
1

Prolog, an introduction

Logic programming

• we defines facts and rules and give this to the
logic program

• Ask it what we want to know
• It will look and reason, using available facts

and rules, and then tells us an answer (or
answers)

2

Fact and rule
• Comes from Horn clause

– HB1,B2,…Bn
– Which means if all the Bs are true, then H is also true

• In Prolog, we write fact in the form
– predicate(atom1,….)
– Predicate is a name that we give to a relation
– An atom is a constant value, usually written in lower case
– Fact is the H part of horn clause

• Rule is in the form
– predicate(Var1,…):- predicate1(…), predicate2(…), …
– Where Var1 is a variable, usually begins with upper case
– Yes, it’s just a rewriting of

• HB1,B2,…Bn
– Fact is a rule that does not have the right hand side.

Means “and”

Prolog reasoning
• If we have this fact and rule

– rainy(london).
– rainy(bangkok).
– dull(X):- rainy(X).
– We can ask (or query) prolog on its command prompt

• ?- dull(C). (is there a C that makes this predicate true?)
• It will automatically try to substitute atoms in its fact into its rule such that our

question gives the answer true
• in this example, we begin with dull(X), so the program first chooses an atom for X,

that is london (our first atom in this example)
• The program looks to see if there is rainy(london). There is!
• So the substitution gives the result “true”

– The Prolog will answer
• C= london

– To find an alternative answer, type “;” and “Enter”
– It’ll give C= bangkok
– If it cannot find any more answer, it will answer “no”

3

How to ask question
• First, write a prolog program in a .pl file.
• Then load the file, using a prolog interpreter. Or

use the consult command:
?- consult(‘file.pl’).

If you want to load the same program again, use
reconsult. -> prevent two copies in memory.

A backslash in the file name may have to be written
twice, such as c:\\myprog.pl

Do not forget
this.

• Then you can ask question.
• To exit, use command:

halt.

4

Example 2
/* Clause 1 */ located_in(atlanta,georgia).
/* Clause 2 */ located_in(houston,texas).
/* Clause 3 */ located_in(austin,texas).
/* Clause 4 */ located_in(toronto,ontario).
/* Clause 5 */ located_in(X,usa) :- located_in(X,georgia).
/* Clause 6 */ located_in(X,usa) :- located_in(X,texas).
/* Clause 7 */ located_in(X,canada) :- located_in(X,ontario).
/* Clause 8 */ located_in(X,north_america) :- located_in(X,usa).
/* Clause 9 */ located_in(X,north_america) :- located_in(X,canada).

• To ask whether atlanta is in georgia:
?- located_in(atlanta,georgia).

– This query matches clause 1. So prolog replies
“yes”.

?- located_in(atlanta,usa).
This query can be solve by calling clause 5, and

then clause 1. So prolog replies “yes”.

5

?-located_in(atlanta,texas).
this query gets “no” as its answer because this
fact cannot be deduced from the knowledge
base.

The query succeeds if it gets a “yes” and fails if
it gets a “no”.

Prolog can fill in the variables

?- located_in(X, texas).
This is a query for prolog to find X that make the

above query true.

• This query can have multiple solutions: both
houston and austin are in texas.

• What prolog does is: find one solution and
asks you whether to look for another.

• ->

6

• The process will look like
X = houston
More (y/n)? y
X = austin
More (y/n)? y
no Cannot find any

more solution

Some implementations
let you type semicolon

without asking any
question.

Sometimes it won’t let you ask
for alternatives

• This is because:
– Your query prints output, so prolog assumes you

do not want any more solutions. For example:
?- located_in(X,texas), write(X). will print only

one answer.

– Your query contains no variable. Prolog will only
print “yes” once.

Print out

7

What about printing all solutions

• To get all the cities in texas:
?-located_in(X,texas), write(X), nl, fail.

New line

Rejects the current solution. Forcing prolog
to go back and substitutes other alternatives

for X.

located_in is said to be
nondeterministic

• Because there can be more than one answer.

8

Any of the arguments can be
queried

?- located_in(austin,X).

?- located_in(X, texas).

?- located_in(X,Y).

Gets the names of regions that contain
austin.

Gets the names of the cities that are in
texas.

Gets all the pairs that of located_in that
it can find or deduce.

?-located_in(X,X).

Forces the two arguments to have the same
value, which will result in a fail.

9

Unification and variable
instantiation

• To solve a query
– Need to match it with a fact or the left hand side of

a rule.
• Unification is the process of assigning a value

to a variable.

?- located_in(austin,north_america).
unifies with the head of clause 8

The right hand side of clause 8 then becomes the
new goal.

We can write the steps as follows.

located_in(X,north_america)

austin

10

Goal: ?- located_in(austin,north_america).
Clause 8: located_in(X,north_america) :- located_in(X,usa).
Instantiation: X = austin
New goal: ?- located_in(austin,usa).

Goal: ?- located_in(austin,usa).
Clause 6: located_in(X,usa) :- located_in(X,texas).
Instantiation: X = austin
New goal: ?- located_in(austin,texas).

The new goal matches clause 3. no further query. The program
terminates successfully.

If no match is found then the program terminates with failure.
X that we substitute in the two clauses are considered to be

different.

Clause 5 is tested first
but it doesn’t work.(we

skip that for now)

• Each instantiation applies only to one clause
and only to one invocation of that clause.

• X, once instantiated, all X’s in the clause take
on the same value at once.

• Instantiation is not storing a value in a
variable.

• It is more like passing a parameter.

11

?- located_in(austin,X).
X = texas
?- write(X).
X is uninstantiated

No longer has a value. Since
the value is gone once the first

query was answered.

backtracking

?- located_in(austin,usa).
If we instantiate it with clause 5, we get:
?- located_in(austin,georgia). , which fails

So how does prolog know that it needs to choose
clause 6, not clause 5.

It does not know!

12

• It just tries the rule from top to bottom.
• If a rule does not lead to success, it backs up

and tries another.
• So, in the example, it actually tries clause 5

first. When fails, it backs up and tries clause 6.

?- located_in(toronto,north_america).

See how prolog solve this in a
tree diagram.

• tree

13

• Backtracking always goes back to the most
recent untried alternative.

• Backtracking also takes place when a user asks
for an alternative solution.

• The searching strategy that prolog uses is
called depth first search.

syntax

• Atom
– Names of individual and predicates.
– Normally begins with a lowercase letter.
– Can contain letters, digits, underscore.
– Anything in single quotes are also atom:

• ‘don’’t worry’
• ‘a very long atom’
• ‘’

14

• Structure
mother_of(cathy,maria)

An atom alone is a structure too.

atom

Opening
parenthesis

arguments Closing paren.

Atom at the beginning
is called functor

• A rule is also a structure
a(X):- b(X). Can be written as
:- (a(X),b(X))

This is normally infix

15

• Variable
– Begin with capital letter or underscore.
– A variable name can contain letters, digits,

underscore.

Which_ever
_howdy

• You can insert space or new line anywhere,
except to
– Break up an atom
– Put anything between a functor and the opening

paranthesis
• located_in(toronto,north_america).

Space here is okSpace here
is not ok

16

• Clauses from the same predicate must be put in
a group:

mother(…).
mother(…).
father(…).
father(…).

mother(…).
father(…).
mother(…).
father(…).

How prolog reacts depends
on the implementation

Defining relations

• See example on family tree in the file family.pl

17

• It can answer questions such as:
– Who is Cahty’s mother?

– Who is Hazel the mother of?

• But there is more!

?-mother(X,cathy).
X= melody

?-mother(hazel, A).
A= michael
A= julie

• We can define other relations in terms of the
ones already defined. Such as:

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

•

The computer will try the first rule. If it
does not work or an alternative is
requested, it backs up to try the
second rule.

18

Conjoined goals (“AND”)

• Suppose we want to find out Michael’s father
and the name of that person’s father.

?-father(F,michael), father(G,F).
F = charles_gordon G= charles

We get the same answer if we reverse the
subgoals’ order. But the actual computation is
longer because we get more backtracking.

and

AND can be put in a rule

grandfather(G,C):- father(F,C), father(G,F).
grandfather(G,C):- mother(M,C),father(G,M).

19

Disjoint goals (“OR”)

• Prolog has semicolon, but it causes error very
often, being mistook for comma.

• Therefore it is best to state two rules.
• Like the parent example.

Negative goals (“NOT”)

• \+ is pronounced “not” or “cannot prove”.
• It takes any goal as its argument.
• If g is any goal, then \+g succeeds if g fails,

and fails if g succeeds.
• See examples next page

20

?- father(michael,cathy).
yes
?- \+ father(michael,cathy).
no
?- father(michael,melody).
no
?- \+ father(michael,melody).
yes

Negation as failure:
You cannot state a
negative fact in
prolog.

So what you can do
is conclude a
negative statement if
you cannot conclude
the corresponding
positive statement.

• Rules can contain \+ . For example:
non_parent(X,Y):- \+ father(X,Y), \+

mother(X,Y).

“X is considered not a parent of Y if we
cannot prove that X is a father of Y, and

cannot prove that X is a mother of Y”

21

Here are the results from querying family.pl
?- non_parent(elmo,cathy).
yes
?- non_parent(sharon,cathy).
yes

non_parent fails if we find actual parent-child
pair.

?- non_parent(michael,cathy).
no

• What if you ask about people who are not in
the knowledge base at all?

?- non_parent(donald,achsa).
yes

Actually, Donald is the father of Achsa, but
family.pl does not know about it.

This is because of prolog’s CLOSED-WORLDS
ASSUMPTION.

22

• A query preceded by \+ never returns a value.

?- \+ father(X,Y).

It attempts to solve father(X,Y) and finds a solution
(it succeeds).

Therefore \+ father(X,Y) fails. And because it fails, it
does not report variable instantiations.

Example of the weakness of
negation

innocent(peter_pan).
Innocent(winnie_the_pooh).
innocent(X):-occupation(X, nun).

guilty(jack_the_ripper).
guilty(X):-occupation(X,thief).

?-innocent(saint_francis).
no
?-guilty(saint_francis).
no

guilty(X):- \+(innocent(X)). will make it worse.

Not in
database, so
he cannot be
proven to be
innocent.

23

• The order of the subgoals with \+ can
affect the outcome.

• Let’s add:
blue_eyed(cathy). Then ask:

?- blue_eyed(X), non_parent(X,Y).
X= cathy
?- non_parent(X,Y), blue_eyed(X).
no

This one fails! Because we can find a pair of
parent(X,Y).

cathy

Can be proven false because a value is instantiated.

Negation can apply to a
compound goal

blue_eyed_non_grandparent(X):-
blue_eyed(X),
\+ (parent(X,Y), parent(Y,Z)).

You are a blue-eyed non grandparent if:
You have blue eye, and you are not the
parent of some person Y who is in turn

the parent of some person Z.

There must be a space here.

24

• Finally
• \+ cannot appear in a fact.

Equality
• Let’s define sibling:

– Two people are sibling if they have the same
mother.

Sibling(X,Y):-mother(M,X), mother(M,Y).

When we put this in family.pl and ask for all pairs of
sibling, we get one of the solution as shown:

X = cathy Y = cathy

Therefore we need to say that X and Y are not the
same.

25

Sibling(X,Y):- mother(M,X), mother(M,Y), \+
X == Y.

Now we get:
X=cathy Y=sharon
X = sharon Y=cathy

These are 2 different answers,
as far as prolog is concerned.

• X is an only child if X’s mother does not have
another child different from X.
only_child(X):-mother(M,X),

\+ (mother(M,Y), \+ X== Y).

26

• == tests whether its arguments already have
the same value.

• = attempts to unify its arguments with each
other, and succeeds if it can do so.

• With the two arguments instantiated, the two
equality tests behave exactly the same.

Equality test sometimes waste
time

parent_of_cathy(X):-parent(X,Y), Y = cathy.

parent_of_cathy(X):-parent(X,cathy).

This one reduces the number
of steps.

27

• But we need equality tests in programs
that reads inputs from keyboard since we
cannot know the value(s) in advance.

?- read(X), write(X), X = cathy.

Anonymous variable

• Suppose we want to find out if Hazel is a
mother but we do not care whose mother she
is:
?- mother(hazel,_).

• The values of anonymous variables are not
printed out.

• Successive anonymous variables in the same
clause do not take on the same value.

Matches anything, but
never has a value.

28

• Use it when a variable occurs only once and its
value is never used.
is_a_grandmother(X):-mother(X,Y),
parent(Y,_).

Cannot be anonymous because
it has to occur in 2 places with

the same value.

Avoiding endless computation

married(michael,melody).
married(greg,crystal).
married(jim,eleanor).
married(X,Y):-married(Y,X).

• Lets ask:
?- married(don,jane).

29

?- married(don,jane).

• The new goal becomes
?- married(jane,don).

Go on forever!

• We can solve it by defining another predicate
that will take arguments in both order.

?-couple(X,Y):-married(X,Y).
?-couple(Y,X):-married(X,Y).

30

• loop in recursive call:
ancestor(X,Y):- parent(X,Y).
ancestor(X,Y):- ancestor(X,Z), ancestor(Z,Y).

?-ancestor(cathy,Who).

• Prolog will try the first rule, fail, then try the second
rule, which gets us a new goal:

?- ancestor(cathy,Z), ancestor(Z,Who).

This is effectively the same as
before. Infinite loop follows.

• To solve it:
ancestor(X,Y):- parent(X,Z), ancestor(Z,Y).

• New goal:
?-parent(cahty,Z), ancestor(Z,Who).

Force a more
specific computation.

Now it has a chance to fail here.

31

positive_integer(1).
positive_integer(X):-Y is X-1,

positive_integer(Y).

?- positive_integer(2.5).
Will cause infinite call.

Base case is not
good enough.

• Two rules call each other:
human_being(X):-person(X).
person(X):- human_being(X).

• We only need to use one of the rule.

32

Using the debugger

?- spy(located_in/2).
yes
?- trace
yes
?-located_in(toronto,canada).
**(0) CALL: located_in(toronto,canada) ? >
** (1) CALL: located_in(toronto,ontario) ? >
**(1) EXIT: located_in(toronto,ontario) ? >
**(0) EXIT: located_in(toronto,canada) ? >
yes

Specify the predicate to
trace.

Turn on the debugger.

Enter

Enter
Enter

Enter

?-located_in(What,texas).

**(0) CALL: located_in(_0085,texas) ? >
**(0) EXIT: located_in(houston,texas) ? >
What = houston ->;
**(0) REDO: located_in(houston,texas) ? >
**(0) EXIT: located_in(austin,texas) ? >
What = austin->;
**(0) REDO: located_in(austin,texas) ? >
**(0) FAIL: located_in(_0085,texas) ? >
no

Uninstantiated
variable

Begin a query

Going for alternative solution.

A query has succeeded.

A query fails.

33

• You can type s for skip and a for abort.
• To turn off the debugger, type:

?- notrace.

Styles of encoding knowledge
• What if we change family.pl to:
parent(michael, cathy).
parent(melody, cathy).
parent(charles_gordon, michael).
parent(hazel, michael).
male(michael).
male(charles_gordon).
female(cathy).
female(melody).
female(hazel).
father(X,Y):- parent(X,Y), male(X).
mother(X,Y):- parent(X,Y), female(X).

Better because
information is broken

down into simpler
concepts.

We know for sure
who is male/female.

But you will have to
define who is
male/female.

34

• Which is faster the old family.pl or the new
ones?
– Depends on queries.

• Another style is data-record format:
person(cathy, female, michael, melody).

• We can define the rules as follows:
male(X) :- person(X,male,_,_).
father(F,C):- person(C,_,F,_).

This is only good for a conversion from
another database.

father mother

35

Example on class taking
takes(pai, proglang).
takes(pai, algorithm).
takes(pam, automata).
takes(pam, algorithm).
classmates(X,Y):- takes(X,Z), takes(Y,Z), X\==Y.

• When we ask Prolog, we can ask in many ways
– ?takes(X, proglang).
– ?takes(pam,Y).
– ?takes(X,Y)

• Prolog will find X and Y that makes the predicate (that
we use as a question) true.

Let’s ask ?-calssmates(pai,Y).
• By the rule, the program must look for

– takes(pai,Z), takes(Y,Z), pai\==Y.
• Consider the first clause, Z is substituted with proglang

(because it is in the first fact that we find). So, next step,
we need to find
– takes(Y,proglang). Y is substituted by pai because it is the first

fact in the fact list
– so we will get takes(pai,proglang), takes(pai,proglang),

pai\==pai.
– The last predicate (pai\==pai) will be wrong, so we need to go

back to the previous predicate and change its substitution
– Y cannot have any other value, because only pai studies

proglang, so we have to go back to re-substitute Z

36

• Z is now substituted with algorithm. So,
next step, we need to find
– takes(Y,algorithm). Y is substituted by pai
– so we will get takes(pai, algorithm), takes(pai,

algorithm), pai\==pai.
– The last predicate (pai\==pai) will be wrong,

so we need to go back to the previous
predicate and change its substitution

– Y is re-substituted by pam (her name is next
in a similar predicate)

– so we will get takes(pai, algorithm),
takes(pam, algorithm), pai\==pam.

• This is now true, with Y = pam
• So the answer is Y = pam

• ?-classmates(pai, Y).

takes(pai, proglang).
takes(pai, algorithm).
takes(pam, automata).
takes(pam, algorithm).
classmates(X,Y):- takes(X,Z), takes(Y,Z), X\==Y.

takes(pai,Z),

algorithm

takes(Y,Z), X\==Y.

algorithm

pam
true

37

Small point: Testing equality

• ? – a=a.
– Prolog will answer yes

• ? – f(a,b) = f(a,b).
– Prolog will answer yes

• ?- f(a,b) = f(X,b).
– Prolog will answer X=a
– If we type “;” , it will answer no (because it

cannot find anything else that match)

Small point 2:arithmetic
• If we ask ?- (2+3) = 5
• Prolog will answer “no” because it sees (2+3) as

a +(2,3) structure
• Prolog thus have a special function
• is(X,Y) this function will compare X and the

arithmetic value of Y (there are prefix and infix
versions of this function)

• So, asking ?-is(X,1+2). will return X=3
• But asking ?- is(1+2,4-1). will return “no”

– Because it only evaluates the second argument :P
– so we should ask ?- is(Y,1+2), is(Y,4-1) instead

