16] Y. Poovorawan and V. Imarom,

“Dictionary-based Thai Syllable

Segmentation (in Thai),” 9th
 Electrical

Engineering Conference, 1986.

[17] V. Sornlertlamvanich, “Thai Word

Segmentation in Language Translation

System,” Computerized Language

Translation (in Thai), p. 50-55, 1993.

