

K. Poonyanuch and T. Senivongse, “SQL Antipatterns Detection and Database Refactoring Process”,2017 18th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,

Ishikawa, Japan,2017

1

SQL Antipatterns Detection and

Database Refactoring Process

TABLE I. DEFINITIONS, EXAMPLES, AND HEURISTICS TO DETECT SQL ANTIPATTERNS IN TRANSACT-SQL

SQL Antipattern
Definition

by Karwin [1]
Detection Heuristic in Transact-SQL

Clone Table or

Columns

“Split a single long table into multiple

smaller tables, using table names based

on distinct data values in one of the

table’s attributes”

e.g.

CREATE TABLE Bugs_2008 (. . .);

CREATE TABLE Bugs_2009 (. . .);

CREATE TABLE Bugs_2010 (. . .);

“Querying Across Tables : You can

reconstruct the full set of bugs using a

UNION of all the split tables. As the

years go on and you create more tables

such as Bugs_2011, you need to keep

your application code up-to-date to

reference the newly created tables.”

(a) Potential zone

INSERT INTO @TMP_TABLE

SELECT ROW_NUMBER()

OVER(ORDER BY COUNT(C.COLUMN_NAME)) AS _RK

, T.TABLE_NAME , COUNT(C.COLUMN_NAME) AS CNT_COL

FROM INFORMATION_SCHEMA.TABLES T

INNER JOIN INFORMATION_SCHEMA.COLUMNS C

ON (T.TABLE_NAME = C.TABLE_NAME)

WHERE T.TABLE_TYPE = 'BASE TABLE'

GROUP BY T.TABLE_NAME

(b) Dynamic SQL

SET @p_stmt = ' INSERT INTO T_CHECK_CLONE_TABLE

 SELECT T1.TABLE_NAME , T1.COLUMN_NAME , ' + CAST (@cnt_col AS

VARCHAR) + ' , T2.TABLE_NAME , T2.COLUMN_NAME

 FROM INFORMATION_SCHEMA.COLUMNS T1

 LEFT OUTER JOIN INFORMATION_SCHEMA.COLUMNS T2

 ON (T1.ORDINAL_POSITION = T2.ORDINAL_POSITION

 AND T1.DATA_TYPE = T2.DATA_TYPE

 AND ISNULL(T1.CHARACTER_MAXIMUM_LENGTH ,0) =

ISNULL(T2.CHARACTER_MAXIMUM_LENGTH, 0)

 AND ISNULL(T1.CHARACTER_OCTET_LENGTH ,0) =

ISNULL(T2.CHARACTER_OCTET_LENGTH, 0)

 AND ISNULL(T1.NUMERIC_PRECISION ,0) =

ISNULL(T2.NUMERIC_PRECISION, 0)

 AND ISNULL(T1.NUMERIC_SCALE,0) =

ISNULL(T2.NUMERIC_SCALE , 0)

AND T2.TABLE_NAME = ''' + @next_table_name + ''') '+ ' WHERE T1.TABLE_NAME =

''' + @table_name + '''and T2.TABLE_NAME is not null '

Create Multiple

Columns

“We still have to account for multiple

values in the attribute, but we know

the new solution must store only a

single value in each column. It might

seem natural to create multiple

columns in this table, each containing

a single tag. As you assign tags to a

given bug, you’d put values in one of

these three columns. Unused columns

remain null. Most tasks you could do

easily with a conventional attribute

now become more complex.”

“Handling Growing Sets of Values:

When you add a column in the set for a

multicolumn attribute, you must revisit

every SQL statement in every

application that uses this table, editing

the statement to support new

columns.”

SELECT a.TABLE_NAME , a.COLUMN_NAME ,a.DATA_TYPE , a.IS_NULLABLE

, a.CHARACTER_MAXIMUM_LENGTH , a.CHARACTER_OCTET_LENGTH,

a.NUMERIC_PRECISION, a.NUMERIC_SCALE

from INFORMATION_SCHEMA.COLUMNS a

INNER JOIN

(SELECT TABLE_NAME , LEFT(COLUMN_NAME,3) AS PREFIX_COL

, DATA_TYPE , IS_NULLABLE

, CHARACTER_MAXIMUM_LENGTH , CHARACTER_OCTET_LENGTH,

NUMERIC_PRECISION, NUMERIC_SCALE

FROM INFORMATION_SCHEMA.COLUMNS

GROUP BY TABLE_NAME , LEFT(COLUMN_NAME,3) , DATA_TYPE ,

IS_NULLABLE

, CHARACTER_MAXIMUM_LENGTH , CHARACTER_OCTET_LENGTH,

NUMERIC_PRECISION, NUMERIC_SCALE

HAVING COUNT(*) > 1) c

ON (a.table_name = c.table_name

and LEFT(a.COLUMN_NAME,3) = LEFT(c.PREFIX_COL,3))

WHERE ASCII(RIGHT(COLUMN_NAME,1)) BETWEEN 48 AND 57

K. Poonyanuch and T. Senivongse, “SQL Antipatterns Detection and Database Refactoring Process”,2017 18th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,

Ishikawa, Japan,2017

2

SQL Antipattern
Definition

by Karwin [1]
Detection Heuristic in Transact-SQL

Leave Out the

Constraints

“Even though it seems at first that

skipping foreign key constraints makes

your database design simpler, more

flexible, or speedier, you pay for this

in other ways. It becomes your

responsibility to write code to ensure

referential integrity manually.”

“Checking for Mistakes: You can

imagine that you’d have to write a

similar query for every referential

relationship in your database. If you

find yourself in the habit of checking

for broken references like this, your

next question is, how often do you

need to run these checks? Running

hundreds of checks every day, or even

more frequently, becomes quite a

chore.”

SELECT T.TABLE_NAME , T.ConstraintType ,c.ConstraintName

, CASE WHEN C.ConstraintName IS NOT NULL THEN 1 ELSE 0 END AS

IS_NOT_EXISTS

FROM (

 SELECT T1.TABLE_NAME , cons.ConstraintType

 FROM INFORMATION_SCHEMA.TABLES T1 ,

 (

 select 'DEFAULT_CONSTRAINT' as ConstraintType union all

 select 'FOREIGN_KEY_CONSTRAINT' as ConstraintType union all

 select 'PRIMARY_KEY_CONSTRAINT' as ConstraintType union all

 select 'UNIQUE_CONSTRAINT' as ConstraintType union all

 select 'CHECK_CONSTRAINT' as ConstraintType) as cons) T

left outer join

(

SELECT OBJECT_NAME(object_id) AS ConstraintName,

SCHEMA_NAME(schema_id) AS SchemaName,

OBJECT_NAME(parent_object_id) AS TableName,

 type_desc AS ConstraintType

FROM sys.objects

WHERE type_desc LIKE '%CONSTRAINT') c

on (t.TABLE_NAME = c.TableName

AND T.ConstraintType = C.ConstraintTy

Always Depend

on One’s Parent

“The naive solution commonly shown in

books and articles is to add a column

parent_id. This column references

another comment in the same table, and

you can create a foreign key constraint to

enforce this relationship”

e.g.

COMMENT_ID PARENT_ID

1 NULL

2 1

3 2

4 1

5 4

6 4

7 6

“Maintaining a Tree with Adjacency List:

However, deleting a node from a tree is

more complex. If you want to delete an
entire subtree, you have to issue multiple

queries to find all descendants. Then

remove the descendants from the lowest

level up to satisfy the foreign key

integrity.”

(a) Potential zone

INSERT INTO @TMP_DEPEND_TABLE

SELECT p.TABLE_NAME , p.COLUMN_NAME AS PARENT_COLUMN_NAME ,

c.COLUMN_NAME AS CHILD_COLUMN_NAME

FROM (

SELECT T.TABLE_NAME , COLUMN_NAME , DATA_TYPE

, CHARACTER_MAXIMUM_LENGTH

, CHARACTER_OCTET_LENGTH , NUMERIC_PRECISION, NUMERIC_SCALE

FROM INFORMATION_SCHEMA.TABLES T

inner join INFORMATION_SCHEMA.COLUMNS C

ON (T.TABLE_NAME = C.TABLE_NAME)

where T.TABLE_TYPE = 'BASE TABLE'

AND (C.COLUMN_NAME like '%parent%'

or C.COLUMN_NAME like '%upper%'

or C.COLUMN_NAME like '%child%')) P

left outer join INFORMATION_SCHEMA.COLUMNS c

on (p.TABLE_NAME = c.TABLE_NAME

AND P.DATA_TYPE = C.DATA_TYPE

and isnull(p.CHARACTER_MAXIMUM_LENGTH ,0) = isnull(

c.CHARACTER_MAXIMUM_LENGTH,0)

and isnull(p.CHARACTER_OCTET_LENGTH,0) = isnull(

c.CHARACTER_OCTET_LENGTH ,0)and isnull(p.NUMERIC_PRECISION ,0) = isnull(

c.NUMERIC_PRECISION,0)

and isnull(p.NUMERIC_SCALE ,0) = isnull(c.NUMERIC_SCALE ,0))

where P.COLUMN_NAME <> c.COLUMN_NAME

ORDER BY p.TABLE_NAME , p.COLUMN_NAME

(b) Dynamic SQL

SET @p_stmt = ' INSERT INTO T_CHECK_DEPEND_PARENT (TABLE_NAME

,PARENT_COLUMN_NAME,CHILD_COLUMN_NAME,PARENT_DATA,CNT_RELA

TE_DATA) '

+ ' SELECT ''' + @table_name + ''',''' + @parent_column_name + ''',''' +

@child_column_name + '''' + ', LV1.' + @parent_column_name + ' , COUNT(*) AS

TOTAL_REC '

+ ' FROM ' + @table_name + ' LV1 INNER JOIN ' + @table_name + ' LV2 '

+ ' ON (LV1.' + @parent_column_name + ' = LV2.' + @child_column_name + ') '

+ ' GROUP BY LV1.' + @parent_column_name + ', LV2.' + @child_column_name

+ ' ORDER BY COUNT(*) DESC '

K. Poonyanuch and T. Senivongse, “SQL Antipatterns Detection and Database Refactoring Process”,2017 18th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,

Ishikawa, Japan,2017

3

SQL Antipattern
Definition

by Karwin [1]
Detection Heuristic in Transact-SQL

One Size Fits All

“Every database table must have a

primary key column with the following

characteristics. The presence of a

column named id in every table is so

common that this has become

synonymous with a primary key.

Programmers learning SQL get the

false idea that a primary key always

means a column defined in this

manner.”

e.g.

CREATE TABLE BugsProducts

(id SERIAL PRIMARY KEY,

bug_id BIGINT,

product_id BIGINT, -- . . .);

“Allowing Duplicate Rows: A

compound key consists of multiple

columns. One typical use for a

compound key is in an intersection

table like BugsProducts. The primary

key should ensure that a given

combination of values for bug_id and

product_id appears only once in the

table, even though each value may

appear many times in different

pairings. However, when you use the

mandatory id column as the primary

key, the constraint no longer applies to

two columns that should be unique.”

(a) Potential zone

SELECT DISTINCT TCS.TABLE_NAME , c.COLUMN_NAME

FROM (

SELECT OBJECT_NAME(parent_object_id) AS TABLE_NAME,

 type_desc AS CONSTRAINT_TYPE

FROM sys.objects

WHERE type_desc in ('PRIMARY_KEY_CONSTRAINT' , 'UNIQUE_CONSTRAINT')

) TCS

LEFT OUTER JOIN INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE cs

on (tcs.TABLE_NAME = cs.TABLE_NAME)

LEFT OUTER JOIN INFORMATION_SCHEMA.COLUMNS c

ON (TCS.TABLE_NAME = c.TABLE_NAME)

WHERE cs.COLUMN_NAME <> c.COLUMN_NAME

AND c.COLUMN_NAME NOT IN (SELECT COLUMN_NAME

FROM INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE c2

WHERE C2.TABLE_NAME = tcs.TABLE_NAME) AND DATA_TYPE <> 'datetime'

(b) Dynamic SQL

SET @p_stmt = 'INSERT INTO T_CHECK_ONE_SIZE_FIT_ALL '

 + ' SELECT ''' + @table_name + ''',''' + @column_name + ''''

 + ' ,COUNT(*) AS CNT_TABLE_RECORD , COUNT(DISTINCT ' + @column_name + '

) AS CNT_COLUMN_RECORD ' + ' FROM ' + @table_name + ' WITH (NOLOCK) '

K. Poonyanuch and T. Senivongse, “SQL Antipatterns Detection and Database Refactoring Process”,2017 18th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,

Ishikawa, Japan,2017

4

REFERENCES

[1] B. Karwin, SQL Antipatterns: Avoiding the Pitfalls of Database Programming. The Pragmatic Bookshelf, 2010.

