Partitioning

Somchai Prasitjutrakul

Partitioning Graphs

Problem definition :

Given a graph *G* with costs on its edges, partition the nodes of *G* into subsets no larger than a given maximum size, so as to minimize the total cost of the edges cut.

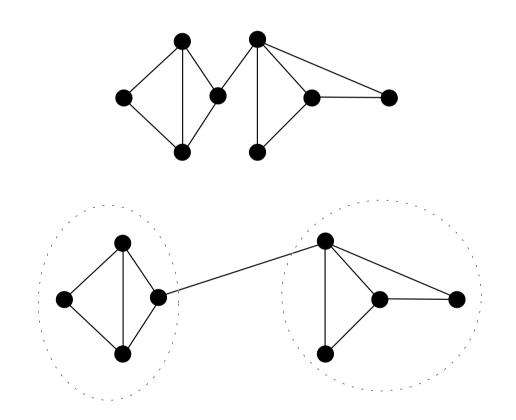
Applications:

assigning components of an electronic circuit on to printed circuit board or substrates, so as to minimize number of connections between cards or chips.

Exact solution :

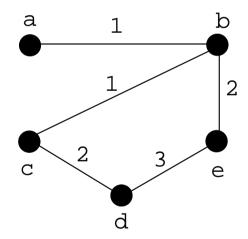
complexity grows exponentially or factorially with the number of vertices !!! impractical !!!

Partitioning Graphs



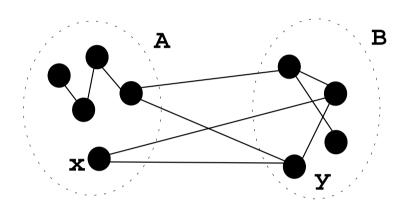
2-Way Partitioning Problem

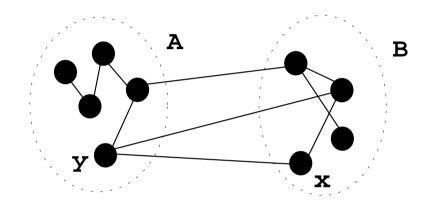
- Let *S* be a set of *2n* vertices
- C be an associated cost matrix where C_{ij} is the cost of the edge connecting vertices i and j



	a	b	С	d	е
a	0	1	0	0	0
b	1	0	1	0	2
С	0	1	0	2	0
d	0	0	2	0	3
е	0	2	1	0 0 2 0 3	0

Gain





$$E_x = \sum_{b \in B} c_{xb} = 2$$
 $E_y = \sum_{a \in A} c_{ya} = 2$

$$E_{y} = \sum_{a \in A} c_{ya} = 2$$

$$I_x = \sum_{a \in A} c_{xa} = 0$$
 $I_y = \sum_{b \in B} c_{yb} = 1$

$$I_y = \sum_{b \in B} c_{yb} = 1$$

$$D_x = E_x - I_x = 2$$
 $D_y = E_y - I_y = 1$

$$D_{y} = E_{y} - I_{y} = 1$$

$$g_{xy} = D_x + D_y - 2c_{xy} = 2 + 1 - 2 = +1$$

Kernighan & Lin Algorithm

```
GraphPartitioning( A, B )
  A^* = A; B^* = B
  do {
    Compute D values for all vertices
    for i=1 to n step +1 {
      select x_i \in A^* and y_i \in B^* such that g_i is maximum
      A^* = A^* - \{ x_i \}; \quad B^* = B^* - \{ y_i \};
      update D values
    choose k to maximize gain G = \sum g_i
    for i=1 to k step +1
      interchange x_i and y_i
  } until ( no gain is obtained )
```

Maximize the Gain

- Construct a sequence of gains
- Find the *maximum* partial sum
- Example :

```
squence of gains: 4,2,1,1,-2,3,-2,-1,-3,-3
partial sum: 4,6,7,8,6,\mathbf{9},7,6,3,0
```

The process does not terminate immediately when some gain is negative

Running Time of the K&L Alg.

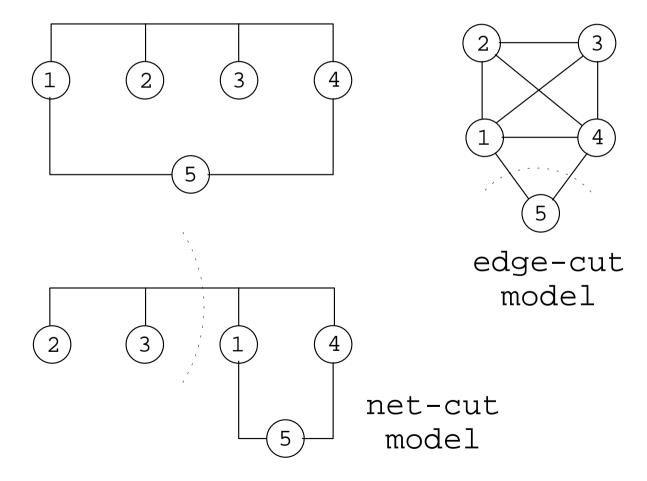
- speed up technique:
 - -computation of the D values initially is an n^2 procedure
 - -sort the D values:

 D_x : 5,4,3,1,1,1,0,0,0,0 D_y : 4,2,2,2,1,1,1,0,0,0

- ► scanning down the set of D's pairs,
- ▶ if a pair of D's is found whose sum does not exceed the maximum gain seen so far, then no bigger gain exists.
- -sorting is an $n\log n$ procedure, so the total time for sorting Ds in a pass is $n\log n + (n-1)\log(n-1) + ... + 2\log 2$ $\underline{n}^2 \log n$

Partitioning Electrical Circuits

"net-cut" vs "edge-cut"



Net-Cut Model

