
Constructing a prolog program

• We will learn predicates for:
– input and output.
– Modifying the knowledge base.
– Controlling backtracking process.

Output: write, nl, display

• write: takes any prolog term and displays that
term on screen.

• nl: a new line.

?- write('Hello'), nl, write('Goodbye').
Hello
Goodbye
true.

?- mother(X,cathy), write('The mother of Cathy
is '), write(X).
The mother of Cathy is melody
X = melody ;
false.

In lower case, just like in
the knowledge base

The single quote is lost.

This is useful if we want to write to a file and
read back, because an atom will not be splited
into two atoms.

?- writeq('hello there').
'hello there'
true.

writeq
maintains

the
quotes.

For write(X), if X is not instantiated, prolog will
print a variable with no name: such as _G232

?- write(3.14*2).
3.14*2
true. No math

calculation

• display
– Put all functions in front of their arguments. For

example:
?- display(2+2).
+(2, 2)
true.

?- display('don''t panic').
don't panic
true.

• write_canonical
– Combines the effect of writeq and display:

?- write_canonical(2+3).
+(2, 3)
true.

?- write_canonical('hello there').
'hello there'
true.

List all solutions with fail & write

• Let us have
capital_of(georgia,atlanta).

capital_of(california,sacramento).

capital_of(florida,tallahassee).

capital_of(maine,augusta).

• Let’s ask:

?- capital_of(State,City), write(City), write(' is
the capital of '), write(State), nl, fail.

atlanta is the capital of georgia

sacramento is the capital of california

tallahassee is the capital of florida

augusta is the capital of maine
false.

The writes print what they have. They do not care whether
their values make the query succeed in the end.

• write, writeq, nl, display do not produce
alternative solutions.

• Therefore, when fail is executed, prolog has to
go back to do its unification at
capital_of(State,City).

Predicates as subroutines

?- capital_of(State,City), write(City), write(' is
the capital of '), write(State), nl, fail.

print_capitals :- capital_of(State,City),
write(City), write(' is the capital of '),
write(State), nl, fail.

We can put this query as one of
our rules in the file.

We can even make the program
structure clearer. ->

print_a_capital :- capital_of(State,City),
write(City), write(' is the capital of '),
write(State), nl.

print_capitals :- print_a_capital, fail.

print_capitals.

It acts like procedures in
Pascal or method in Java.

Make it ends
with success.

read
• Accepts any prolog term from the keyboard.
• The term must be like in a prolog program.
• Must end with a period. (otherwise prolog will wait for it

forever)

?- read(X).
| hello.
X = hello.

?- read(X).
| hello there.
ERROR: Stream user_input:5:61 Syntax error: Operator

expected

2 terms! Prolog does not accept it.

• If the argument of read is already instantiated,
then read will try to unify that argument with
what the user types.

?- read(hello).
| hello.
true.

?- read(hello).
| goodbye.
false.

?- read(X).
| mother(melody,cathy).
X = mother(melody, cathy).

Any legal prolog term will work.

• read does not produce alternative solutions
upon backtracking.

?- read(X).
| f(Y) :- g(Y).
X = (f(_G307):-g(_G307)).

Uninstantiated
variable.

• Now we can create a program that interacts
with users better. See interac.pl

capital_of(georgia,atlanta).
capital_of(florida,tallahassee).

go :- write('What state do you want to know about?'),nl,
write('Type its name, all lower case, followed by a period.'),nl,
read(State),
capital_of(State,City),
write('Its capital is: '),write(City),nl.

?- go.

What state do you want to know about?

Type its name, all lower case, followed by a
period.

|: florida.

Its capital is: tallahassee
true.

Manipulating the knowledge base

• A prolog program can modify itself.
– asserta : adds clause at the beginning of the

clauses of the same name
– assertz : adds clause at the end of the clauses of the

same name
– retract : removes a clause

• The commands change the file in memory. The
disk file is unaffected.

• Before any of these can work, you must
indicate in your program that you want a
predicate to be modifiable.

• You let your interpreter know by adding
dynamic rule in your program. For example:

:- dynamic capital_of/2.

capital_of(georgia,atlanta).
capital_of(florida,tallahassee).

Number of arguments

•Then you can add/remove things

?- asserta(capital_of(hawaii,honolulu)).

Adds this new fact before the other
clauses for capital_of.

• Retract
– Its argument is either

• A complete clause, or
• A structure that matches the clause but contains some

uninstantiated variables.

?- retract(mother(melody,cathy)).

?- retract(mother(X,Y)).

Removes mother(melody,cathy) from the knowledge
base.

Finds the first clause that matches mother(X,Y) and removes it. X and
Y are instantiated to the arguments found in that clause. If there is
no matching clause, retract fails.

?- retract(capital_of(X,Y)).

X = hawaii,

Y = honolulu ;

X = georgia,
Y = atlanta .

It finds the first clause of
capital_of and removes it. Then
our request for alternative
solution makes prolog removes
the first clause at that moment.

Overall, 2 clauses are removed.
The result of assert and retract
cannot be undone upon
backtracking.

• Extra parentheses are required when the argument contains
comma or an if operator:

• See family.pl that I inserted male(…).

?- asserta((father(X) :- male(X))).
true.

36 ?- father(F).
F = michael ;
F = charles_gordon ;
F = charles ;
F = jim ;
F = elmo ;
F = greg ;
F = tim.

:- dynamic male/1.
:- dynamic father/1.
should be in the
prolog code.

retract((parent(X,Y) :- Z)).
Z = father(X, Y) .

9 ?- parent(X,Y).
X = melody,
Y = cathy ;
X = melody,
Y = sharon ;
X = hazel,
Y = michael ;
X = hazel,
Y = julie ;
X = eleanor,
Y = melody ;
X = eleanor,
Y = crystal ;
X = crystal,
Y = stephanie ;
X = crystal,
Y = danielle ;
X = julie,
Y = tim.

Take out the first rule about
parent.

Father is gone.

• abolish
– Removes all clauses of the specified name and

arity.

?- abolish(father/2).

true.

3 ?- father(X,cathy).
ERROR: Undefined procedure: father/2
ERROR: However, there are definitions for:
ERROR: father/1
false.

If you want to add things
back again, you may have

to exit and re-launch
prolog.

• listing
– List everything in the knowledge base at that moment.
– To see only a particular predicate, see an example below :

?- listing(mother/2).
mother(melody, cathy).
mother(melody, sharon).
mother(hazel, michael).
mother(hazel, julie).
mother(eleanor, melody).
mother(eleanor, crystal).
mother(crystal, stephanie).
mother(crystal, danielle).
mother(julie, tim).

true.

Static and dynamic predicates

• Static = cannot assert, retract, etc.
• Dynamic = can assert, retract, etc.
• Normally, all are static unless you make them

dynamic.
• In some implementations, all are dynamic. In

others, they are dynamic if you load them with
consult or reconsult, and static if you load
them with compile.

• Any predicate that is created with assert is
automatically dynamic.

• Querying a non existing predicate normally
causes prolog to raise an error condition.
– But if we tell prolog that the predicate is dynamic:

• The query will fail without raising an error condition.

test :- f, write('not the first time').

?- test.
ERROR: test/0: Undefined procedure: f/0

:- dynamic(f/0).
test :- f, write('not the first time').

?- test.
false.

• Abolish clears a predicate and its dynamic
declaration.

• If we want the dynamic declaration to remain,
we must write a removal rule ourselves:

clear_away :- retract(f(_,_)), fail.

clear_away :- retract(f(_,_) :- _), fail.
clear_away.

Try this with located_in from geo.pl

More about consult and reconsult

• Consult = read/1 from a file and put each term
that it reads into the knowledge base.

• Reconsult = the same as consult, but it throws
any existing definition of a predicate away.

• Any term consult reads, that starts with :- is
regarded as a query.

SWI-> consult = reconsult

• Embedded queries can be useful:
:- write(‘Type ‘’go.’’ to start.’).

:- reconsult('capitals.pl').

:- multifile(capital_of/2).

Put it at the end of your code. When consult is
performed, the program will type this instruction.

Include capitals.pl with the current file. All facts and rules from
capitals.pl are loaded too. (the file must be in the same folder)

Allow reconsult to take the definition of capital_of from more than
one file, instead of dumping a set of definition if clauses of the same
name are found in another file. This declaration must be in every file

that has the clause capital_of.

Some prolog does not support it.

File handling: see, seen, tell, told

?-see(‘mydata’),

read(X), read(Y), read(Z),
seen.

Tell prolog to take inputs from this file
instead of from the keyboard.

Close all input files and switch input back
to the keyboard.

As long as the file is open, prolog knows the
position of the next term to be read.

• Calling several see allows you to switch between
several input files that are open at once.

?- see(‘aaa’),
read(X1),
see(‘bbb’),
read(X2),
see(user),
read(X3),
seen.

The keyboard (this way we
can read from the keyboard

without having to close other
files.)

Close all files

• If we read past the end of a file, prolog normally
returns the special atom end_of_file

?- tell(‘aaa’),
write(‘First line of AAA’), nl,
tell(‘bbb’),
write(‘First line of BBB’), nl,
tell(user),
write(‘This goes on the screen’), nl,
tell(‘aaa’),
write(‘Second line of AAA’), nl,
told.

Use this file as an output instead of console.

Close all output files and switch output back to the
console.

:- dynamic(f/2).

test :- f, write('not the first time').

test :- \+ f, asserta(f), write('the first time').

?- test.
the first time
true.

8 ?- test.
not the first time
true ;
false.

A program that
writes itself.
See test.pl

Program that remembers to the next
session

• Adding information – use assert
• Remembering – redirect output to a file and

do a listing
• See LEARNER.PL

– Given a state, it attempts to name its capital.
– If unable to name the capital, it asks user to name

the capital, and stores the information in its
knowledge base.

– The knowledge base is stored separately on KB.PL

Running learner.pl
?- start.
% kb.pl compiled 0.00 sec, 880 bytes

Type names entirely in lower case, followed by period.
Type "stop." to quit.

State? georgia.
The capital of georgia is atlanta

State? hawaii.
I do not know the capital of that state.
Please tell me.
Capital? honolulu.
Thank you.

State? maine.
The capital of maine is augusta

State? hawaii.
The capital of hawaii is honolulu

State? stop.
Saving the knowledge base...
Done.
true

It learns!

Kb.pl after that run

:- dynamic(capital_of/2).
:- dynamic capital_of/2.

capital_of(georgia, atlanta).
capital_of(california, sacramento).
capital_of(florida, tallahassee).
capital_of(maine, augusta).
capital_of(hawaii, honolulu).

Did not have it at
first.

Extra?

Inside learner.pl
start :- reconsult('kb.pl'),

nl,

write('Type names entirely in lower case, followed by period.'),
nl,

write('Type "stop." to quit.'), nl,

nl,

process_a_query.

process_a_query :- write('State? '),

read(State),
answer(State).

Load the knowledge base

Ask the user to
name a state.

answer(stop) :- write('Saving the knowledge base...'),nl,

tell('kb.pl'),

write(':- dynamic(capital_of/2).'),nl, % omit if not needed

listing(capital_of),

told,

write('Done.'),nl.

% If the state is in the knowledge base, display it, then

% loop back to process_a_query

answer(State) :- capital_of(State,City),

write('The capital of '),

write(State),

write(' is '),

write(City),nl,

nl,
process_a_query.

Save to kb.pl

% If the state is not in the knowledge base, ask the
% user for information, add it to the knowledge base, and
% loop back to process_a_query

answer(State) :- \+ capital_of(State,_),
write('I do not know the capital of that state.'),nl,
write('Please tell me.'),nl,
write('Capital? '),
read(City),
write('Thank you.'),nl,nl,
assertz(capital_of(State,City)),
process_a_query.

Character input/output: get, get0, put

• put: output 1 character, its argument is an integer
that gives the character’s ASCII code.
?- put(42).
*
true.

7 -> beep
8 -> backspace
12 -> start new page on printer.
13 -> return without new line.

Ascii for asterisk.

• get: accepts one character and instantiates
the character to its ASCII code.

?- get(X).

| *

X = 42.

?- get0(X).

|

X = 10.

Get -> skips blanks,
returns, or other

nonprinting character.

If you want to read
these characters, use

get0.

Press
Return

Reading past end of file returns -1

Constructing menu

• See menudemo.pl

?- start.
Which state do you want to know about?
1 Georgia
2 California
3 Florida
4 Maine
Type a number, 1 to 4 -- 3

The capital of florida is tallahassee
true.

start :- display_menu,

get_from_menu(State),

capital_of(State,City),

nl,

write('The capital of '),

write(State),

write(' is '),

write(City),
nl.

display_menu :- write('Which state do you want
to know about?'),nl,

write(' 1 Georgia'),nl,

write(' 2 California'),nl,

write(' 3 Florida'),nl,

write(' 4 Maine'),nl,
write('Type a number, 1 to 4 -- ').

get_from_menu(State) :- get(Code), % read a character

get0(_), % consume the Return keystroke

interpret(Code,State).

interpret(49,georgia). /* ASCII 49 = '1' */

interpret(50,california). /* ASCII 50 = '2' */

interpret(51,florida). /* ASCII 51 = '3' */
interpret(52,maine). /* ASCII 52 = '4' */

Getting only yes or no
• See getyesno.pl
get_yes_or_no(Result) :- get(Char), % read a character

get0(_), % consume the Return after it
interpret(Char,Result),
!. % cut -- see text

get_yes_or_no(Result) :- nl,
write('Type Y or N:'),
get_yes_or_no(Result).

interpret(89,yes). % ASCII 89 = 'Y'
interpret(121,yes). % ASCII 121 = 'y'
interpret(78,no). % ASCII 78 = 'N'
interpret(110,no). % ASCII 110 = 'n'

An expert system

• Car.pl tells user why a car won’t start.

• See the conversation with it.

?- start.
This program diagnoses why a car won't start.
Answer all questions with Y for yes or N for no.

When you first started trying to start the car,
did the starter crank the engine normally?
|: y

Does the starter crank the engine normally now?
|: n

Your attempts to start the car have run down the battery.
Recharging or jump-starting will be necessary.
But there is probably nothing wrong with the battery itself.

Look in the carburetor. Can you see or smell gasoline?
|: n

Check whether there is fuel in the tank.
If so, check for a clogged fuel line or filter
or a defective fuel pump.
true.

?- start.
This program diagnoses why a car won't start.
Answer all questions with Y for yes or N for no.

When you first started trying to start the car,
did the starter crank the engine normally?
| n

Check that the gearshift is set to Park or Neutral.
Try jiggling the gearshift lever.

Check for a defective battery, voltage
regulator, or alternator; if any of these is
the problem, charging the battery or jump-
starting may get the car going temporarily.
Or the starter itself may be defective.
true.

If the starter is
defective,
there is no

point
collecting

other
information.

start :-

write('This program diagnoses why a car won''t start.'),nl,

write('Answer all questions with Y for yes or N for no.'),nl,

clear_stored_answers,

try_all_possibilities.

try_all_possibilities :- % Backtrack through all possibilities...

defect_may_be(D),

explain(D),

fail.

try_all_possibilities.

%
% Diagnostic knowledge base
% (conditions under which to give each diagnosis)
%

defect_may_be(drained_battery) :-
user_says(starter_was_ok,yes),
user_says(starter_is_ok,no).

defect_may_be(wrong_gear) :-
user_says(starter_was_ok,no).

defect_may_be(starting_system) :-
user_says(starter_was_ok,no).

defect_may_be(fuel_system) :-
user_says(starter_was_ok,yes),
user_says(fuel_is_ok,no).

defect_may_be(ignition_system) :-
user_says(starter_was_ok,yes),
user_says(fuel_is_ok,yes).

%
% Case knowledge base
% (information supplied by the user during the consultation)
%

:- dynamic(stored_answer/2).

% (Clauses get added as user answers questions.)

%
% Procedure to get rid of the stored answers
% without abolishing the dynamic declaration
%

clear_stored_answers :- retract(stored_answer(_,_)),fail.
clear_stored_answers.

%
% Procedure to retrieve the user's answer to each

question when needed,
% or ask the question if it has not already been asked
%

user_says(Q,A) :- stored_answer(Q,A).

user_says(Q,A) :- \+ stored_answer(Q,_),
nl,nl,
ask_question(Q),
get_yes_or_no(Response),
asserta(stored_answer(Q,Response)),
Response = A.

%
% Texts of the questions
%

ask_question(starter_was_ok) :-
write('When you first started trying to start the car,'),nl,
write('did the starter crank the engine normally? '),nl.

ask_question(starter_is_ok) :-
write('Does the starter crank the engine normally now? '),nl.

ask_question(fuel_is_ok) :-
write('Look in the carburetor. Can you see or smell
gasoline?'),nl.

%
% Explanations for the various diagnoses
%

explain(wrong_gear) :-
nl,
write('Check that the gearshift is set to Park or Neutral.'),nl,
write('Try jiggling the gearshift lever.'),nl.

explain(starting_system) :-
nl,
write('Check for a defective battery, voltage'),nl,
write('regulator, or alternator; if any of these is'),nl,
write('the problem, charging the battery or jump-'),nl,
write('starting may get the car going temporarily.'),nl,
write('Or the starter itself may be defective.'),nl.

explain(drained_battery) :-
nl,
write('Your attempts to start the car have run down the battery.'),nl,
write('Recharging or jump-starting will be necessary.'),nl,
write('But there is probably nothing wrong with the battery itself.'),nl.

explain(fuel_system) :-
nl,
write('Check whether there is fuel in the tank.'),nl,
write('If so, check for a clogged fuel line or filter'),nl,
write('or a defective fuel pump.'),nl.

explain(ignition_system) :-
nl,
write('Check the spark plugs, cables, distributor,'),nl,
write('coil, and other parts of the ignition system.'),nl,
write('If any of these are visibly defective or long'),nl,
write('overdue for replacement, replace them; if this'),nl,
write('does not solve the problem, consult a mechanic.'),nl.

