
Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Lexical Analysis

Sukree Sinthupinyo1

1Department of Computer Engineering
Chulalongkorn University

14 July 2012

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Outline

1 Introduction

2 The Role of the Lexical Analyzer

3 Specification of Tokens
Regular Expressions

4 Recognition of Tokens
Transition Diagrams

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Learning Objectives

Understand definition of lexeme, token, etc.
Know a method which transforms string into token
Know syntax of regular expression
Know concept of transition diagram and code implemented
from the diagram

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

First step

The main task is to read the input characters of the source
program and export a sequence of tokens.
It also interacts with the symbol as well.

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

First step

The lexical analyzer must
Strip out comments and whitespace.
Correlate error messages generated by the compiler with
the source program

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Tokens, Patterns, and Lexemes

A token is a pair consisting of a token name and an
optional attribute value. The token name is an abstract
symbol representing a kind of lexical unit.
A pattern is a description of the form that the lexemes of a
token may take. For the keyword, the pattern is just the
sequence of characters that form the keyword. For
identifiers and some other tokens, the pattern is a more
complex structure.
A lexeme is a sequence of characters in the source
program that matches the pattern for a token.

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Tokens, Patterns, and Lexemes

printf("Total = %d\n", score);

printf and score are lexemes matching the pattern for
token id
"Total = %d\n" is a lexeme matching literal

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Examples of tokens

Token Informal Description Sample
Lexemes

if characters i, f if
else characters e, l, s, e else
comparison < or > or <= or >= or == or != <=,!=
id letter followed by letters and digits pi,score,D2
number any numeric constant 3.14,6.02e23
literal anything but ", surrounded by "’s "core"

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

General concept of tokens in many programming
language

One token for each keyword. The pattern for a keyword is
the same as the keyword itself.
Tokens for the operators
One token representing all identifiers
One or more tokens representing constants, such as
numbers and literal strings.
Tokens for each punctuation symbol, such as left and right
parentheses, comma, and semi colon.

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Attributes for Tokens

Token must have an attribute associated with.
For example, an id must associate with information about
identifier; e.g., its lexeme, its type, and the location at
which it is first found, is kept in the symbol table.

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

An Example of Attributes for Tokens

E = M * C ** 2

<id, pointer to symbol-table entry for E>
<assign_op>
<id, pointer to symbol-table entry for M>
<mult_op>
<id, pointer to symbol-table entry for C>
<exp_op>
<number, integer value 2 >

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

String and Language

A string over an alphabet is a finite sequence of symbols
drawn from that alphabet. The length of string s is usually
written |s|. The empty string is denoted ε.
A language is any countable set of strings over some fixed
alphabet.
Concatenation of string x and y is the string formed by
appending y to x . For example, if x = dog and y = house,
then xy = doghouse.
If we think of concatenation as a product, we can define
the "exponentiation" of strings as follows. Define s0 to be ε,
and for all i > 0, define si to be si−1s. Since εs = s, it
follows that si = s. Then s2 = ss,s3 = sss, and so on.

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

Operations on Languages

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

Example

Let L be the set of letters A,B,...,Z,a,b,...,z.
D be the set of digits 0,1,...,9.

L ∪ D is the set of letters and digits with 62 strings of length
one.
LD is the set of 520 strings of length two.
L4 is the set of all 4-letter strings.
L∗ is the set of all strings of letter, including ε.
L(L ∪ D)∗ is the set of all strings of letters and digits
beginning with a letter.
D+ is the set of all strings of one or more digits.

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

Outline

1 Introduction

2 The Role of the Lexical Analyzer

3 Specification of Tokens
Regular Expressions

4 Recognition of Tokens
Transition Diagrams

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

Regular Expressions

If we want to describe the set of valid C identifiers, we can
use the language L(L ∪ D) with the underscore included
among the letters.
If letter_ denotes any letter of the underscore, and digit
stands for any digit, then we could describe the language
of C identifiers by:

letter_(letter_|digit)∗

where | denotes union, the parentheses are used to group
subexpressions.

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

Regular Expressions

Language L(r) is defined recursively from the languages
denoted by r ’s subexpressions using alphabet set

∑
.

BASIS: There are two rules that form the basis:
1 ε is a regular expression, and L(ε) is {ε}, that is, the

language whose sole member is the empty string.
2 If a is a symbol in

∑
, the a is a regular expression, and

L(a) = {a}, that is, the language with one string, of length
one, with a in its one position.

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

Regular Expressions

INDUCTION: The are four parts to the induction whereby
larger expressions are built from the smaller one. Suppose
r and s are regular expression denoting languages L(r)
and L(s), respectively.

1 (r)|(s) denotes L(r) ∪ L(s).
2 (r)(s) denotes L(r)L(s).
3 (r)∗ denotes L(r))∗.
4 (r) denotes L(r).

The precedence of operator is ∗, concatenation, and |.
So (a)|((b)∗(c)) can be written as a|b∗c

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

Regular Expressions

Example
Let

∑
= {a,b}

a|b denotes the language {a,b}
(a|b)(a|b) denotes {aa,ab,ba,bb}
a∗ denotes {a,aa,aaa, . . . }.
(a|b)∗ denotes {ε,a,b,aa,ab,ba,bb,aaa, ...}
a|a∗b denotes {a,b,ab,aab,aaab, ...}

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

Definitions

Regular definition is a sequence of the form

d1 → r1
d2 → r2
. . .

dn → rn

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

Regular Definition Example

C identifiers are strings of letters, digits, and underscore.

letter_→ A|B| . . . |Z |a|b| . . . |z|_
digit → 0|1| . . . |9

id → letter_(letter_|digit)∗

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Regular Expressions

Extensions of Regular Expressions

+: One or more instances
?: Zero or one instances
[a1a2 . . . an]: a1|a2| . . . |an or a1 − an

letter_→ [A− Za− z_]
digit → [0− 9]

id → letter_(letter_|digit)∗

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Transition Diagrams

Example

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Transition Diagrams

Example

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Transition Diagrams

Tokens, Patterns, and Attribute Values

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Transition Diagrams

Outline

1 Introduction

2 The Role of the Lexical Analyzer

3 Specification of Tokens
Regular Expressions

4 Recognition of Tokens
Transition Diagrams

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Transition Diagrams

Transition Diagram for relop

Lexical Analysis

Introduction
The Role of the Lexical Analyzer

Specification of Tokens
Recognition of Tokens

Transition Diagrams

Example Code for relop

Lexical Analysis

	Introduction
	The Role of the Lexical Analyzer
	Specification of Tokens
	Regular Expressions

	Recognition of Tokens
	Transition Diagrams

