
100 Int. J. Metadata, Semantics and Ontologies, Vol. 1, No. 2, 2006

Copyright © 2006 Inderscience Enterprises Ltd.

Matchmaking and ranking of semantic web services
using integrated service profile

Natenapa Sriharee and Twittie Senivongse*
Department of Computer Engineering, Chulalongkorn University,
Phyathai Road, Pathumwan, Bangkok 10330, Thailand
E-mail: natenapa23@yahoo.com E-mail: twittie.s@chula.ac.th
*Corresponding author

Abstract: Service discovery is a key aspect in the enabling technologies for service-oriented
systems, including web services. Growing attention has been paid to the content of business and
service descriptions to allow services to be discovered more flexibly and accurately. This paper
presents a service description model called an integrated service profile, which describes the
capabilities of a service in various aspects, such as attribute-, structure-, behaviour-, and
operational rule-based capabilities. An integrated service profile can be used to discover web
services semantically. Criteria for considering matching between the service description and the
expected capability specified in the request, with respect to each part of the profile, are proposed.
A matching algorithm is based on a flexible match approach and can retrieve relevant services by
using user’s preference criteria. A ranking methodology with an ordinal scale is also proposed to
determine the degree of matching among the matched services.

Keywords: semantic web services; matchmaking; ranking; ontology.

Reference to this paper should be made as follows: Sriharee, N. and Senivongse, T. (2006)
‘Matchmaking and ranking of semantic web services using integrated service profile’,
Int. J. Metadata, Semantics and Ontologies, Vol. 1, No. 2, pp.100–118.

Biographical notes: Natenapa Sriharee is a PhD candidate at the Department of Computer
Engineering, Chulalongkorn University, Bangkok, Thailand.

Twittie Senivongse is an Assistant Professor at the Department of Computer Engineering,
Chulalongkorn University, Thailand.

1 Introduction

The diversity of the format and content of service
descriptions within a service-oriented environment has been
problematic for service consumers when looking for
available services. The standard UDDI registry for web
services (uddi.org, 2002) attempts to standardise business
and service descriptions through a set of business and
service attributes. However, the attribute set is coarse and
gives only preliminary information about the service
providers and the offered web services. Generally, search is
by matching of name or category of business entities,
business services, or tModels against the values specified in
the query, such as “Find a service provider in the electronics
appliance category”. The search will return some
information and the rest is left to the service consumer to
browse the web pages of those companies to make a
selection. The search does not yet support a query
that is also based on semantic or behavioural information
such as

“Find an online electronics shop that sells desktop
computers and is rewarded Thailand Electronics
Association’s Vendor award from the Ministry of
Commerce. The store should accept Amex credit card and
deliver the computer that I have bought to my place
(in Bangkok) within 3 days.”

Service description models should attract service providers
to publish useful information and at the same time
facilitate consumers to discover the right services. It is
assumed here that service providers will do their best to
please service consumers, and will advertise rich
information regarding their profiles and service capabilities
in order to get themselves discovered easily. This
research works around the questions “What should be in a
service description to allow service consumers to
query more conveniently and flexibly?” and “How can
such information in the service description help the
consumers make a service selection?” This paper presents
three important tasks that aim to answer the questions
above:

• Modelling of web services descriptions:
This task comprises a survey on service descriptions
and their contents, and the result is an integrated service
profile which consists of information that describe web
services in terms of their attributes, semantic structure,
behaviour, and operational rules. These are capability
descriptions that specify various aspects of what the
services can do (Oaks et al., 2003) and we use ontology
to represent them. The preliminary idea of the
integrated service profile has been reported in Sriharee
and Senivongse (2005).

 Matchmaking and ranking of semantic web services using integrated service profile 101

• Matchmaking of web services: An algorithm is
proposed to determine whether the integrated service
profiles of any service providers match to the capability
expected by a service consumer. Matchmaking
considers each part of the integrated service profile.

• Ranking of web services: An algorithm is proposed to
determine how close a matched service is to a
consumer’s query. Service consumers can use the
comparative ordinal scale assigned to each matched
service as a suggestion for making a service selection.

Section 2 describes the conceptual model of the integrated
service profile as the metadata for semantic web services.
Section 3 discusses details of each part of the integrated
service profile, which is represented by ontology. Section 4
considers the criteria for matchmaking of the query and the
integrated service profiles, and a matchmaking example is
given in Section 5. A ranking algorithm is proposed in
Section 6. An evaluation of the matchmaking and ranking
approaches can be found in Section 7. Section 8 presents a
framework for discovery based on the integrated service
profile. The paper discusses related work in Section 9 and
concludes in Section 10.

2 Metadata for semantic web services:
the integrated service profile

Metadata for web services give information primarily for
service consumers to get to know any potential services
without having to really deploy them, and therefore are
useful sources of information for discovering web services.
With regards to the purpose of the interaction between
service providers and service consumers (Booth et al.,
2004), information about attributes, characteristics,
operational aspects, and deployment aspects of web services
are typical web services metadata. Simple metadata for web
services are modelled as attribute-based service descriptions
(uddi.org, 2002; Dumas et al., 2001), meaning that the
characteristics and other information about the services
are described through a set of concrete attributes with
corresponding attribute values. To enable more flexible and
accurate discovery, semantic annotation is added to web
services metadata (Martin et al., 2004; WSMO, 2004).
Whether they are attribute-based or semantics-based,
metadata will influence individual and organisational use of
the services (Lynne and Soh, 2002), and therefore should
reflect both functional and psychological needs of the
individuals and organisations.

To answer the question concerning how to model the
metadata for web services, we conducted an empirical
survey, as reported previously in Tapabut et al.
(2002), to find what information should be included
in web services metadata model. Information was
gathered from web services brokerage sites (such as
http://www.salcentral.com, http://www.capescience.com,
http://www.webserviceoftheday.com, and http://www.
xmethods.com), a survey on commercial software
components on the internet market (since web services can

be seen as service components), and a survey on relevant
research papers. Our empirical survey resulted in an
attribute-based model for web services metadata; some
part of it is shown in Table 1. It can be seen that
some information can be easily modelled as attributes,
meaning that simple attribute values can be assigned
(e.g., ServiceName, Description, Award), while some refers
to more complex values (e.g., interface, structure, or
behaviour information). We hence see web services
metadata as a combination of attribute-based information
and more complex specifications on which complex
analysis of the service characteristics can be conducted.
As semantic annotation is a major vehicle to more flexible
service discovery, this paper uses ontology as a shared
formal representation (Gruber, 1993) to represent semantics
of web services in those specifications.

According to the survey result, an integrated service
profile is proposed as a metadata model for semantic
web services (Figure 1). The integrated service profile
comprises a number of subprofiles which maintain either
the attribute-based information or the more complex
capability-based information as follows:
• Attribute-based information refers to those attributes in

Table 1. This set of attributes is applicable to model
web services of any application domains. It is also
compatible with the attributes define in the standard
UDDI information model; some attributes in the set can
be mapped directly to those in the UDDI registry while
some can be accommodated by an extended registry.
Most of the attributes are simple attributes as they can
be characterised by simple attribute values.
Nevertheless, ontology can be useful to turn a simple
attribute into a semantic attribute by assigning an
ontological term, defined in a semantic attribute
ontology, as its value (Sriharee et al., 2004a). For
example, the value ‘ThailandBestBrand’ of the attribute
Award may be a term in an external ontology (i.e., an
award-related ontology), not just a simple string value.
This will enable the matchmaking process to perform
ontological matching, rather than string matching, when
comparing the consumer’s query against the service’s
capability. Even though semantic attributes enable more
flexible matching, they are seen as a more advanced
feature. Simple attributes are still maintained as part of
the integrated service profile because they are a
common way to describe web services; they can be
applied more directly to UDDI and are more convenient
for service providers to publish and for service
consumers to understand. Simple attributes of a
web services will be maintained by a simple attribute
profile and semantic attributes by a semantic attribute
profile.

• Capability-based information refers to the more
complex aspects of web services, i.e., the capabilities,
which will be represented by ontology-based service
capability schema. The capabilities here relate to
the specification-oriented attributes in Table 1 as
follows:

102 N. Sriharee and T. Senivongse

• Service structure captures fundamental knowledge
structure of web services of a particular domain.
This is static information that service
consumers would generally expect to
know such as the product of the service,
sales detail, and means of service
delivery (Trastour et al., 2001; Li and
Horrocks, 2003). Service structure is
represented by a structural ontology in
a structural profile.

• Service behaviour captures more dynamic
behavioural information of web services.
It is modelled as a function which may require
some inputs in order to produce some

outputs and effects under certain conditions
(The DAML-S Services Coalition, 2002). Service
behaviour is represented by a behavioural ontology
in a behavioural profile.

• Service constraint captures constraints on service
provision in terms of rules. Rules may state
conditions or policies concerning the activity of web
services (c.f. structural assertion rules (Hay and
Healy, 2000)), and add the dynamicity to the
semantics of web services. Service constraints
within a particular domain are represented by
a rule ontology in a rule profile, and can be
associated with either the service structure or
service behaviour.

Table 1 Part of the survey result on web services descriptions

Operational Info ServiceName, Version, TimeOfRelease, …
Functional Info Domain, Description, DevelopmentEnv, QoS, Security, …

Purchasing Pricing, Licensing, … Commercial Info
Incentive Award, ReferenceCustomer, Promotion, Testing, …

Technical support Contact, FAQ, …

Service

Specification Interface, Structure, Behaviour, Component, …
Provider ProviderName, About, Domain, Certificate, …

Figure 1 Conceptual model of the integrated service profile

As our approach uses ontology as a shared formal
representation for semantics-based metadata, the ontology is
modelled using a top-down approach in which the
development process starts with the definition of the most
general concepts followed by subsequent specialisation of
the concepts (Gómez-Pérez, 1999). This paper first provides
the general concepts for all capability-based metadata in
terms of the upper ontologies (see Section 3). As the name
implies, capability-based metadata should in fact vary
according to different capabilities of web services in
different domains. Experts in a particular application
domain who are familiar with the nature and business
processes of the domain will therefore subsequently

derive, from the upper ontologies, the service structure,
service behaviour, and operational constraints for the
domain. Service providers in this domain can then use
such shared domain ontologies as templates for
publishing their own capability-based profiles. On
defining ontology-based metadata, auxiliary external
ontologies can also be imported to define some data
elements which make the ontologies more complete.
For example, the structural profile of an electronics
appliance vendor may import an electronics appliance
manufacturer ontology for the concept that represents
the product model that are available at the vendor’s
shop.

 Matchmaking and ranking of semantic web services using integrated service profile 103

Combining attribute-based and all capability-based
profiles, the integrated service profile will be able to
accommodate both conventional service discovery via
attribute values matching and semantic discovery via
ontological analysis on ontology-based metadata.

3 Service capability schema

This section focuses on modelling all capability-based
profiles with ontology. As mentioned in the previous
section, the conceptual model for semantic web services
comprises two layers of ontology, namely the upper
ontology layer and the service domain ontology layer.
Service domain ontology is derived from base concepts in
the upper ontology and defines new concepts that are
specific to the domain. Subsequently, service providers can
describe their capability-based profiles based on the domain
ontologies. Figure 2 depicts the two-layer ontology model
with details as follows.

• Capability ontology (Figure 2(a)) models a collection of
web service capabilities within a domain. It is used to
derive a capability profile which refers to the semantic
attribute profile, structural profile, behavioural profile,
and rule profile of a web service. The capability profile
itself does not actually represent any of the service
capabilities (so it will not be considered further in the
matching and ranking process).

• Upper semantic attribute ontology (Figure 2(b)) models
a number of semantic attributes whose values are
ontological values. The upper ontology contains the
concepts SemanticAttrProfile, SemanticAttribute, and
SemanticValue and is used to derive an ontology-based
semantic attribute profile. Figure 2(f) shows a semantic
attribute ontology for the semantic attribute
ElectronicsAward in the ElectronicsAppliance domain.
The ontology defines vocabularies for the kinds of
awards and the providers in the domain can use them as
the values for the attribute ElectronicsAward.

• Upper structural ontology (Figure 2(c)) models the
structure of fundamental static knowledge about a web
service. It is used to derive an ontology-based
structural profile which contains a number of
StructuralConcepts including SalesDetails,
ProductDetails, and DeliveryDetails. The concept
ProductDetail in the upper ontology models either
tangible products (e.g., a desktop PC from an
electronics appliance vendor) or intangible products
(e.g., information obtained from a search engine).
The concepts SalesDetail and DeliveryDetail can
respectively model information about payment and
channels for service delivery. Figure 2(g) shows a
structural ontology for services in the
ElectronicsAppliance domain. It defines possible
payment methods and vocabularies of products within
the domain, with relevant product details such as
model, years of guarantee, and price. Such product
details are defined with the concept DataElement,

meaning that they are data concept that may be
imported from other external ontologies to add details
to the structural ontology.

• Upper behavioural ontology (Figure 2(d)) models
functional capability of a web service in terms of its
operations. Each operation requires some inputs and
produces different outputs and effects, sometimes when
particular conditions are satisfied (The DAML-S
Services Coalition, 2002). The upper ontology is used
to derive an ontology-based behavioural profile. The
concept Operation in the upper ontology may have
some Precondition that must hold before the service can
function. Outputs and effects of the Operation may be
ConditionalOutput or ConditionalEffect if there are
some behavioural constraints associated with them;
otherwise they will be UnconditionalOutput and
UnconditionalEffect. By modelling behavioural
capability as a collection of operations, the behavioural
profile can then be used as a semantic specification for
WSDL interface specification of a web service
(Christensen et al., 2001). Figure 2(h), shows a
behavioural ontology for web services in the
ElectronicsAppliance domain. It has an operation Sell
which may require CustomerInfo and Payment detail as
inputs. The precondition ValidAcceptedCreditcard says
that the operation will function only when the customer
provides a valid credit card (i.e., one of the credit cards
accepted by the service). This precondition is an
equivalentClass to the behavioural constraint
AcceptedCreditCard in the rule ontology in Figure 2(i)
(see below). The operation may return any of the
unconditional or conditional outputs/effects. The
conditional output OrderedProductWithShippingFee
specifies that the operation may reply with the ordered
product and a shipping fee which has to be paid.
But this depends on whether the customer is
located in a valid shipping location (i.e., the condition
ValidLocationWithShippingFee); otherwise
there is no fee as there will be no shipping.
ValidLocationwithShippingFee is defined as an
equivalentClass to the behavioural constraint
ValidShippingLocationWithShippingFee in the rule
ontology.

• Upper rule ontology (Figure 2(e)) models constraints
on the provision of the service and is used to derive a
rule profile. Each rule states a constraint or policy of
the activity of the service and is modelled by the
concept ServiceConstraint which may require some
inputs and will be evaluated into an output value
(i.e., it reads as IF (inputs are true) THEN (return
output)). The concept BehaviouralConstraint refers to
the constraint that requires at least one input to be
evaluated and returns a Boolean output value.
The concept OperationalConstraint may or may not
require input and may return a non-Boolean output
value. BehaviouralConstraint is aimed for describing
preconditions and conditions associated to outputs and

104 N. Sriharee and T. Senivongse

effects in the behavioural profile (Sriharee and
Senivongse, 2003). We assume that service consumers
will be guided by the discovery framework to supply
inputs needed for evaluation of any service constraints
within the domain of interest. Figure 2(i) shows a rule
ontology for the ElectronicsAppliance domain with the
policies on product shipping and on credit cards used
for shipping payment. For ProductShippingPolicy, the
service may have operational constraints on
ServiceShippingLocation (which returns the locations
covered in the shipping area), on DeliveryDayShipping

(which returns the number of days required for
shipping), and on ShippingServiceCharge (which
returns the shipping charge based on the shipping
location and value of payment). The behavioural
constraint ValidShippingLocationWithShippingFee
may return true or false depending on whether
the customer is located in the area of shipping.
For CreditCardFeeChargePolicy, the behavioural
constraint AcceptedCreditCard may return true or false
depending on whether the customer presents a credit
card that is one of those accepted.

Figure 2 Ontology model for service metadata: (a) Capability ontology; (b)–(e) Upper ontologies for semantic attribute, structural,
behavioural, and rule profiles respectively; (f)–(i) Domain ontologies for electronics appliance domain: semantic attribute,
structural, behavioural, and rule ontologies respectively and (j) Ontology for numerical constraints

 Matchmaking and ranking of semantic web services using integrated service profile 105

These five kinds of ontologies for a particular domain
will be defined by domain experts. We assume all
service providers in the same domain share the same
capability-based ontologies and do not consider the case that
ontologies may change. Service providers will publish their
profiles according to these five ontologies. We can use
OWL (W3C, 2004) as an ontology language since several
tools exist and it is recommended by W3C. Note that our
approach also accommodates numerical constraints on the
concepts defined in the structural or rule ontologies.
For example, an electronics appliance vendor named
PowerBuy may want to publish in the structural profile
that the price of its PCs is between 20,000–80,000 bahts
(e.g., 20,000 ≤ Price ≤ 80,000 bahts), or, in the rule
profile, that the delivery day is no more than three days
(e.g., DeliveryDay ≤ 3 days). Since OWL does not yet
provide for this kind of constraint expressions (Pan and
Horrocks, 2004), Figure 2(j) gives additional ontology for
representing a simple formal expression for such numerical
constraints (Sriharee et al., 2004b).

4 Matching criteria for the integrated service
profile

This section explains matching criteria for determining
whether an integrated service profile of a provider matches
the query of a consumer. Matching is based on the
comparison between two relation expressions, one in a
particular profile of the provider and the other in the query.
The provider’s profiles and the query can be seen as a
collection of these relation expressions. Each relation
expression is in the form of <subject, property, object>
where subject refers to either the query or one of the
provider’s profiles (and will be omitted for brevity),
property is the service characteristic to be compared, and
object is the value of the property. For most profiles which
are ontology-based (except for the simple attribute profile),
this form corresponds to an RDF expression.

The following Sections 4.1–4.6 explain matching
criteria which consider all aspects of the integrated service
profile. Results from these will lead to a classification of
matching types and assignment of their ordinal scale in
Section 4.7. It is assumed that any services that do not
publish any aspects requested in the query will not be
considered in the matching process.

4.1 Matching ontological concepts

As most profiles (except for the simple attribute profile) are
ontology-based, matching by subsumption and equivalence
is the basis for matching ontological concepts in the query
and the provider’s profile (Baader et al., 2003). This
approach has been adopted in Sycara et al. (2002), Paolucci
et al. (2002), Trastour et al. (2002), Li and Horrocks (2003)
and Di Noia et al. (2003). In Resnik (1995) and Andreasen
et al. (2003), a weaker match of ontological concepts, called
partial match, is defined for two concepts that have a shared
node in IS-A taxonomy and do not have a subsumption

relationship between them. The degree of matching is
determined between two concepts as described below.

For two relation expressions of the same property, one
in the query and the other in the provider’s profile, let CQ be
the property value specified in the query and CP be the one
in the profile:

• If CQ ≡ CP then CP is an exact match for CQ,
where ≡ means is equivalent to. For example from
Figure 2(g), the provider who sells Desktop will be an
exact match for the query that also requests for
Desktop.

• If CP � CQ then CP is a specialised match for CQ,
where � means is subsumed by (i.e., CP is more
specific than CQ). In this case, the query may specify
a generic concept while the profile defines a specific
concept. For example from Figure 2(g), the profile
that sells either Notebook or Desktop will be a
specialised match for the query that requests
for PC.

• If CQ � CP then CP is a generalised match for CQ. This

means the concept in the query is more specific than,
and is subsumed by, the one in the profile. For example
from Figure 2(g), the profile that sells PC will be a
generalised match for the query that requests for a
Desktop.

• If (CQ CP)∧ (CP CQ) ⋀ (CQ � CC)∧ (CP � CC)

then CP is a partial match for CQ, where means is
not subsumed by and CC is a node in the same IS-A
taxonomy. This means it is acceptable for the concept
in the profile to be a match for the concept in the query
provided that the two concepts have common
characteristics through a common parent concept. For
example from Figure 2(g), the profile that sells Laptop
will be partial match for the query that requests for
Desktop.

• If none of the above relationships exist then CP is a
failed match for CQ.

4.2 Matching numerical constraints

As mentioned earlier, service providers and consumers may
put numerical constraints on relation expressions in the
context of the structural or rule ontology. For example, the
relation expression on the price of the product PC may be
published or queried with such a constraint that the price is
between 30,000–50,000 bahts. Or the relation expression on
the rule for the number of delivery day for shipping may be
published or queried with a constraint that it is less than
three days. Matching two numerical constraints compares
the intervals of the possible values that are defined in the
constraints. The degree of matching for numerical
constraints can be determined as described below.

For two relation expressions of the same property, let NQ
be a nonempty set of numerical constraint values of the
relation expression in the query (RQ), and NP be a nonempty

106 N. Sriharee and T. Senivongse

set of numerical constraint values of the relation expression
in the profile (RP):

• if NP ⊆ NQ then RP is an exact match for RQ

• if NQ ⊆ NP then RP is a plug-in match for RQ

• if (NP ∩ NQ ≠ φ)∧ (NP ⊊ NQ)∧ (NQ ⊊ NP) then

RP is a weak match for RQ

• if NP ∩ NQ = φ then RP is a failed match for RQ.

4.3 Matching sets of ontological values

Service providers or consumers may publish or query
multiple ontological values on any relation expressions
related to the semantic attribute and structural ontologies.
For example, the relation expression on the award that
the service has obtained may be published or queried
with both values ThailandElectronicsAssociationAward and
ThailandMagazineAward. Or the relation expression on the
product for sale by the service may be both Desktop and
TV. Matching two sets of ontological values comes
down to matching each of the values in the two sets
based on ontological matching (Constantinescu and
Faltings, 2003).

For two relation expressions of the same property, let
DQ be a nonempty set of ontological values of the relation
expression in the query (RQ), and DP be a nonempty
set of ontological values of the relation expression in the
profile (RP):

Definition: The profile will satisfy a set of ontological
values match on the query if there exists an ontological
match (Section 4.1) between each concept in the query and
a concept in the profile. This is denoted by

(,)

, : () () ()
Q P

Q P

SetOfOntoValsMatch R R true

i j i D j D i j

= ⇔

∀ ∃ ∈ ∧ ∈ ∧ ⊗

where ⊗ means having a kind of the ontological match in
Section 4.1 (i.e., exact, specialised, generalised, partial).

4.4 Matching service constraints

Service providers or consumers may publish or query on the
values of service constraints in the rule ontology. There are
two cases for considering matching between two sets of
constraint values: matching operational constraints and
matching behavioural constraints. For example, the
operational constraint ServiceShippingLocation of a service
may be published to return the concepts Bangkok, Chiang
Mai, and Phuket on evaluation. If the query is for the
service that provides shipping to Bangkok and Chiang
Mai, the service would match. The case of behavioural
constraints is more complex as they are conditions that are
associated with the behavioural profile (i.e., precondition,
conditional output, conditional effect). So matching of
behavioural constraints will be used for determining
matching of precondition, conditional output, and

conditional effect. Although behavioural constraints require
input parameters to evaluate to either true or false, the
behavioural profile concerns only when they evaluate to
true, by which the precondition will hold and the conditional
output and conditional effect will result. For example, in
Figure 2(h), the conditional output OrderedProductWith
ShippingFee will result only if the condition ValidLocation
WithShippingFee is true. Since ValidLocationWithShipping
Fee is an equivalentClass to the behavioural constraint
ValidShippingLocationWithShippingFee, we first evaluate
this behavioural constraint by using the location (specified
in the query) as the input parameter (say, Bangkok and
Chiang Mai). If the location is among the valid values,
defined by the service, for this constraint (e.g., Bangkok,
Chiang Mai, Phuket), it will evaluate to true which means
the equivalent ValidLocationWithShippingFee is also true,
and the result is the output OrderedProductWithShippingFee
will be produced. In other words, the output OrderedProduct
WithShippingFee of this service satisfies the query
based on the location input from the query. For behavioural
constraints, matching is therefore considered against the
values of the input parameter of the constraint.

Since the values related to the evaluation of a service
constraint may in fact be either a range of numerical values
or a set of ontological concepts, we can adopt the matching
rules in Sections 4.2 and 4.3 here. For two relation
expressions of the same property, let OQ be a non-empty set
of ontological outputs or of ranges of numerical output for
an operational constraint specified in the query (RQ), OP be a
non-empty set of ontological outputs or of ranges of
numerical output for an operational constraint in the profile
(RP), IQ be a non-empty set of ontological inputs or of ranges
of numerical input for a behavioural constraint specified in
the query (RQ) where the constraint is evaluated to true, and
IP be a non-empty set of ontological inputs or of ranges of
numerical input for a behavioural constraint specified in the
profile (RP) where the constraint is evaluated to true:

Definition: The profile will satisfy a set of constraints
match on the query if, depending on whether the constraints
are operational or behavioural, the output or input for each
of the constraint evaluation of the query matches one in the
profile. This is determined by
i (,)Q PSetOfOperationalConstrsMatch R R true= ⇔

, : () () ()Q Pi j i O j O i j∀ ∃ ∈ ∧ ∈ ∧ :

ii (,)Q PSetOfBehaviouralConstrsMatch R R true= ⇔

, : () () ()Q Pi j i I j I i j∀ ∃ ∈ ∧ ∈ ∧ :

where : means either having a kind of the ontological
match in Section 4.1 (i.e., exact, specialised, generalised,
partial) or having a kind of the numerical constraint match
in Section 4.2 (i.e., exact, plug-in, weak).

4.5 Matching behavioural profiles

Matching behavioural profiles determines whether the
behavioural capability of the service can satisfy or realise

 Matchmaking and ranking of semantic web services using integrated service profile 107

the behavioural requirement in the query (Liskov and
Wing, 1994; Zaremski and Wing, 1997; Wickler, 1999).
Intuitively, the service will satisfy the query if, given the
precondition and input from the query, the service can
accept and operate successfully, giving out satisfied output
or effect to the query. Ontological matching in Section 4.1 is
used to determine matching for each relation expression in
the behavioural profile as follows:

• Operation, Precondition, Output, and Effect match.
An ontological concept signifying either an operation,
precondition, output, or effect in the profile will match
to its counterpart in the query if they have a kind of
ontological match in Section 4.1 (i.e., exact,
specialised, generalised, partial).

• Input match. Ontological match in Section 4.1 is also
used to determine matching between one input concept
in the profile and another in the query. It is interesting
to note that, unlike other aspects, generalised match is a
better match than specialised match in the case of input.
This means the service’s operation can perfectly
operate with the query’s input which is more specific
than what it expects. This is compared to the case when
the service’s operation expects a more specific input
than what supplied by the query.

Let RQ and RP be sets of behavioural relation expressions

which comprise an operation, a set of inputs, a set of
outputs, a set of preconditions, and a set of effects.

Definition: The profile will satisfy a behavioural match on
the query if all the behaviour expected by the query is
among the behaviour that the profile exhibits. This is
determined by

(,)

() (, : () () ())
Q P

Q P Q P

BehaviouralMatch true

i j i j i j

= ⇔

⊆ ∧ ∀ ∃ ∈ ∧ ∈ ∧ ⊗

R R
R R R R

where ⊗ means having a kind of the ontological
match in Section 4.1 (i.e., exact, specialised, generalised,
partial).

Note that the service may publish more behavioural
information than the query. For example, the service may
require more number of inputs than those in the query. We
do not consider this number issue in the matching process;
as long as the service has the inputs that can match to the
query’s inputs, the service satisfies the query in that respect.
Suppose that finally the consumer selects to use this service,
the consumer can study from the WSDL of the service to
find out what more inputs are needed.

Since a behavioural profile contains relation expressions
that relate to many aspects of the behavioural model, we
then have to determine matching for all of associated
semantic elements. In the case that semantic elements
are preconditions, outputs, or effects with associated
behavioural constraints in the rule ontology, they will match
only if they can also satisfy behavioural constraint match as
mentioned in Section 4.4.

4.6 Matching simple attributes

Matching of simple attributes in the simple attribute profile
is based on comparing descriptive string values of the
attributes and determining their similarity. We adopt an
approximate string matching technique called q-grams
(Ukkonen, 1992; Gravano et al., 2001; Navarro, 2001).
The basic idea of q-grams is ‘sliding’ a window of length q
over the characters of string σ. To achieve a better
comparison, words with no information value are removed
from the descriptive string before processing. It is also
possible to provide a list of keywords for a particular
domain to help specifying attribute values when publishing
or querying. Matching descriptive attribute values can be
implemented by extracting terms, which are likely to match
the listed keywords, from the profile and the query.
Extraction can be implemented by substring match, and
later use q-grams for computing similarity.

Let q be length of q-grams, σ be a set of n keyword
terms extracted from the value of a simple attribute in the
query, a set

i
Gσ be q-grams of a string σi where σi ∈ σ, Ω

be a set of m keyword terms extracted from the value of the
same simple attribute in the profile, and a set

j
GΩ be

q-grams of string Ωj where Ωj ∈ Ω. The similarity score
between σ and Ω is computed by

1 1 1
(,) () () () .

i j i

n m n

i j i
SimSimpleAttribute G G Gσ σσ Ω= = =

Ω = ∪ ∩ ∪ ∪

For example, given σ = {electronics, retail}, Ω = {retail},
and length q is 3, q-grams of the string ‘electronics’
is {##e,#el,ele,lec,ect,ctr,tro,ron,oni,nic,ics,cs#,s##}, and
q-grams of the string ‘retail’ is {##r,#re,ret,eta,tai,
ail,il#,l##}. Therefore the similarity score between σ and Ω
is 0.38. The similarity score helps classify the types of
simple attribute matching such as: StrongMatch [0.75, 1],
OptimisticMatch [0.50 – 0.75), RelaxedMatch [0.25, 0.50),
and Failed [0, 0.25).

4.7 Ordinal scale of profile matching

Table 2 Types of matching and match scores

Match type Match score

Ontological match (Section 4.1) exact = 4, specialised = 3,
generalised = 2,
partial = 1, failed = 0

Input match of behavioural
profile (Section 4.5)

exact = 4, generalised = 3,
specialised = 2, partial = 1,
failed = 0

Numerical constraint match
(Sections 4.2 and 4.4 (for
numerical values))

exact = 3, plug-in = 2,
weak = 1, failed = 0

Set of values match (Sections 4.3
and 4.4 (for ontological values))

satisfied = 1, failed = 0

Simple attribute match
(Section 4.6)

strong = 3, optimistic = 2,
relaxed = 1, failed = 0

108 N. Sriharee and T. Senivongse

Table 2 summarises the types of matching and ordinal scale
which represents match scores, from the strongest to the
weakest match.

5 Example of matchmaking
Suppose there is a query for a web service of a retail
electronics shop which sells desktop computers with the
price range between 15,000 – 30,000 bahts. The shop must
receive Thailand Electronics Association Award and accept
credit card payment. The consumer also needs the desktop
to be delivered to Bangkok within 3 days. Fee charge for
delivery is acceptable but should be less than 200 bahts.
We present the query (Q) as above with the relation
expressions below. Note that each expression is
subscripted by a profile symbol; α, γ, ρ, and β represents
simple or semantic attribute profile, structural profile,
rule profile, and behavioural profile respectively. The
superscript denotes the context of the relation expression;
S refers to a simple attribute, C refers to a constraint
which may be either a numerical, behavioural, or
operational constraint, and φ refers to a single concept.
For the behavioural profile, the superscripts ∆, I, O,
P, E respectively refer to operation, input, output,
precondition, and effect:

Q = {hasDescription(‘electronics, retail’)S
α ,

hasAward(ThailandElectronicsAssociationAward)φ
α ,

hasProduct(Desktop)φ
γ ,

hasPrice(Desktop, Between, 15000, 30000, baht)C
γ ,

hasServiceConstraint(DeliveryDayShipping, Bangkok,
DeliveryDay, LessThanOrEqual, 3, day)C

ρ ,
hasServiceConstraint (ShippingServiceCharge, Bangkok,
ServiceCharge, LessThanOrEqual, 200, baht C)ρ ,

hasOperation (SellElectronicsProduct)β
∆ ,

hasPrecondition(ValidAcceptedCreditcard)P
β ,

hasInput(CreditcardPayment)I
β ,

hasOutput(OrderedProduct)O
β ,

hasEffect(ProductDelivered) }E
β

The integrated service profiles of two candidate services S1
and S2 are depicted in Figure 3. These are instance profiles,
so ontological matching is considered from the base concept
of each individual resource. Some IS-A hierarchies that
represent knowledge in the profile ontologies of the
ElectronicsAppliance domain are shown in Figure 4. Note
that it is possible that a single concept in the query may
match to multiple concepts in the profile. For example, the
query that asks for a product Desktop could match to both
products Desktop and Laptop which are published in the
profile, but with a different strength (i.e., exact vs. partial
match). We consider the strongest match in this case.

Figure 3 Integrated service profiles of two candidate services

 Matchmaking and ranking of semantic web services using integrated service profile 109

Figure 4 Fragment of ontologies for the profiles

By comparing Q against S1 and S2 and assuming that any
evaluation required to evaluate the behavioural constraints
of the two services are valid, matching results between Q
and S1, and Q and S2 are reported as follows:

Match(Q, S1) = {stronghasDescription, exacthasAward,

exacthasProduct, plug-inhasPrice, exacthasDeliveryDayShipping,
exacthasServiceCharge, exacthasOperation, exacthasPrecondition,
exacthasInput, partialhasOutput, exacthasEffect}

Match(Q, S2) = {relaxedhasDescription, partialhasAward,

exacthasProduct, plug-inhasPrice, plug-inhasDeliveryDayShipping,
exacthasServiceCharge, specialisedhasOperation, partialhasPrecondition,
partialhasInput, partialhasOutput, partialhasEffect}

6 Ranking methodology

After the matchmaking process discovers all the web
services whose characteristics and capabilities match to
what expected by the query, the ordinal scale of match
types in Section 4.7 is used by the ranking process
to rank all those matched services based on user preference
criteria (e.g., Larichev, 2001). Service consumers can
specify any of the following preference criteria for matching
and ranking.

• Match preference. This criterion can be set to
define a preference when considering matching on a
particular relation expression. The preference is
specified in terms of the weakest acceptable match
type. For example, the service consumer may
query for the product PC and set a match preference
to specialised. So the services that publish the
product with the same concept, i.e., PC (by exact
match), and more specific concepts, i.e., Desktop
and Laptop (by specialised match), will match to the
query.

• Feature priority preference. This criterion can be
set to define a significance that one relation expression
has over the others within the same profile. This
preference setting can help overcome a problem of
conflicting ordinal scale of match types among several
relation expressions. For example, the query specifies
two relation expressions on Award and Description
in the context of attributes. Suppose two candidate
services have ordinal scale match as (specialised,
strong) and (exact, optimistic) respectively, this
can be problematic for ranking. By specifying
a feature preference such that the consumer gives
priority to Award over Description, the second
candidate service will be ranked higher than the
first one.

110 N. Sriharee and T. Senivongse

• Profile priority preference. This criterion can be set to
define a significance that one profile of the service has
over the others. It can be used in a similar way to the
feature priority preference but is for problematic
ranking across profiles. For example, the query
specifies a relation expression on Award in the
semantic attribute profile and another on Product in the
structural profile. Suppose two candidate services have
ordinal scale match as (specialised, exact) and
(exact, specialised), this can be problematic for
ranking. By specifying a profile priority preference
such that the consumer gives priority to the
semantic attribute profile over the structural
 profile (denoted by γ ≺ α), the second
candidate service will be ranked higher than
the first one.

Similarly to resolving ordinal scale conflict, feature priority
preference and profile priority preference can be used to
refine ranking. When two services have the same ranking
order and a priority preference is set, the priority can be
used to break the tie by further determining sub-ranking. In
other words, sub-ranking is only for a more refined ordering
within the same rank order with a similar match score, and it
will not be considered if the priority preference is not set. In
such a case, the services will be assumed to be ranked as
equal; further ranking consideration, should the need arises,
is left to the consumer.

For simplicity, only some parts from the example in
Section 5 are taken to show how ranking is applied. Assume
that the query now consists of the following six relation
expressions: hasDescription, hasProduct,
hasServiceConstraint(DeliveryDayShipping), hasOperation,
hasOutput, and hasEffect. The service consumer
sets a match preference on each relation expression
as (relaxedhasDescription, exacthasProduct, plug-
inhasServiceConstraint(DeliveryDayShipping), specialisedhasOperation,
partialhasOutput, partialhasEffect). The feature priority preference
is set for the behavioural profile and specifies the priority,
from the least to most, as (effect, output, operation), which
is denoted by E ≺ O ≺ ∆. The profile priority preference is
set to give equal priority to the structural, rule, and
behavioural profiles, and these three has a priority over the
attribute profiles (denoted by α ≺ (γ ≈ ρ ≈ β)).

Ranking methodology performed consists of the
following steps:

i For each relation expression in the query, determine
possible match scores for each of them with regards to
their match preference. For six relation expressions of
the query Q that we now focus, the relation expression
hasDescription requires simple attribute matching with
a match preference set to relaxed. Therefore its possible
matches from the strongest to weakest according to
Section 4.7 are {strong, optimistic, relaxed}. This
corresponds to the MatchScoreshasDescription = {3, 2, 1}.
Possible match scores for other relation expressions
will be determined in a similar manner. Hence,

MatchScoreshasProduct = {4},
MatchScoreshasServiceConstraint(DeliveryDayShipping) = {3, 2},
MatchScoreshasOperation = {4, 3},
MatchScoreshasOutput = {4, 3, 2, 1}, and
MatchScoreshasEffect = {4, 3, 2, 1}.

ii For each profile with several relation expressions
related to it, consider as follows:
• Define all possible match patterns for the profile. A

match pattern is an n-tuple of the match scores from
all related relation expressions which is denoted by

1 = (, ,)
 =

=
, = 1 , , .

n

i

i

MatchPattern ms ms
where n the number of related relation
expressions
ms a match score value taken from
MatchScores i n

…

…

The MatchPatterns for the behavioural profile in
the example will be (4,4,4), (4,4,3), (4,4,2), (4,4,1),
(4,3,4), (4,3,3), (4,3,2), (4,3,1), (4,2,4) etc.
MatchPattern = (4,4,4) says that there might be a
web service with a behavioural profile that matches
to the query with a match score 4 on operation,
match score 4 on output, and match score 4 on
effect.

• Classify all possible match patterns to their rank
order. This is determined by summation of the
match scores in each MatchPattern, denoted by
MatchPatternScore(MatchPattern). For example,
MatchPatternScore((4,4,4)) = 12,
MatchPatternScore((4,4,3)) = 11, and
MatchPatternScore((4,4,2)) = 10. Different values
of MatchPatternScore will determine the rank
orders, and different MatchPatterns which have the
same MatchPatternScore will falls into the same
rank order. We can compute the number of possible
rank orders by

1

1

(,...,
)

(,...,
) 1

 .

n

n

NumberofRankOrders
Max MatchPatternScore

MatchPatternScore
Min MatchPatternScore

MatchPatternScore
where n the number of possible match patterns

=

−
+

=

In the example, the maximum MatchPatternScore is
12 (from MatchPattern = (4,4,4)) and the minimum
is 5 (from MatchPattern = (3,1,1)). So the number
of rank orders in the behavioural profile is 8.
Figure 5(a) shows only the top three rank orders; the
highest MatchPatternScore = 12 will be the top rank
order 1, followed by the lower scores with lower
rank orders. Each rank order has a number of match
patterns assigned to it. From this assignment, we can
see that a web service whose behavioural profile has
MatchPattern = (4,4,4) would be ranked higher than
the one with MatchPattern = (4,4,3).

 Matchmaking and ranking of semantic web services using integrated service profile 111

• Refine ranking by determining sub-ranking based
on the specified feature priority preference. If the
service consumer specifies feature priority
preference, it can help determine relative ranking
between match patterns within the same rank order.
In Figure 5(a), pattern number 2 (i.e., MatchPattern
= (4,4,3)) is under the same rank order as pattern
number 3 (i.e., MatchPattern = (4,3,4)) so primarily
they are ranked equal. But with the feature priority
preference E ≺ O ≺ ∆ set for the behavioural profile,
sub-ranking can be performed. Figure 5(a) also
shows an example of a sub-ranking table for rank
order 2 (MatchPatternScore = 11) and rank
order 3 (MatchPatternScore = 10). In the
sub-ranking table for rank order 2, pattern number 2
wins over pattern number 3 (because it has a higher
match score for output), pattern number 2 wins over
pattern number 4 (because it has a higher score
match for operation), and pattern number 3 wins
over pattern number 4 (because it has a higher score
match for operation).

Apart from the behavioural profile β, the query Q in
our example above also involves the simple
attribute profile α, structural profile γ, and rule
profile ρ. We have to determine match patterns,
rank orders, and sub-ranking tables for these
profiles as well. In summary,

For α, rank order 1 (MatchPatternScore = 3):
MatchPattern = (3)
rank order 2 (MatchPatternScore = 2):

MatchPattern = (2)
rank order 3 (MatchPatternScore = 1):
MatchPattern = (1)

For γ, rank order 1 (MatchPatternScore = 4):
MatchPattern = (4)

For ρ, rank order 1 (MatchPatternScore = 3):
MatchPattern = (3)
rank order 2 (MatchPatternScore = 2):
MatchPattern = (2)

Remark: For each of these three profiles, each of its
rank orders has only one MatchPattern, therefore
sub-ranking tables are not necessary.

iii Combine different profiles and determine match
patterns, rank orders, and sub-ranking. This step is
similar to step (ii) but is done across the profiles and the
process is incremental. In Figure 5(b.1), we start with
combining the structural profile γ and rule profile ρ
first. All possible match patterns are defined based on
all MatchPattern under these two profiles (which have
been generated in step (ii)). Therefore, we obtain
MatchPattern = (4,3) and MatchPattern = (4,2) for the
combination γ ⋅ ρ with MatchPatternScore = 7 and
MatchPatternScore = 6 respectively. The match
patterns from γ ⋅ ρ will be used to define match patterns
when the behavioural profile is added to the
combination. Figure 5(b.2) shows some match patterns
and rank orders for the combination γ ⋅ ρ ⋅ β. And
subsequently, the simple attribute profile is combined
into γ ⋅ ρ ⋅ β ⋅ α in Figure 5(b.3).

Figure 5 Example of ranking

112 N. Sriharee and T. Senivongse

After the profiles are combined, we can similarly determine
relative sub-ranking for match patterns within the same
rank order. According to the profile priority preference
α ≺ (γ ≈ ρ ≈ β) set by the example, the sub-ranking table for
rank order 2 (MatchPatternScore = 21) in the final
combination γ ⋅ ρ ⋅ β ⋅ α can be created; part of it is shown
in Figure 5(c). Each row of the table compares two match
patterns and determines which one wins over the other with
regards to each profile. In the case that there are conflicts,
the profile priority preference is considered. Considering
pattern number 2 (i.e., MatchPattern = (4,3,4,4,4,2)) and
pattern number 3 (i.e., MatchPattern = (4,3,4,4,3,3)), the
two are equal (i.e., no one wins) with regards to the profiles
γ and ρ. However, pattern number 2 wins over pattern
number 3 regarding to β, while pattern number 3 wins under
α. This conflict is resolved by the profile priority
preference; the sub-ranking table shows the overall result
such that pattern number 2 wins over pattern number 3
because β has higher priority than α. Pattern number 2
hence will be ranked higher than pattern number 3 in the
sub-ranking.

Looking back at the matching results in Section 5
and the shortened query Q with the relation expressions:

{hasDescription S
α , hasProduct φ

γ , hasServiceConstraint
(DeliveryDayShipping) C

ρ , hasOperation β
∆ , hasOutput O

β ,
hasEffect E

β }, we obtain the match results for the service S1
and S2 as follows.

Match(Q, S1) = {stronghasDescription, exacthasProduct,
exacthasDeliveryDayShipping, exacthasOperation, partialhasOutput,
exacthasEffect}

Match(Q, S2) = {relaxedhasDescription, exacthasProduct,
plug-inhasDeliveryDayShipping, specialisedhasOperation,
partialhasOutput, partialhasEffect}

Match score for S1 is (3 + 4 + 3 + 4 + 1 + 4) = 19 and for
S2 is (1 + 4 + 2 + 3 + 1 + 1) = 12. So S1 is in a higher rank
and closer to Q, than S2.

7 Matchmaking and ranking evaluation

7.1 Matchmaking analysis

Evaluation of matchmaking is based on relevance
evaluation which concerns precision and recall of match
results (Baeza-Yates and Ribeiro-Neto, 1999). Since our
matchmaking process will return only the web services that
can satisfy all capabilities requested in the query (i.e., they
can match all relation expressions in the query but can also
do more), this is called ‘plug-in match’ in Web Services
Modelling Ontology (WSMO) (WSMO, 2004; Keller et al.,
2004). As a result, we assume precision is 1 as all services
returned are definitely relevant to the query. However, the
recall value may be low as there may be some relevant
services that are not returned because they match only some
relation expressions of the query (at least one). This is

called ‘intersection match’ in WSMO. We can apply
intersection match to our matchmaking process instead and
consider web services with intersection match as relevant to
the query, so that the recall value will be increased. But by
doing so, it is possible that a web service with plug-in match
may be ranked lower than another web service with
intersection match, because the former may match all
requested capabilities but with low scores whereas the latter
may match only some of the requested capabilities but with
high scores. The web service with plug-in match may also
be shifted down to lower sub-rank within the same rank
order by the presence of another web service with
intersection match which has the same match pattern score.
The shift-down means the possibility that a service
consumer will prefer and select the web service with
intersection match instead of the one with plug-in match is
high.

An experiment is conducted to study the effect
of the shift-down. The matchmaking is tested under two
scenarios

• when plug-in match is used

• when intersection match is used.

We consider the case of the query Q with six relation
expressions and the match preference as well as the priority
settings as in Section 6. There are 192 possible match
patterns in total, with 11 rank orders. We select 50 match
patterns out of 192 as the samples for observing their
shift-down behaviour. These 50 match patterns are selected
from each of the 11 rank orders in such a way that the
50 samples would reside in all rank orders in a normal
distribution (Weis, 2004).

We start with the plug-in match scenario first. For each
of the 50 sample match patterns, we compute a relative
distance which reflects approximately how further down the
sample is ranked, in relation to the match pattern at the top
rank order. Since there may be multiple samples at a
particular rank order, we compute an average of their
relative distance values to represent a relative distance of
any sample at that rank order. Suppose that we have
the rank orders with match patterns assigned to each
of them as in Figure 6. Some of the match patterns are the
sample match patterns that we will observe. A relative
distance of any samples at a particular rank order is
computed by

RelativeDistanceOfSampleWithinRankOrder
= the number of match patterns in the

same rank order that are ranked higher
RelativeDistanceOfAnySamplesAtRankOrder

the number of all match patterns in all
higher

=

1

(
, ,

)n

 rank orders
+ Average RelativeDistanceOfSample

WithinRankOrder
RelativeDistanceOfSampleWithinRankOrder
where n = the number of samples at that rank order.

…

 Matchmaking and ranking of semantic web services using integrated service profile 113

Figure 6 Example of relative distance

RelativeDistanceOfAnySamplesAtRankOrder 1 = 0.
RelativeDistanceOfAnySamplesAtRankOrder 2 =
1 + Average(1,1) = 2.
RelativeDistanceOfAnySamplesAtRankOrder 3 =
6 + Average(0,2,3,6) = 8.75.

Determining a relative distance of any samples at a
particular rank order helps simulate the shift-down effect.
When the intersection match scenario is used, there will be
more match patterns and these patterns will scatter in all
rank orders and interleave with the match patterns of the
plug-in scenario. Therefore, the position of a particular
sample may shift down. When the relative distance of that
sample within the rank order is increased and the number of
match patterns in all higher rank orders is increased, the
relative distance of any sample in that rank order is too.

We can repeat the calculation of relative distance
of the 50 sample match patterns under the intersection
match scenario and compares the result with that of the
plug-in match scenario. Table 3 shows the comparison.
The percentage of shift range is calculated from the change
in relative distance when using intersection match compared
to the relative distance under plug-in match scenario. Match
patterns in higher rank order will be less affected by the
intersection match, but for those in lower rank orders, the
shift range increases exponentially. Thus the trade-off
between recall value and relative distance should be
considered. We can improve the situation by allowing
service consumers to specify which of the requested relation
expressions that must be matched (minimum requirement)
in order to improve recall with less shift range.

The matchmaking process can also be improved in other
aspects. Since ontological match is based on concept
hierarchy, specialised match and generalised match at the
moment cannot distinguish between matched concepts at
different levels of the hierarchy. Matchmaking process can
be refined to consider depth of concepts in the hierarchy as
the concept that are closer to the concept specified in the
query should be preferred. Also, in some cases, we may
combine specialised match with exact match.

Measuring the performance of matchmaking process is
beyond the scope of this paper. It is expected that the
process will consume time to prepare and infer all
ontologies that will be used, and compute possible match
patterns, rank orders, and sub-ranking tables. Nevertheless,
these can be performed at initialisation time prior to

publishing and querying. Service providers and consumers
should work conveniently on the pre-processed information.
The idea is confirmed by (Srinivasan et al., 2004) which
reports a performance evaluation of their ontology-based
matchmaking process.

Table 3 Result of relative distance

Rank
order

Number
of

samples

Relative
distance of

any samples
at rank order

(plug-in
match)

Relative
distance of

any samples
at rank order
(intersection

match)
Shift

range (%)
1 1 0 0 0
2 2 2 2 0
3 4 10 10 0
4 6 27.33 28.83 5.49
5 7 56.86 65.43 15.08
6 10 93.1 123.1 32.22
7 7 130.86 204.43 56.22
8 6 157.17 308.83 96.50
9 4 178 449.75 152.67
10 2 188.5 630.5 234.48
11 1 191 802 319.90

Remark

Number of
relation

expressions

Number
of

match
pattern

Number
of rank
orders Recall

Plug-in 6 192 11 0.107
(192/1783)

Intersection 6 1783 22 1.00

7.2 Ranking capability analysis

By applying ordinal scale for ranking, the ranking is
coarse-grained. As seen earlier, there are a number of match
patterns that fall into the same ranking order. The ranking
algorithm classifies them as equally ranked or ‘unjudgeable’
as it is not able to determine which one should be ranked
higher or lower than another.

We are interested in the capability of the ranking
algorithm. Ranking capability here refers to the ability of
the algorithm to classify web services into different rank
orders. We consider each pair of match patterns and if
the algorithm can rank them, it has ranking capability over
the pair. Intuitively, ranking capability can be determined by
the proportion of the number of unjudgeable pairs of match
patterns over the total number of match pattern pairs. This
analysis can be performed on real integrated service profiles
data, but in practice, the proportion may vary depending on
the contents of the service profiles that are published.
So it is difficult to realise the capability of the algorithm.
In this paper, we instead simulate a ranking capability
analysis on all possible match patterns that an integrated

114 N. Sriharee and T. Senivongse

service profile can match. Assume that service matches
are evenly distributed; that is, for every possible match
pattern, there is some service that matches the query
by that pattern. Ranking capability can be computed
by

1 1 1

1 () () .
jPR P

j
j i k

Ranking capability P i P k
= = =

  
= − − −      

∑∑ ∑

where

Pj: the number of match patterns in rank order j
R: the number of all possible rank orders

P: the number of all possible match patterns =
1

.
R

j
j

P
=
∑

From the formulae above, we can realise that

•
1

()
jP

j
i

P i
=

−∑ is the number of match pattern pairs

within a rank order j, i.e., the number of unjudgeable
pairs

•
1 1

()
jPR

j
j i

P i
= =

−∑∑ is the total number of unjudgeable match

pattern pairs

•
1

()
P

k

P k
=

−∑ is the total number of match pattern

pairs.

We conduct an experiment in the most complex case where
the largest number of match patterns will be involved.
We assume the maximum number of match scores
at four scales (i.e., 4, 3, 2, 1) and the match preference
is set to the weakest level (i.e., 1). The experiment
varies the number of the relation expressions that are
specified in the query and needed to be matched. The result
is in Table 4. With the number of relation expressions = 1,
ranking capability is 1. This is obvious because each rank
order will have only a single match pattern and therefore
there is no unjudgeable pair within the same rank
order. When the number of relation expressions increases,
ranking capability is still satisfactory and getting closer
to 1. In real situations where match distribution may not
cover all rank orders, the result of ranking capability
analysis may differ. Nevertheless, feature priority
preference and profile priority preference should help
refine ranking, and intuitively should improve ranking
capability.

8 Semantic web services discovery architecture

We design and implement the semantic web services
discovery architecture depicted in Figure 7. The architecture
integrates together the UDDI registry and a semantic
registry. The UDDI registry here is extended to
accommodate a variety of simple attributes that result from
the survey (cf Table 1). The semantic registry will
accommodate ontology-based profiles. Hence service
consumers can have a mixture of the traditional way of
attribute query and semantic query. All the upper ontologies
proposed in this work will be stored in the ontology
repository within the framework. Domain experts can load
these upper ontologies in order to derive shared domain
ontologies by using an ontology editor such as Protégé
(Protégé, 2001) (1). Such domain ontologies may be stored
somewhere in the network, e.g., at the domain experts’
organisations. However, the domain experts are required to
store the URLs of these domain ontologies with the
ontology repository. This is for the semantic registry to be
able to preprocess domain ontologies and perform
reasoning, and also for service providers to load such
domain ontologies in order to derive their ontology-based
profiles (2). Via a GUI, service providers can publish their
profiles through the publishing proxy (3) and instantiate
service constraints (4). The publishing proxy will
store simple attributes to UDDI, and generate all
ontology-based profiles and store them in the ontology
repository. The profiles are pre-processed to extract
knowledge and reason further by the parser module which is
integrated with an inference engine (e.g., Jena, 2003). The
result is stored in the semantic relation database which is
designed to handle facts from the profiles, more facts from
inference, and service constraint expressions. Using a
database is powerful as it can deal with huge information
and its pre-processing helps prepare information for future
retrieval.

The architecture can provide the service consumers with
a GUI that corresponds to the ontologies of the domain so
that the consumers can specify query onto the profiles more
easily (5). The query will go through the querying proxy to
the matching module. While performing matching, the
matching engine may interact with the constraint evaluation
engine. Constraint expressions in the database can be
translated into other language such as RuleML (Iwaihara
et al., 2002) or SWRL (Horrocks et al., 2003) and then a
rule engine is used to evaluate them (6). The matching
engine also performs ranking. Matched services will be
ranked and reported in an XML document which will be
returned to the consumer (7).

Table 4 Result from ranking capability experiment

Number of relation expressions 1 2 3 4 5 6 7 8
Number of match patterns 4 16 64 256 1024 4096 16384 65536
Number of rank orders 4 7 10 13 16 19 22 25
Number of unjudgeable pairs of match patterns 0 14 258 3918 57640 849770 1.264E7 1.895E8
No.of pairs of match patterns 6 120 2016 32640 523776 8386560 1.342E8 2.147E9
Ranking capability 1 0.883 0.872 0.879 0.889 0.898 0.905 0.912

 Matchmaking and ranking of semantic web services using integrated service profile 115

Figure 7 Semantic web service discovery architecture

9 Related work

Describing service descriptions based on ontology
specification is initially an effort by the DAML Services
coalition. They propose DAML-S (The DAML Services
Coalition, 2002) (now becomes OWL-S (Martin et al.,
2004)), an ontology-based specification for service
descriptions which consists of three profiles, i.e., Service
Profile, Process Model, and Grounding Profile. Even so,
only Service Profile is aimed for discovery. The Service
Profile is defined in terms of functional attributes such as
input, output, precondition, and effect, as well as some
description that describes general attributes of the service
such as provider information. The Service Profile overlaps
by function with our attribute profile and behavioural
profile. However, our attribute profile will accommodate
more useful attributes as a result of an empirical survey, and
we exercise discovery on all parts of the behavioural profile.
The effort by (Paolucci et al., 2002) discovers web services
based on operation, input, and output only; scale of
matching by ontological subsumption is proposed but
without ranking. In our approach, all aspects of the
behavioural profile can be used in the query including
precondition and effect. Our behavioural profile is also
enhanced by the rule profile and service constraint
evaluation. As suggested by (Trastour et al., 2002; Li and
Horrocks, 2003), additional profiles such as those in our
approach can be supplementary profiles to OWL-S Service
Profile.

Some other work that tries to extend matchmaking on
DAML-S such as (Bansal and Vidal, 2003) presents an
algorithm that consider details in DAML-S Process Model

for service matching based on input and output. Jaeger and
Tang (2004) takes properties into account for matching of
two profiles. Ranking is proposed based on subsumption of
input, output, and property.

Recently, WSMO (2004) provides the conceptual
framework for semantically describing web services. Based
on WSMO, the Web Services Modeling Language (WSML)
(Bruijn et al., 2005) implements this conceptual framework
in a formal language for annotating web services with
semantic information. WSML defines semantics in terms of
four elements: ontologies, goals, web service descriptions,
and mediators. Ontologies provide vocabularies, concepts,
instances, and axioms that will be used by other elements.
Goals are similar to queries. Web service descriptions
describe capability in terms of assumption, precondition,
postcondition, effect, and allow for interface and
orchestration specifications. Mediators connect different
WSMO elements and resolve heterogeneity between them.
Although not the same, our integrated service profile has
capabilities that correspond to many of WSML elements.
Our semantic attribute profile and structural profile allows
specifications of concepts and instances. The simple
attribute profile allows for references to interface or
orchestration specifications. The behavioural profile
corresponds to the WSML capability. WSML provides
syntax for conceptual structure of web services but does not
say exactly what capability or vocabulary should be defined.
Our integrated service profile gives clearer picture of
service descriptions since the profile defines more concrete
details, e.g., what attributes should be defined in the
attribute profile, what basic information should be provided

116 N. Sriharee and T. Senivongse

in the structural profile, and the provision of shared domain
ontologies which are concrete template for descriptions.
WSML capability is defined by formal logical expressions,
so it is powerful but would require complex reasoning for
query and powerful tools. Matchmaking in WSMO defines
types of matching based on the number of elements that are
matched (i.e., exact, subsumption, plug-in, intersection).
Ranking is simple and based on such types of matching. Our
matchmaking and ranking is more complex and refined as
there are several profiles involved and each profile will be
considered for matching first before combining the results
for ranking. Types of matching in our approach vary
depending on the capabilities that are considered.
Nevertheless, it is possible for WSMO to adopt our
matchmaking and ranking approaches because of the
similarities between the proposed profiles and WSML
elements aforementioned. For example, our criteria and
ordinal scale defined for matching ontological terms
or sets of the terms may be applied to ontological concepts
in WSML ontologies and web services descriptions.
The criteria and matching scale for numerical
constraints may also be applied to numerical constraint
axioms. Consequently, the proposed ranking approach is
applicable.

UDDI version 4 is trying to incorporate an
ontology-based taxonomy for the standard categories of
Business Entity and Business Service (Paolucci and Sycara,
2004). This effort will allow UDDI to also return businesses
or services of a specialised or generalised category. This
corresponds to having business or service categories defined
as semantic attributes in our approach. However, the
semantic attribute profile is open to any attributes.

Other work presents semantic-based frameworks based
on description logics formalisation and description logic
reasoning. The approaches by Trastour et al. (2002) and
Li and Horrocks (2003) propose matchmaking in the
e-commerce scenario in a multi-agent system when an
advertisement represents the product description. This
corresponds to the structural profile. They consider
matching by subsumption relationship between the request
and each advertisement in the repository. Ranking is not
addressed in their work. Sycara et al. (2002) propose the
agent-based framework in which the service capability is
described by a description language LARKS. They propose
a matchmaker which consists of a number of filters, each of
which performs partial matching on the descriptions.
Advertisements and request specifications will be compared
whether they are sufficiently similar by using TF-IDF
method and word distance values. Signature and constraints
of input and output are also checked. Our work focuses on
the specification of the profiles and mainly uses
approximate match based on similarity through subsumption
to determine the degree of similarity, as also adopted by
(Paolucci et al., 2002; Di Noia et al., 2003; Andreasen et al.,
2003).

Other work that integrates semantic information into
UDDI architecture such as Sivashanmugan et al. (2003)
enhances service descriptions by using ontological

information to annotate service functions in the WSDL
document. They use ontological subsumption to match
operation, input, and output.

10 Conclusion

The contribution of this work is the integrated service
profile which is a combination of the traditional
attribute-based description and ontology-based specifications
for use in matchmaking of web services. The integrated
service profile considers many aspects of the service
capability and is therefore richer for service providers to
publish and for service consumers to query. The proposed
matching scheme gives an intuitive ordinal scale based on
ontological subsumption which considers semantic
compatibility. The proposed ranking methodology can be
performed across profiles and refined under user preference
setting. An analysis on matchmaking and ranking processes
gives some insight of the methodology and gives confidence
over the practicality of the approach. Our integrated service
profile is in accordance with the service-oriented model
part of the web services architecture (Booth et al., 2004),
which models a web service to have information about the
provider, the syntax and semantics of the service, the tasks
within the service, and a business policy.

Due to the richness of the profile, overheads exist when
publishing and querying ontology specifications. However,
the discovery architecture tries to facilitate in some way
such as providing GUI that can guide providers and
consumers to publish and query, the use of a powerful
database to store facts, and preprocessing of knowledge
extraction from the profiles.

The performance of the architecture will be evaluated in
the future work. It is possible to incorporate distance-based
matching on the concept hierarchy of the ontology with our
approach so that ranking can be refined. More types of
profile can be introduced to the integrated service profile
such as the service composition profile.

Acknowledgement

This research is part of the Engineering New Paradigm
Software for Enterprises with Service-Oriented Architecture
Project, supported by Thailand’s Software Industry
Promotion Agency (Public Organisation).

References
Andreasen, T., Bulskov, H. and Knappe, R. (2003)

‘On ontology-based querying’, Proceedings of Workshop on
Ontologies and Distributed Systems, 18th International Joint
Conference on Artificial Intelligence, August.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. and
Patel-Schneider, P.F. (2003) The Description Logic
Handbook: Theory, Implementation, and Applications,
Cambridge University Press, Cambridge.

 Matchmaking and ranking of semantic web services using integrated service profile 117

Baeza-Yates, R. and Ribeiro-Neto, B. (1999) Modern Information
Retrieval, Addison Wesley for ACM, MA.

Bansal, S. and Vidal, J.M. (2003) ‘Matchmaking of web
services based on the DAML-S service model’, Proceedings
of the 2nd International Joint Conference on Autonomous
Agents and Multiagent Systems, (AAMAS 2003).

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M.,
Ferris, C. and Orchard, D. (2004) Web Services Architecture
W3C Working Group Note 11 February 2004, Available
online at http://www.w3.org/TR/ws-arch/.

Bruijn, D.J., Lausen, H., Polleres, A. and Fensel, D. (2005)
The Web Service Modelling Language WSML: An Overview,
DERI Technical Report 2005-06-16, June.

Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S.
(2001) Web Services Description Language (WSDL) 1.1,
Available online at http://www.w3.org/TR/wsdl/.

Constantinescu, I. and Faltings, B. (2003) ‘Efficient matchmaking
and directory services’, Proceedings of IEEE/WIC
International Conference on Web Intelligence (WI’03), 13–17
October.

Di Noia, T., Di Sciascio, E., Donini, F.M. and Mongiello, M.
(2003) ‘A system for principled matchmaking in an electronic
marketplace’, Proceedings of 12th International World Wide
Web Conference (WWW 2003).

Dumas, M., O’Sullivan, J. and Heravizadeh, M. (2001) ‘Towards a
semantic framework for service description’, Proceedings
of 9th International Conference on Database Semantics,
Hong Kong, April.

Gómez-Pérez, A. (1999) ‘Ontological engineering: a state of the
art’, Expert Update, British Computer Society, Autumn,
Vol. 2, No. 3, pp.33–43.

Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N.,
Muthukrishnan, S., Pietarinen, L. and Srivastava, D. (2001)
‘Using q-grams in a DBMS for approximate string
processing’, IEEE Data Engineering, Vol. 24, No. 4,
pp.28–34.

Gruber, T. (1993) ‘A translation approach to portable ontologies’,
Knowledge Acquisition, Vol. 5, No. 2, pp.199–220.

Hay, D. and Healy, K.A. (2000) ‘Defining business rules ~ what
are they really?’, Technical Report 1.3, The Business Rules
Group, July, Available online at http://www.business
rulesgroup.org/first_paper/br01c0.htm.

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S.,
Grosof, B. and Dean, M. (2003) ‘SWRL: a semantic web rule
language combining OWL and RuleML’, Available online at
http://www.daml.org/2003/11/swrl/.

Iwaihara, M., Kozawa, M., Narazaki, J. and Kambayashi, Y.
(2002) ‘A system for querying and viewing business
constraints’, Schroeder, M. and Wagner, G. (Eds.):
Proceedings of International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web, Sardinia,
Italy, 14 June.

Jaeger, M.C. and Tang, S. (2004) ‘Ranked matching for service
descriptions using DAML-S’, Proceedings of CAiSE
Workshops, Vol. 3, pp.217–228.

Jena (2003) Semantic Web Framework: Jena, Available online at
http://jena.sourceforge.net/index.html.

Keller, U., Lara, R., Polleres, A., Toma, I., Kifer, M., Fensel, D.
(2004) ‘D5.1 v0.1 WSMO Discovery’, WSML Working Draft,
13 September, Available online at http://www.wsmo.org/
2004/d5/d5.1/v0.1/20040913/.

Larichev, O.I. (2001) ‘Ranking multicriteria alternatives: the
method ZAPROS III’, European Journal of Operation
Research, Vol. 131, No. 3, pp.550–558.

Li, L. and Horrocks, I. (2003) ‘A software framework for
matchmaking based on semantic web technology’,
Proceedings of the 12th International World Wide Web
Conference (WWW 2003).

Liskov, B.H. and Wing, J.M. (1994) ‘A behavioural notion of
subtyping’, ACM Transactions on Programming Languages
and Systems, Vol. 16, No. 6, pp.1811–1841.

Lynne, M. and Soh, C. (2002) ‘Structural influences on global
ecommerce activity’, Journal of Global Information
Management, Vol. 10, No. 1, January–March, pp.5–12.

Martin, D., Paolucci, M., McIlraith, S., Burstein, M.,
McDermott, D., McGuinness, D., Parsia, B., Payne, T.,
Sabou, M., Solanki, M., Srinivasan, N. and Sycara, K. (2004)
‘Bringing semantics to web services: the OWL-S approach’,
Proceedings of 1st International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004),
July.

Navarro, G. (2001) ‘A guided tour to approximate string matching’,
ACM Computing Surveys, Vol. 33, No. 1, pp.31–88.

Oaks, P., ter Hofstede, A.H.M. and Edmond, D. (2003)
‘Capabilities: describing what services can do’, Proceedings
of the 1st International Conference on Service Oriented
Computing, 15–18 December, Italy.

Pan, J.Z. and Horrocks, I. (2004) OWL-E: Extending OWL with
Expressive Datatype Expressions, IMG Technical Report,
29 April.

Paolucci, M. and Sycara, K. (2004) UDDI Spec TC V4
Proposal Semantic Search, Available online at
http://www.oasis-open.org/committees/uddi-spec/doc/req/
uddi-spec-tc-req029-semanticsearch-20040308.doc.

Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K. (2002)
‘Semantic matching of web services capabilities’,
Proceedings of 1st International Semantic Web Conference
(ISWC 2002), LNCS, Vol. 2342, Springer Verlag.

Protégé (2001) Available online at http://protege.stanford.edu/.
Resnik, P. (1995) ‘Using information content to evaluate

semantic similarity in a taxonomy’, Proceedings of
International Joint Conference on Artificial Intelligence,
November.

Sivashanmugan, K., Verma, K., Sheth, A. and Miller, J. (2003)
‘Adding semantics to web services standards’, Proceedings
of the International Conference on Web Services,
pp.395–401.

Sriharee, N. and Senivongse, T. (2003) ‘Discovering web services
using behavioural constraint and ontology’, Proceedings of
4th IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS 2003), Paris,
France, November, pp.248–259.

Sriharee, N. and Senivongse, T. (2005) ‘Enriching UDDI
information model with an integrated service profile’,
Proceedings of 5th IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS
2005), Athens, Greece, 15–17 June.

Sriharee, N., Senivongse, T., Teppaboot, C. and Futatsugi, K.
(2004a) ‘Adding semantics to attribute-based discovery of
web services’, Proceedings of International Symposium on
Web Services and Applications (ISWS’ 04), Las Vegas,
Nevada, USA, 21–24 June, pp.790–794.

118 N. Sriharee and T. Senivongse

Sriharee, N., Senivongse, T., Verma, K. and Sheth, A. (2004b)
‘On using WS-policy, ontology and rule reasoning to discover
web services’, Proceedings of the IFIP International Conference
on Intelligence in Communication Systems (INTELLCOMM 04),
23–26 November, Bangkok, Thailand, pp.246–255.

Srinivasan, N., Paolucci, M. and Sycara, K. (2004) ‘An efficient
algorithm for OWL-S based semantic search in UDDI’,
Proceedings of 1st International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004),
San Diego, CA, USA, July 6.

Sycara, K., Widoff, S., Klusch, M. and Lu., J. (2002) ‘LARKS:
dynamic matchmaking among heterogeneous software agents
in cyberspace’, Autonomous Agents and Multi-Agent Systems,
Vol. 5, No. 2, June, pp.173–203.

Tapabut, C., Senivongse, T. and Futatsugi, K. (2002) ‘Defining
attribute templates for descriptions of distributed services’,
Proceedings of 9th Asia-Pacific Software Engineering
Conference (APSEC 2002), Gold Coast, Australia, December,
pp.425–434.

The DAML Services Coalition (2002) ‘DAML-S web service
description for the semantic web’, Proceedings of 1st
International Semantic Web Conference (ISWC 2002),
Sardinia, Italy, LNCS, Vol. 2342, Springer-Verlag.

Trastour, D., Bartolini, C. and Gonzalez-Castillo, J. (2001)
‘A semantic web approach to service description for
matchmaking of services’, Proceedings of the International
Semantic Web Working Symposium (SWWS’01), pp.447–461.

Trastour, D., Bartolini, C. and Preist, C. (2002) ‘Semantic
Web Support for the Business-to-Business E-Commerce
Lifecycle’, Proceedings of 11th International World Wide
Web Conference (WWW 2002), pp.89–98.

uddi.org. (2002) UDDI: Universal Description, Discovery, and
Integration of Web Services, Available online at
http://www.uddi.org.

Ukkonen, E. (1992) ‘Approximate string matching with q-grams
and maximal matches’, Theoretical Computer Science,
Vol. 92, No. 1, pp.191–211.

W3C (2004) OWL Web Ontology Language Overview,
Available online at http://www.w3.org/TR/2004/
REC-owl-features-20040210/.

Weiss, N.A. (2004) Introductory Statistics, 7th ed., Addison
Wesley, ISBN: 0201771314, May, Addison-Wesley,
Lebanon, Indiana, USA.

Wickler, G. (1999) Using Expressive and Flexible Action
Representations to Reason about Capabilities for Intelligent
Agent Cooperation, PhD Thesis, University of Edinburgh,
Edinburgh, Scotland.

WSMO (2004) Web Services Modelling Ontology, Available
online at http://www.wsmo.org.

Zaremski, A.M. and Wing, J.M. (1997) ‘Specification
matching of software components’, ACM Transactions on
Software Engineering and Methodology, Vol. 6, No. 4,
pp.333–369.

