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Abstract—Mobile application development has now been in 

the mainstream and a lot of mobile applications have been 

released to Apple App Store and Google Play Store. As there are 

many applications in the same category and the competition is 

very high in the market, mobile development teams need to get 

user feedback on their applications so that they can improve 

quality of the applications. An important source of feedback is 

user review on App Store and Play Store from which the 

developers can analyze problems and recommendations for 

future maintenance and evolution of the applications. Since 

there might be a large number of user reviews for each release 

of a mobile application, this paper proposes an automated 

approach to classifying user reviews as bug reports or feature 

requests. These classification results are used as a basis for 

generating tickets for an issue tracking system, i.e. Jira. In user 

review classification, text classification, natural language 

processing, sentiment analysis, and review metadata are used 

with several machine learning algorithms, i.e. Naïve Bayes, 

Decision Tree, KNN, LinearSVC, Logistic Regression, and 

Ensemble methods. The best classifiers for both categories of 

reviews are used further in an implementation of a Jira ticket 

generating tool. The tool considers semantic similarity of review 

comments and can filter out duplicate user reviews. When 

necessary, the tool applies text summarization to the user review 

to extract the title of a ticket for the corresponding bug report 

or feature request. The approach can facilitate the mobile 

development team in their maintenance task as the developers 

can pick the tickets and work on them to improve the 

application in a future release.  

Keywords—user reviews, issue tracking system, text 

classification, text similarity, text summarization, machine 

learning, natural language processing 

I. INTRODUCTION 

Mobile devices have become an important factor in life as 
people use them for making calls, taking photos, surfing the 
Internet, playing games etc. Versatility of mobile devices have 
led to tons of mobile applications on the Apple App Store and 
Google Play Store. As there are many applications in the same 
category and the competition is very high in the market, 
software companies and freelance developers need to 
maintain quality of their applications. A channel for 
application users to voice their opinions about the quality of 
the applications is by posting their reviews on the App Store 
and Play Store.  

User reviews are direct messages from real users who are 
using mobile applications and they are important for 
application improvement. Some users describe the problems 
they face while using the applications. Some users suggest 
new features to enhance the applications. Some express their 

feelings about the applications and give rating. There are also 
user reviews with content that is useless or insufficient for the 
mobile application team to make use of. In general, there 
might be a lot of such user reviews for a mobile application. 
Especially for a popular application, there might be hundreds 
of new user reviews per day. It is therefore difficult for a 
mobile development team to go through user reviews of their 
application, one by one, to analyze problems and opportunities 
for software enhancement. The question is, how can we 
reduce this user review analysis effort and improve mobile 
application quality at the same time?  

To answer this question, this paper proposes an approach 
to user review analysis and generation of tickets for an issue 
tracking system. The approach will facilitate the mobile 
development team by collecting mobile application user 
reviews from the App Store and Play Store, and classifying 
them into bug report or feature request type of reviews. In user 
review classification, text classification [1], natural language 
processing [2], sentiment analysis [1], and review metadata 
are used with several machine learning algorithms, i.e. Naïve 
Bayes, Decision Tree, K-Nearest Neighbor, Linear Support 
Vector Classification, Logistic Regression, and Ensemble 
methods [1]. Then, user reviews that are bug reports and 
feature requests will be filtered if there are some duplicates, 
by using semantic similarity analysis [3]. The information in 
the remaining reviews will be used to generate corresponding 
tickets for an issue tracking system, i.e. Jira [4]. In some cases, 
text summarization [5] will be applied to these user reviews to 
extract key content as the title of the ticket. The approach can 
facilitate the mobile development team in their maintenance 
task as the developers can pick the tickets and work on them 
to improve the application in a future release. 

The rest of the paper is organized as follows. Section II 
describes related work. Section III gives an overview of our 
approach while the detail and evaluation of each step, i.e. user 
review classification, filtering of duplicate user reviews, and 
ticket generation, are given in sections IV-VI respectively. 
Finally, conclusion is found in section VII.  

II. RELATED WORK 

User review is a rich source of information that can be used 
to improve the software. Mobile application repositories like 
Apple App Store and Google Play Store publish user reviews 
that can be retrieved for automated analysis. Researchers have 
therefore performed analyses on user reviews to gain useful 
knowledge about mobile applications which could benefit the 
development and maintenance of the software. Maalej and 
Nabil [6] classified user reviews in the App Store and Play 
Store into four categories, i.e. bug report, feature request, user 



experience, and rating. Bug reports describe problems with 
application behavior, such as a crash, or performance issues 
that should be fixed. Feature requests describe user 
suggestions for new features or for improvement in existing 
features. For user experiences, users describe the experiences 
they have with the application such as how useful the 
application is or what the features are like in different 
situations. Finally, ratings are text that reflects numeric star 
rating. The research used 4,400 entries of training data of all 
categories which contained review text that was processed by 
NLP techniques as well as review metadata such as star rating, 
length, and tense. Machine learning algorithms that were used 
were Naïve Bayes, Decision Tree, and Max Entropy. It was 
found that the combination between text classification and 
review metadata performed best when Naïve Bayes was used 
with an average F1 score of 0.75 for all four types of user 
reviews. Guzman et al. [7] conducted similar research but 
classified user reviews into seven categories, i.e. bug report, 
feature strength, feature shortcoming, user request, praise, 
complaint, and usage scenario. Their training data comprised 
4,550 reviews and the Voting Ensemble method was used to 
combine individual classification results of Naive Bayes, 
SVM, Logistic Regression, and Neural Network. The 
ensembles performed better than individual classifiers, 
resulting in an average precision of 0.74 and average recall of 
0.59. In our work, we use the training set and test set of Maalej 
and Nabil [6] to build classifiers for our user review 
classification. In addition, we experiment with other features 
like part of speech, word2vec, and doc2vec, and investigate 
the performance of different algorithms including Naïve 
Bayes, Decision Tree, K-Nearest Neighbors, Logistic 
Regression, Linear SVC, and different Ensemble methods. 

The work by Villarroel et al. [8] also shares some similar 
idea with our approach. The work classified mobile 
application user reviews into bug report, feature suggestion, 
and other type, using Random Forest algorithm, and then used 

DBSCAN clustering algortithm to group related user reviews 
together. For release planning, Random Forest was used again 
to label each cluster as high or low priority based on the 
number of user reviews, number of involved platforms, and 
rating information within the cluster. Unlike this work, our 
approach addresses different aspects, using semantic text 
similarity analysis to determine duplicate reviews and 
generating Jira tickets for the reviews. The work by Gao et al. 
[9] analyzed user reviews of different versions of mobile 
applications by using the Adaptive Online Latent Dirichlet 
Allocation which is a novel topic modeling method to detect 
topics (or issues) that emerge over time across different 
application versions. Other research that classifies mobile 
application user reviews for other purposes includes the work 
by Palomba et al. [10] that proposed a tool called 
CHANGEADVISOR to classify mobile application user 
reviews into bug fixing, features enhancement, and new 
features request. The tool used the Hierarchical Dirichlet 
Process (HDP) algorithm to cluster reviews to form similar 
change requests. Then the tool determined syntactic text 
similarity between clusters of user reviews and preprocessed 
source code components based on the Asymmetric Dice 
Similarity Coefficient in order to link each change request to 
a source code component to be modified. Unlike this work, 
our approach addresses different aspects, using semantic text 
similarity to determine duplicate reviews and generating Jira 
tickets for the reviews.  

III. OVERVIEW OF THE APPROACH 

The overview of our approach is depicted in Fig. 1. The 
main steps comprise 1) classifying user reviews, 2) 
determining duplicate user reviews, and 3) generating issue 
tickets. The first step is to train classifiers for user review 
classification using different machine learning algortihms on 
the data set from [6]. The two classifiers that perform best for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Overview of the approach. 

 



bug report and feature request classification are selected. The 
second step is to identify a duplicate threshold that will be 
used to determine if a user review is similar enough to any 
existing review and should be considered as a duplicate and 
be filtered out. Once the appropriate classifiers and duplicate 
threshold are identified, we can use them in the last step to 
classify unseen user reviews of a mobile application release. 
If they are not duplicate, corresponding Jira tickets are 
generated for them by a ticket generating tool. The details of 
these steps are presented in the following sections. 

IV. CLASSIFYING USER REVIEWS 

In this section, the steps performed in user review 
classification is described. 

A. Training Classifiers for User Reviews 

To build classifiers to classify mobile application user 
reviews, we used the data set of Maalej and Nabil [6] to train 
the models (https://mast.informatik.uni-hamburg.de/app-
review-analysis/). Their data set contains user reviews of some 
top applications in different categories retrieved from the App 
Store and Play Store during 2012-2014. The data set contains 
four categories of user reviews, i.e. bug report, feature request, 
user experience, and rating. As only bug reports and feature 
requests are relevant to ticket generation, we used only those 
user reviews of the data set which were labeled as bug report, 
not bug report, feature request, and not feature request. The 
data summary is shown in Table I.  

We adopted all kinds of user review features that were 
used in [6]. They were 1) bag of words (BOW) of the review 
comment, 2) BOW with stopwords removal, 3) BOW with 
lemmatization, 4) BOW with stemming, 5) BOW with 
stopwords removal and lemmatization, 6) sentiment analysis 
score, 7) length of comment by number of words, 8) number 
of verbs indicating four tenses in comment, and 9) star rating. 
Note that all BOW features above used either binary values or 
TF-IDF weights in the feature vectors. In addition, we 
experimented with three more kinds of features. They were 1) 
number of words indicating five parts of speech (POS) in 
comment, since our initial assumption was that the review 
comments in different categories might have different 
distribution of word types, 2) word2vec of BOW, BOW with 
stopwords removal, BOW with lemmatization, and BOW with 
stopwords removal and lemmatization, and 3) doc2vec of 
BOW, BOW with stopwords removal, BOW with 
lemmatization, and BOW with stopwords removal and 
lemmatization. Note that word2vec is a method to construct a 
word embedding which is a vector representation of a 
particular word [11]. Doc2vec adapts from word2vec to 
generate a vector representation of a document. An example 
of our experiment data, i.e. a bug report, is shown in Fig. 2. 

Several machine learning algorithms were applied to 
investigate their performance. They are 1) Bernoulli Naïve 
Bayes,  2)  Guassian  Naïve  Bayes,  3)  Decision  Tree,  4)  K-  

TABLE I.  NUMBER OF LABELED DATA TAKEN FROM [6] 

(HTTPS://MAST.INFORMATIK.UNI-HAMBURG.DE/APP-REVIEW-ANALYSIS/) 

Data 
Bug Report 

Classification 

Feature Request 

Classification 

Training Bug Report 256 Feature Request 207 

Not Bug Report 256 Not Feature Request 207 

Total 512 Total 414 

Test Bug Report 114 Feature Request 88 

Not Bug Report 114 Not Feature Request 114 

Total 228 Total 202 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Experiment data: (top) data from [6], (bottom) added features. 

Nearest Neighbors, 5) Linear SVC, 6) Logistic Regression, 
and 7) different classes of ensemble algorithms to combine 
results of six individual models, i.e. Voting, Random Forest, 
Extra Trees, Ada Boost, and Gradient Boosting. Multiple 
binary classifiers were built, one for each review category, as 
it was suggested in [6] that they outperformed single 
multiclass classifiers.    

In the implementation of the experiment, we used Python 
3.7.3. NLTK for natural language processing [2] and Gensim 
3.7.2 for word embedding techniques [11]. For machine 
learning algorithms, scikit-learn 0.20.3 was used [12].  

B. Performance Evaluation of Different Classifiers 

For each review category, we used 28 different 
combinations of the features, while varying the machine 
learning algorithms, to train the classification models. The 
performance of the classifiers was evaluated by the test data 
that come with the dataset of [6]. In addition, we also 
evaluated the performance by the stratified 5-fold cross 
validation method on the training data. Due to limitation of 
space, the results reported below in Tables II and III are based 
on the validation by the provided test data. 

 

 



For the bug report category, the split ratio between the 
training set and test set in Table I is 70:30. Table II shows top 
ten combinations of the features which resulted in the 
classifiers with the highest accuracy. The result showed that 
BOW (textual comment) was the most important feature as it 
contributed to all top classifiers, whereas review metada (such 
as star rating, length, and tense) alone did not. The doc2vec 
representation was better than using the traditional techniques 
like stopwords removal and lemmatization alone, but the part 
of speech did not contribute much to the top classifiers. In 
most cases, the ensemble algorithms performed better than 
individual models. The best classifier for bug report 
classification was the Extra Tree ensemble model with the 
doc2vec representation of the review comment. Its F1 was 
0.8154 and accuracy 0.8063. In addition, the LinearSVC 
model with lemmatized review comment also had very high 
recall of 0.9123. Note that, we also repeated the experiment of 
[6] by training the same combinations of features using Naïve 
Bayes and Decision Tree, but the resulting classifiers (with the 
best one shown in the last row of Table II) were outperformed 
by other classifiers that used other combinations 

of features. 

For the feature request category, the split ratio between the 
training set and test set in Table I is 67:33. Table III shows top 
ten combinations of the features which resulted in the 
classifiers with the highest accuracy. The result showed that 
BOW (textual comment) again contributed to all top 
classifiers. The doc2vec and word2vec representation were, in 
most cases, better than using traditional techniques like 
stopwords removal and lemmatization alone. Also, in most 
cases, the ensemble algorithms performed better than 
individual models. The best classifier for feature request 
classification was the Extra Tree ensemble model that was 
trained with TF-IDF vectors of lemmatized review comments 
and part of speech. Its accuracy was 0.797 and F1 was 0.7876. 
In addition, the Extra Tree ensemble model with word2vec 
representation of the review comments that had stopwords 
removed and were also lemmatized had very high recall of 
0.9412. Note that, we also repeated the experiment of [6] but, 
again, the resulting classifiers (with the best one shown in the 
last row of Table III) were outperformed. 

TABLE II.  PERFORMANCE OF BUG REPORT CLASSIFICATION TECHNIQUES 

Classification Techniques 
Bug Report 

Accuracy 
Precision Recall F1 

BOW + doc2vec + ExtraTreesClassifier 0.7983 0.8333 0.8154 0.8063 

BOW – stopwords + doc2vec + ExtraTreesClassifier 0.7982 0.7982 0.7982 0.7928 

BOW + doc2vec + VotingClassifier 0.83 0.7281 0.7757 0.7838 

BOW – stopwords + lemmatization + word2vec + VotingClassifier 0.7391 0.8947 0.8095 0.7838 

BOW + lemmatization + word2vec + LogisticRegression 0.76 0.8333 0.795 0.7793 

BOW – stopwords + word2vec + LogisticRegression 0.7623 0.8158 0.7881 0.7748 

BOW + lemmatization + pos + VotingClassifier 0.6623 0.8947 0.7612 0.7193 

BOW + lemmatization + LinearSVC 0.654 0.9123 0.7619 0.7149 

BOW – stopwords + ExtraTreesClassifier 0.6601 0.886 0.7566 0.7149 

BOW – stopwords + lemmatization + ExtraTreesClassifier 0.656 0.9035 0.7601 0.7149 

… 

BOW + rating + sentiScore + tenses + GaussianNB 0.6296 0.8947 0.7391 0.6842 

TABLE III.  PERFORMANCE OF FEATURE REQUEST CLASSIFICATION TECHNIQUES 

Classification Techniques 
Feature Request 

Accuracy 
Precision Recall F1 

BOW + lemmatization + pos + ExtraTreesClassifier 0.7238 0.8636 0.7876 0.797 

BOW – stopwords + doc2vec + GradientBoostingClassifier 0.7238 0.8941 0.8 0.7946 

BOW – stopwords + doc2vec + ExtraTreesClassifier 0.7212 0.8824 0.7936 0.7892 

BOW + ExtraTreesClassifier 0.7143 0.8523 0.7772 0.7871 

BOW + rating + sentiScore + ExtraTreesClassifier 0.7027 0.8864 0.7839 0.7871 

BOW + lemmatization + doc2vec + AdaBoostClassifier 0.7419 0.8118 0.7753 0.7838 

BOW – stopwords + ExtraTreesClassifier 0.7157 0.8295 0.7684 0.7822 

BOW – stopwords + word2vec + ExtraTreesClassifier 0.6937 0.9059 0.7857 0.773 

BOW – stopwords + lemmatization + word2vec + 
ExtraTreesClassifier 

0.6838 0.9412 0.7921 0.773 

BOW + lemmatization + word2vec + LinearSVC 0.6944 0.8824 0.7772 0.7676 

… 

BOW + rating + sentiScore + tenses + GaussianNB 0.6576 0.8295 0.7337 0.7376 

 



As a result of the experiment, the winning classifier for 
each review category was exported to a .pkl file by the Pickle 
built-in Python library. The exported classifiers were 
integrated with the ticket generating tool (see section VI). 

V. DETERMINING DUPLICATE USER REVIEWS 

Different user reviews could report the same thing. If two 
reviews are similar enough, they can be seen as “duplicate” 
and only one should be kept for ticket generation. One way to 
detect duplicate user reviews is by performing semantic text 
similarity analysis between each pair of user reviews. 
Semantic text similarity considers meaning of text, and two 
documents that are syntactically different, e.g. “How old are 
you?” and “What is your age?”, would be considered similar. 
However, we need to determine how similar any two user 
reviews should be, so as to be considered duplicate. The 
following sections describe how to obtain a duplicate 
thershold. 

A. Creating Truth Set of Duplicate User Reviews     

An experiment was conducted to determine a duplicate 
threshold by creating a truth set of duplicate user reviews. A 
truth set is a set of pairwise user review data, and each pair is 
labeled as duplicate or not duplicate. In the experiment, we 
started with finding a number of unique reviews of an 
application release, i.e. 94 unique reviews of Facebook 
version 210.0 were retrieved from the App Store in this case. 
This is called the base set. Then, another 20 reviews of this 
released version were randomly chosen. This is called the test 
set. Each user review in the test set was paired with each user 
review in the base set. For each pair, we read the reviews 
carefully and labeled them as duplicate or not duplicate. The 
manual labeling was reviewed and agreed by another mobile 
software engineer with 5 years of experience. As a result, there 
are 1,880 labeled pairs of user reviews in the truth set.   

B. Determining Duplicate Threshold 

A duplicate threshold is the degree of similarity between 
any pair of user reviews which indicates that the pair are very 
similar and therefore are considered “duplicate”. In such a 
case, only one review should be used in ticket generation. To 
determine a duplicate threshold, we determined the semantic 
text similarty score for each of the 1,880 pairs of user reviews 
in the truth set. This was done by using the universal sentence 
encoder to encode user reviews into high dimensional vectors 
and finding the distance between vectors to determine text 
similarity [3]. Then we experimented by varying the duplicate 
threshold between [0, 1]. That is, if any pair of reviews had 
the similarity score that was not less than the threshold, the 
pair was considered as duplicate. Otherwise, it was considered 
as not duplicate. The performance of each threshold value in 
detecting duplicate reviews was evaluated against the truth set. 
The confusion matrix and detection performance for each 
threshold value is shown in Table IV. In this context, the 
concern is more on the false positive, as it is not desirable if a 
user review is considered duplicate by its similarity score but 
it is actually not duplicate. This is because a ticket will not be 
generated for this review. The false positive should be kept 
minimized while high accuracy is preferable. In this case, the 
false positive decreased but the accuracy got higher, while the 
threshold rose up to 0.78 before the performance became 
stable. Thus, 0.78 was selected to be the duplicate threshold 
for ticket generation (see section VI).  

 

TABLE IV.  PERFROMANCE OF DUPLICATE REVIEW DETECTION BY 

VARYING DUPLICATE THRESHOLDS 

Threshold TN TP FN FP Accuracy 

0 1 25 0 1854 0.0138 

0.1 32 25 0 1823 0.0303 

0.2 172 25 0 1683 0.1048 

0.3 543 23 2 1312 0.3011 

0.4 1028 18 7 827 0.5564 

0.5 1448 14 11 407 0.7776 

0.6 1734 7 18 121 0.9261 

0.7 1838 2 23 17 0.9787 

0.75 1852 0 25 3 0.9851 

0.76 1854 0 25 1 0.9862 

0.77 1854 0 25 1 0.9862 

0.78 1855 0 25 0 0.9867 

0.79 1855 0 25 0 0.9867 

0.8 1855 0 25 0 0.9867 

0.9 1855 0 25 0 0.9867 

1 1855 0 25 0 0.9867 

 

VI. GENERATING ISSUE TICKETS 

This section describes an implementation of a Jira ticket 
generating tool and how it is used. It is a command line tool 
with two main functions: analyzing user reviews and 
generating tickets. 

A. Analyzing User Reviews   

To analyze any new user review to classify its category 
and check if a corresponding ticket should be generated, the 
tool integrates the results from previous sections, i.e. bug 
report classifier, feature request classifier, and duplicate 
threshold. Prior to the analysis, the tool allows the 
development team to configure the following parameters for 
ticket generation, i.e. 1) project_key: Jira project id which is 
specific to a Jira board of a project, 2) bug_issue_type_id: 
either bug report type id or feature request type id which is 
specific to a Jira board of a project, 3) prioriry_id: default 
priority level of the issue (if not specified, medium is used), 4) 
label: default label for the issue (if not specified, either iOS or 
Android is used depending on the component_id), and 5) 
component_id: either iOS component id or Android 
component id which is specific to a Jira board of a project and 
dependent on the platform of the user review. 

The tool allows a team member to specify a bundle id (for 
iOS) or a package name (for Android) to retrieve new user 
reviews of a mobile application from the App Store or Play 
Store. The tool uses a screen scraper, with a parameter 
“newest” to retrieve new user reviews of the current release 
(i.e. https://github.com/facundoolano/app-store-scraper# 
reviews for App Store, and  https://github.com/facundoolano/ 
google-play-scraper#reviews for Play Store). The unseen 
reviews are processed and have their features extracted. The 
bug report and feature request classifiers are loaded and 
decoded from the .pkl files into prediciton code and predict 
the review category of each unseen data. (In the case that a 
user review is classified as both categories, the category 
predicted with higher probability will be the final prediction.)  

The tool also maintains a collection of unique user reviews 
of each review category for a particular application release. 
When a user review of a category arrives, it is checked with 
the corresponding collection. If duplication is detected, the 
review is discarded, otherwise it is appended to the collection 
and marked for ticket generation.  



B. Generating Tickets 

Jira provides a REST API [4] for generating a 
corresponding ticket for a new unique user review on a Jira 
board. Along with the configuration information that is 
mentioned in the section VI.A, the request body also contains 
1) summary: title or summarized content of the review, and 2) 
description: information including original review comment, 
version id of the application, current date of ticket creation, 
and URL of the original review on the Store. For the summary 
information, since user reviews on the Play Store do not have 
titles, the tool applies a simple extractive text summarization 
technique [5] to the review comment. That is, the most 
important sentence in the review comment will be extracted to 
represent the whole review content. The tool preprocesses and 
tokenizes all sentences in the comment and computes the 
weighted frequency of each word by dividing its frequency by 
the frequency of the most occurring word. Then, it calculates 
the sum of the weighted frequencies of all words in each 
sentence. The sentence with the highest sum score represents 
the summary of the review. Fig. 3 (left) shows the UI of the 
tool after the tool has generated new tickets for a package 
name (Android). Fig. 3 (right) shows an issue ticket generated 
on a Jira board on which the red icon at the top left corner 
indicates that this issue is a bug report (green for feature 
request). The initial status of a newly generated issue would 
be Backlog. Any team member can assign himself/herself to 
work on this issue or change the status and tracking time. 

VII. CONCLUSION 

This paper investigated different machine learning 
algorithms to classify bug reports and feature requests that 
appeared in mobile application user reviews in the App Store 
and Play Store. This could facilitate the automated generation 
of tickets on a Jira board of a software project. Several NLP 
techniques were applied to process textual review comments, 
determine duplicate reviews based on semantic similarity, and 
summarize the content of reviews.  

This work is considered an initial attempt to streamline the 
process of collecting feedback from mobile application users 
to the development team, as there is still room for 
improvement. For example, slangs and incorrect grammars in 
the reviews should be treated.  As the data set of [6] was used, 
training the classifiers was limited to the features data that 

were available in the data set. The data set can be enhanced to 
explore other features of user reviews as well as to have more 
data collected. The classification should also be able to 
support reviews of other languages. On ticket generation, user 
reviews could be analyzed further to determine priority of the 
issue tickets. In addition, rather than keeping the original 
review comment in the description of an issue, the more 
advanced abstractive text summarization could be 
investigated and applied to the review comment so that, for 
any long comment, new shorter text that still conveys the 
meaning of the original review is generated for the issue 
description. These could help improve the ticket generation 
process. 
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Fig. 3. Ticket generation: (left) UI of ticket generating tool (right) Ticket on Jira board describing bug issue. 

 
 


