
DATA ANALYSIS FOR GHOST AI CREATION
IN COMMERCIAL FIGHTING GAMES

Worapoj Thunputtarakul and Vishnu Kotrajaras

Department of Computer Engineering
Chulalongkorn University Bangkok Thailand

worapoj.t@student.chula.ac.th, vishnu@cp.eng.chula.ac.th

KEYWORDS: Ghost AI, Fighting Game, Case base

ABSTRACT

In this paper we present a simple, rapid and efficient
method for creating a ghost AI, an Artificial Intelligence
that can imitate playing styles of players in fighting games.
The created ghost AI can perform combination actions and
make a decision about any movement in a similar fashion to
a player it is copying. We scan a player’s battle data, and
then create situation-action pair cases for its corresponding
ghost AI to use in actual battles. A ghost AI can be created
and run swiftly, using small amounts of memory, making it
suitable for console games. Our method is general enough
to be used in most 2D and 3D fighting games. We carried
out our experiment on Street Fighter Zero 3, one of the
most well crafted fighting games, using AI-TEM testbed
engine.

1. INTRODUCTION

1.1 Ghost AI

In fighting games there have been various attempts at
ghost AIs (AIs that imitate players). Virtua Fighter 4
allowed players to train computer AIs to fight like them.
Such ghosts could then be assigned to fight another player.
However, feedback from players was not good at the time
the game was released because it was hard to train their
ghosts case by case. But in recent years, a ghost AI system
has been used once more, in Tekken5: Dark resurrection.
This time many things have been changed. Players do not
need to train their ghosts in a training mode. They just play
the game normally and the system will mechanically create
their ghosts. This method makes fighting games more
interesting because there will be many fighting styles for
computer controlled opponents. Despite the fact that the
ghost AI system is being acknowledged as the definitive
AI for fighting games, the method for ghost AI creation
remains undisclosed. In this paper, we propose a method
for ghost AI creation using data obtained from game
memory. Our method can be used in most fighting games.
It also requires very small amounts of memory and
therefore is suitable for console games.

1.2 Street Fighter Zero3 (SFZ3)

Street Fighter Zero3 is regarded as one of the best fighting
games of all times. In a fighting game, a player must select
one character from many characters, and fight one by one
with an opponent character (another player or computer AI).

A character can perform normal action such as move,
crouch, jump, guard, punch or kick. There are also special
attacks, such as firing bullets or executing a powerful flying
punch. These special actions can be performed when a
player presses a correct sequence of commands at the right
time. A player must choose to perform actions in various
situations based on the status of his character and opponent
character. Getting into action with SFZ3 requires only a
few minutes of tutorial. Nevertheless, the game has many
ways to play a single character. For that reason, we have
chosen SFZ3 as our game for experimenting with the ghost
AI.

1.3 Testbed Environment

For the reliability of experimental results, game researchers
may want to test their AI on real commercial game
environments (Graepel et al 2004). But such environments
are scarcely available. Results obtained from a researcher
created game may not be convincing enough to warrant an
actual use of discovered techniques in genuine games. Some
researchers used mod of a commercial game (Spronck et al
2004), or a clone game (Ponsen et al 2005). Some
developed test games on their own (Kendall and Kristian
2004) or used a testbed (Bailey and Katchabaw 2005). But
none of those methods fit our experimental goal.
(Thunputtarakul and Kotrajaras 2006) proposed a system to
test AI modules in real commercial games without using any
source code. They implemented a testbed from
VisualboyAdvance (VBA), a Nintendo GameboyAdvance
emulator. The testbed was called AI-TEM. An overview of
AI-TEM is presented in figure 1 and its workflow diagram
is presented in figure 2. By accessing the memory pool of
the emulator, AI-TEM users are able to know states of the
game at any particular moment. For fighting games, a state
can consist of characters’ positions, current animation
frames, health points, etc. Users can insert their AI modules,
in the form of C/C++ code or python script, into the testbed
to control the game characters by providing controller
signals. Our work uses AI-TEM as its testbed.

2. OUR APPROACH FOR CREATING GHOST AI

The main concept of our ghost AI creation is case based AI
construction. We extracted a player character’s reaction in
various situations from battle log data created while playing,
then produced situation-action pairs for the ghost of that
character. Our experiment was made using SFZ3 training

mode with character Ryu versus Ryu. AI-TEM was
modified to suit our experiment. The ghost AI creation
processes are displayed in figure 3. The following
subsections describe each component in the process.

Figure 1: AI-TEM Testbed System Overview.
The Light Blue Modules are VBA Original Modules.

Figure 2: Workflow Diagram of AI-TEM System in SFZ3.

2.1 Obtaining Player Battle Log Data

First, while a player is playing, game states data need to be
dumped from memory onto a battle log file. The data are
used to identify each case in the case based AI system. The
data consist of characters animation, characters positions in
x and y axes, characters health points, characters bullet
positions in x axes, damage that characters obtain in that
frame, player character’s facing direction and the corner
status of characters. Recorded battle log data is in the
following form:

Frame Data no: 00001
P1:Ani=002,X=120,Y=40,bullet=0,damage=0,HP=90
P2:Ani=002,X=240,Y=40,bullet=0,damage=0,HP=90
 :

Frame Data no: 00720
P1:Ani=016,X=150,Y=40,bullet=0,damage=0,HP=30
P2:Ani=030,X=560,Y=40,bullet=0,damage=5,HP=20

 These criteria can change depending on game or user.
Creating the ghost AI while the game is running without
creating the battle log file is possible if complete
information about the game mechanic is known (such as
short or shared animation frame, that will be described in
section 2.3). For SFZ3 on AI-TEM, we did not have such
information. Therefore we had to use the log file.

2.2 Animation Set Database

An animation set database is used for identifying whether a
character animation frame belongs to an animation set. An
example is illustrated in Figure 4. Ryu animation frame

number 0 to 6 belong to animation set ID 0, which
represents Ryu’s standing animation, while frame number
707 to 713 belong to Ryu’s medium punch action, set ID 15.
Together with the battle log file, the animation sets are used
to create situation-action pair cases. In our experiment, we
manually defined this database. There are totally 912
frames for character Ryu. This seems daunting. However, it
is relatively easy for a game company to do because any
game development team usually has access to animation
data.

Figure 3: Ghost AI Creation Processes.

Figure 4: Example of Animation Set Database.

2.3 Scanning Battle Log Data

This process scans through every frame of a player’s battle
log data, trying to find which situation the player decided to
begin his new animation set. For example, in situation A
player1 is standing on the ground at position x=120 and
player2 approaches player1 by jumping in the air at position
x=150, both characters have full health bars and no bullets.
Player1 decides to perform the special anti-air attack called
Shoryuken punch. In short, the following situation-action
pair will eventually be created:
if (Situation == A) do SHORYUKEN;
Now we look at this process in more detail. The process
contains the following subtasks:
2.3.1 Finding Short Animation
Short animation means any animation that occurs for a very
short period of time. It takes place mostly when a character
is changing over from any standing animation loop to
crouching animation loop. See an example animation time
frame in figure 5. In figure 5, our character is standing then
intends to do a crouching kick, but the crouching kick is not
performed immediately. Before the crouching kick is
carried out, a short period of moving forward and crouching
animation is performed. This can happen due to the player
not inputting the right command. For a crouching kick to be
performed correctly without any prefix animation, the
player needs to press down and kick at the same time on his
control pad. In figure 5, the player presses down before

Emulator
Core

(VBA)

Game ROM

Menu Control

Game

State

Observer

Game

State

NormalizeCustom
AI

Module

Python
Interface

Input Controller

Game State Observer
1P Position X

Address: 0x20007C2
Value(16 bits): 002C(h)

002C = 44

Game state Normalizer
Normalize by subtract 44

1P Position X = 0

AI (run loop)
Char1.m_posX = 0

delta = abs(char1.m_posX –
char2.m_posX);

If (delta <= 10)
{

// do attack… press A button
}

AI (update)

Character Class

m_healthPoint:
m_posX:
m_posY:
m_animation:

AI (run loop)
Char1.m_posX = 0

delta = abs(char1.m_posX –
char2.m_posX);

If (delta <= 10)
{

// do attack… press A button
}

AI (update)

Character Class

m_healthPoint:
m_posX:
m_posY:
m_animation:

Input
Controller
Module

Signal
PRESS_A

0 1 2 3 4 5 6

707 708 709 710 711 712 713

Animation Set 0: Standing

Animation Set 15: Medium Punch

kick and also unintentionally presses forward at the same
time as down. Therefore extra animation is triggered.
Nevertheless, the crouching kick is eventually performed
and the prefix animation is so fast a human eye cannot see.
We cannot avoid such minor mistakes made by players.
 In our ghost AI model, detected animation frames tell us
about a player’s intention. Therefore, having the short
animation taking place before the intended animation can
misinform us. We must either identify a player’s intention
from the overall animation or get rid of the short animation
before processing. In our experiment, we chose to do the
latter.
 All battle log data need to be scanned to find which
animation set appears unusually brief, then that set is
marked. Marked animation will not be considered when
creating the AI. For a set of animation to be considered
short, it depends on the set. In our experiment with SFZ3,
short animation was no longer than 6 frames for most of the
animation sets. The only exception was the crouching
animation, of which short animation was no longer than 14
frames because changing from standing to crouching
already took 8 frames.

Figure 5: Short Animation Marking.

2.3.2 Deep Scanning
Some animation frames are shared between many
animation sets. In such case, scanning ahead becomes
necessary in order to identify the correct animation set. For
example, jump straight, jump forward and jump backward
begin with the same animation frames at the beginning.
With the first frame obtained, we can only conclude that the
character is doing an anonymous jump. With further
scanning, we then know which jump the player intends to
do and can go back to change from an anonymous jump to
a specific jump. This step can be omitted if the controller
signal can be completely analyzed. But this is not always
the case.
2.3.3 Exception Animation Sets
Some animation sets should be omitted from our case base
because they do not take place under players’ control.
Obvious examples are various damage animation sets. They
occur as the results of opponent attacks. This type of
animation that appears in the battle log data will be marked
here.
2.3.4 Scanning Changed Animation
This step is the core of our ghost AI creation. After
matching all animation frames to their corresponding
animation sets and marking useless animation, it is time to
scan the battle log data once more to find the situation that
causes the player character to change its animation. Such
situation and the changed animation set that it causes will
be paired to create a situation-action case.
 An example is shown in figure 6, where a player executes
a crouching heavy kick. In 7th-8th frame, our character
changes its animation set from standing to moving forward.

But moving forward lasts only 2 frames so it is a short
animation. It is marked useless and the next animation to
consider will be crouching. However, this crouching is also
a short animation and therefore marked useless (a proper
crouching must last 14 frames or more). As a result, the
next animation (crouching heavy kick) will be taken into
account. The crouching heavy kick does not fit the useless
animation category, so it is regarded as the changed
animation set. Therefore the (situation at 7th frame,
crouching heavy kick) is added to the case based AI.

Figure 6: Scan Animation Change.

2.3.5 Situation Encryption
If the game needs to compare ten or more criteria
(animation, position, bullet, etc.) to judge whether the
current situation in the game is the same as any existing
condition in our situation-action database, it will be a waste
of processing power. Any game situation should be defined
in simple form for easy comparison and discovery. We
propose a method to encrypt a fighting game state situation
into a 32-bit integer (capable of holding 4,294,967,296
values). The bits can be divided into small 1-8bits sections
as shown in table 1.

Table 1: Detail of Situation Encryption.

There are ten criteria that we use for identifying the game
state (ten rows in table1). Bit 1 to 8 store the animation set
ID of the action that the player character performs in that
frame situation. The animation set value comes from the
animation set database described in section 2.2. When the
player character is in any normal standing frame (frame id 0
to 6), the value in the first 8 bit will be 0. As a brief
example, the situation that two characters are standing at
the beginning of a battle will be encrypted as “1,792”.
Every criterion for this particular scene will have 0 as its
value, except the delta position in the x axis, which will
have its value equal to 7 due to the distance between
characters at the beginning of battle (150 units). Details of
this encryption can be changed to match other games or
other platforms.

Stand

2 2 2 2 2 3 7 2 2 2 2 22 2 2 2 2 3 7 2 2 2 2 2

Move Forward Crouch Crouch Kick Heavy

Example time frame (1f = 1/60 sec)
....

2 2 2 2 2 M M 2 2 2 2 2

2 2 2 1 2 2 2 2 1 2 2 2 2

stand fw crouch crouch kick heavy

2 2 2 1 2 2 2 2 1 2 2 2 22 2 2 1 2 2 2 2 1 2 2 2 2

stand fw crouch crouch kick heavy

A B C

AA B C

1

1

1

7

3

1

4

2

4

8

nBits

Player character side. [Left or Right]230

Is player at corner. [Yes or No]231

Is enemy at corner. [Yes or No]232

Damage value that enemy got in that frame (use for
combination attack decision).

12823-29

Delta position in X axis between player character and
enemy’s bullet. [Divide distance into 8 ranges]

820-22

Character’s bullet state. [Have or not]219

Enemy character state. [Group into 6 stages: Normal,
Attacking, Blocking, Dizzy, Damaged, Invulnerable]

1615-18

Delta position in Y axis. [Divide distance into 4 ranges]413-14

Delta position in X axis. [Divide distance into 9 ranges]169-12

Player character animation set ID. [As said in section 2.2]2561-8

MeaningsnValuesBit no.

1

1

1

7

3

1

4

2

4

8

nBits

Player character side. [Left or Right]230

Is player at corner. [Yes or No]231

Is enemy at corner. [Yes or No]232

Damage value that enemy got in that frame (use for
combination attack decision).

12823-29

Delta position in X axis between player character and
enemy’s bullet. [Divide distance into 8 ranges]

820-22

Character’s bullet state. [Have or not]219

Enemy character state. [Group into 6 stages: Normal,
Attacking, Blocking, Dizzy, Damaged, Invulnerable]

1615-18

Delta position in Y axis. [Divide distance into 4 ranges]413-14

Delta position in X axis. [Divide distance into 9 ranges]169-12

Player character animation set ID. [As said in section 2.2]2561-8

MeaningsnValuesBit no.

2.4 Creating Ghost AI File

When the scanning process discovers that animation set
change takes place, the situation in the frame before that
discovered frame is encrypted into 32-bit data (integer) by
the process in section 2.3.5. Its corresponding case base can
now be created by combining the situation ID (32-bit
situation encryption result) with its response action list. An
example of our case base is shown below.

SituationID: 0000000000
TotalRatio: 03 TotalNextAni: 02
 NextAni: Punch-Light-Close Ratio 2
 NextAni: Kick-Heavy-Close Ratio 1
:
SituationID: 2684356352
TotalRatio: 01 TotalNextAni: 01
 NextAni: Hadouken Ratio 1

 Each case will have situationID for representing each
game situation. TotalRatio is the number of incidents the
player encounters that situation. TotalNextAni is the
number of different animation sets that the player performs
when facing that situation. It is followed by the list of those
animation sets and the number of times the player performs
each animation set. The ratio of each animation set and the
total number of sets will be used in response selection while
the ghost AI is actually running.
 From above example cases, the player encountered
situation 0 three times and decided to do a light-punch
twice and a heavy kick once. These cases should be kept in
a data structure that is convenient and fast to insert and find
because we need to know whether the situation is a new
situation that player never encounters (so we can add new
data from scratch), or an old situation that updates the
response action list. In our experiment we chose map of
standard template library (STL), which is a balanced binary
search tree, to store the cases. The tree was written into our
ghost AI file. Using file allows for future modifications of
the knowledge base.

3. USING GHOST AI

To run the ghost AI, first, the game needs to load any
required database such as the animation set database. Then
it needs to load the ghost AI case base into some data
structure that allows quick finding and matching. A new
case is never inserted while running the ghost AI.
 From the data in section 2.4, the game first loads all
cases into the map. When the situationID 0 takes place,
the case that has situationID 0 in the map is searched. It
will be found and returned. That case has a total ratio of 3
and has two next animations (light-punch with ratio 2 and
heavy-kick with ratio 1). The game then randomly selects
one of these actions corresponding to the ratio value and
sends a command to perform that action.
 When a ghost AI is running, if used with a suitable data
structure such as a balanced binary search tree, searching
any case is guaranteed to use O(log n) amount of time
(when n is the number of cases). A ghost AI with one
thousand cases should find a result in the tenth search. Each
case based data uses approximately 40 bytes of memory.

Therefore, a thousand-case ghost requires only 40KB of
memory. In short, creating and running our ghost AI does
not slow down the game or consume much memory at all.

4. VERIFYING METHOD AND RESULTS

The best way to evaluate a ghost AI’s similarity to its
creator should be: letting its creator verify with his own
eyes. But sometimes, people can make incorrect judgments,
forgetting even their own playing styles. Therefore we
designed a measurable method for evaluating the ghost AI.

4.1 The Experiment

We appointed thirty two SFZ3 players and let them play the
game for approximately 2 to 10 minutes. We recorded their
game events in VMV file format (recording the beginning
game state and controller sequence) and created their ghost
AI. After that, we let the player semi-play the game again
two more times, while their ghost AI was playing and while
their own playing movie was playing. The term semi-play
means players see their ghosts or their own movies playing
while pressing the controller, imagining that they are
controlling their characters in that situation. We wanted to
compare the controller signals of the ghosts with the
players’ signals. We also wanted to compare the players
against their video.
 Controller signals should not be compared frame-by-
frame, because only 1 frame delay (1/60 second) will cause
the rest of the matching process to fail.
 Therefore the controller signals need to be normalized
before any comparison can be done. In our approach, we
normalized the signals by splitting the signals into parts.
Each part contained approximately 5 to 15 signals. After
that, we combined all the same signals that appear
continuous into one signal (when a player presses one
button normally, it takes approximately 6-8 frame, so it
gives out 6-8 continuous signals). For example, if the
signals are as follows:

Raw ghost signal:
16,16,16,32,32,32,64,64,64,64,128,128,256,256,256
Raw player signal:
16,16,16,16,16,16,32,32,32,32,64,64,128,128,128

After normalized they will be like these.

Normalized ghost signal: 16,32,64,128,256
Normalized player signal:16,32,64,128,0

 It can be seen from the example that if we compare raw
signals directly the result will be 3 of 15 signals match. The
matching result is not correct because identical commands
that are pressed for slightly different amount of time will be
regarded as being different. However, if we compare the
two signals after our normalization, the match is 4 out of 5.
 We had two methods for slicing controller signals. In the
first method, we sliced every 15 frames. We had tried
several values and this value gave the best result. Too small
values made the normalization meaningless, while too large
values put more than one signals in the same frame, making
the result unreliable. In the second method, we performed
the slicing every time the signal of the ghost AI or the

player movie changed values, based on the assumption that
matching signals should occur in the same frame time
period as its counterpart. With the second method, we
always had one signal per slicing window. We also gave
score if there were some similarity between controller
signals. For example, if the ghost AI was pressing down-
forward and the player was pressing forward only, we gave
similarity score of 0.5 (50%) to the ghost AI.

4.2 Result

The result of our experiment is illustrated in figure 7 and
table 2. Player_Player% is the similarity (in percentage)
between each player’s own movie and his actual control
when re-playing the situation in the movie. Ghost
AI_Player% compares each ghost AI with its corresponding
player’s re-play. Delta% is the difference between the two
comparisons. Table 2 displays the overall statistical
summary. Delta A and Delta B indicate delta percentage
points between the result of [player’s own movie vs. player]
and [ghost AI vs. player]. Score is the score that the players
evaluate their ghosts’ similarity to their fighting styles
based on their feelings.
 Both signal slicing methods gave similar results. But the
second method gave less matching percentage points. This
is likely because the number of signals after the
normalization was less than in the first method. With many
long signals in play, such as idle signals, the first method
scored better because it did not compress long signals into
one signal. For the first method, the average similarity
between ghosts and the players is 26.33%. This may seem
small. But if we look at the comparison between the players
and their own movies, the similarity is only 34.96%. The
ghosts’ performances were therefore very close to players’
performances (75.31% close). Some ghosts even scored
better than their corresponding players.
 An average satisfactory score given by players is 72.2%,
which is good. The players thought that the ghosts
sometimes performed more attacks and fewer defenses than
their creators. Some players could not distinguish between
their ghosts and their own movies while semi-playing. (We
did not tell the players which engine was really controlling
the characters).

5. CONCLUSION AND FUTURE WORK

We propose a method and concept for creating ghost AI
without having to know game source code. We used AI-
TEM, an emulator based testbed to provide a commercial
game testing environment. Our concept for ghost AI
creation is general for all fighting games. Using SFZ3,
which is a very well respected commercial game, with its
basic systems being used in almost all fighting games, our
findings are guaranteed to be applicable to other
commercial games.
 Our method produces good results. Ghost AIs display
their creators’ playing styles even when the training time is
short. The two-minute average training time we used is
equal to a match time in an average fighting game.
 For future experiment we are interested in exploring
techniques for ghost AI in team based fighting games,
where characters can cooperate. Another interesting future

work is developing AI that can adapt and counter an
opponent’s play style.

Figure 7: Players vs. Movies and Players vs. Ghosts.

Table 2: Summary Result of Experiment. A: Slice Every 15
Frames, B: Slice Every Time When Signal Change.

REFERENCES

Bailey, C. and M. J. Katchabaw. 2005. An Experimental Testbed
to Enable Auto-Dynamic Difficulty in Modern Video Games.
Proceedings of the 2005 GameOn North America Conference.
Montreal, Canada.

Graepel Thore, Ralf Herbrich, Julian Gold. 2004. Learning to fight.
International Conference on Computer Games: Artificial
Intelligence, Design and Education

Kendall Graham, Kristian Spoerer. 2004. Scripting the Game of
Lemmings with a Genetic Algorithm. Proceedings of the 2004
Congress on Evolutionary Computation, IEEE Press,
Piscataway, NJ, pp. 117-124

Ponsen Marc J.V., Hector Munoz-Avila, Pieter Spronck, and
David W. Aha. 2005. Automatically Acquiring Domain
Knowledge For Adaptive Game AI Using Evolutionary
Learning. Proceedings The Twentieth National Conference on
Artificial Intelligence.

Spronck Pieter, Ida Sprinkhuizen-Juyper, Eric Postma. 2004.
Online Adaptation Of Game Opponent AI With Dynamic
Scripting. International Journal of Intelligent Games and
Simulation, Vol. 3, No. 1, University of Wolverhampton and
EUROSIS, pp. 45–53.

Thunputtarakul Worapoj and Kotrajaras Vishnu. 2006. AI-TEM:
Testing Artificial Intelligence in Commercial Game using
Emulator. 8th CGAMES International Conference on Computer
Games: AI, Animation, Mobile, Educational & Serious Games.
Louisville Kentucky, USA.

