Simple Data structure and
computation

Solving equation?

sum(X,Y,Z):- ZIs X+Y.

?sum(1,R,7).

IS/2: Arguments are not sufficiently
Instantiated

N Exception: (8) 8is 2+ G254 ?

How to make it work.

sum(X,Y,Z):- nonvar(X), nonvar(Y), nonvar(2), !, Z is X+Y.
sum(X,Y,Z):- nonvar(X), nonvar(Y), var(Z), Z is X+Y, \.
sum(X,Y,2):- var(X), nonvar(Y), nonvar(Z), X is Z-Y, \.
sum(X,Y,Z):- nonvar(X), var(Y), nonvar(Z2), Y is Z-X, !.
sum(X,Y,Z):- write('cannot do the operation'), fail.

Try it with decimal numbers

close_enoug
close_enoug
close_enoug

(X, X):-!.
N(X,Y):-X<Y, Y-X< 0.0001.

N(X,Y):-Y<X, close _enough(Y,X).

Simple data structure example: List

_ N
* [a,b,c]
* [a|[b,c] . These all mean the same
* [a,b][c].
. a,ﬂc\;(u y,
v ' Head is the first element of the list
head tal Tail is the list containing all

Elements except the first

Using List: example

member(X,[X|T]).
member(X,[H|T]):- X\==H, member(X,T).

If we ask ?- member(2,[1,2,3]).

* Prolog will first try to match our question with the first
rule, but fails since 2 is not 1

« Then it tries the second rule (substituting X=2, H=1),
which then leaves us with the second clause in this
second rule, member(2,[2,3]).

« Solving member(2,[2,3]). We use our first rule again.
This time, it matches the first rule.

« So the answer Is “yes”

member(X, [X|T]).

member(X, [H|T]):- X \==H, member(X, T).

X H
v

?- member(X,[1,2,3]).

X=1;
X=2;
X=3. X \==H member(2, [2,3]).

NO.

Example: testing If elements in the list

are sorted
sorted([]). % empty list is already sorted
sorted([X]). % list with one element is surely sorted
sorted([A,B|T]):- A=<B, sorted([B|T]).

If we ask ?- sorted([1,3,2]).
It will try to use our first and second rules, and fails

« When it tries the third rule, it tries substituting A=1, B=3
— 1=<3, this first condition matches ok
— So we are left to do sorted([3,2]).

« Again, it will try to match and only the third rule can
match, with new A =3, and new B =2
— 3=<2 is false

— It will try to go back to use other substitution, but there is no
other choice

« The answer is therefore “no”

Example: deleting a first occurrence
of an element from a list

del(X,[1,[1)-
del(X,[X|T],T).
del(X,[H|T],[H|T2]) - X\==H, del(X,T,T2).

?-del(3,[1,2,3],[1][2]]).
del(3,[2,3],[2][]])-
del(3,[3],[])-

Length of a list- 2 ways to write

length([], 0).
length([H|T], N) :- length(T,Nt), N is Nt+1.

Al can be
Or found easily,
length(L,N):- accumulate(L,0,N). so put it first.

accumulate([],A,A). - Otherwise

accumulate([H|T],A,N):- Al is A+1, [ere will be

accumulate (T,A1,N). 'rgt';ﬂ'f;ve.

What are the results?

?-length([apple, pear], N).
?-length(L,3).
?-length([alpha],2).

Homework

— Write a program that calculates the sum of all
Integers in a given list.

Ordering Prolog to fall: list
example
« Say we want to print all possibllities of 2

lists that can append to form a new list

 Let us have the following definition for
append

append([],A,A).
append([H|T],A,[H|L]):- append(T,A,L).

* And the following definition for printing

print_partition(L):-append(A,B,L), write(A),
write(*), write(B), nl, fall.

7

New line Forcg L
to fail

« when fail, Prolog will go back and try to

substitute other possible values for A and
B.

* Therefore we will get the printout of all

possible result, and Prolog will say ‘no’ in
the end.

?-print_partition([a,b,c]).
1[a,b,c]

aj[b,c.
a,b][c.
a,b,c]l]
no

Example: Inner Product

« Dot product of vector
aandbis

Zn: d; - bi
i=1

It only works for 2
vectors of the same
length.

Let inner(V1,V2,P) be
a goal that succeeds

for list V1 and V2. The
result dot product is P.

Inner Product- two ways

inner([],[],0).
iInner([A]As],[B|Bs],N):- inner(As,Bs,Ns), N is Ns
+(A*B).

Or

What Is the result?

* If the length of the two lists are different?

Example- Maximum of a list

max([],A,A).

maximum(L,M):-max(L,-10000,M).

This Is not very good, we should use the first
value In the list rather than -10000.

Homework

« Define maximum that initialises the accumulator
from the first element of the input list.

* What is the result of the following goals?
?-max([3,1,4,1,5,8,2,6],0,N).
?-max([2,4,7,7,7,2,1,6],5,N).

* Define minmax which finds both the minimum

and maximum values in a list.

A subgoal should look like
...,minmax(L,MinVal,MaxVal),...

The path problem

* We will look at the definition of path finding
problem in a graph.

— We will see examples on what happens if
clauses are switching their orders.

 We will then see how to solve it with the
help of list.

» Let’s say we have the following definition
edge(a,b).

d

edge(b,c).

edge(b,e).

edge(a,e). .
edge(X,Y):-edge(Y,X). y b

path(X,X).
path(X,Y):- X\==Y, edge(Z,Y), path(X,2).

We ask ?-path(a,c).

It will start trying the rule for path. The rule that will match is the
second,with X=a and Y = c, now we do the 3 conditions of the rule
— a\==c. Thisis ok
— edge(Z,Y), where Y is c, the fact that will first match is edge(b,c). So Z is
substituted by b.
— path(X,2). will now be path(a,b)
So we do path(a,b). Again, it will go down to the rule with 3
conditions (with X2=a, Y2=Db)
— a\==Db. This is ok
— edge(Z2,Y2), where Y2=b. The first match will be edge(a,b). So Z2 is
substituted by a.
— path(X2,Z2). will now be path(a,a). 2 this matches the first rule of path.

All the matches are done without any problems, the answer is “yes”
But if we change the order within our rules, problem can take place.

el
eC
eC
eC

eC

Bad rule 1

ge(a,b).
ge(b,c).
ge(b,e).

ge(a,e).
ge(X,Y):-edge(Y,X).

path(X,X).

path(X,Y):- X\=

Order has changed

RN

=Y, path(X,2), edge(Z,Y).

« What will happen when we ask ?- path(a,c).

It will start trying the rule for path. The rule that will
match is the second, with X=a and Y = ¢, now we do the
3 conditions of the rule
— a\==c. This is ok
— path(X,Z). This will now be path(a,Z). We will have to use the
path rule again at this stage to solve this.
* The rule that match is path(a,a), so Z = a
— |e:d(i;e(Z,Y). Now we know that Z=a and Y=c, so this is edge(a,c).
alse.

« We have to go back to change the last substitution (Z=a) in the
second condition.

— Back in the second condition. Use path rule again, now we need
the rule with 3 conditions.
« a\==Z, let us substitute Z = b. (b is the second atom we can find)
» path(a,Z2). Yes, this will need the path rule again.
path(a,a). Therefore Z2=a.
« edge(Z2,2). will then become edge(a,b) = true

— Do the original third condition again. This is edge(Z,Y). With the
substitution, it is now edge(b,c), which is true.

— So the answer is “yes”

— Although it can find the answer, arranging the rules this way will
cause unnecessary computation.

e Note:

— It Is best to use fact to eliminate unwanted
computation as soon as possible.

Bad rule 2

« Say, for the path definition, we have
path(X,Y):- X\==Y, path(X,Z), edge(Z,Y).
path(X,X).

 Now we ask ?-path(a,c). It will have to use the long rule
first, with X=a and Y=c
— a\==c, this is ok
— path(a,Z), we will have to apply path rule again for this, with
X2=a, Y2=Z
« a\==Z, the program need to choose something, let Z=b

« path(a,Z2), we will have to apply the path rule again
— a\==Z2, the program has to choose a substitution, let Z2 = b
— path(a,Z3).

Infinite
executio

The path program path(e,c) can loop
forever.

A way to prevent loops is to keep a trall of
what we have visited so far. And then visit
only nodes that are not on the trall.

path(X,Y,T) is true if there is a legal path
from X to Y, without passing through any
nodes list in T.

searching a cyclic graph(cont)

path(X X,T). edge

path(X,Y,T):-a(X,2), legal(Z,T),

ath(z,Y,[Z|T]).
pat(Z Y21 f s a kind

of accumulator
legal(Z,[]).
legal(Z,[H|T]):-Z\==H, legal(Z,T).

homework

a(g,h).

a(d,a).

a(g,d).

a(e,d).

a(h.f). Using facts on the left:
a(e,). * What are the answers from:
a(a,e). ?-path(g,c,[])

a(c’g,]?)- ?-path(g,c,[f])

:gb: 3) ?-path(a,X,[f,d])

a(f,c).

Mapping

* Mapping the input list to the output list =
produce an output list whose elements are
transformations of corresponding elements

of the Input list.
* Full map example
—-[1,2,3,4] > [2,4,6,8]
« Partial map example

—[57,-2,34,-21] -> [34] only positive even
elements

* Multiple maps
—[57,-2,34,-21] -> [57,34] and [-2, -21]
— Can be disjoint or non disjoint

« Sequential map

— For ordered data, the state variable
determining a particular output value depends
only on input values previous in the sequence

- [a,a,f,3,3,3,w,f,1,f3,3] -
>[2*a,1*f,3*3,1*w,4*f,2*3]

— Can create input list from output list

« Scattered map

— The output value can depend on any of the
iInput values.

- [a,a,f,3,3,3,w,f,ff,f,3,3] ->[2*a,5*f,5*3,1*W]
— It's a frequency map

— Does not preserve order information from the
iInput list.

Full map example

* Maps a list of integers to their squares.

sqhist([],[l)-

* Map each integer to a compound term
s(X,Y), where Y Is the square of X.

sqterm([].[]).

The general scheme for full map

fullmap([],[]).

fullmap([X|T],[Y|L]):- transform(X,Y),
fullmap(T,L).

homework

¢ See
envelope({[].[]).

envelope([X|T],[container(X)|L]):-
envelope(T,L).

What does the goal envelope([apple,
peach,cat,37, john], X) do?

Multiple Choice example

* Try to do the square map again, but this
time let any non integer map to itself.

squint([].[]).
squint([X|T],[Y|L]):- integer(X), Y Is X*X,
squint(T,L).

The problem is If integer(X) falls, the whole
thing will falil.

So we need another clause:

squint([1[]).
squint([X|T
squint(T,

IY|L]):- iInteger(X), Y is X*X,
).

squint([X|T]

JIX|L]):-squint(T,L).

But there is still a problem

 The third

clause can be chosen to match any

iInput If we fail the second clause. But the third
clause should not be allowed if X is integer.

— squint([2],[2]) returns true?????

 We neec

a way to commit to the first rule and

only come to the second rule if necessary. ->
next chapter

 Otherwise, need a “NOT” in order to make the
cases mutually exclusive.

homework

 Find all solutions to
?-squint([1,3,w,5,goat], X).

Determine which clause choices were made

to give each solution. Draw picture or tree
to show.

Partial map example

* Map to even integers

evens(
evens(
evens(

11D

X

X

I,IX|L]):- 0 1s X mod 2, evens(T,L).
],L):- 1is X mod 2, evens(T,L).

homework

given
oroh
oroh
oroh

nit(bother).
nit(blast).
pit(drat).

Define censor(X,Y) whichs maps the input
list of words to the output list of words. No
prohibited words appear.

Removing duplicate from a list:
example

setify([l,[1)-

Agalin, the third clause can be used to do the
matching at any time, producing wrong
answers. We need some commitment
notation or mutually exclusive condition.

homework

* why
?- setify([a,a,b,c,b],X). succeeds
?- setify([a,a,b,c,b],[a,c,b]). succeeds

But ?- setify([a,a,b,c,b],[a,b,c]). does not
succeed. Show how their executions go.

Path problem again
« We can have all the nodes in the list first.

 As a node iIs visited, It is struck off the list.

* The reduced list is then given to the
recursive call.

reduce(L,X,M) succeeds for list L, term X,

and output list M. M contains elements of
L except the first occurrence of X.

reduce([X]|T], X, T).

reduce([H|T], X, [H|L]):- H\==X,
reduce(T,X,L).

path(X,X,L).

path(X,Y,L):-a(X,Z), reduce(L,Z,L1),
path(Z,Y,L1).

Used-> ?-path(a,b,[a,b,c,d,e,f,g,h])

Multiple disjoint partial maps

goal herd(L,S,G) succeeds if S Is a list of all
sheep in L and G is a list of all goats in L.

herd((1,[1.[D).

