BIG OH NOTATION

Classification of Algorithms

The running time of most algorithms is proportional to one of the following functions :

instructions run only once constant solve a big problem by log N transforming it into a smaller problem each input element is N processed solve a problem by breaking it into a log N number of smaller problems, solve them independently, and combine the solutions process all pairs of data items N_2 brute-force N

Polynomial vs. Exponential

	size n							
f(n)	10	20	30	40	50			
n	.00001	.00002	.00003	.00004	.00005			
	sec	sec	sec	sec	sec			
2								
n	.0001	.0004	.0009	.0016	.0025			
3	sec s	ec sec	sec s	ec				
n 5	.001 .0	08 .027	.064 .1	25				
	sec s	ec sec	sec s	ec				
n								
n	.1	3.2 2	4.3	.7 5.2				
n	sec s	ec sec	min n	 pin	8			
					S. Prasitjutraku			

Polynomial vs. Exponential

Time complexity	present computer	100 times faster	1000 times faster
n	T 1	100 T ₁	1000 T ₁
n ²	T ₂	10 T ₂	31.6 T ₂
n ³	Т ₃	4.64 T ₃	10 T ₃
n ⁵	T $_4$	2.5 T ₄	3.98 T ₄
2 ⁿ	Т ₅	T ₅ + 6.64	T ₅ + 9.97
3 n	T ₆	T ₆ + 4.19	T ₆ + 6.29

Asymptotics

- The study of functions of a parameter n, as n becomes larger and larger without bound.
- Frequency of basic actions is much more important than a total counts of all operations including housekeeping.
 - Houskeeping is too dependent on
 - programming language
 - programmer's particular style
- Change in fundamental method can make a vital difference (e.g. sequential vs. binary search).

Big Oh Notation

A Leve with the second	จำนวนการเปรีย		
Algorithms	กรณีที่หาพบ	กรณีที่หาไม่พบ	
Sequential	0.5(n+1)	n	O(n)
Binary1	log ₂ n + 1	log ₂ n+1	O(logn)
Binary2	2log ₂ n - 3	2log ₂ n	O(log n)

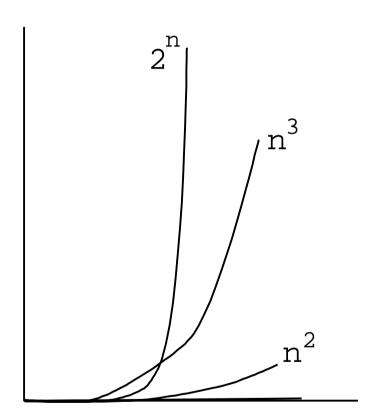
Big Oh Notation

Definition

If f(n) and g(n) are functions defined for positive integers, then

$$f(n)$$
 is $O(g(n))$

means than there exists a constant c such that


$$f(n)$$
? $\leq c$? $g(n)$?

for all sufficiently large positive integers n

Example:

$$2n + 4n - 6 \rightarrow O(n)$$
 $7n^3 - 4n + 1 \rightarrow O(n^3)$
 $2_3 + 4n_2 - 7 \rightarrow O(2_3)$

Growth Rates of Common Functions

