
1/2

Integrated Thesis & Research Management System

Chulalongkorn University

GENERATED: 16/08/2019 16:26:00

INTEGRATED THESIS & RESEARCH MANAGEMENT SYSTEM

Graduate School, Chulalongkorn University

DOCUMENTS FOR SUBMISSION OF COMPLETE INDEPENDENT STUDY

6070908021 Mr.Kittisak Phetrungnapha / นายกิตติศักดิ์ เพชรรุ่งนภา

Field of Study: Software Engineering

Faculty/Institute/College: Faculty of Engineering

Level of Study: Master of Science

Phone number: 0816756157

E-mail address: 6070908021@student.chula.ac.th, cs.sealsoul@gmail.com

Topic: การจำแนกประเภทบทวิจารณ์ของผู้ใช้โมไบล์แอปพลิเคชันเพื่อการสร้างทิคเก็ตสำหรับระบบติดตามปัญหา

Classification of Mobile Application User Reviews for Generating Tickets for Issue Tracking System

Count the total of pages: 77 page(s)

6070908021_2771580346

 2. INDEPENDENT STUDY COMMITTEE

Chairman / ประธาน

Dr. Duangdao Wichadakul

Advisor / อาจารย์ที่ปรึกษา

Assc.Prof. Dr.TWITTIE SENIVONGSE

Committee / กรรมการ

Dr. Kunwadee Sripanidkulchai

 3. RESEARCH MAPPING

Subject area : Artificial Intelligence/Computer Science; Data Mining and Machine Learning/Computer Science; Natural

Language Processing/Computer Science; Software/Computer Science; Text processing/Computer Science; Information

 1. INDEPENDENT STUDY DISSEMINATION CONSENT FORM

It is the policy of the Graduate School of Chulalongkorn University

Advisor Approval Proposal: 21-06-2019 Officer Approval Proposal: 24-06-2019

Complete Submission: 27-06-2019 Semester Academic Year 2 / 2018

Evaluation: Passed

Dissemination through electronic media, publication, radio and television media: allowed

Dissemination of full document on a website: allowed

2/2

Integrated Thesis & Research Management System

Chulalongkorn University

GENERATED: 16/08/2019 16:26:00

Systems/Computer Science; computer/Engineering; Information/Engineering

Thailand Standard Industrial Classification (TSIC)

Section J : Information and communication

C. Science, Technology and Industry Development

Researches on information technology, communication, computer software, hardware and database, etc.

 4. REPORT ON PUBLICATION OF STUDENT DISSERTATION

1 Classification of Mobile Application User Reviews for Generating Tickets on Issue Tracking System

Document Type: Conference

Source: International Conference on Information & Communication Technology and System

Publish Year: 2019

Published Date: 2019-07-18

Certification

1. Ensure that students have the published by the prescribed criteria

2. This thesis/dissertation/independent study has checked a plagiarism from Akarawisut program,result as: 0.57%

(http://plag.grad.chula.ac.th/jobs/1279001/1803186983)

3. Advisor has reviewed the student thesis/dissertation/independent study for completion of all connections and

adherence to the Chulalongkorn University academic integrity policy, and approve the submission of the

thesis/dissertation/independent study to Educational Service Division.

(Signature).....................................

Mr.Kittisak Phetrungnapha

Graduate Student

............. / /

(Signature).....................................

Assc.Prof. Dr.TWITTIE SENIVONGSE

Independent Study Advisor

............. / /

Publication #1

Classification of Mobile Application User Reviews for Generating Tickets on Issue Tracking System

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Classification of Mobile Application User Reviews
for Generating Tickets on Issue Tracking System

Kittisak Phetrungnapha and Twittie Senivongse
Department of Computer Engineering

Faculty of Engineering
Chulalongkorn University

Bangkok, Thailand
6070908021@student.chula.ac.th, twittie.s@chula.ac.th

Abstract—Mobile application development has now been in

the mainstream and a lot of mobile applications have been

released to Apple App Store and Google Play Store. As there are

many applications in the same category and the competition is

very high in the market, mobile development teams need to get

user feedback on their applications so that they can improve

quality of the applications. An important source of feedback is

user review on App Store and Play Store from which the

developers can analyze problems and recommendations for

future maintenance and evolution of the applications. Since

there might be a large number of user reviews for each release

of a mobile application, this paper proposes an automated

approach to classifying user reviews as bug reports or feature

requests. These classification results are used as a basis for

generating tickets for an issue tracking system, i.e. Jira. In user

review classification, text classification, natural language

processing, sentiment analysis, and review metadata are used

with several machine learning algorithms, i.e. Naïve Bayes,

Decision Tree, KNN, LinearSVC, Logistic Regression, and

Ensemble methods. The best classifiers for both categories of

reviews are used further in an implementation of a Jira ticket

generating tool. The tool considers semantic similarity of review

comments and can filter out duplicate user reviews. When

necessary, the tool applies text summarization to the user review

to extract the title of a ticket for the corresponding bug report

or feature request. The approach can facilitate the mobile

development team in their maintenance task as the developers

can pick the tickets and work on them to improve the

application in a future release.

Keywords—user reviews, issue tracking system, text

classification, text similarity, text summarization, machine

learning, natural language processing

I. INTRODUCTION

Mobile devices have become an important factor in life as
people use them for making calls, taking photos, surfing the
Internet, playing games etc. Versatility of mobile devices have
led to tons of mobile applications on the Apple App Store and
Google Play Store. As there are many applications in the same
category and the competition is very high in the market,
software companies and freelance developers need to
maintain quality of their applications. A channel for
application users to voice their opinions about the quality of
the applications is by posting their reviews on the App Store
and Play Store.

User reviews are direct messages from real users who are
using mobile applications and they are important for
application improvement. Some users describe the problems
they face while using the applications. Some users suggest
new features to enhance the applications. Some express their

feelings about the applications and give rating. There are also
user reviews with content that is useless or insufficient for the
mobile application team to make use of. In general, there
might be a lot of such user reviews for a mobile application.
Especially for a popular application, there might be hundreds
of new user reviews per day. It is therefore difficult for a
mobile development team to go through user reviews of their
application, one by one, to analyze problems and opportunities
for software enhancement. The question is, how can we
reduce this user review analysis effort and improve mobile
application quality at the same time?

To answer this question, this paper proposes an approach
to user review analysis and generation of tickets for an issue
tracking system. The approach will facilitate the mobile
development team by collecting mobile application user
reviews from the App Store and Play Store, and classifying
them into bug report or feature request type of reviews. In user
review classification, text classification [1], natural language
processing [2], sentiment analysis [1], and review metadata
are used with several machine learning algorithms, i.e. Naïve
Bayes, Decision Tree, K-Nearest Neighbor, Linear Support
Vector Classification, Logistic Regression, and Ensemble
methods [1]. Then, user reviews that are bug reports and
feature requests will be filtered if there are some duplicates,
by using semantic similarity analysis [3]. The information in
the remaining reviews will be used to generate corresponding
tickets for an issue tracking system, i.e. Jira [4]. In some cases,
text summarization [5] will be applied to these user reviews to
extract key content as the title of the ticket. The approach can
facilitate the mobile development team in their maintenance
task as the developers can pick the tickets and work on them
to improve the application in a future release.

The rest of the paper is organized as follows. Section II
describes related work. Section III gives an overview of our
approach while the detail and evaluation of each step, i.e. user
review classification, filtering of duplicate user reviews, and
ticket generation, are given in sections IV-VI respectively.
Finally, conclusion is found in section VII.

II. RELATED WORK

User review is a rich source of information that can be used
to improve the software. Mobile application repositories like
Apple App Store and Google Play Store publish user reviews
that can be retrieved for automated analysis. Researchers have
therefore performed analyses on user reviews to gain useful
knowledge about mobile applications which could benefit the
development and maintenance of the software. Maalej and
Nabil [6] classified user reviews in the App Store and Play
Store into four categories, i.e. bug report, feature request, user

experience, and rating. Bug reports describe problems with
application behavior, such as a crash, or performance issues
that should be fixed. Feature requests describe user
suggestions for new features or for improvement in existing
features. For user experiences, users describe the experiences
they have with the application such as how useful the
application is or what the features are like in different
situations. Finally, ratings are text that reflects numeric star
rating. The research used 4,400 entries of training data of all
categories which contained review text that was processed by
NLP techniques as well as review metadata such as star rating,
length, and tense. Machine learning algorithms that were used
were Naïve Bayes, Decision Tree, and Max Entropy. It was
found that the combination between text classification and
review metadata performed best when Naïve Bayes was used
with an average F1 score of 0.75 for all four types of user
reviews. Guzman et al. [7] conducted similar research but
classified user reviews into seven categories, i.e. bug report,
feature strength, feature shortcoming, user request, praise,
complaint, and usage scenario. Their training data comprised
4,550 reviews and the Voting Ensemble method was used to
combine individual classification results of Naive Bayes,
SVM, Logistic Regression, and Neural Network. The
ensembles performed better than individual classifiers,
resulting in an average precision of 0.74 and average recall of
0.59. In our work, we use the training set and test set of Maalej
and Nabil [6] to build classifiers for our user review
classification. In addition, we experiment with other features
like part of speech, word2vec, and doc2vec, and investigate
the performance of different algorithms including Naïve
Bayes, Decision Tree, K-Nearest Neighbors, Logistic
Regression, Linear SVC, and different Ensemble methods.

The work by Villarroel et al. [8] also shares some similar
idea with our approach. The work classified mobile
application user reviews into bug report, feature suggestion,
and other type, using Random Forest algorithm, and then used

DBSCAN clustering algortithm to group related user reviews
together. For release planning, Random Forest was used again
to label each cluster as high or low priority based on the
number of user reviews, number of involved platforms, and
rating information within the cluster. Unlike this work, our
approach addresses different aspects, using semantic text
similarity analysis to determine duplicate reviews and
generating Jira tickets for the reviews. The work by Gao et al.
[9] analyzed user reviews of different versions of mobile
applications by using the Adaptive Online Latent Dirichlet
Allocation which is a novel topic modeling method to detect
topics (or issues) that emerge over time across different
application versions. Other research that classifies mobile
application user reviews for other purposes includes the work
by Palomba et al. [10] that proposed a tool called
CHANGEADVISOR to classify mobile application user
reviews into bug fixing, features enhancement, and new
features request. The tool used the Hierarchical Dirichlet
Process (HDP) algorithm to cluster reviews to form similar
change requests. Then the tool determined syntactic text
similarity between clusters of user reviews and preprocessed
source code components based on the Asymmetric Dice
Similarity Coefficient in order to link each change request to
a source code component to be modified. Unlike this work,
our approach addresses different aspects, using semantic text
similarity to determine duplicate reviews and generating Jira
tickets for the reviews.

III. OVERVIEW OF THE APPROACH

The overview of our approach is depicted in Fig. 1. The
main steps comprise 1) classifying user reviews, 2)
determining duplicate user reviews, and 3) generating issue
tickets. The first step is to train classifiers for user review
classification using different machine learning algortihms on
the data set from [6]. The two classifiers that perform best for

Fig. 1. Overview of the approach.

bug report and feature request classification are selected. The
second step is to identify a duplicate threshold that will be
used to determine if a user review is similar enough to any
existing review and should be considered as a duplicate and
be filtered out. Once the appropriate classifiers and duplicate
threshold are identified, we can use them in the last step to
classify unseen user reviews of a mobile application release.
If they are not duplicate, corresponding Jira tickets are
generated for them by a ticket generating tool. The details of
these steps are presented in the following sections.

IV. CLASSIFYING USER REVIEWS

In this section, the steps performed in user review
classification is described.

A. Training Classifiers for User Reviews

To build classifiers to classify mobile application user
reviews, we used the data set of Maalej and Nabil [6] to train
the models (https://mast.informatik.uni-hamburg.de/app-
review-analysis/). Their data set contains user reviews of some
top applications in different categories retrieved from the App
Store and Play Store during 2012-2014. The data set contains
four categories of user reviews, i.e. bug report, feature request,
user experience, and rating. As only bug reports and feature
requests are relevant to ticket generation, we used only those
user reviews of the data set which were labeled as bug report,
not bug report, feature request, and not feature request. The
data summary is shown in Table I.

We adopted all kinds of user review features that were
used in [6]. They were 1) bag of words (BOW) of the review
comment, 2) BOW with stopwords removal, 3) BOW with
lemmatization, 4) BOW with stemming, 5) BOW with
stopwords removal and lemmatization, 6) sentiment analysis
score, 7) length of comment by number of words, 8) number
of verbs indicating four tenses in comment, and 9) star rating.
Note that all BOW features above used either binary values or
TF-IDF weights in the feature vectors. In addition, we
experimented with three more kinds of features. They were 1)
number of words indicating five parts of speech (POS) in
comment, since our initial assumption was that the review
comments in different categories might have different
distribution of word types, 2) word2vec of BOW, BOW with
stopwords removal, BOW with lemmatization, and BOW with
stopwords removal and lemmatization, and 3) doc2vec of
BOW, BOW with stopwords removal, BOW with
lemmatization, and BOW with stopwords removal and
lemmatization. Note that word2vec is a method to construct a
word embedding which is a vector representation of a
particular word [11]. Doc2vec adapts from word2vec to
generate a vector representation of a document. An example
of our experiment data, i.e. a bug report, is shown in Fig. 2.

Several machine learning algorithms were applied to
investigate their performance. They are 1) Bernoulli Naïve
Bayes, 2) Guassian Naïve Bayes, 3) Decision Tree, 4) K-

TABLE I. NUMBER OF LABELED DATA TAKEN FROM [6]

(HTTPS://MAST.INFORMATIK.UNI-HAMBURG.DE/APP-REVIEW-ANALYSIS/)

Data
Bug Report

Classification

Feature Request

Classification

Training Bug Report 256 Feature Request 207

Not Bug Report 256 Not Feature Request 207

Total 512 Total 414

Test Bug Report 114 Feature Request 88

Not Bug Report 114 Not Feature Request 114

Total 228 Total 202

Fig. 2. Experiment data: (top) data from [6], (bottom) added features.

Nearest Neighbors, 5) Linear SVC, 6) Logistic Regression,
and 7) different classes of ensemble algorithms to combine
results of six individual models, i.e. Voting, Random Forest,
Extra Trees, Ada Boost, and Gradient Boosting. Multiple
binary classifiers were built, one for each review category, as
it was suggested in [6] that they outperformed single
multiclass classifiers.

In the implementation of the experiment, we used Python
3.7.3. NLTK for natural language processing [2] and Gensim
3.7.2 for word embedding techniques [11]. For machine
learning algorithms, scikit-learn 0.20.3 was used [12].

B. Performance Evaluation of Different Classifiers

For each review category, we used 28 different
combinations of the features, while varying the machine
learning algorithms, to train the classification models. The
performance of the classifiers was evaluated by the test data
that come with the dataset of [6]. In addition, we also
evaluated the performance by the stratified 5-fold cross
validation method on the training data. Due to limitation of
space, the results reported below in Tables II and III are based
on the validation by the provided test data.

For the bug report category, the split ratio between the
training set and test set in Table I is 70:30. Table II shows top
ten combinations of the features which resulted in the
classifiers with the highest accuracy. The result showed that
BOW (textual comment) was the most important feature as it
contributed to all top classifiers, whereas review metada (such
as star rating, length, and tense) alone did not. The doc2vec
representation was better than using the traditional techniques
like stopwords removal and lemmatization alone, but the part
of speech did not contribute much to the top classifiers. In
most cases, the ensemble algorithms performed better than
individual models. The best classifier for bug report
classification was the Extra Tree ensemble model with the
doc2vec representation of the review comment. Its F1 was
0.8154 and accuracy 0.8063. In addition, the LinearSVC
model with lemmatized review comment also had very high
recall of 0.9123. Note that, we also repeated the experiment of
[6] by training the same combinations of features using Naïve
Bayes and Decision Tree, but the resulting classifiers (with the
best one shown in the last row of Table II) were outperformed
by other classifiers that used other combinations

of features.

For the feature request category, the split ratio between the
training set and test set in Table I is 67:33. Table III shows top
ten combinations of the features which resulted in the
classifiers with the highest accuracy. The result showed that
BOW (textual comment) again contributed to all top
classifiers. The doc2vec and word2vec representation were, in
most cases, better than using traditional techniques like
stopwords removal and lemmatization alone. Also, in most
cases, the ensemble algorithms performed better than
individual models. The best classifier for feature request
classification was the Extra Tree ensemble model that was
trained with TF-IDF vectors of lemmatized review comments
and part of speech. Its accuracy was 0.797 and F1 was 0.7876.
In addition, the Extra Tree ensemble model with word2vec
representation of the review comments that had stopwords
removed and were also lemmatized had very high recall of
0.9412. Note that, we also repeated the experiment of [6] but,
again, the resulting classifiers (with the best one shown in the
last row of Table III) were outperformed.

TABLE II. PERFORMANCE OF BUG REPORT CLASSIFICATION TECHNIQUES

Classification Techniques
Bug Report

Accuracy
Precision Recall F1

BOW + doc2vec + ExtraTreesClassifier 0.7983 0.8333 0.8154 0.8063

BOW – stopwords + doc2vec + ExtraTreesClassifier 0.7982 0.7982 0.7982 0.7928

BOW + doc2vec + VotingClassifier 0.83 0.7281 0.7757 0.7838

BOW – stopwords + lemmatization + word2vec + VotingClassifier 0.7391 0.8947 0.8095 0.7838

BOW + lemmatization + word2vec + LogisticRegression 0.76 0.8333 0.795 0.7793

BOW – stopwords + word2vec + LogisticRegression 0.7623 0.8158 0.7881 0.7748

BOW + lemmatization + pos + VotingClassifier 0.6623 0.8947 0.7612 0.7193

BOW + lemmatization + LinearSVC 0.654 0.9123 0.7619 0.7149

BOW – stopwords + ExtraTreesClassifier 0.6601 0.886 0.7566 0.7149

BOW – stopwords + lemmatization + ExtraTreesClassifier 0.656 0.9035 0.7601 0.7149

…

BOW + rating + sentiScore + tenses + GaussianNB 0.6296 0.8947 0.7391 0.6842

TABLE III. PERFORMANCE OF FEATURE REQUEST CLASSIFICATION TECHNIQUES

Classification Techniques
Feature Request

Accuracy
Precision Recall F1

BOW + lemmatization + pos + ExtraTreesClassifier 0.7238 0.8636 0.7876 0.797

BOW – stopwords + doc2vec + GradientBoostingClassifier 0.7238 0.8941 0.8 0.7946

BOW – stopwords + doc2vec + ExtraTreesClassifier 0.7212 0.8824 0.7936 0.7892

BOW + ExtraTreesClassifier 0.7143 0.8523 0.7772 0.7871

BOW + rating + sentiScore + ExtraTreesClassifier 0.7027 0.8864 0.7839 0.7871

BOW + lemmatization + doc2vec + AdaBoostClassifier 0.7419 0.8118 0.7753 0.7838

BOW – stopwords + ExtraTreesClassifier 0.7157 0.8295 0.7684 0.7822

BOW – stopwords + word2vec + ExtraTreesClassifier 0.6937 0.9059 0.7857 0.773

BOW – stopwords + lemmatization + word2vec +
ExtraTreesClassifier

0.6838 0.9412 0.7921 0.773

BOW + lemmatization + word2vec + LinearSVC 0.6944 0.8824 0.7772 0.7676

…

BOW + rating + sentiScore + tenses + GaussianNB 0.6576 0.8295 0.7337 0.7376

As a result of the experiment, the winning classifier for
each review category was exported to a .pkl file by the Pickle
built-in Python library. The exported classifiers were
integrated with the ticket generating tool (see section VI).

V. DETERMINING DUPLICATE USER REVIEWS

Different user reviews could report the same thing. If two
reviews are similar enough, they can be seen as “duplicate”
and only one should be kept for ticket generation. One way to
detect duplicate user reviews is by performing semantic text
similarity analysis between each pair of user reviews.
Semantic text similarity considers meaning of text, and two
documents that are syntactically different, e.g. “How old are
you?” and “What is your age?”, would be considered similar.
However, we need to determine how similar any two user
reviews should be, so as to be considered duplicate. The
following sections describe how to obtain a duplicate
thershold.

A. Creating Truth Set of Duplicate User Reviews

An experiment was conducted to determine a duplicate
threshold by creating a truth set of duplicate user reviews. A
truth set is a set of pairwise user review data, and each pair is
labeled as duplicate or not duplicate. In the experiment, we
started with finding a number of unique reviews of an
application release, i.e. 94 unique reviews of Facebook
version 210.0 were retrieved from the App Store in this case.
This is called the base set. Then, another 20 reviews of this
released version were randomly chosen. This is called the test
set. Each user review in the test set was paired with each user
review in the base set. For each pair, we read the reviews
carefully and labeled them as duplicate or not duplicate. The
manual labeling was reviewed and agreed by another mobile
software engineer with 5 years of experience. As a result, there
are 1,880 labeled pairs of user reviews in the truth set.

B. Determining Duplicate Threshold

A duplicate threshold is the degree of similarity between
any pair of user reviews which indicates that the pair are very
similar and therefore are considered “duplicate”. In such a
case, only one review should be used in ticket generation. To
determine a duplicate threshold, we determined the semantic
text similarty score for each of the 1,880 pairs of user reviews
in the truth set. This was done by using the universal sentence
encoder to encode user reviews into high dimensional vectors
and finding the distance between vectors to determine text
similarity [3]. Then we experimented by varying the duplicate
threshold between [0, 1]. That is, if any pair of reviews had
the similarity score that was not less than the threshold, the
pair was considered as duplicate. Otherwise, it was considered
as not duplicate. The performance of each threshold value in
detecting duplicate reviews was evaluated against the truth set.
The confusion matrix and detection performance for each
threshold value is shown in Table IV. In this context, the
concern is more on the false positive, as it is not desirable if a
user review is considered duplicate by its similarity score but
it is actually not duplicate. This is because a ticket will not be
generated for this review. The false positive should be kept
minimized while high accuracy is preferable. In this case, the
false positive decreased but the accuracy got higher, while the
threshold rose up to 0.78 before the performance became
stable. Thus, 0.78 was selected to be the duplicate threshold
for ticket generation (see section VI).

TABLE IV. PERFROMANCE OF DUPLICATE REVIEW DETECTION BY

VARYING DUPLICATE THRESHOLDS

Threshold TN TP FN FP Accuracy

0 1 25 0 1854 0.0138

0.1 32 25 0 1823 0.0303

0.2 172 25 0 1683 0.1048

0.3 543 23 2 1312 0.3011

0.4 1028 18 7 827 0.5564

0.5 1448 14 11 407 0.7776

0.6 1734 7 18 121 0.9261

0.7 1838 2 23 17 0.9787

0.75 1852 0 25 3 0.9851

0.76 1854 0 25 1 0.9862

0.77 1854 0 25 1 0.9862

0.78 1855 0 25 0 0.9867

0.79 1855 0 25 0 0.9867

0.8 1855 0 25 0 0.9867

0.9 1855 0 25 0 0.9867

1 1855 0 25 0 0.9867

VI. GENERATING ISSUE TICKETS

This section describes an implementation of a Jira ticket
generating tool and how it is used. It is a command line tool
with two main functions: analyzing user reviews and
generating tickets.

A. Analyzing User Reviews

To analyze any new user review to classify its category
and check if a corresponding ticket should be generated, the
tool integrates the results from previous sections, i.e. bug
report classifier, feature request classifier, and duplicate
threshold. Prior to the analysis, the tool allows the
development team to configure the following parameters for
ticket generation, i.e. 1) project_key: Jira project id which is
specific to a Jira board of a project, 2) bug_issue_type_id:
either bug report type id or feature request type id which is
specific to a Jira board of a project, 3) prioriry_id: default
priority level of the issue (if not specified, medium is used), 4)
label: default label for the issue (if not specified, either iOS or
Android is used depending on the component_id), and 5)
component_id: either iOS component id or Android
component id which is specific to a Jira board of a project and
dependent on the platform of the user review.

The tool allows a team member to specify a bundle id (for
iOS) or a package name (for Android) to retrieve new user
reviews of a mobile application from the App Store or Play
Store. The tool uses a screen scraper, with a parameter
“newest” to retrieve new user reviews of the current release
(i.e. https://github.com/facundoolano/app-store-scraper#
reviews for App Store, and https://github.com/facundoolano/
google-play-scraper#reviews for Play Store). The unseen
reviews are processed and have their features extracted. The
bug report and feature request classifiers are loaded and
decoded from the .pkl files into prediciton code and predict
the review category of each unseen data. (In the case that a
user review is classified as both categories, the category
predicted with higher probability will be the final prediction.)

The tool also maintains a collection of unique user reviews
of each review category for a particular application release.
When a user review of a category arrives, it is checked with
the corresponding collection. If duplication is detected, the
review is discarded, otherwise it is appended to the collection
and marked for ticket generation.

B. Generating Tickets

Jira provides a REST API [4] for generating a
corresponding ticket for a new unique user review on a Jira
board. Along with the configuration information that is
mentioned in the section VI.A, the request body also contains
1) summary: title or summarized content of the review, and 2)
description: information including original review comment,
version id of the application, current date of ticket creation,
and URL of the original review on the Store. For the summary
information, since user reviews on the Play Store do not have
titles, the tool applies a simple extractive text summarization
technique [5] to the review comment. That is, the most
important sentence in the review comment will be extracted to
represent the whole review content. The tool preprocesses and
tokenizes all sentences in the comment and computes the
weighted frequency of each word by dividing its frequency by
the frequency of the most occurring word. Then, it calculates
the sum of the weighted frequencies of all words in each
sentence. The sentence with the highest sum score represents
the summary of the review. Fig. 3 (left) shows the UI of the
tool after the tool has generated new tickets for a package
name (Android). Fig. 3 (right) shows an issue ticket generated
on a Jira board on which the red icon at the top left corner
indicates that this issue is a bug report (green for feature
request). The initial status of a newly generated issue would
be Backlog. Any team member can assign himself/herself to
work on this issue or change the status and tracking time.

VII. CONCLUSION

This paper investigated different machine learning
algorithms to classify bug reports and feature requests that
appeared in mobile application user reviews in the App Store
and Play Store. This could facilitate the automated generation
of tickets on a Jira board of a software project. Several NLP
techniques were applied to process textual review comments,
determine duplicate reviews based on semantic similarity, and
summarize the content of reviews.

This work is considered an initial attempt to streamline the
process of collecting feedback from mobile application users
to the development team, as there is still room for
improvement. For example, slangs and incorrect grammars in
the reviews should be treated. As the data set of [6] was used,
training the classifiers was limited to the features data that

were available in the data set. The data set can be enhanced to
explore other features of user reviews as well as to have more
data collected. The classification should also be able to
support reviews of other languages. On ticket generation, user
reviews could be analyzed further to determine priority of the
issue tickets. In addition, rather than keeping the original
review comment in the description of an issue, the more
advanced abstractive text summarization could be
investigated and applied to the review comment so that, for
any long comment, new shorter text that still conveys the
meaning of the original review is generated for the issue
description. These could help improve the ticket generation
process.

REFERENCES

[1] A. C. Müller and S. Guido, Introduction to Machine Learning with
Python. Sebastopol, CA: O’Reilly, 2016.

[2] Natural Language Toolkit, https://www.nltk.org/

[3] Advances in Semantic Textual Similarity,
https://ai.googleblog.com/2018/05/advances-in-semantic-textual-
similarity.html

[4] Jira REST API, https://developer.atlassian.com/server/jira/platform/
rest-apis/

[5] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B.
Gutierrez, and K. Kochut, “Text summarization techniques: A brief
survey,” https://arxiv.org/abs/1707.02268

[6] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise?
On automatically classifying app reviews,” 2015 IEEE 23rd Int.
Requirements Engineering Conf. (RE), August 2015, pp. 116-125.

[7] E. Guzman, M. El-Halaby, and B. Bruegge, “Ensemble methods for
app review classification: an approach for software evolution,” 2015
30th IEEE/ACM Int. Conf. Automated Software Engineering, January
2016, pp. 771-776.

[8] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta,
“Release planning of mobile apps based on user reviews,” 2016
ACM/IEEE 38th Int. Conf. Software Engineering (ICSE), May 2016,
pp. 14-24.

[9] C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review analysis
for identifying emerging issues,” 2018 IEEE/ACM 40th Int. Conf.
Software Engineering (ICSE), May 2018, pp. 48-58.

[10] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F.
Ferrucci, and A. De Lucia, “Recommending and Localizing Change
Requests for Mobile Apps based on User Reviews,” 2017 IEEE/ACM
39th Int. Conf. Software Engineering (ICSE), July 2017, pp. 106-117.

[11] Gensim Word2Vec Tutorial, https://www.kaggle.com/pierremegret/
gensim-word2vec-tutorial

[12] Scikit-learn, https://scikit-learn.org/stable/

Fig. 3. Ticket generation: (left) UI of ticket generating tool (right) Ticket on Jira board describing bug issue.

