
Simple Data structure and
computation

Solving equation?

sum(X,Y,Z):- Z is X+Y.

?sum(1,R,7).

is/2: Arguments are not sufficiently

instantiated

^ Exception: (8) 8 is 2+_G254 ?

sum(X,Y,Z):- nonvar(X), nonvar(Y), nonvar(Z), !, Z is X+Y.

sum(X,Y,Z):- nonvar(X), nonvar(Y), var(Z), Z is X+Y, !.

sum(X,Y,Z):- var(X), nonvar(Y), nonvar(Z), X is Z-Y, !.

sum(X,Y,Z):- nonvar(X), var(Y), nonvar(Z), Y is Z-X, !.

sum(X,Y,Z):- write('cannot do the operation'), fail.

How to make it work.

Try it with decimal numbers

close_enough(X,X):-!.

close_enough(X,Y):-X<Y, Y-X< 0.0001.

close_enough(X,Y):-Y<X, close_enough(Y,X).

=:=

=\=

Simple data structure example: List

• [a,b,c]

• [a|[b,c]]

• [a,b|[c]]

• [a,b,c|[]]

These all mean the same

head tail
Head is the first element of the list
Tail is the list containing all
Elements except the first

Using List: example

member(X,[X|T]).

member(X,[H|T]):- X\==H, member(X,T).

If we ask ?- member(2,[1,2,3]).

• Prolog will first try to match our question with the first
rule, but fails since 2 is not 1

• Then it tries the second rule (substituting X=2, H=1),
which then leaves us with the second clause in this
second rule, member(2,[2,3]).

• Solving member(2,[2,3]). We use our first rule again.
This time, it matches the first rule.

• So the answer is “yes”

member(X, [X|T]).

member(X, [H|T]):- X \== H, member(X, T).

?- member(X,[1,2,3]).

X H

X=1;

X=2;

X=3;

no.

X \== H member(2, [2,3]).

2

Example: testing if elements in the list

are sorted
sorted([]). % empty list is already sorted

sorted([X]). % list with one element is surely sorted

sorted([A,B|T]):- A=<B, sorted([B|T]).

If we ask ?- sorted([1,3,2]).

• It will try to use our first and second rules, and fails

• When it tries the third rule, it tries substituting A=1, B=3
– 1=<3, this first condition matches ok

– So we are left to do sorted([3,2]).

• Again, it will try to match and only the third rule can
match, with new A = 3, and new B = 2
– 3=<2 is false

– It will try to go back to use other substitution, but there is no
other choice

• The answer is therefore “no”

Example: deleting a first occurrence

of an element from a list

del(X,[],[]).

del(X,[X|T],T).

del(X,[H|T],[H|T2]) :- X\==H, del(X,T,T2).

?-del(3,[1,2,3],[1|[2]]).

del(3,[2,3],[2|[]]).

del(3,[3],[]).

Length of a list- 2 ways to write

length([], 0).

length([H|T], N) :- length(T,Nt), N is Nt+1.

Or

length(L,N):- accumulate(L,0,N).

accumulate([],A,A).

accumulate([H|T],A,N):- A1 is A+1,
accumulate (T,A1,N).

A1 can be

found easily,

so put it first.

Otherwise

there will be

infinite
recursive.

What are the results?

• ?-length([apple, pear], N).

• ?-length(L,3).

• ?-length([alpha],2).

• Homework

– Write a program that calculates the sum of all
integers in a given list.

Ordering Prolog to fail: list

example
• Say we want to print all possibilities of 2

lists that can append to form a new list

• Let us have the following definition for

append

append([],A,A).

append([H|T],A,[H|L]):- append(T,A,L).

• And the following definition for printing

print_partition(L):-append(A,B,L), write(A),
write(„ „), write(B), nl, fail.

• when fail, Prolog will go back and try to
substitute other possible values for A and
B.

• Therefore we will get the printout of all
possible result, and Prolog will say „no‟ in
the end.

New line Force it
to fail

?-print_partition([a,b,c]).

[][a,b,c]

[a][b,c]

[a,b][c]

[a,b,c][]

no

Example: Inner Product

• Dot product of vector

a and b is

i

n

i

i ba 
1

It only works for 2

vectors of the same

length.

Let inner(V1,V2,P) be

a goal that succeeds

for list V1 and V2. The
result dot product is P.

Inner Product- two ways

inner([],[],0).

inner([A|As],[B|Bs],N):- inner(As,Bs,Ns), N is Ns

+(A*B).

Or

inner(A,B,N):-dotaux(A,B,0,N).

dotaux([],[],V,V).

dotaux([A|As],[B|Bs],N,Z):- N1 is N+(A*B) ,

dotaux(As,Bs,N1,Z).

What is the result?

• If the length of the two lists are different?

Example- Maximum of a list

max([],A,A).

max([H|T],A,M):-H>A, max(T,H,M).

max([H|T],A,M):-H<=A, max(T,A,M).

maximum(L,M):-max(L,-10000,M).

This is not very good, we should use the first

value in the list rather than -10000.

Homework

• Define maximum that initialises the accumulator

from the first element of the input list.

• What is the result of the following goals?

?-max([3,1,4,1,5,8,2,6],0,N).

?-max([2,4,7,7,7,2,1,6],5,N).

• Define minmax which finds both the minimum

and maximum values in a list.

A subgoal should look like
…,minmax(L,MinVal,MaxVal),…

The path problem

• We will look at the definition of path finding

problem in a graph.

– We will see examples on what happens if

clauses are switching their orders.

• We will then see how to solve it with the
help of list.

• Let‟s say we have the following definition

edge(a,b).

edge(b,c).

edge(b,e).

edge(a,e).

edge(X,Y):-edge(Y,X).

path(X,X).

path(X,Y):- X\==Y, edge(Z,Y), path(X,Z).

a

e
b

c

We ask ?-path(a,c).

• It will start trying the rule for path. The rule that will match is the
second,with X=a and Y = c, now we do the 3 conditions of the rule
– a\==c. This is ok
– edge(Z,Y), where Y is c, the fact that will first match is edge(b,c). So Z is

substituted by b.

– path(X,Z). will now be path(a,b)

• So we do path(a,b). Again, it will go down to the rule with 3
conditions (with X2=a, Y2=b)
– a\==b. This is ok

– edge(Z2,Y2), where Y2=b. The first match will be edge(a,b). So Z2 is
substituted by a.

– path(X2,Z2). will now be path(a,a).  this matches the first rule of path.

• All the matches are done without any problems, the answer is “yes”

• But if we change the order within our rules, problem can take place.

Bad rule 1

edge(a,b).

edge(b,c).

edge(b,e).

edge(a,e).

edge(X,Y):-edge(Y,X).

path(X,X).

path(X,Y):- X\==Y, path(X,Z), edge(Z,Y).

• What will happen when we ask ?- path(a,c).

Order has changed

• It will start trying the rule for path. The rule that will
match is the second, with X=a and Y = c, now we do the
3 conditions of the rule
– a\==c. This is ok

– path(X,Z). This will now be path(a,Z). We will have to use the
path rule again at this stage to solve this.

• The rule that match is path(a,a), so Z = a

– edge(Z,Y). Now we know that Z=a and Y=c, so this is edge(a,c).
False.

• We have to go back to change the last substitution (Z=a) in the
second condition.

– Back in the second condition. Use path rule again, now we need
the rule with 3 conditions.

• a\==Z, let us substitute Z = b. (b is the second atom we can find)

• path(a,Z2). Yes, this will need the path rule again.
path(a,a). Therefore Z2=a.

• edge(Z2,Z). will then become edge(a,b)  true

– Do the original third condition again. This is edge(Z,Y). With the
substitution, it is now edge(b,c), which is true.

– So the answer is “yes”

– Although it can find the answer, arranging the rules this way will
cause unnecessary computation.

• Note:

– It is best to use fact to eliminate unwanted

computation as soon as possible.

Bad rule 2

• Say, for the path definition, we have

path(X,Y):- X\==Y, path(X,Z), edge(Z,Y).

path(X,X).

• Now we ask ?-path(a,c). It will have to use the long rule
first, with X=a and Y=c
– a\==c, this is ok

– path(a,Z), we will have to apply path rule again for this, with
X2=a, Y2=Z

• a\==Z, the program need to choose something, let Z= b

• path(a,Z2), we will have to apply the path rule again

– a\==Z2, the program has to choose a substitution, let Z2 = b

– path(a,Z3).Infinite
execution

The path program path(e,c) can loop

forever.

A way to prevent loops is to keep a trail of

what we have visited so far. And then visit

only nodes that are not on the trail.

path(X,Y,T) is true if there is a legal path

from X to Y, without passing through any
nodes list in T.

searching a cyclic graph(cont)

path(X,X,T).

path(X,Y,T):-a(X,Z), legal(Z,T),

path(Z,Y,[Z|T]).

legal(Z,[]).

legal(Z,[H|T]):-Z\==H, legal(Z,T).

A trail is a kind
of accumulator

edge

homework

• Using facts on the left:

• What are the answers from:

?-path(g,c,[])

?-path(g,c,[f])

?-path(a,X,[f,d])

a(g,h).

a(d,a).

a(g,d).

a(e,d).

a(h,f).

a(e,f).

a(a,e).

a(a,b).

a(b,f).

a(b,c).

a(f,c).

Mapping

• Mapping the input list to the output list =
produce an output list whose elements are
transformations of corresponding elements
of the input list.

• Full map example

– [1,2,3,4] -> [2,4,6,8]

• Partial map example

– [57,-2,34,-21] -> [34] only positive even
elements

• Multiple maps

– [57,-2,34,-21] -> [57,34] and [-2, -21]

– Can be disjoint or non disjoint

• Sequential map

– For ordered data, the state variable

determining a particular output value depends

only on input values previous in the sequence

– [a,a,f,3,3,3,w,f,f,f,f,3,3] -

>[2*a,1*f,3*3,1*w,4*f,2*3]

– Can create input list from output list

• Scattered map

– The output value can depend on any of the

input values.

– [a,a,f,3,3,3,w,f,f,f,f,3,3] ->[2*a,5*f,5*3,1*w]

– It’s a frequency map

– Does not preserve order information from the

input list.

Full map example

• Maps a list of integers to their squares.

sqlist([],[]).

sqlist([X|T],[Y|L]):- Y is X*X, sqlist(T,L).

• Map each integer to a compound term

s(X,Y), where Y is the square of X.

sqterm([],[]).

sqterm([X|T],[s(X,Y)|L]):- Y is X*X,

sqterm(T,L).

The general scheme for full map

fullmap([],[]).

fullmap([X|T],[Y|L]):- transform(X,Y),
fullmap(T,L).

homework

• See

envelope([],[]).

envelope([X|T],[container(X)|L]):-

envelope(T,L).

What does the goal envelope([apple,
peach,cat,37, john], X) do?

Multiple Choice example

• Try to do the square map again, but this
time let any non integer map to itself.

squint([],[]).

squint([X|T],[Y|L]):- integer(X), Y is X*X,
squint(T,L).

The problem is if integer(X) fails, the whole
thing will fail.

So we need another clause:

squint([],[]).

squint([X|T],[Y|L]):- integer(X), Y is X*X,
squint(T,L).

squint([X|T],[X|L]):-squint(T,L).

But there is still a problem

• The third clause can be chosen to match any
input if we fail the second clause. But the third
clause should not be allowed if X is integer.
– squint([2],[2]) returns true?????

• We need a way to commit to the first rule and
only come to the second rule if necessary. ->
next chapter

• Otherwise, need a “NOT” in order to make the
cases mutually exclusive.

homework

• Find all solutions to

?-squint([1,3,w,5,goat],X).

Determine which clause choices were made

to give each solution. Draw picture or tree
to show.

Partial map example

• Map to even integers

evens([],[]).

evens([X|T],[X|L]):- 0 is X mod 2, evens(T,L).

evens([X|T],L):- 1 is X mod 2, evens(T,L).

homework

given

prohibit(bother).

prohibit(blast).

prohibit(drat).

Define censor(X,Y) whichs maps the input

list of words to the output list of words. No

prohibited words appear.

Removing duplicate from a list:
example

setify([],[]).

setify([X|T],L):- member(X,T), setify(T,L).

setify([X|T],[X|L]):- setify(T,L).

Again, the third clause can be used to do the

matching at any time, producing wrong

answers. We need some commitment

notation or mutually exclusive condition.

homework

• why

?- setify([a,a,b,c,b],X). succeeds

?- setify([a,a,b,c,b],[a,c,b]). succeeds

But ?- setify([a,a,b,c,b],[a,b,c]). does not

succeed. Show how their executions go.

Path problem again
• We can have all the nodes in the list first.

• As a node is visited, it is struck off the list.

• The reduced list is then given to the

recursive call.

reduce(L,X,M) succeeds for list L, term X,

and output list M. M contains elements of
L except the first occurrence of X.

reduce([X|T], X, T).

reduce([H|T], X, [H|L]):- H\==X,

reduce(T,X,L).

path(X,X,L).

path(X,Y,L):-a(X,Z), reduce(L,Z,L1),

path(Z,Y,L1).

Used-> ?-path(a,b,[a,b,c,d,e,f,g,h])

Multiple disjoint partial maps

goal herd(L,S,G) succeeds if S is a list of all

sheep in L and G is a list of all goats in L.

herd([],[],[]).

herd([sheep|T],[sheep|S],G):- herd(T,S,G).

herd([goat|T],S,[goat|G]):- herd(T,S,G).

herd([X|T],S,G):-herd(T,S,G) //beware

