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Preface 
 
On behalf of the Programme Committee we welcome all delegates to our 5th Game-
On International Conference on Computer Games.  Our previous Game-On events 
were held in London and this year we are privileged to bring the conference to the 
Microsoft Academic Campus at Reading. In addition, the theme has been expanded to 
include Artificial Intelligence, Design and Education, which reflects the wishes of last 
years’ delegates. Since its inception, the conference has enjoyed a steady growth in 
popularity and the number of participants has doubled each year.  
 
This year we have also benefited by being associated with SCS, IEE, BCS and 
DiGRA:  The Society for Modelling and Simulation (SCS-Europe) was the original 
sponsor of the conference and we are pleased to be working with this organisation 
again; the British Computer Society has kindly donated prizes for the Best Student 
Demo/Poster sessions; and the Digital Games Research Association (DiGRA) - a fast-
growing organisation for promoting games research internationally - has been 
associated with our European Network for Digital Games Research from the outset. 
 
An important aspect of this conference is to provide a forum for MSc/MPhil/PhD 
students to present their work to their peers and to experts in the field.  All papers 
have been reviewed by at least two eminent members of the Programme Committee 
who were delighted with the standard attained. Special thanks are due to all of these 
reviewers who have been most diligent in their task by providing detailed and useful 
feedback to authors. The best papers will be reviewed for possible inclusion in the 
International Journal of Intelligent Games & Simulation and as possible candidates 
for the Best Research Student Paper at the Imagina Festival, Monaco 2005. 
 
The conference has been organised into 10 themes and you will find the following 
papers grouped into these themes. As previously, we have added an extra (optional 
session) so that we can review progress made in our European Network for Digital 
Games Research. 
 
A big vote of thanks goes to Microsoft for so generously making available their 
excellent facilities for this conference and for providing valuable support. We 
particularly wish to thank Gavin King for his excellent cooperation and coordination 
and Joanna Smail for her assistance. Thanks are also due to Stuart Slater and Caroline 
Phillips for organising the student activities.  It is especially pleasing that we have 
been able to provide places at no cost for MSPs (Microsoft Student Partners), thereby 
assuring greater student participation. 
 
Last, but not least, the assistance of the School of Computing & Information 
Technology is appreciated for its endless support and particularly our Administrator 
Tarvinder Kaur. 
 
We trust that you will all enjoy your stay in Reading and benefit from this conference. 
 
Quasim Mehdi, General Conference Chair 
Norman Gough, General Programme Chair 
Wolverhampton, November 2004 
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ABSTRACT 
 
In this paper, we set out a basic approach to the 
modeling of narrative in games. This approach 
adopts a bipartite model taken from narrative 
theory, in which narrative is composed of story 
and discourse. In our approach, story elements – 
plot and character – are defined in terms of plans 
that drive the dynamics of a virtual environment. 
Discourse elements – the narrative’s 
communicative actions – are defined in terms of 
discourse plans whose communicative goals 
include conveying the story world plan’s structure.  
 
INTRODUCTION 

The number and type of interactive 3D games 
continue to grow as the processing power of 
commercial graphics cards increases. Many of 
these environments exploit informal adaptations of 
narrative techniques drawn from conventional 
narrative media in their design. Much of that work, 
however, conflates two central aspects of narrative 
structure that limit a) the range of techniques that 
can be brought to bear on the narrative’s 
generation and b) the range of narrative structures 
that can be generated for a given environment. 
These two aspects of narrative are the structure of 
story and the structure of narrative discourse. 
 In this paper, I describe an approach to the 
generation of narrative-oriented interaction within 
games that treats story and discourse as its two 
foundational elements. In this approach, I adapt 
models of narrative from narrative theory, 
computational linguistics and cognitive 
psychology, integrating these approaches with 
techniques from artificial intelligence in order to 
create intelligent narrative-oriented games.  

 
BACKGROUND: STORY AND DISCOURSE 
 
The work described here adapts and extends 
existing work in artificial intelligence to account 
for specific story-oriented applications within 3D 
virtual environments. This approach is based on 
concepts and methods first developed in narrative 
theory. Narratologists have provided an extensive 
characterization of narrative and its elements, 
describing the fundamental building blocks used 
by an author to create a compelling story 
(Chatman 1990; Rimmon-Keenan 2002). 
Narrative-theoretic approaches, however, are 
analytic in nature and do not directly lend 
themselves to a computational model capable of 
being used in a generative capacity. A central 
challenge of any computational approach that 
seeks to operationalize concepts from narrative 
theory is to determine appropriate methods to 
translate concepts derived from analysis into 
concrete, formal models capable of being put to 
use in the creation of a computer game. 
 While a broad range of approaches to the 
analysis of narrative exists, our work makes use of 
a structure that divides a narrative into two 
fundamental parts -- the story and the discourse 
(Chatman 1990; Emmot 1999) – and we construct 
distinct representations and tools to manage each. 
From a narratological perspective, a story consists 
of a complete conceptualization of the world in 
which the narrative is set. This includes all the 
characters, locations, conditions and actions or 
events that take place during the story’s temporal 
extent. Two fundamental components of a 
narrative – its plot and its characters – are defined 
within the story itself.  
 Distinct from the story, but closely tied to 
it, is the narrative discourse.  Our discourse model 
represents those elements responsible for the 
telling of the story, rather than containing the story 
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elements themselves. This notion of discourse 
differs from its conventional meaning. 
Specifically, the discourse we are generating is not 
communication between the user and the 
characters within the story. Rather, it is concerned 
with that communication between the system and 
the user that conveys the storyline (which may 
include character dialog as individual elements). 
 In my approach, the construction of a 
narrative discourse can itself be divided into two 
conceptual aspects. One aspect is the 
determination of both the content of the discourse 
and its organization. To compose a narrative 
discourse, an author makes choices about those 
elements from the story to include in the story’s 
telling and those elements to leave out. Further, 
the author determines additional information about 
the story-world to convey to the reader. Finally, 
the author must organize the discourse, 
determining what is to be told first, what second, 
etc, and how the sub-parts of the discourse should 
arranged so as to achieve the intended 
communicative effects on a reader. 
 A second aspect to the generation of 
narrative discourse is the selection of the specific 
communicative resources to be used to convey the 
story’s elements to the reader. In a 3D virtual 
environment, these resources include a range of 
media, from voice-over narration to 3D camera 
control to background music. The work that we 
describe here focuses on the generation of 
coherent, cinematic camera control, though our 
results are applicable to aspects of communicative 
actions across media. 
 
GENERATING STORY AND DISCOURSE 
 
Action and change are central to narrative. In most 
narratives, story-world action is initiated by 
characters as they attempt to achieve their 
individual and collective goals. Goals play a role 
at the discourse level as well; in film narratives a 
cinematographer acts in a goal-directed manner to 
build the cinematic discourse, intentionally 
composing shots to effectively communicate 

unfolding story action. The goal-oriented focus in 
operation at both the story- and discourse-levels in 
conventional narrative media motivates us to use a 
plan-based model of the control of activity within 
games; we have constructed an architecture, called 
Mimesis, that uses this model to generate plans for 
controlling characters operating within a narrative 
as well as for controlling media resources used for 
telling the narrative. We briefly describe the 
Mimesis architecture here. More details can be 
found in (Young, et al 2004). 
 The Mimesis system integrates a suite of 
intelligent control tools with a number of existing 
virtual world environments and conventional 
programming environments.  In this paper, we will 
restrict our discussion to applications built using 
Unreal Tournament (UT), a commercially 
available 3D graphical game engine. Mimesis 
overrides UT’s default mechanisms for controlling 
its virtual environment, using instead a 
client/server architecture in which low-level 
control of the game environment is performed by a 
customized version of the game engine (called the 
MWorld) and high-level reasoning about narrative 
structure and user interaction is performed 
remotely by a suite of intelligent agents called 
Mimesis Components or MCs (see Figure 1).   

Within Mimesis, the MCs act collectively 
as a narrative server, determining the narrative 
elements of the user’s experience within the 
virtual world. The MCs are responsible for the 
generation of a story (in the form of a story-world 
plan characterizing all character actions that are to 
be performed within the environment) the 
generation of a discourse plan characterizing the 
media-specific communicative actions used to 
convey the story to the user, and the maintenance 
of a coherent narrative experience in the face of 
unanticipated user activity. At start-up, the 
MWorld sends a message to the MCs requesting a 
story. This request identifies a goal state for the 
story, the MWorld’s current world state and the 
library of actions that are available for characters 
in the MWorld’s world. The MCs then generate a 
the characters will execute in the story world.  It  
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MWorld (Unreal Tournament 2003) 

Action 
Class Library

Plan 
Request 

Storyworld 
Planner 

User’s View of 
Game World 

Class Definitions

Game Engine 
Function Calls Action 

Directives Storyworld 
Plan 

Game 
Engine 

Execution 
ManagerMWorld 

ControllerPlayer and System 
Action Updates Action Updates

Discourse 
Planner Narrative 

Plan 

Figure 1.  The Mimesis system architecture shown with an MWorld built using Unreal 
Tournament 2003 as a sample game engine.  Individual gray boxes indicate components described 
below.  Within the MWorld component, the vertical dashed line represents the boundary between 
code created by the Mimesis developer (to the right of the line) and that created by the game 
engine developer (to the left of the line). 

sends this plan as input to the discourse planner, 
which generates a specification of the 
communicative action (in our case, 3D camera 
shot specifications) that will convey the elements 
of the story plan to the user. These two plans are 
integrated and passed to the Execution Manager, 
the component responsible for driving the story’s 
action. The Execution Manager builds a directed 
acyclic graph whose nodes represent individual 
actions in the plans and whose arcs define 
temporal constraints between actions’ orderings. 
The Execution Manager encodes nodes from the 
graph into XML messages and transmits these 
messages to the MWorld for execution as the 
action corresponding to each node becomes ready 
for execution.   The MWorld translates the XML 
messages by using a one-to-one mapping from the 
action types of the nodes in the Execution 
Manager’s graph to game engine functions and 
from the parameters of each action to instances of 
game engine objects in order to construct function 
calls that will drive the appropriate animations and 
state changes within the virtual world.  
 
Creating the Storyworld Plan 
 
The plan structures that we employ are produced 
by the DPOCL (Decompositional Partial Order 
Causal Link) planner (Young, et al 1994b). 
DPOCL plans contain many of the structures 
common to least-commitment planners (Penberthy 
and Weld 1994): steps and ordering constraints 
and causal connections between them. Further, 
DPOCL plans contain information about the 

hierarchical structure of a plan, similar to the 
representation used by hierarchical task network 
(HTN) planners (Sacerdotti 1977).  Because action 
sequences within narratives are often episodic that 
is, because they follow common patterns of action, 
hierarchical structures are highly amenable to 
representing story fragments.  
 Adopting a plan-based model of story 
structure allows the system to compose new 
stories in response to novel starting states or goal 
specifications, or to customize a story based on a 
user’s interests and knowledge.  An additional 
benefit of using the DPOCL plan representation to 
drive a narrative is in the plan’s structural 
correspondence to a user’s mental model of the 
story it defines. Recent research (Ratterman, et al 
2002; Young 1999) suggests that hierarchical 
causal link plans like DPOCLs, as well as the 
techniques used by the DPOCL algorithm to create 
them, make for effective models of human plan 
reasoning. Our empirical studies indicate that the 
core elements of DPOCL plans match up with the 
models of narrative structure defined and validated 
by psychologists (Christian and Young 2004).  
 
Creating the Narrative’s Discourse 
 
A narrative system must not only create engaging 
story-world plans, it must use its resources to tell 
the story effectively. In this paper we discuss one 
particular strategy used in the effective creation of 
a narrative: building narrative discourse involves 
the central task of determining the content and 
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organization of a sequence of camera shots that 
film the action unfolding within a story world. 
 We build on our previous research on the 
generation of natural language discourse to 
generate discourse plans for controlling an 
automated camera that is filming the unfolding 
action within a 3D story-world. To create these 
discourse plans, we use a discourse planning 
system named Longbow (Young, et al 1994a) The 
Longbow planner is built on the core DPOCL 
algorithm, and so the two planners’ 
representations are quite similar. In our approach, 
3D camera shots and shot sequences are viewed as 
planned, intentional action whose effects obtain in 
the cognitive state of the user. Individual camera 
shots are treated as primitive communicative 
actions, multi-shot sequences and cinematographic 
idioms are characterized using hierarchical plan 
operators, and, as in conventional discourse 
planning, plan structure that specifies the 
communicative content of a discourse is created to 
achieve particular effects upon the mental state of 
the user. 
 Conventional discourse planners take as 
input a set of propositions intended to be conveyed 
to the user of a system, along with a model of the 
user’s existing knowledge of the domain of 
discourse and a library of plan operators 
describing both the primitive communication 
actions available to the planner (e.g., typically 
speech acts such as INFORM or REQUEST) and 
definitions for a set of abstract actions and their 
sub-plan schemas, sometimes referred to as 
recipes. Abstract operators often specify rhetorical 
structure (Mann and Thompson 1987) in a 
discourse (e.g., when one part of a discourse 
stands as evidence for the claim set forth in a 
second part of a discourse) and their sub-plan 
schemas specify how more primitive collections of 
communicative actions can be combined to 
achieve the abstract act’s communicative effects. 
 There are several important ways that the 
task of narrative discourse generation – and our 
approach to it – differ from the task of discourse 
generation in conventional contexts. In our 
approach, the propositional content that the 
narrative discourse planner receives as input refers 
not just to relations that hold in the domain of 
discourse, but also to propositions describing the 
structure of the story-world plan. For instance, in 
addition to generating discourse that conveys the 
fact that a character has a gun, the narrative 

discourse must also convey the action of the 
character using the gun to rob a bank. The task of 
the discourse planner is, in part, to generate 
camera action sequences that convey the execution 
of story-world plan actions to the user. 
 Beyond the requirement to communicate a 
different type of content in narrative discourse, our 
approach to the generation of plans for 3D 
narrative discourse addresses two key problems. 
First, the narrative discourse that we generate must 
contain structure beyond that which simply 
mirrors the structure of the actions executed in the 
story world. Cinematic discourse contains both 
rhetorical structure, aimed at conveying 
propositions about the story world to a user and 
idiomatic structure mirroring the use of patterns 
for shot composition used in film (Arijon 1976). 
Our plan operators capture these aspects of 
discourse structure and combine them effectively 
to tell the story.  

A second key problem addressed by our 
approach to discourse planning is the temporal 
integration of the story-world and discourse-level 
plans. The actions in discourse plans for narrative 
in virtual worlds, unlike actions in plans for 
textual narrative, must themselves execute. 
Camera actions for panning, tracking, fading, etc, 
all require time to play out, a physical location 
from which the camera films, physical objects that 
must be included or excluded from the field of 
view, etc. A particularly complicating aspect of 
this is that these camera actions must execute in 
the same temporal and spatial environment as the 
objects of the story that they must convey to the 
user. A knowledge representation for narrative 
discourse must take this shared environment into 
account or risk creating suboptimal plans. 
 In order to allow the operator writer to 
specify the temporal relationships between the 
execution of camera actions and the story-world 
actions that they must film, primitive camera 
actions in the discourse planner can be annotated 
with temporal constraints between the two plans. 
These constraints relate the start and end times of 
the camera actions to the start and end times of the 
actions that they film. 
  
SUMMARY AND CONCLUSIONS 
 
In this paper, we have set out a basic approach to 
the modeling of narrative in interactive virtual 
worlds. This approach adopts a bipartite model of 
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narrative as story and discourse in which story 
elements – plot and character – are defined in 
terms of plans that drive the dynamics of a virtual 
environment. Narrative discourse elements – the 
narrative’s communicative actions – are defined in 
terms of discourse plans whose communicative 
goals include conveying the story world plan’s 
structure. While there are many possible means to 
approach a story-and-discourse model of 
interactive narrative, our goal is to demonstrate the 
effectiveness of this model using the Mimesis 
system as a test bed; our initial results, mentioned 
in the work we cite, are encouraging. 
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ABSTRACT 
 
At the recent Games Developers’ Conference, Microsoft outlined its plans for the 
XNA initiative, and outlined short- and longer-term plans for developer tools, talking 
too about the future of DirectX. But that was only the first day – the main body of the 
conference focused on the state of the gaming industry, and future trends, including a 
look at whether mobile devices will fulfil their potential as a gaming platform. This 
session will provide an overview of Microsoft’s announcements, and will also offer 
an (inevitably subjective!) insight into the highlights of the event, with a look at the 
most surprising issues, observations, and discussions. 
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ABSTRACT 
 
Computer games play a very important role in the 
life of most youth. Games offer many possibilities 
in education. Various people have studied the use 
of existing games or specially designed 
educational games. In this paper we consider the 
use of game design itself in an educational 
context, with a focus on high schools. Game 
design can be used in many different subjects, 
ranging from languages and arts, to mathematics 
and computer sciences. We also introduce the 
Game Maker software package that can be used by 
students to easily create their games. 
 
INTRODUCTION 
 
Most kids, students and young adults love playing 
computer games. It has become an important part 
of their life. They are willing to spend vast 
amounts of time on improving their skills for 
playing these games and the span of attention they 
have for these game is very long. This is a clear 
reason for educators to investigate how games can 
be use in education. This has led to a range of 
educational games, the formation of a sub 
discipline of game design, named serious gaming, 
and an increasing number of researchers studying 
these phenomena and their implications for the 
education systems, see e.g. (Prensky 2001). 
 
One approach is to use standard games in an 
educational context. Games like SimCity can 
create understanding of economic systems, Super 
Monkey Ball can teach kids about certain physics 
principles, and Roman Total War can give historic 
insight in the Roman Empire (see Figure 1). 
Unfortunately such games are not tuned toward 
the educational practice and, hence, are not easy to 
employ in the classroom. Some teachers also use 
Figure 1. Rome Total War can be used to obtain 
insight in the way the Roman Empire expanded 
itself. 
games to reward kids for their work but that seems 
a poor approach. 
 
The more common approach is to create games 
that are particularly written for certain educational 
goals. Unfortunately, most of these games are of 
poor quality. There are many reasons for this. One 
is that the budgets for educational games are 
normally orders of magnitude smaller than those 
for normal games. As a result, kids will easily be 
disappointed with the result. But more 
importantly, game principles and educational goals 
are often conflicting. Without going in detail, there 
is on one hand the educational demand that often 
wants to put the control over what is learned in the 
hands of the teacher, while a crucial ingredient of 
interesting game play is that the player should 
have control over the action. While games can be 
good in providing insight, letting the player 
explore some domain, understanding intricate 
mechanisms, and making motivated choices, most 
educational games focus on learning specific facts 
and skills without providing an adequate 
motivation within the game world. There is still a 
long way to go before the educational system has 
changed such that games will play an important 
role there. 
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In this paper I want to explore a third way of using 
games in an educational context. Rather than using 
games I want to focus on the creation of games. 
Creating games requires a large number of skills 
which can easily relate to certain subjects in 
schools. Also, creating a game about some topic 
can be a good and motivating way of 
understanding certain material. Game design can 
be used in language education, arts education, 
computer science, physics, geography, and many 
other areas. I will indicate some of these 
possibilities and then concentrate on the Game 
Maker program that I wrote for this. 
 
ASPECTS OF GAME DESIGN 
 
Creating a computer games involves many 
different aspects. The game play must be defined, 
the story must be written, the characters must be 
designed, levels must be created, and interaction 
and behavior of computer controlled entities must 
be programmed. Usability tests are required to 
make sure the game satisfies the player’s demands, 
and a marketing and promotion plan is required to 
actually sell the game. All these aspects can be 
used in an educational context.  
 
Language classes for example could study the 
important aspects of stories in games. See for 
example (Glassner 2004) for an overview of the 
role of stories in games. Students could write a 
game story, for example for an adventure game. 
This would be highly motivating, in particular 
when their stories would be used in other classes 
to be turned into an actual game. 
 
In art classes, rather than e.g. drawing portraits, 
students could design game characters that express 
a certain archetype, or they can paint game 
backgrounds that add the correct atmosphere to the 
game. They can design the 2-dimensional or 3-
dimensional levels in which the game takes place. 
And, going a step further, they could design 
animations and even introductory movies for the 
games. 
 
In music classes students could study game music 
and the effect it has on the player. They could 
investigate adaptive music that smoothly adapts 
itself to the game situation and they could 
infantrybowman

cavalryarchers

infantrybowman

cavalryarchers
 
Figure 2. The relation between different units in 
a strategy game. An arrow indicated the relative 
strength, for example, the archers are stronger 
than the (horse) bowman. 
compose their own game music using the various 
packages available. 
 
MATHEMATICS 
 
The core of a game consists of the rules that define 
the game play. Rules on one hand describe the 
inner mechanisms inside the game (for example 
how much damage a particular weapon does to an 
enemy) and on the other hand describe the moves 
the player can make. See (Salen and Zimmerman 
2004) for an extensive study of rules in games. 
This applies equally well to board games, sport 
games, and computer games. A prime aspect of 
designing a good game is to come up with a set of 
rules that is consistent, balanced, and meaningful. 
This obviously requires creativity but also 
mathematical skills, in particular in logic and 
probability calculus.  
 
Such systems of rules are very suitable for an 
educational context. For example, students could 
investigate the well-known rock-paper-scissors 
principle in which paper defeats rock, rock defeats 
scissors, and scissors defeats paper. Such a simple 
cyclic relation unfortunately leads to rather boring 
gameplay (the best strategy is to make random 
choices) but more complex relations can be 
studied as well, like the one depicted in Figure 2 
that is rather common in real-time strategy games 
(Rollings and Morris 2003). Here students could 
deduce that for example infantry is not required to 
win a game. Schemes can be made more 
interesting by adding costs to entities (often called 
shadow costs in game design terminology) and 
calculations can be made to determine the correct 
relative costs between units. This leads to various 
aspects of the mathematical field of game theory. 
See e.g. (Dutta 2001) for an easy introduction. 
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Probability also plays an important role in games. 
Many games contain events that happen with a 
certain chance, for example the appearance of a 
special bonus. The game designer must choose 
such chances correctly to obtain interesting game 
play. This can be used to introduce probability 
theory to students. For example, students could be 
asked to design some sort of casino game in which 
they have to determine the correct height of the 
prices in relation to the chance that certain 
combinations of dice or playing cards appear. 
Even letting students design a simple game 
involving a few dice already leads to a fun 
challenge (see Figure 3). 
 
COMPUTER SCIENCE 
 
When I was taking my first steps in programming I 
was very excited when I could write a program to 
compute the first 100 prime numbers. Nowadays, 
computer applications provide access to music, 
video, and games, and novice programmers want 
to create similar programs. Unfortunately, such 
programs are difficult to create. Teachers have 
tried to raise student interest by using languages 
such as Logo (www.logosurvey.co.uk) that can 
create interesting drawings, or robots, such as the 
Lego MindStorms (www.legomindstorms.com). 
But using Logo to make drawings is no longer 
flashy enough, and robots are rather expensive and 
limited in their functionality. 
 
Creating computer games on the other hand is a 
challenge that many students want to take on. 
Developing computer games involves many 
aspects of computing, including computer 
graphics, artificial intelligence, human-computer 

interaction, security, distributed programming, 
simulation, and software engineering. It can be 
used as a vehicle to teach students about these 
topics.  

Figure 3. Some high school students, during a 
workshop, are designing a game with some dice 
and colored stones. 

 
Many teachers indicate that it is difficult for 
students to understand object-oriented 
programming. This is somewhat surprising 
because object-oriented design is very natural. In 
real-life we think in terms of objects with certain 
properties and behavior. Still, once people write a 
program they tend to adopt the traditional view of 
instructions being executed and control structures.  
 
But when you are creating computer games, the 
situation changes. In a computer game, everything 
is an object: the monsters, wall segments, coins, 
bonuses, power-ups, and the guns and bullets. 
Thinking about creating games means thinking 
about objects and how they react to one another 
and to the player's input. So the game creator 
naturally thinks in an object-oriented way. 
 
Also inheritance, a powerful but sometime 
difficult to grasp object-oriented programming 
concept, becomes much easier to understand in a 
game design context. Take, for example, the well-
known class of games based on Breakout, in 
which the user must destroy stones by hitting them 
with a bouncing ball. All stones exhibit similar 
behavior but will appear in a variety of shapes and 
colors. These characteristics make it logical and 
efficient to create one stone object and specify its 
behavior, then create similar objects with different 
colors that inherit the original stone object's 
behavior. Making modified stones that override 
certain behavior also becomes an easy concept. 
For a more extended description see (Overmars 
2004). 
 
Finally games can be used to let students 
understand how to plan and execute a larger 
project. Creating games can involve different 
people (even from different courses) that must 
work together as a team. Writing design 
documents, performing usability studies, and 
setting up a good testing environment are crucial 
for the success of games.  
 
 

 

http://www.logosurvey.co.uk/
http://www.legomindstorms.com/
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GAME PROJECTS 
 
Game design can also play a role in other subjects. 
For example, in areas like physics and chemistry 
students could create games to investigate or 
explain concepts like gravity, electricity, or 
chemical reactions. In economics they could 
design their own economic system for a simulated 
city. And in geography they could make games 
about the location of certain towns. With a bit of 
imagination you can come up with many more 
possibilities. In this way students can create their 
own educational games.  
 
GAME MAKER 
 
Creating computer games is not an easy process. 
Commercial games are the combined work of 
teams of 10 to 50 people and require budgets of 
millions of dollars. And even creating smaller, 
simpler games from scratch would be a 
complicated task requiring advanced programming 
skills. Fortunately, there are a number of software 
packages available that make it way easier to 
create computer games, replacing (part of) the 
programming by mechanism in which games are 
constructed from simple building block. Examples 
are StageCast (www.stagecast.com), that is 
particularly aimed at young kids, and the products 
by ClickTeam (www.clickteam.com). Many 
similar packages exist, several of which can be 
found at www.ambrosine.com/resource.html. 
 
In this paper we will concentrate on Game Maker 
(www.gamemaker.nl), written by the author. 
Game Maker, is a rapid-application development 
tool currently used worldwide by young people at 
home and in schools to create two-dimensional 
and isometric games. Figure 4 shows the Game 
Maker interface, which uses an object-oriented, 
event-driven approach. With Game Maker's drag-
and-drop techniques, users can create games 
without writing a single line of code, but it also 
includes an interpreted programming language. 
The program produces stand-alone games that can 
be distributed freely; a version of Game Maker 
itself is available for free as well. 
 
Game Maker has become extremely popular 
during the past few years. In 2003, users 
downloaded over a million copies of the program. 
An active user community exists with many 
Figure 4. The Game Maker interface. The left 
side displays resources such as sprites and 
sounds, while the right side shows the object 
editor, room editor, and other property forms. 
forums (see http://forums.gamemaker.nl). The 
youngest users, 8-year-olds, receive their 
introduction to computer programming through 
Game Maker. The oldest users are 80-year-old 
senior citizens. 
 
Game Maker uses an object-oriented design 
concept as described above. Creating a game 
consists of defining objects. Some objects have a 
visual representation, such as an animated sprite. 
Others, like those that control game flow or 
maintain the score, might lack this feature. 
Multiple instances of the same object can appear 
in the game at the same moment. 
 
Instances have properties. Some are built-in, like 
the speed with which the instance moves and the 
sprite used to represent it. Others can be defined, 
manipulated, and checked using actions or code. 
The user must define each object's behavior. While 
some objects, like wall segments, will have no 
behavior, others, like the avatar representing the 
player, will most likely have complicated 
behavior. 
 
Game Maker defines behavior in event-driven 
terms. Events occur for objects, and the designer 
specifies actions that the game must execute when 
these events occur. Typical events include object 
creation or destruction, user input, collisions 
between instances, and alarm clocks. To achieve 
this, the game designer can simply drag and drop 

 

http://www.stagecast.com/
www.clickteam.com
www.ambrosine.com/resource.html
http://www.gamemaker.nl/
http://forums.gamemaker.nl/
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actions into events, as Figure 5 shows. Inheritance 
is achieved by simply setting the Parent field in an 
object. This indicates that behavior is inherited 
from another (parent) object. 

Figure 5. Object property form. The list of 
defined events for the enemy appears in the left 
center, while the actions that the game must 
perform when the enemy collides with a bullet 
appear to the right. 

 
Game Maker has more than 100 built-in actions, 
ranging from moving the object in a particular 
direction to playing a sound or displaying a high-
score list. For more advanced tasks, the designer 
uses a code action to type in pieces of code that 
are executed when the event occurs. Within this 
code are close to 1,000 possible functions that can 
control all aspects of the game, including a particle 
system, network play functionality, and routines 
for 3D graphics. Students in general will start 
using the drag-and-drop actions but soon realize 
the use of writing pieces of code. In this way they 
are naturally introduced into the concept of 
programming. 
 
Once the objects are defined (and the required 
sprites and sounds are added to the game) the 
designer can create rooms (or levels) using the 
room editor. Instances of objects are placed in the 
rooms and when the game is executed these 
instances come to life because of the actions in 
their creation events and they start reacting to each 
other and to the user input though the actions in 
their collision events and keyboard or mouse 
events.  
 
Creating games with Game Maker is very 
efficient. After some experience with the program, 
a typical Pacman clone takes less than an hour to 
create. As a result the students can concentrate 
more on the design aspects of the games rather 

than on all the details of getting the game to work. 
People have created all sorts of games with Game 
Maker, ranging from simple maze games and 
scrolling shooters to adventure games and strategy 
games. See Figure 6 for some examples of their 
creations. 

 
 

 
   Figure 6. Some games created with Game Maker. 

 
CONCLUSIONS 
 
Creating games appeals to all ages and to both 
males and females. It involves a lot more than 
programming, bringing together aspects of liberal 
arts, mathematics, social sciences and computer 
science. By using game design in an educational 
context you create an enthusiastic group of 
students that are eager to learn and who will find 
out that creating games can be even more fun than 
playing them. 
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ABSTRACT 

 

A keyboard and a mouse device are still standard input devices 

used in 3D graphics software as well as in 2D software.  

However, the use of a keyboard or a mouse device is not 

suitable for wearable computer and augmented reality 

applications so that voice input/output interfaces are more 

significant.  Especially for physically handicapped persons, 

voice input/output interfaces are very convenient.  Moreover 

for the development of multimodal interaction games, voice 

input/output interfaces are necessary. 

  The authors have been studying component based 3D 

graphics software development systems and they have 

proposed IntelligentBox as their research prototype system.  

One application of IntelligentBox is the development of 

interactive 3D games.  The authors have already introduced a 

video based motion input interface into IntelligentBox to 

enhance its ability for the development of various interactive 

3D games.  This time, the authors also introduced voice 

input/output interfaces into IntelligentBox for the development 

of multimodal interactive 3D games.  This paper explains 

software components for voice input/output interfaces 

introduced into IntelligentBox.  The authors also describe the 

usefulness of those components by showing their actual 3D 

graphics application examples of entertainment fields, e.g., 3D 

games. 

 
INTRODUCTION 

 

Advances in recent computer hardware technology have made 

possible 3D rendering images in real time.  Consequently, 3D 

software has become in great demand although its development 

is more laborious work than 2D software development.  For 

this reason, Okada and Tanaka developed a 3D prototype 

system called IntelligentBox(Okada and Tanaka 1995, 1998).  

IntelligentBox provides various 3D reactive objects called 

boxes.  Boxes are manually operable objects, which have a 3D 

visible shape and a unique functionality.  IntelligentBox also 

provides a dynamic data linkage mechanism called ‘slot 

connection’ so that users can construct interactive 3D graphics 

applications by combining already existing boxes through 

direct manipulations on a computer screen. 

Application fields of IntelligentBox include 3D animation 

creation, virtual reality software development, 3D interactive 

simulator development and so on (Okada, et al. 2000).  

IntelligentBox would be also useful for the development of 

wearable computer and augmented reality applications.  For 

these kinds of applications, voice input/output interfaces are 

more significant.  Especially for physically handicapped 

persons, voice input/output interfaces are strongly 

recommended.  Moreover for the development of multimodal 

interactive games, voice input/output interfaces are necessary.  

Another application of IntellgentBox is the development of 

interactive 3D games.  Therefore we introduced voice 

input/output interfaces into IntelligentBox to enhance its ability 

for the development of multimodal interactive 3D games.  This 

paper explains software components for voice input/output 

interfaces introduced into IntelligentBox.  We also describe 

their usefulness by showing their actual 3D graphics 

application examples of entertainment fields, e.g., 3D games. 

There are some researches about voice input interfaces.  

Igarashi and Hughes proposed the use of non-verbal features in 

voice, like pitch, volume, and continuation, to directly control 

interactive applications (Igarashi and Hughes 2001). The 

SUITEKeys system is a speech user interface for physically 

handicapped users.  This interface provides accesses to all 

available functionalities of a computer by modeling 

interactions at the physical keyboard and mouse level (Manaris 

and Harkreader 1998; Manaris et al. 2001).  Our research 

purpose is to propose component based software architecture 

that makes it easier to develop various 3D graphics 

applications including interactive 3D games, wearable 

computer and augmented reality applications.  In this paper, we 

wish to insist the availability of component based approach to 

provide voice input/output interfaces for the development of 

multimodal interactive 3D games. 

The remainder of this paper is organized as follows:  First of 

all, next Section explains essential mechanisms of 

IntelligentBox.  After that, we introduce component-based 

voice input/output interfaces.  Furthermore, we show 

application examples of entertainment fields those use the 

voice input/output interfaces.  Finally we conclude the paper in 

the last Section. 

 
ESSENTIAL MECHANISMS OF INTELLIGENTBOX 

 

IntelligentBox employs the following essential mechanisms, 

i.e., an MD structure and a slot-connection.  In this section, we 

explain these mechanisms briefly. 

 

Model-DisplayObject (MD) Structure 

 

As shown in Figure 1, each box consists of two objects, a 

model and a display object.  This structure is called an MD 

(Model-Display object) structure.  Indeed a display object 

consists of two objects, a view and a controller.  Therefore, 
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this structure is called an MVC structure. A model holds state 

values of a box.  They are stored in variables called slots.  A 

view defines how the box appears on a computer screen.  A 

controller defines how the box reacts to user operations. 

Figure 1 also shows messages between a display object and a 

model.  This is an example of a RotationBox.  A RotationBox 

has a slot named ‘ratio’ that holds a double precision number, 

which means a rotation angle.  This value is normalized 

between zero and one.  One means one rotation.  Through 

direct manipulations on a box, its associated slot value changes.  

Furthermore, its visual image simultaneously changes 

according to the slot value change.  Then a box reacts to user's 

manipulations according to its functionality. 

 

Message-Sending Protocol for Slot Connections 

 

Figure 2 illustrates a data linkage concept among boxes.  As 

shown in the figure, each box has multiple slots.  Each slot can 

be connected to one of the slots of an other box.  This 

connection is called a slot connection.  The slot connection is 

carried out by some messages when there is a parent-child 

relationship between two boxes.  There are three standard 

messages, i.e., a set message, a gimme message and an update 

message.  These messages have the following formats: 

  (1)  Parent box set <slotname> <value>. 

  (2)  Parent box gimme <slotname>. 

  (3)  Child box update. 

A <value> in a format (1) represents any value, and a 

<slotname> in formats (1) and (2) represents a user-selected 

slot of the parent box that receives these two messages. 

A set message writes a child box slot value into its parent box 

slot.  A gimme message reads a parent box slot value and sets it 

into its child box slot.  Update messages are issued from a 

parent box to all of its child boxes to tell them that the parent 

box slot value has changed. 

Each box has three main flags that control the above message 

flow, i.e., a set flag, a gimme flag, and an update flag.  These 

flags are properties of a display object.  A box works as an 

input device if its set flag is set to true.  Contrarily a box works 

as an output device if its gimme flag is set to true.  A box sends 

update messages if its update flag is set to true.   Then child 

boxes take an action depending upon the states of the set flag 

and the gimme flag after they receive an update message or 

after they individually change their slot values. 

 
COMPONENT-BASED VOICE INPUT/OUTPUT 

INTERFACES OF INTELLIGENTBOX 

 

Since IntelligentBox does not have any voice recognition and 

text-to-speech functionalities, we employed Microsoft Speech 

API and developed one server program for that.  As shown in 

Figure 3, our server program called VoiceServer provides 

voice dictation and text-to-speech functionalities using 

Microsoft Speech API.  IntelligentBox connects to the server 

using a standard TCP/IP socket communication by specifying 

the IP address and port number of the server.  In the following 

subsections, we explain the functionality of VoiceServer and 

introduce voice input/output components of IntelligentBox.  

Among them are VoiceInputBox, VoiceCommandBox and 

SpeechBox. 

 

 

Figure 2. Standard messages between boxes 

Figure 1. An MD structure of a box and its 
internal messages 

Figure 3. System configuration for voice input/output interfaces of IntelligentBox 
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VoiceServer 

 

Microsoft Speech API has mainly two functionalities, i.e., 

voice dictation functionality and text-to-speech functionality.  

Microsoft also provides Speech SDK Ver. 5.1 (Microsoft 

SAPI) that includes development tools, libraries and sample 

programs.  We modified one of the sample programs to make it 

work as a server and named it VoiceServer.  Since this works 

as a server, it is possible to use both voice dictation and text-

to-speech functionality from any other application programs.  

In the case of IntelligentBox,  we developed two new 

components, VoiceInputBox as the client for voice input 

interface and SpeechBox as the client for voice output interface. 

 

Voice Input Interface 

 

For voice input interface, we developed two components, i.e., 

VoiceInputBox and VoiceCommandBox.  VoiceInputBox 

works as the client that connects to VoiceServer and sends a 

certain message to ask the server to send a current dictated text 

string to the VoiceInputBox.  The received text string is also 

sent to VoiceCommandBox.  VoiceCommandBox has two 

modes, i.e., training mode and execution mode.  Even if the 

user makes voices of the same text string, VoiceServer 

sometimes recognizes them as different strings.  

VoiceCommandBox must keep several text strings those are 

dictated as different strings when the user makes his/her voices 

as the same text string.  This means a training mode. In the 

training mode, VoiceCommandBox always receives a dictated 

text string from VoiceInputBox and store it in a text strings list 

as shown in the upper figure of Figure 4.  On the other hand, in 

the execution mode, VoiceCommandBox receives a dictated 

text string from VoiceInputBox and checks that it is the same as 

one of the already stored text strings in the strings list.   When 

it is the same as one item of the strings list, ‘state’ slot of 

VoiceCommandBox becomes true as shown in the lower figure 

of Figure 4.  Furthermore this ‘state’ slot value is sent to 

another composite box as a trigger signal to invoke a required 

action of the box.  In this way, our voice command input 

interface is realized as the combination of software 

components, i.e., VoiceInputBox and VoiceCommandBox.  

Then, the user can realize his/her required voice command 

input interface for the already developed applications by 

adding the software components of the interface to the 

applications.  Furthermore, as shown in Figure 5, multiple 

voice commands input interface can also be made using 

multiple VoiceCommandBoxes. 

 

Voice Output Interface 

 

For voice output interface, we developed only one component 

called SpeechBox.  SpeechBox also works as the client that 

connects to VoiceServer.  As show in Figure 6, SpeechBox has 

‘text’ slot in which the text string the user want to VoiceServer 

to speech is stored. 

 
APPLICATION EXAMPLES 
 

In this section, we show two application examples of 

component based voice input interfaces.  Those are a tank 

battle game and a toy for interactions with a CG dog.  

 

Tank Battle Game 

 

We applied voice input interface components to the tank battle 

game already developed using IntelligentBox.  In this game, 

players move a tank on the ground using a mouse device as 

shown in Figure 7 and attack other player’s tank by shooting a 

bullet. The bullet is shot by the mouse click operation. 

Figure 6. Component for voice output and its 
message flow 

Figure 5. Components composition for multiple voice 
commands input and their message flow 

Figure 4. Components for voice command input and 
their message flow 
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Figure 8 shows the view seen from the player of a green tank.  

There are three wire-frame boxes those are controllers for 

shooting a bullet, moving a tank and changing user’s viewpoint.  

In fact, it was difficult to play this tank game smoothly because 

IntelligentBox does not allow the user to operate multiple 

boxes simultaneously.  This means that the user needs 

additional mouse-click operations whenever changing the 

operation on the controller of shooting a bullet into the 

controller of moving a tank and its opposite.  We attached 

voice command input interface to the box which is the 

controller for shooting a bullet and the box which is the 

controller for changing user’s viewpoint.  Thus, it is possible to 

shoot a bullet and to change user’s viewpoint with voice 

commands so that a player can concentrate on moving a tank 

Figure 10. Components for interaction with AIBO. 

Figure 11. AIBO with raising his right front leg. 

Figure 12. AIBO with raising his left front leg. 

Figure 8: View image seen from the player of a green tank 

Figure 9: View image when shooting a bullet 

Figure 7: Bird-eye view of a tank game 
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using a mouse device.  Figure 9 shows the view image seen 

from the player of a green tank when he/she has shot a bullet 

by a voice command.  In this way, it has become smooth to 

play the game. 

 

Interaction with AIBO 

 

As another application example of component based voice 

input interface, we made a toy for interactions with a CG dog.  

In fact, this CG dog is the model of AIBO, which is an 

entertainment robot produced by Sony Corp. (AIBO). 
As shown in Figure 10, in this example, we used three 

VoiceCommandBoxes to accept three different voice 

commands.  Those data flow is the same as that shown in 

Figure 5.  If the user says “right leg” in Japanese, AIBO raises 

his right front leg as shown in Figure 11.  If the user says “left 

leg” in Japanese, AIBO raises his left front leg as shown in 

Figure 12.  Moreover if the user says “return” in Japanese, 

AIBO moves his legs into their original positions.  With using 

IntelligentBox, we could make this example in less than two 

hours.  We are supposed to add voice output interface to make 

this example more entertaining. 

 
CONCLUDING REMARKS 

 

This paper proposed component based voice input/output 

interfaces.  We have been studying component based 3D 

graphics software development systems.  We have already 

proposed a prototype system called IntelligentBox.  

Application fields of IntelligentBox include various topics, one 

of them is the development of 3D games, and IntelligentBox 

would be also useful for the development of wearable 

computer and augmented reality applications.  For these kinds 

of applications, voice input/output interfaces are more useful.  

Especially for physically handicapped persons, voice 

input/output interfaces are strongly required.  Moreover for the 

development of multimodal interactive games, voice 

input/output interfaces are necessary.  Then we introduced 

voice input/output interfaces as software components into 

IntelligentBox.  This paper explained the functionalities and 

the usage of those software components.  We also shown 

practical 3D graphics application examples of entertainment 

fields, a tank battle game and a toy for interactions with a CG 

dog, to clarify the usefulness of component based voice 

input/output interfaces.  These application examples, as speech 

controlled 3D games, may not be interesting for the readers.  

We will also develop more interesting speech controlled 3D 

games. 

In this paper, we did not show any examples of augmented 

reality and wearable computer applications.  We will make 

such examples to clarify the usefulness of IntelligentBox for 

those applications fields.  There is another voice recognition 

tool called Julius (Lee, et al. 2001).  Since Julius is open 

source software and is easy to be customized, we have been 

trying to use Julius in order to change native operations of 

IntelligentBox performed by a keyboard and a mouse device 

into those performed by voice commands.  These are our future 

works. 
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ABSTRACT 
 
Current research in computer music composition almost 
exclusively involves the manipulation of music stored as 
MIDI data. While this allows direct access to the structure of 
music, it creates limitations in realism for the end result of 
such techniques. This paper describes a method designed to 
represent music in a form that facilitates the use of existing 
processing techniques while conserving the ‘real-world’ 
attributes of music recorded in PCM format giving computer-
game developers a facility for the production of variations on 
a pre-recorded theme, whatever the original source. 
Experimental results are presented to demonstrate that 
polynomial interpolation is a viable technique. 
 
INTRODUCTION 
 
This paper explores the use of polynomial interpolation to 
improve the generation of audio tracks for computer games.  
Traditionally, there is a recurring tendency for computer 
music research to tackle the processing of music at a 
grammatical level. Music is often described as a language 
and, indeed, can be quite legitimately thought of as so. There 
is however evidence to suggest that working at a higher-level 
than that of the note-sequence has considerable potential for 
analysis and composition. As far back as 1979, it was 
becoming apparent that simply applying techniques similar to 
those used in Natural Language Processing (NLP) was falling 
short of the mark in unlocking the secret of what makes 
music sound musical (Meehan 1979). The concept of 
‘Shenkerism’, whereby initial parsing of a piece of music is 
performed at the note-group level rather than delving into 
every facet of its structure, was a hint that being ‘less-precise’ 
could in fact make the task of instilling creativity in computer 
music easier. This was also the case with the later POD 
system of Truax (1977) that introduced the concept of 
‘Digital Sound Objects’. A survey by Roads (1985) is quick 
to criticise many of the automatic-composition systems 

developed around the middle of the twentieth century for 
their rigidity – something that could reasonably be seen as a 
necessary compromise to achieve the required degree of 
success when using an abstracted representation of music. 
 
Nevertheless, computer music research seems to be anchored 
to the concept of musical notes whether the technique in use 
is a Neural Network, Genetic Algorithm, Stochastic or 
Grammatical algorithm or an Iterative Formula (with some 
exceptions in the latter case). A cursory glance through core 
texts in computer music such as Roads (1995) and Miranda 
(2001) will make this apparent. One possible reason for this 
is the fact that, when working at a higher syntactic level, one 
faces the choice of either being limited by having to work 
with note-groups or relative pitch structures as atomic 
components or, if these high-level symbols are made more 
flexible, loosing some of the very information one is trying to 
process. 
 
The computer-games industry largely ignores existing 
automatic composition techniques. The game ‘Halo’ 
(O’Donnell, 2002) which is recognised as having one of the 
most advanced dynamic-music systems currently in existence 
only stretches to event-driven transitions between manually-
composed segments of music whilst other landmark games 
such as Quake seem to treat background music as a technical 
afterthought. 
 
A major driving factor behind the technique presented here, 
was the desire to preserve as much data as possible when 
improvising around an existing composition. Of paramount 
importance in this respect is the issue of timbre. Usually 
defined as the characteristic of a sound that allows us to 
identify it as emanating from a particular source (a musical 
instrument for instance), timbre is an issue for any 
composition stored in MIDI format as the composer is 
restricted to whatever sounds the synthesis module of the 
sound-card can generate. This issue becomes augmented 
when working with existing compositions recorded from real 
instruments in PCM form. A conversion to MIDI format 
allowing computer improvisations destroys all of the original 
timbre information resulting in (despite the use of advanced 
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synthesis techniques) an artificial sounding end-product that 
fails to preserve any of the nuances and idiosyncrasies of the 
original performers. The aim of the work described here was 
to allow any recording to be used as the basis for background 
music in a game so as to create the same emotional effects 
that a film-soundtrack, which is be tailored to a predefined 
script, creates for its audience. Consequently, MIDI was 
discarded as a viable option. 
 
The disadvantage of working with wave-data as opposed to 
MIDI is that while it might be possible to decipher and work 
on the regular, amplitude samples provided in wave-data files 
(using say a neural network), this involves a complex 
procedure just to obtain a single note that can be identified 
from the mass of fundamentals, partials and general 
background noise. This limitation was the initial hurdle in the 
process of developing a professional dynamic music system 
for use in computer-games. While the idea of a musical-
improvisation system composing the soundtrack for a game 
in real-time and in response to environmental and narrative 
factors present in the gaming environments is not 
unresearched (Casella & Paiva 2001), there seems to be an 
automatic choice of MIDI as the format to work with, 
presumably for the reasons already mentioned. It is felt that a 
compromise is possible if some of the complexity of such a 
representation system were to be handled by Artificial 
Intelligence (AI). 
 
The aims of this research are thus to produce variations on an 
existing sound track by means of AI; to limit the  
representation of that theme by defining only at a conceptual 
level; to segment the track and represent each segment 
parametrically; and to use the parameters to generate new 
instantiations of the sound. 
 
The paper is organised as follows: In the next section we 
examine the possible use of AI techniques to solve this 
problem and outline the use of polynomial interpolation as a 
basic data representation for this process.  This is followed by 
a description of the experimental methodology and the results 
obtained.  The paper concludes by examining the limitations 
and possible improvements for the proposed technique.  
 
METHODOLOGY 
 
AI as a Facilitator 
 
Artificial Intelligence (AI) provides a way of tackling 
problems without having to think about the fine detail. As an 
eventual aim of the work is to produce variations on a theme 
by means of AI, the representation of that theme needs only 
to be defined at a conceptual level. What is required is a level 
of quantisation whereby each code represents not just pitch 
information but rhythmic and timbral information as well. 
Our approach is based around the theory of wavelets and is 
designed to allow segments of a soundtrack to be categorised 
as instantiations of dynamically identified generic 
waveforms. While these ‘waveform-objects’ are extremely 
difficult to work with manually, it is believed that a stochastic 
technique such as a Markov Model (Russell & Norvig 1995) 
or an AI technique such as the Kohonen Self Organising Map 
(Kohonen 1989) will be able to identify the relationships 

between them in the context of specific musical tracks. These 
relationships can then be manipulated in order to induce 
variations on the original theme, theoretically producing 
music that sounds as though performed by the original artists. 
 
Segmentation and Polynomial Interpolation 
 
In order to identify segments of PCM data as specialisations 
of generic waveforms, it is necessary to find a representation 
of those segments that allows rigorous comparison. The 
approach taken here is a functional one. Lagrange 
Interpolation is applied to successive segments of the 
waveform representation of a track resulting in a sequence of 
polynomial equations, each of which representing a particular 
segment. As the Lagrange formula allows determination of 
the degree of a polynomial before performing calculations, 
the only parts of an equation that need to be stored are the 
coefficients of the various terms. 
 
The Lagrange formula adopted is as follows (Butler & Kerr 
1962): 
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It was discovered pragmatically that, in the contex
paper, Lagrange polynomials generated from large
PCM data are generally unreliable in terms of a
Another important issue affecting the choice of pa
was that of sampling frequency. The danger is that b
PCM values in close proximity to each other, little 
is picked up, with the result that each ‘wavelet’
effectively to a simple curve or, in extreme cases, a
practice this would lead to identical classifications
segments giving no significant outcome. 
 
Currently the sampling rate (11,025 Hz), num
interpolation points (6 per segment) and distance 
interpolation points (5 samples) are fixed at value
through informal experimentation. While this configu
sufficient to demonstrate the potential of the techni
unlikely that this approach will be sufficient to take 
forward. As there is no relation between the aforem
parameters and the structure of the music being proc
is purely a matter of chance as to whether or not 
(structurally) significant parts of a wave are picke
missed by the interpolating-quantiser. The next
therefore to add a degree of ‘intelligence’ to the al
taking into account the structure of the music on w
working in both the time and frequency domains. 
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EXPERIMENTS 
 
Various recordings of a musical soundtrack were made in 
PCM format using the low-level wave functions provided by 
the Win32 API in a modified version of the simple buffered 
recording program provided by Petzold (1998) in order to 
reduce development time. This approach provided memory-
buffers of wave data that were then processed by the 
interpolating-quantiser. The Lagrange coefficients were 
written to a file. The quality of this representation was then 
validated by reconstructing the waveform and comparing the 
result with the original. While the technique is not designed 
to be an alternative storage-format for music due to an 
inevitable loss in sound-quality caused by the geometric 
properties of the Lagrange polynomials, this exercise was 
necessary in order to verify that the generated wavelets bore 
sufficient relation to the original wave-segments. Once it had 
been determined that the LIP data, when played back, was 
recognisable as the original PCM recording, graphical 
representations of some of the wavelets were made with their 
associated wave-segments. These graphs clearly illustrate the 
potential for success of this approach to sound representation 
while simultaneously highlighting areas for improvement. A 
low sampling rate was deliberately chosen in order to 
determine the maximum ‘strain’ that the system could deal 
with.  

 
RESULTS 
 
The following graphs illustrate the effect of interpolative-
quantisation using the Lagrange-based technique described 
above on a piano rendition of the C Major scale sampled at 
11,025 Hz (CD audio is generally recorded at 44.1KHz). The 
start and end samples are given in the titles. Also, note the 
differing ranges of the Y axes. 
 
The reproduction in Fig. 1 is very close in form to the 
original, however the Lagrange technique is at the mercy of 
two factors. We will discuss the most innate of these shortly, 
but an evident side effect of taking points at fixed intervals is 
the fact that, by missing a peak or trough, the resulting 
polynomial will flatten out that part of the waveform as the 
subsequent group of samples shown in Fig. 2 demonstrates. 
 
One should also be aware that making even a slight change to 
a waveform can introduce many new partials (component 
waves that, when added together, form the complex wave 
seen) and that because of the way the brain interprets sound 
waves (Zotkin et al, 2003) this can have unwanted side 
effects such as single notes being turned into chords and 
pseudo-random timbres replacing the sounds of the original 
instruments. 
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Fig. 1  Acceptable interpolated reproduction of  wave-segment 
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Fig. 2  Inaccurate reproduction 
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LIMITATIONS AND POSSIBLE SOLUTIONS 
 
The primary risk in using Lagrange Interpolation is that 
the formula does not offer a way to determine how well a 
polynomial fits the original waveform (Hosking et al, 
1986). One technique which is less than satisfactory and 
high on the priority list for replacement is that of 
overlapping the regenerated wavelets to compensate for a 
tendency whereby  (at least with the current, empirically 
determined operating parameters of the system) the 
Lagrange Polynomials usually become very inaccurate 
after the last reference point (I.e. the last point given to the 
Lagrange formula from the original PCM data). This may 
be resolved by the measures described below, but if not 
will warrant the replacement of the Lagrange formula by 
another polynomial technique. 
 
As has already been stated, the final aim of this work is not 
to develop an alternative sound storage technique. It is to 
create, in parallel to the PCM data, a meaningful digest of 
a piece of music that can be used to alter it without loosing 
timbral information. We must therefore take into account 
the fact that some parts of a piece of music are more 
significant than others. Immediately, fixing the interval 
between interpolation points is highlighted as a problem. 
While Lagrangian Interpolation can implicitly deal with 
varying distances between these points, the problem again 
arises that we have no way of determining the accuracy of 
a polynomial and, with so many polynomials resulting 
from even a one second sample of PCM data at 11,025 Hz, 
no way of flagging ‘bad’ polynomials for treatment by a 
corrective algorithm. 
 
On the other hand, other interpolation techniques tend to 
require data tabulated at equal intervals (Hosking et al, 
1986). This may turn out to be unacceptable for reasons 
already mentioned. Also, the order at which these constant 
intervals are found often determines the order of the 
resultant polynomial. This makes the storage structure 
required more complex but may provide a payoff in terms 
of accuracy. 
 
With some options clearly available, we then face the task 
of identifying significant events in a piece of music. While 
the efficacy of techniques with which to accomplish this is 
yet to be investigated, it is felt that a protocol-analytic 
study of composers and audience members will be of 
value. 
 
Assuming for a moment the worst case scenario; it may 
become apparent that interpolating polynomials will be 
sufficient for the manipulation of music by AI techniques 
but not sufficient to completely replace PCM as a 
recording and playback format. It will therefore be 
necessary to map changes made to the approximating 
polynomials to the raw PCM data that will actually form 
the output of the dynamic-music system. It is here that a 
more significant overlap with Computer Sound Synthesis 
occurs. Slaney, et al (1996) have conducted research into 

the problem of “Automatic Audio Morphing”, a means of 
smoothly transitioning from one sound to another. They 
achieve this by isolating each different aspect of a sound-
wave to it’s own dimension. These dimensions are then 
warped according to freely-definable rules governing the 
relationships between them. This approach may well 
provide a satisfactory Polynomial-PCM bridge in our 
dynamic-music system. 
 
 
CONCLUSION 
 
While currently in it’s infancy, we have demonstrated a 
way of representing sound that has the capacity to 
facilitate the manipulation of any music stored in PCM 
format while preserving all of the original data not 
concerned with the piece’s ‘grammatical’ structure. This is 
almost an opposite approach to that taken by systems using 
the MIDI standard or similar. Any pitfalls currently 
inherent in the technique indicate their own solutions and 
have enabled us to construct a solid methodology with 
which to take the work forward. 
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ABSTRACT  
In this paper we outline a framework for creating player-
centred digital games. At the core of our proposal is the 
requirement for games to be more responsive to different 
player types and their individual needs; for games to have 
the capability to adapt so as to provide an appropriate level 
of challenge for each player, to smooth the learning curve, 
and enhance the gameplay experience for each player 
individually. This is not an easy objective to achieve and 
adaptive game technology, although a popular ideal in some 
quarters, is still fraught with difficulties and some 
controversy. We address some of the most well known 
issues and outline a proposal for dealing with two of the 
more recent issues: that of monitoring the effectiveness of 
game adaptation on the basis of player intention and/or 
frustration, and dealing with dynamic player profiles – 
because players learn in different ways and at a different 
speed. 

INTRODUCTION 
All game players are different; each has a different 
preference for the pace and style of gameplay within a game, 
and the range of game playing capabilities between players 
can vary widely. Even players with a similar level of game 
playing ability will often find separate aspects of a game to 
be more difficult to them individually and the techniques that 
each player focuses on to complete separate challenges can 
also be very different. For these reasons and others it can be 
very difficult to design a game that caters for a wide range of 
player capability and preference. Game developers have 
traditionally dealt with the range of player abilities in a very 
straightforward manner, for example, by allowing the player 
to select a difficulty level at the beginning of the game, as 
with the classic first person shooter “Doom”. Once a player 
selects their level of difficulty for a game designed in this 
way, then there is usually no attempt within the game to 
monitor how a player is performing in order to adjust the 
level of challenge or gameplay experience. Recent games are 
better at allowing a player to set up preferences for their 
gameplay experience, e.g. as with “DeusEx” where a player 
can tailor their own avatar’s characteristics, but this relates 
more to setting up the gameplay experience before starting 
the game than intelligently recognizing and adapting to the 

needs of the player in-game. While the concept of an 
adaptive game is a controversial topic among some gamers 
and developers, there are clear benefits to tailoring the game 
experience to particular player types – especially for 
educational games (Beal et al 2002). Catering for the 
individual more effectively could help attract a wider 
participation, if for no other reason that it will be easier for 
players to get started, progress and complete a game. In a 
recent edition of the Edge (Edge magazine 2004) Poole 
provides an insightful discussion on the problem of 
“beginnings”, teaching the player, and lack of game 
completions by most players, while in the same issue Redeye 
highlights the niche quality to current games and their lack 
of accessibility to a wider group of people.   

Adaptivity within games may primarily be implemented 
by auto dynamic difficulty technologies (Miller, 2004) but 
there are a number of other ways in which adaptivity can be 
advantageous. For example, in helping players avoid getting 
stuck, adapting the gameplay more to the player’s 
preference/taste, or perhaps detecting deviant player 
behaviour and modifying the game in response. What we 
mean by deviant player behaviour is, for example, when a 
player uses or abuses an oversight in the game design to their 
advantage. Often this means that the player finds it easier to 
succeed in the game but their enjoyment of the game is 
lessened because the challenge that they face is reduced and 
they are not encouraged to explore the full features of the 
game – i.e. players will often repeat a successful strategy 
over and over again because it leads to a predictable win, 
even if it is boring and somewhat ruins the game. This 
happens frequently in real-time strategy games such as 
“Warcraft” or “Command and Conquer”. Bungie, the 
creators of “Halo 2” – a game much praised for its AI – 
acknowledged the importance of this when they designed the 
AI deliberately to prevent the player using “boring” tactics 
but positively reinforced the player when they used 
imaginative or adventurous tactics (Griesemer & Butcher, 
2002).  

In this paper we propose and discuss a novel framework 
incorporating advanced ideas about player-centred game 
design. This comprises of four key aspects: player 
modelling, adaptive game environments in response to 
player needs, monitoring the effectiveness or appropriateness 
of any adaptation, and dynamic player remodelling or 
classification.  
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PLAYER-CENTRED GAME DESIGN 
Most game design is, of course, already centred on the player 
but it tends to focus on large groups of players rather than 
catering for individual players – in this paper we hope to 
persuade the reader that games that are adaptive in catering 
for the individual will be one of the key innovations in future 
games. One of the novel aspects of the framework that we 
propose in this paper for player-centric games is the ability 
of a game to dynamically model, remodel, or reclassify a 
player as they play the game. Players differ not only in their 
characteristics and ability as they begin to play the game, but 
every player will learn at a different rate and each player will 
excel in (or just simply enjoy) different aspects of the game.  

The most common game model for differentiating 
between player – and even this is quite rare – is shown in 
Fig. 1. A player may set their difficulty preference (and 
perhaps make a few other choices relating to their ability or 
preference) before beginning the game. Within the gameplay 
itself there may be a simple hinder/help mechanism, as in the 
racing game “Mario Kart” where a player who is doing well 
will not receive good power-ups or weapon bonuses while a 
player who is struggling will gain a lot of help through a 
discreet speed up or by receiving more powerful item drops. 
Most of the simpler methods used – and often most effective 
– are straightforward help mechanisms, for example in the 
“Crash Bandicoot” series if a player repeatedly fails at the 
same point in the game then a mask is provided to the player 
character which acts as a shield. This essentially allows the 
player to make one mistake and still be able to progress, e.g. 
the character may hit a land mine once without losing a life.  

Often such systems are “life” based as with “Maximo” 
where a player is provided with a coin by the angel of death 
character “Grim” in order to buy another go when they die – 
when a character fails at a challenge they may go back to a 
save point within the game level if, and only if, they have a 
life/death coin. In this way a weaker player still has an 
opportunity to progress while a stronger player is encouraged 
to play sensibly – because they have a limited number coins. 
However, as well designed as this mechanism is, the game 
can still be prohibitively difficult at times for the novice 
player. When a player runs out of coins then he/she has to 
reload a save and restart the level, and this inevitably is one 
of the reasons that many people will never finish this game. 
“Prince of Persia: The Sands of Time” provides another 
mechanism which operates in a similar manner by allowing 

the player to press a button that “rewinds” a sequence back 
in time by up to approximately  10 seconds. This is 
particularly useful for dealing with mistakes, accidents, or 
misjudgements by a player, for example, let’s say a player 
makes his/her character jump across a gap and the jump is 
miss-judged so that the character falls to his death. Usually 
in a game – particularly with game consoles – this would 
mean that the level would have to be restarted or the player 
would have to go back to a previous save point, but with 
“Prince of Persia” a player simply rewinds that mistake and 
tries it again (up to a limited number of times obviously). 
This mechanism proves to be excellent in reducing 
frustration simply by adding a quality game design feature.  

A different type of help mechanism used in 3rd person 
view games is to have a game character look at areas that are 
interesting as with “Eternal Darkness” where the player 
character will turn his or her head to look at pictures etc. that 
perhaps should be examined. “Ico” is even more impressive 
in this regard in that the non player character “Yorda” who 
accompanies the main player character will often wander 
around independently, looking and pointing at things that the 
player should examine after he/she has been stuck in an area 
for a while.  

These approaches supplement clear, directional level 
design but are not particularly dynamic. So the basis that we 
propose for a player-centred framework should build on 
recent research within the AI community with methods such 
as intelligent interfaces (Rogers & Iba, 2002, and 
Livingstone & Charles, 2004). Mainstream AI research is 
relatively unused within the game development world yet 
progress in this area for games has the potential to 

revolutionise gameplay (Charles, 2003) as much as 3D game 
technology has in the past. AI can provide a perceptual and 
functional interface between the player and game (Charles & 
Livingstone, 2004) to enhance the experience for an 
individual player. 

PLAYER MODELLING AND ADAPTIVE 
GAMES 
A few game developers and researchers are now considering 
player modelling (Houlette, 2004) and adaptive games 
(Charles, 2003, and Charles & Livingstone, 2004), though 
work in this area is still relatively rare. Fig 2 illustrates our 
view of how a basic adaptive game system could be set up. 
Two sources of information can be used to identify the 
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player-type for a game: firstly the information that a player 
provides when they begin the game by setting basic 
preferences and inputting information about themselves. The 
second source of information should be taken from the 
player’s gameplay habits and performance in-game. 
Together this information can be used to match the player to 
pre-defined models and the game can then be adapted to 
cater specifically to their needs and abilities.  

Players may not necessary need to be modelled by one 
single object but several object models may be used to model 
them that cover different aspects of the gameplay and their 
relationship with the player. A more refined object model is 
obviously better because player modelling can be complex, 
for example one player may be excellent at combat but 
terrible at problem solving, while for another the opposite 
may be true. In this case it is clearly better to model both 
aspects separately, rather than try to fit them into a coarser 
single model.  

Player Modelling 

It could be said that there are two main reasons for player 
modelling in digital games. Firstly, modelling a player in 
order to instil human-like qualities into a non-player 
character, as was demonstrated by an example in a recent 
paper (McGlinchey, 2003) where it was shown that the 
characteristics of an individual player could be captured 
while playing a game of “Pong” by a Self Organising Map 
(SOM) neural network. The SOM could then be used as the 
“AI” for an artificial computer opponent in subsequent 
games. The second reason for player modelling and the 
approach that we are interested in within this paper, is 
modelling players – or perhaps classifying typical player 
types or behaviour – so that we may recognise predefined 
player types or behaviour within the game. The reason that 
we want to recognise the type of player currently playing is 
because we wish the game to adapt the needs of the player.  

To enable the creation of initial user profiles, some 
monitoring of game players is required to attain information. 
Additionally, information about the player – provided by the 
player themselves – such as whether they are a novice or 
advanced, male or female, young or old, and other basic 
general factors may be used as part of the player modelling 
or clustering process. This information can be used as part of 
the initial modelling or classification process and it can serve 

as a starting point for the dynamic modelling process in-
game or to help label player groups. For example, we know 
that there are certain differences, in general, between some 
of these groups in terms of reaction time and in game play 
deliberation. Of course, caution must be taken when 
adopting this approach, because this initial classification 
process will be quite coarse, e.g. girls may generally like 
games like “The Sims” and “Everquest” due to the pace of 
the game and other factors but many prefer action/adventure 
or sports games. Identification of which type of information 
produces the most informative profiles is a very important 
initial task. Key fields of data can be identified as attributes 
of information, for example gender attribute with values: 
male, female, and once the necessary attributes have been 
identified and the information collected, some pre-analysis 
can done. If predetermined profiles are not obvious we can 
use unsupervised machine learning techniques such as 
clustering to partition groups of players. We demonstrate 
how both may be achieved with neural networks in the next 

chapter. 
Once the most appropriate attributes have been identified 

we then may produce our separate player profiles where each 
cluster group represents a different profile of player. If we 
wish to be able to interpret the properties of these individual 
groups, they can be labelled and the individual examples of 
each group provided to a supervised machine learning 
technique such as a tree induction classifier (Quinlan, 1986).  
This common inference task consists of making discrete 
predictions about a concept, in this case each profile, and this 
prediction problem is referred to as the classification 
problem. The task of a classification algorithm is to accept a 
set of training examples which will depict the current state of 
knowledge for that concept/profile. These training examples 
are a set of descriptive attributes with an associated class, 
and this class represents a value for the concept. The 
algorithm will induce a knowledge structure to distinguish 
between the values of the concept. A tree induction 
algorithm will produce a classifier in the form of a tree from 
which rules can be interpreted as one for each path from the 
root of the tree to each leaf. These rules depict knowledge 
which represents the concept. As will be demonstrated in the 
next chapter we can also use other supervised learning 
algorithms such as neural networks. 
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Fig 2. A basic adaptive game system. 
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Adaptive games 

Adaptation can have two related meanings: one meaning that 
relates simply to change, and another related to learning and 
transformation. In the first case the adaptation from one form 
to another has been predetermined and the adaptive states are 
known in advance, and in the second case the adaptation 
occurs after some learning from experience and the 
transformed stated may be previously unknown. Both forms 
of adaptation are relevant for games, but adaptation from 
learning is the most interesting and also the more 
controversial. The reason for this controversy is that 
mechanisms within games that have online learning are 
unpredictable and therefore are very difficult to test 
thoroughly. Scepticism (or even anger!) is also often 
expressed by gamers and developers with regard to games 
that change according to player performance. “Mario Kart” 
provides one of the most well-known examples; in this game 
if a player is winning then he/she does not get any of the 
powerful power-ups and the computer controlled cars often 
speed up – and the opposite is the case if a player is losing. 
While this can be annoying if a player is dominating a race, 
it does even out player ability disparity in a multiplayer 
competition and thus the race may be more evenly matched 
and thus exciting. However, if players are aware of 
“cheating” AI they may alter their gameplay accordingly; i.e. 
a player may decide to remain in second or third place until 
near the end of the race so that they may receive a significant 
power-up or weapon to unleash on the leader on the last 
corner of the race – thus a new (perhaps unpredicted) 
gameplay mechanic is introduced. There is some evidence 
that adaptive game technology is more effective when the 
player is unaware that it is happening, for example, the 
primary author of this paper played and completed “Max 
Payne” without realizing that it incorporated “auto-dynamic 
difficulty” technology (Miller, 2004).  

There are two opposing desires in players that we need to 
take into account: the desire of a player to learn the rules so 
as to master the game, and the requirement to avoid 
“sameness” or lack of variety of gameplay. Thus, while we 
believe that there is a clear need for player-centric adaptive 
technology within games to cater for individual players 
needs, to help them learn and play the game, to enhance their 
playing experience, to recognise when the player is stuck or 
frustrated and help out. There is also a requirement that the 
rules of the game do not change significantly, which would 
frustrate many players, and ideally either the player should 
not aware of the adaptive nature of the game or they should 
have the option to switch it off. 

NEURAL NETWORKS FOR THE 
MODELLING PROCESS 
The use of neural networks for the player modelling process 
is quite an obvious approach but the authors are not aware of 
them having been used much for this purpose in games yet 
and so we provide an overview to a few possible supervised 
and unsupervised approaches below. Neural networks are 
good at detecting patterns and clustering data (depending on 
the method) and so we can use a variety of neural network 
techniques in different ways to identify or understand 
different players.  Additionally, as neural networks are 
essentially learning machines they hold a number of 

possibilities with regard to our ideas about adapting to 
individual players and the dynamic re-modelling of players. 

Supervised Approaches 

In-game data is very valuable in the process of tailoring a 
game to the individual player and building accurate player 
models. For example, we can use reaction times, choices 
made, styles of play, accuracy of shots/hits, how often a 
stage needs to be repeated before completing, average health, 
number of deaths per level, kills per level per possible kills 
as with “Max Payne” Auto-dynamic Difficulty technology 
(Miller, 2004). This data may be used directly to decide how 
to change the parameters of the game environment, attributes 
of the player character, or non-player character behaviour 
dynamically through the training of a neural network such as 
the Backpropagation network. With this approach player 
entered game data may also be used alongside the in-game 
player data to moderate the response of the network. This 
aspect could be important because it may provide a clue to 
how rapidly or how much the game should be adapted to the 
player. For example, if an advanced game player is currently 
playing then they may be less frustrated by not completing a 
challenge after a few attempts than a novice and therefore 
the game adaptation may be by a smaller amount or not at 
all. There are problems with using user-entered profile data 
(or perhaps any type of profiling), for example, profiling 
may become frustrating or even redundant if more than one 
player plays the game at the same time (taking turns) and 
thus sharing the same profile, in this case it would be 
impossible for the profiling and adaptation to be accurate. 
Also, every type of game would require a different approach 
and the technology may not be appropriate for many types 
multi-player games because players would be playing 
against each other on an uneven playing field. For example, 
in “Soul Calibur II” it is possible for a weaker player to 
increase their “life bar” relative to their opponent but it 
actually unusual for this to occur in practice because players 
like to feel that they are competing on a level playing field.     

We can also take another neural network approach to 
player modelling by using a clustering algorithm. In this way 
we use the neural networks to cluster player types according 
to out-of-game and in-game data, grouping player with a 
similar profile into the same group type. There is a wide 
range of ways in which this may be done, for example we 
could use a radial basis network with fixed cluster centres to 
classify the players, with the centres fixed on different areas 
of the data space that we believe to provide a good “centre” 
for our player classification. By monitoring and adapting the 
player profile throughout the game then the player may 
achieve a new classification, and thus the game would 
respond differently. Radial basis networks may also have 
moving “centres” and so the centres can be moved 
automatically during training to fit the data more 
appropriately. It is also possible to retrain the full network 
during gameplay on the basis of new data, although this is 
not necessarily an easy thing to do. For example, a single 
player, depending on the method, may only provide one new 
data point and so re-training may be futile. This is generally 
an issue with online learning in games; it is not only slow but 
often there is not enough new data to significantly impact the 
training of the network, and needs to be taken into account 
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when choosing which method to use and how to implement 
it.  

Unsupervised Approaches 

There is very little digital game research going on that 
involves unsupervised learning, perhaps because of a lack of 
expertise in this area. However, we would like to 
demonstrate here that there are a few very positive and 
promising uses for unsupervised neural networks for forming 
a statistical understanding of player data. Unsupervised 
neural networks are generally used to explore or investigate 
structure or patterns in data on the basis of statistics or 
information theory (or similar). It is not known, a priori 
(though we may have an idea), what the relationship is 
between the data variables and we would like to investigate 
this. This is similar to data mining the player data and we 
can use this approach to help us understand the difference 
between player styles or capabilities then use this knowledge 
in our player modelling process. Once the neural network 
has been trained to our satisfaction then it may be used 
directly in-game to identify player types or behaviours. 
Many of these algorithms are also quick to train and so may 
be more suitable than other approaches for on-line re-
training. The techniques that we focus on in the examples 
below are known as projection methods. With projection 
methods we typically want to explore the relationship 
between the input variables but with clustering approaches 
we treat each data example as a data point (e.g. a player 
description) and attempt to group data points together based 
on some similarity measure. 

Let us say that we wish to explore the relationship 
between the variables that we have chosen to uniquely 
describe a player in a game, e.g. average health, times shot, 
enemies shot, enemies killed, etc. Then using statistical 
neural network approaches such as Principal Component 
Analysis or Factor Analysis we may explore the data so as to 
identify the correlational (or high order statistical) 
relationship between the variables. Factor analysis is 
particularly interesting in this regard because it is frequently 
used by statisticians in an exploratory mode. A well known 
example of the use of this method is where the statistical 
relationship for different forms crime in different cities are 
explored, e.g. murder, theft, robbery etc. Factor analysis can 
decipher which input variables have the strongest correlation 
and the statistician can interpret what this means. It may be 
found that there is a strong link between robbery and murder 
and so the output of the network that identifies this 
relationship may be said to have identified a correlational 
link which can be explained because these are violent 
crimes. Similarly, a non-violent crime correlational may be 
discovered. Using this method to explore player data we may 
have an advantage in our interpretation of the data because 
we can also collect information additional about the player 
that can help us interpret the statistical relationships, e.g. 
how old are they, sex, what type of games they like to play, 
how often do they play etc. These values could also be used 
in the statistical analysis but we would suggest that they may 
be better served in helping us interpret the correlations 
discovered by the outputs of the network. Whereas a 
clustering method would group players together so that we 
can label these groups as novice, normal or advanced, on the 
basis of the complete data point. Factor Analysis can identify 

relationships between sub-sets of the data variables that may 
be used to identify more refined aspects of player behaviour, 
e.g. output one could identify the overall capability of the 
player and output two may identify whether the player is 
cautious or just dashes in etc. Being able to identify more 
subtle or complex aspects of player behaviour could be very 
valuable in tailoring the game experience to the player, and it 
also potentially opens up new possibilities for dynamic 
gameplay. For example, if we are able to discover patterns 
that relate more to player emotion or motivation then this 
may be used with other sensory devices to discern the needs 
or desires of the player and the game can be adapted to 
account for this.    

AN ADVANCED FRAMEWORK FOR 
PLAYER-CENTRED GAMES 
Two particular novel technology aspects that we discuss in 
this paper are monitoring adaptation through sensory 
equipment and dynamic player modelling and we explore 
these in more detail within this section. Detection of the need 
for the game to adapt based, for example, on measuring 
player frustration (Gilleade & Dix, 2004) is one approach for 
game adaptation but we propose a slightly different model, 
one in which the game is adapted on the basis of detecting 
player type coupled with game performance. The 
effectiveness of adaptation can then be measured by a 
reduction in the level of frustration and other measures. If 
adaptation does not improve player performance or their 
frustration levels then perhaps this is because the player has 
been classified incorrectly, or more likely as they have 
progressed through the game the model that fitted the player 
initially is no longer applicable. Therefore in this scenario it 
may make sense to reclassify or dynamically remodel the 
player – Fig 3 illustrates how this advanced framework may 
be executed.  

Measuring the Effectiveness of Adaptation 

We need to know when to adapt the game to a player 
(Gilleade & Dix, 2004) but also we should monitor if our 
adaptation has been effective or appropriate. If we make a 
change based on the game data coupled with the player 
profile and this frustrates, or hinders the player more (or vice 
versa) then we may make one of two conclusions: our 
adaptation is inappropriate or our model of the player is 
inaccurate. In either case this is a good reason to have the 
feedback loop in our model illustrated in Fig. 3. 

Assuming that there are discrete changes to the adaptation 
of the game and that these have tested these thoroughly 
before game release, we then can focus on making sure that 
we classify the player correctly so that the state of the game 
is appropriate to them. This is especially important because 
players learn at different rates and so we need to take 
account of concept drift (Black & Hickey, 1999) in the 
classification process (see next section). 

The manner in which we measure the requirement or 
appropriateness of adaptation may be most effectively 
achieved using affective computing techniques by 
monitoring a player’s emotional state through input devices, 
coupled with in-game data. It seems clear by initial research 
that attempts to detect a player’s emotion through input 
devices that it is not very straightforward. For example, the 
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emotional affect detected in the player through a gamepad 
analog button (Sykes & Brown, 2003) will vary with each 
player, game type and even perhaps when it’s played. The 
information may be corrupted by interaction stress in, for 
example, playing an action game by altering physiological 
factors that would normally infer emotion, such as skin 
conductance (when using an appropriate sensor). Facial 
expressions or body movement may be used to infer the 
emotional state of the player – whether they are happy, 
content or frustrated – and game cameras such as the PS2 
EyeToy is becoming more popular and widespreadly 
incorporated into games. The difficulty with using a camera 
for facial expression though is that, to some degree, there is 
an expectation that the player will roughly maintain their 
position relative to the camera (Gilleade & Dix, 2004) – this 
is particularly an issue with game consoles.  

With simple modification of existing input devices 
temperature or pulse (i.e. heart rate) sensors may be added 
like those on a typical exercise bicycle. These would not be 
expensive to implement but could potentially revolutionize 
game design with respect to a games’ responsiveness to an 
individual players’ needs. Even in casual way this 
information may introduce interesting new directions in 
gameplay – if you imagine a game from the horror genre 
such as “Silent Hill” or “Resident Evil”. In this example the 
game could wait until a player seems at their more relaxed 
before landing that shocking surprise on him or her. 
Normally, games of this type must craft the levels and script 
events very cleverly to achieve the same effect, and it is very 
difficult to perfect. It will probably prove to be the case that 
one method alone will not be enough to accurately gauge a 
player’s mood. That a mix information from standard 
sources such as the mouse or joy pad, along with more 
advanced sources of information provided by cameras or 
other sensory devices along with the player’s profile, will be 
necessary to make decisions that tailor the game to 
individual players on the basis of their emotional state. 
Statistical methods such as neural networks will then be 
necessary to decipher the structural relationships in the data. 

Dynamic Player Modelling and Reclassification  

The idea that a player’s model needs to be adapted has been 
recognised recently (Houlette, 2004) but this is still a very 

new area for digital game research. On a basic level a player 
model may be thought of as a statistical representation of the 
player based on the frequency of repeated actions or average 
values of the parameters of their player character etc. It 
should be obvious then that an individual player’s profile is 
likely to change throughout the progress of a game. This can 
be for all sorts of reasons, for example they are learning the 
action aspects of game more quickly than adventure aspects 
or perhaps they have reached a new gameplay dynamic in 
the game that they can’t quite get to grips with – all players 
will be different so these things are very difficult to predict. 

Because of the nature of game playing there will be new 
examples available about the player’s profile as they play the 
game, hence the requirement for on-line learning. These on-
line learning systems will receive examples on a continual 
basis and are required to induce and maintain a basis for 
classification and thus may have to deal with concept drift 
(Black & Hickey, 1999). Game players will adapt their 
strategy to survive or win as the game adapts to suit their 
profile. This change in the player behaviour, as discussed 
previously, may be part of their learning process: i.e. they 
get better at the game over time, or a may be forced into a 
strategic change of tactics. This adaptation, known as 
concept drift, can therefore be an immediate change in tactic 
or a slow progression to another. By concept drift we mean 
that some, or all, of the basis for defining a profile is 
changing as a function of time.   

Typically there are a number of sub-tasks involved in the 
handling of drift within incremental classification learning. 
In increasing order of difficulty these are: 

  
1. Identifying that drift is occurring; 
2. Updating classification in the light of drift; 
3. Tracking and modeling/analysing the pattern of 

drift over a period of time.  
 
Machine learning techniques have been used with this 

form of user profiling/modelling in other domains such as 
cellular fraud in telecommunications (Fawcett & Provost, 
1999). The aim was to analyse calling behaviour and detect 
anomalies.  It also highlighted that patterns of fraud are 
dynamic; bandits constantly change their strategies to avoid 
detection. This links very well into game players having 
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Fig. 3 Adaptive game system diagram illustrating the three phases that that takes account of 
errors in adaptation. 
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profiles which change/evolve through the life of a game. 
Game players may be thought of as behaving like the 
fraudsters; they adapt and change their strategies as a 
mechanism to win/survive and so profiles can be monitored 
and adapted using existing machine learning techniques. For 
example, recent work (Black & Hickey, 1999) has 
demonstrated that profiles may be induced from 
telecommunication customers in relation to using a product, 
and that changes may be detected in the customers who are 
currently using the product.   

As already indicated, player’s profiles may change in 
many ways. We can break these down into two aspects of 
change: a progressive move – referred to as evolutionary 
adaptation, or immediate change – referred to as 
revolutionary adaptation (Black & Hickey, 1999). This work 
also introduces a methodology called TSAR (Time Stamp 
Attribute Relevance) which has been used successively to 
adapt to concept drift in telecommunication customer data 
(Black & Hickey, 2002). This methodology can be applied to 
neural network approaches, as discussed earlier, so as to deal 
with concept drift in online learning within digital games. 

CONCLUSIONS 
Modern digital games are extraordinarily good at many 
things but even the best examples of these games are still not 
very capable at monitoring players, distinguishing between 
different player groups and altering the game state to meet 
individual players’ needs. In this paper we described a 
framework for dealing with this issue and providing more 
adaptable games, and in particular approaches for dealing 
with two particularly current issues: that of monitoring the 
effectiveness of adaptation through affective and statistical 
computing approaches, and the dynamic remodelling of 
players based on ideas from concept drift. We proposed 
several neural network approaches as part of the realisation 
of this framework and in future work intend to test these 
ideas further. The improvements that may come from 
positive developments in this area could be as 
straightforward as helping the player in learning how to play 
the game, through to encouraging gameplay innovation in 
digital games.  
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ABSTRACT 
 
The current game industry around the world is one 
of the fastest growing industries. One gaming 
genre that is very popular is the real-time strategy 
games. However, current implementations of 
games apply extensive usage of FSM that makes 
them highly predictable and provides less 
replayability.  Thus, this paper looks at the 
possibility of employing case-based plan 
recognition for NPCs so as to minimize their 
predictability. The paper also looks into    possible 
representation adaptions to minimize the resource 
requirement to maintain the possibility of 
deployment in mobile devices. 
 
INTRODUCTION 
 
Applying artificial intelligence in computer games 
has long been in use starting from the earliest days 
of such systems (Firclough et. al. 2002) .  With the 
recent rise in popularity of real-time strategy 
games, it can be noticed that most players of such 
games prefer to play against human opponents in a 
multi-player environment as opposed to playing 
against the computer player.  This is due to the 
fact that minimal effort has been invested into the 
development and improvement of artificial 
intelligence in this field due to the enormous 
amount of overhead both financially and on 
computing power needed. (Buro and Furtak 2003) 
 
One of the challenges in RTS games is the fact 
that in RTS games, the worlds normally feature 
numerous objects, incomplete information, micro-
actions, and fast paced actions.  Several currently 

existing works focus mainly on slow-paced, or 
turn-based games that includes a lot of actions 
with global effect that would simply overwhelm 
the human player. (Buro and Furtak 2003)   
 
In this paper, we present some existing works that 
could be adapted into the area of real-time strategy 
games.  Issues and recommendations are stated at 
the end of this paper for further development. 
 
REAL-TIME STRATEGY GAMES 
 
Several fields of application and game genres 
currently exist wherein artificial intelligence 
research can be applied to.  However, this paper 
focuses on RTS games specifically due to the 
numerous variety of research problems that exists 
within the aforementioned game genre.  Some 
research problems would include the following 
(Buro and Furtak 2003): 
 
• Adversarial real-time planning – planning can 

take place in several levels namely, strategic, 
tactical, and operational.  Strategic planning 
would refer to what should be done, tactical 
refers to how to carry out such plans, while 
operational would refer to specific actions for 
each tactical decision. (Kaukoranto et.al. 2003) 
The problem here is that the environment is 
dynamic hence pre-defined rules and less than 
applicable hence alternative approaches have 
to be investigated. 

• Decision making under uncertainty – human 
players are able to decide on specific plans or 
strategies even with the lack of information.  
They are also able to proactively determine the 
need to look for such information to gain an 
advantage.  Such things might be interesting if 
they were incorporated to a computer player. 
(Kaukoranto et.al. 2003) 
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• Opponent learning and modeling – the ability 
to determine the players strategies and find 
ways to react to it in the proper level has been 
an ideal situation that has been sought after but 
not yet reached.  Most games right now still 
follow a pre-determined plan of action. 

• Spatial and Temporal reasoning – In an ever 
changing environment, strategies and plans 
have to be constantly reevaluated for 
applicability.  Understanding of the 
environment should also be added so as smart 
decisions can be made. 

• Resource management – another task that 
human players perform is the balancing of 
allotments for resources.  Though recent 
games are fairly efficient with regards to this, 
again they are pre-programmed responses to a 
fixed world environment. 

• Collaboration – this is clearly lacking in 
computer players wherein they never 
collaborate against a common enemy when 
attacking it.  In contrast, human players 
usually form teams to fight against a stronger 
enemy. 

• Path Finding – this has always been part of 
game research since most existing work deal 
with path finding.  The ability to rapidly 
determine a path in a 2D terrain with moving 
objects and changing environments has always 
been a challenge. 

 
In this paper, we look at CBPR (Case-based plan 
recognition) and some tweaking of the approach as 
a possible solution to some of the aforementioned 
research problems focusing more on the user 
modelling rather than path finding. 
 
CASE-BASED PLAN RECOGNITION 
 
Plan recognition refers to the act of an agent 
observing the actions of another agent whether it 
be human or computer-based with the intent of 
predicting its future actions, intentions, or goals.  
Several approaches can be used to perform plan 
recognition namely deductive, abductive, 
probabilistic, and case-based.  It can also be 
classified as either intended or keyhole. An 
intended case-based plan recognition system 
assumes that the agent or the user is actively 
giving signals or input to the sensing again to 
denote plans and intensions.  In the case of a real-

time strategy game, the user or player is focused 
on playing the game and not focused on trying to 
convey his or her intention to the sensing agent, 
hence for this scenario, we would be classified as 
keyhole plan recognition wherein predictions are 
based on indirect observations about the users 
actions in a certain scenario.(Fagan and 
Cunnigham 2003) 
 
One specific attempt or implementation of case-
based plan recognition(CBPR) in games used the 
game space-invaders as the target platform. (Fagan 
and Cunnigham 2003)  Although this work 
demonstrated the applicability of CBPR to a 
certain extent, it also has made several 
assumptions in its work.  First, the set of states are 
fixed to three, namely Safe(S), Unsafe(U), and 
Very Unsafe(VU), in a more complex game 
scenario or genre such as an RTS game, such 
states may not be finite or defined at the start as 
they may represent world states at a certain time. 
 

 
Figure 1. State transition diagram used in the 
implementation (Fagan and Cunnigham 2003) 
 
EXISTING WORK AND THEIR PROBLEMS 
 
One of the existing work that is applicable to the 
target domain of real-time strategy games is the 
work of (Kerkez 2003).  The contribution of this 
work is the presentation of an approach on how to 
discover and locate plans from incomplete plan 
libraries.   
 
Most existing work assume that there is a 
complete plan library to serve as a basis for plan-
recognition.  However, construction of such a 
plan-library may not only be not feasible, but the 
additional or extraneous libraries may affect the 
performance of the recognizer. (Lesh and Etzioni 
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1996)  Another existing limitation is that “most 
traditional recognition systems reason in terms of 
planning actions and do not explicitly keep track 
of the world states visited during the execution of 
a plan, except for the initial and the goal 
states”(Kerkez and Cox 2002). 
 
As illustrated in figure 2, the contribution of 
(Kerkez 2003)(Kerkez and Cox 2002) is that in the 
traditional blocksworld problem, the plan 
representation only incorporated the initial and the 
end state.  The actions that are taken in between 
and the intermediate states that resulted during the 
execution was not recorded.  This is compared 
with the representation in figure 2b which is the 
proposed representation.  In contrast, here, the 
intermediate states are stored for future reference.   
 
Although this approach provides more information 
and basis for plan-recognition, it also at this point 
introduced the problem of having too many states 
to manage and use during recognition.  A possible 
solution as proposed by (Kerkez 2003)(Kerkez and 
Cox 2002) is illustrated in figure 3. 

Figure 2. a) An example of a simple planning 
episode from the blocksworld planning domain. b) 
Two different views of the observed plan. (Kerkez 
and Cox 2002) 
 
APPLICABILITY TO RTS GAMES 
 
Based on the aforementioned works from various 
authors, we believe that there are several 
considerations needed to be added.  The goal is to 
assist the human player in management tasks in an 
RTS game such as Warcraft, but not play the game 

for the user.  Although the concepts may be 
applicable for the opponent NPC, it is not our 
initial focus.    

 
Figure 3. Indexing and storage structures. Abstract 
states (asi) point to bins (bold lines), containing 
world states (sj). World states in turn point 
(dashed lines) to past plans (Pj) in which they are 
contained. (Kerkez and Cox 2002) 
 
In attempting to apply such methodologies to RTS 
games, our suggestion is that we limit first the 
scope of the environment being monitored and 
controlled by an NPC.  This is in order to 
minimize the possible build up of states that will 
affect storage and its retrieval specially in limited 
environments such as a mobile device.  An 
example of a possible limited scope would be in 
the case of a specific part of the map that contains 
establishments such as bases rather than the entire 
map.  Hence, strategically, we would be looking at 
for example defense, or enrichment of resources 
and fortification rather than plans of attack.  
Although in (Kerkez 2003), an optimization 
scheme was suggested based on abstract states 
indexing and concrete states, it is still not 
determined if it will be applicable to an RTS 
game.  This is mainly due to the fact that the 
algorithm may be NP Complete depending on the 
resulting graph representation of the states.  The 
requirement being that the graph should be either 
planar or is a circular-arch graph. 
 
Another issue that has to be considered in RTS 
games is that aside from changing states in the 
environment, the pieces available or in play can 
also change depending on the stage of the game 
being played.  As new units are discovered or 
come into play at higher levels or stages of the 
game, actions monitored before and subsequent 
actions taken should be mapped to not only 
different environment but also different units.  A 
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similarity measurement or mapping function may 
be provided so as to form correlations between 
what has been monitored before and what to apply 
now.  In this respect we look at hybrid systems 
like (Schiaffino and Amandi 2000) wherein case-
based reasoning which is used to build the cases or 
plans is combined with bayesian networks to 
determine the likelihood that a certain action 
would be peformed.  In RTS, this can be viewed as 
using CBR at strategic and tactical levels to 
determine similarity features for comparison with 
other players and bayesian networks can be used 
to predict the transitions from strategic planning to 
tactical actions, and then eventually to operational 
details of the task.  Initial set of features for the 
case-base at each levels is listed in table 1 while 
table 2 shows a specific example of the case to be 
stored.   The assumption here is that the different 
lower or more detailed levels are happening based 
on as a direct consequence of the higher levels 
decision much like the concept of a chain of 
command.  Temporal information like continous 
attacks from the opponent that may signify a 
certain strategy in use though important, is 
currently not considered in the case-base so as to 
maintain a level of simplicity at the start.  
Bayesian networks will be used to determine the 
subsequent node to be chosen in the next level 
(figure 4).  It will also be used to account for the 
dynamic world states that could happen in the 
game such as will the same action be taken for the 
same scenario and same user profile given the 
history of the specific user and the variation in the 
existing types of objects or units present in the 
current situation.   
 
Plan's determined can be executed at a local or 
isolated scope or domain so that it would more 
manageable.  The system should also have a 
means of learning from erroneous predictions.  
Explicit corrections being made by the player to 
computer predicted plans and actions taken should 
be noted so that these can be considered in future 
attempts at predicting the players possible 
responses.  Much of the considerations here in 
terms of abstraction and localization is mainly for 
the purpose of minimizing the resource 
requirements of the approach.  The assumption 
here is that the client will be able to cache basic 
abstracted information for initial computation 
while additional information can be acquired or 
retrieved as the need arises. 

 
Given all the considerations, the research work 
aims to perform comparisons based on 
prototyping and user testing to determine 
differences or improvements with traditional 
methods if any.  We expect to implement these 
concepts initially on desktop platforms and then 
eventually port them to mobile devices such as 
Palms or PocketPCs.  After which, both 
qualitative and quantitative analysis will be 
performed to gauge the performance of the system 
and its scalability and resource requirements.  Test 
deployments on student population would also be 
included in the testing and evaluation of the 
results of this work 
 
Table 1. Initial set of sample features at each level 
of the cases 

Levels Feature and Description 

���������	 • �
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�����	
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�������	��	���	��������	

• ���	�	��������	
����	������	���	��������	

• ��������	�
�����	

��������	 • ��������	 
����	 ���������	 ���	 �����	
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����	���������	

• ������	�����	
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Figure 4. Relationship between the various levels 
of consideration 
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Table 2. Sample case entry based on the 
descriptions using Warcraft as a domain 
 

Levels Feature and Description 

���������		 • $%&$%	���	
���	'��(�	�	���)	

• *���	����	�����	�	���	
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:
���	����103.	

• "������			 ���1;4		
5�1.			 ��10			 	
+��	�����1%%.			
����	����1	����
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�����108.		 :
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��
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����	�����	�����	
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����	����	�����	

• �������1	���	�	����	�����	�����	

• ���	����1	�
���	��������	

• :�������1	�
���	�����	

 
CONCLUSIONS AND RECOMMENDATION 
 
Currently, the proposed modifications and 
adaptation have yet to be implemented and tested 
empirically to determine the appropriateness of the 
suggestions.  However, this research work does 
present several possibilities that would help 
improve game play on RTS games on both the 
desktop and mobile platform.  There are additional 
considerations that are deemed to be ideal 
inclusions to the research.  These would include 
the detailed study of temporal considerations and 
the concept of chain of events.  In adding this to 
the research, it would greatly improve the 
accuracy of the predictions in terms of the plans of 

a specific user.  Also, unlike other games such as 
an adventure game wherein the goal is either 
constant or the change is predictable based on the 
game itself, in a real-time strategy game, the 
possibility of a change in strategy in the middle of 
game play is very possible and there is no support 
structure within the game itself that will aid in the 
identification of such changes.  Hence, issues such 
as how often should re-evaluation happen comes 
into view.  Also, the current assumption of a 
strategy is based on a subset map of a certain stage 
or world in an RTS game.  In such events, issues 
such as complementing or supplementing 
strategies have yet to be researched on. 
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Abstract 
 
This paper presents T-Collide, a fast, low memory-
overhead, low execution-cost, time-based collision 
detection scheme.  It is intended for real-time systems 
such as games or simulations to optimize collision 
detection between large numbers of mobile objects. 
Nearly all aspects of T-Collide are fully customizable 
to application specifics or implementer preference.  
T-Collide is based upon Spatial Subdivision, 
Bounding Volumes, Spatial Hashing, Line Raster 
Algorithms, and Continuous, or Time-Based 
Collision. 
 
Keywords 
 
temporal, continuous, real-time collision detection, 
uniform spatial subdivision, spatial hashing, 
bounding volumes, T-Collide 
 
Introduction 
 
T-Collide is a collision detection scheme for mobile 
objects in real time systems and is especially suited to 
computer simulations or games. It is based upon: 
 

• Spatial Subdivision: A “Grid” divides the 
world into smaller areas. 

• Bounding Volumes: Each complex object 
has a simple bounding volume.  

• Spatial Hashing: A function that determines 
where an object is in the Grid. 

• Line Raster Algorithms: When an object 
passes multiple grid cells in the same frame, 
grid location detection becomes similar to a 
line raster problem. 

• Collision over Time: Collision is a function 
of position and time, not just position. The 
“T” signifies temporal collision. 

 
T-Collide requires little memory overhead and 
requires no significant additional data structures to be 
integrated into an existing application.  Virtually all 

aspects of the algorithm are customizable to 
application or implementer preference.  Use of the T-
Collide algorithm imparts no arbitrary restrictions on 
application parameters such as object size or 
movement rate per frame.   
 
Related Work 
 
First, “required reading” regarding collision detection 
includes: the Lin-Canny closest features algorithm 
(Lin 1992), V-Clip (Mirtich 1998), I-COLLIDE 
(Cohen 1994), OBB-Trees (Gottshalk 1996), Q-
Collide (Chung 1996), and QuickCD (Klosowski 
1998). Another interesting approach to real-time 
collision is by Monte-Carlo Method (Guy 2004).  
Some excellent resources on general collision 
detection with an emphasis on games are:  (Blow 
1997), (Bobic 2000), (Dopterchouk 2000),  (Gomez 
1999), (Gross 2002), Heuvel 2002),  (Lander 1999), 
(Nettle 2000), and (Policarpo 2001).   The recent 
endeavor most related to this one is (Gross 2002), 
which also utilizes spatial hashing. The hashing 
methods differ considerably however, and it does not 
consider collision over time.  
 
Algorithm Overview 
 
In order to implement T-Collide, the following are 
required: 
 

• The Grid 
• Bounding Volumes for all collision objects 
• A Hash Function for each bounding volume 

type 
 
First we will discuss assumptions regarding 
application setup. Then we will cover specifics of the 
Grid, Bounding Volumes, and Hash Function in turn, 
followed by the T-Collide algorithm itself. Finally we 
will analyze the algorithm’s time/space complexity 
and conclude the paper. 
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Assumptions and Restrictions 
 
Regarding general application setup, the following is 
assumed: 
 

• Animation involves a typical update/draw 
loop. 

• Collision detection is performed every 
frame. 

• Updates are based on some 
TIME_ELAPSED variable representing 
time elapsed since the previous frame. 

• Object-environment collision is performed 
prior to object-object collision. 

• Object position at the beginning and end of 
each frame is saved - position_initial and 
position_final respectively. 

• Objects and their bounding volumes are 
significantly smaller than grid cells.  As we 
will see, grid cells may be any arbitrary size, 
however being larger than the bounded 
objects increases performance.  

 
The Grid 
 
The grid divides the entire scene into distinct cells 
(uniform spatial subdivision).  The grid may be 2D or 
3D.  A 2D grid is faster and is a better choice for 
applications where many objects are spread over a 
wide area, but rarely above each other. For example – 
flight simulations, naval simulations, isometric (“top 
down”) real-time strategy games, or space shooters 
with many units.   
 
The grid requires no explicit storage of cells or 
content. Only a single variable is required:  
CELL_SIZE.  Note that CELL_SIZE should be 
significantly larger than most objects in the scene to 
reduce chances of objects spanning multiple cells. 
While a single object spanning multiple cells is 
acceptable (for example, objects on a cell boundary) 
it does slow the algorithm somewhat.  Thus 
CELL_SIZE will affect performance.  Figure 1 
depicts a grid. 
 
 

 
Figure 1 – The Grid 

 
In a 2D grid, each cell is uniquely represented by two 
integers generated by the hash function.  A 3D grid 
requires three integers.  Neither grid cells, nor their 
contents, are explicitly stored. Each object in the 
scene has a parameter denoting the grid current cells 
it occupies. 
 
Bounding Volumes 
 
Each complex model is surrounded by a simple 
bounding volume. Bounding volumes may serve as 
either: 
 

• the object’s collision model, where collision 
with the bounding volume signifies 
collision with the object 

• a “first pass” indicator signifying possible 
collision with the object’s complex model, 
where more detailed collision detection is 
performed later 

 
In the former case, detailed collision is not required 
and the object’s bounding volume is the object’s 
collision volume.  The latter case is obviously 
required where complex hit detection is required and 
the bounding volume serves to signify “possible 
collision”.  Either method can be employed in T-
Collide.  
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Figure 2 – Object within Axis-Aligned Bounding 

Box 
 
Any bounding volume may be employed in T-
Collide.  In the following hashing examples we will 
use axis-aligned bounding boxes (AABB), Oriented-
Bounding Boxes(OBB), and Spheres as bounding 
volumes for objects.  An AABB can be represented 
by two points – min and max. An AABB never tilts; 
it is always aligned with the axis thus streamlining 
collision computation.  OBBs are boxes as well, but 
tilt or rotate with the object.  Figure 2 depicts an 
object enclosed within a bounding box. 
 
The Hash Function 
 
The hash function determines which grid cell an 
object is in and is run every frame on all objects.  The 
hash function is based on: 
 

• bounding volume type 
• object’s initial position (beginning of the 

frame) 
• object’s final position (end of the frame) 
 

Note that an object may be in more than one grid cell, 
such as when crosses a cell boundary. For this reason, 
a list of grid cells is kept with each object called 
CELLS_OCCUPIED. Now let us examine a hash 
function. 
 
Assume the following global variables or structures: 
 

• Cell Size: the size of each grid cell 

• Grid Cell( x, z ): structure to uniquely 
identify each grid cell denoted by x,z since 
the grid is 2D, therefore y-axis values may 
be ignored 

• Min, Max: the axis aligned bounding box 
 
Suppose each object in the scene has the following 
variables: 
 

• position_initial(x,y,z): position at the 
beginning of the frame 

• position_final(x,y,z): position at the end of 
the frame 

• boundingBox (min,max): the object’s 
AABB 

• cellsOccupied[ … ]: list of cells the object 
spans 

 
Note that “cellsOccupied” is a list, since an object 
may span multiple cells if it is on a boundary.  A 
majority of the time however it will be a single cell, 
since grid cells should be much larger than individual 
objects. 
 
Hashing a Single Point 
 
First, how can we determine what grid cell a single 
point is in?  One obvious choice for a hash function is 
to simply divide the object’s position by “cellSize”.  
Unfortunately division is slow and should be 
avoided. A better choice is to define a conversion 
factor that when multiplied by an object’s position 
yields a unique grid cell.  We can define the 
conversion factor as follows: 
 

• conversion_factor = 1/cellSize; 
 
So our hash function for a single point might look 
something like this. 
 
gridCell hash(point p) 
{ 
     gridCell g; 
     g.x = p.x*conversion_factor;  
     g.z = p.z*conversion_factor; 
     return g; 
} 
 
Given point p a grid cell is returned. As an example, 
with a cell size of 10.0 hash(x=105.6, y=30.3, 
z=55.2) would return 2D grid cell (x=10, z=5).  
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Hashing a Bounding Box 
 
We need to hash entire objects to the grid though, not 
just single points.  Note that there are three cases 
where an object’s bounding box may span either: 1, 
2, or 4 grid cells. Figure 3 illustrates this. To 
determine what cells are spanned by an object at a 
certain position, we may have to consider the four 
corners of the object’s bounding box. 
 
The function for determining which set of grid cells a 
bounded object spans is to the right.  The function 
takes a bounded object as a parameter and fills in the 
object’s “cellsOccupied” list. Notice that the function 
short-circuit evaluates based on the fact that: if min 
and max hash to the same cell, no further evaluation 
is required (which will usually be the case). 
 
 

 
Figure 3: AABB Spanning Multiple Grid Cells 

 
void determineGridCellAABB(Object obj) 
{ 

obj.cellsOccupied.clear();  // clear old 
                                            //  values 

    gridCell a = hash(max);      // hash max 
    obj.cellsOcupied.add(a);    // add a to list 
    gridCell b = hash(min);      // hash min 
    if(a!=b)  // if a==b, we are done, else… 
    { 
         obj.cellsOcupied.add(b);  // add b to 
              //  list 
         point p = max; // compute first corner 
         p.x = min.x; 
         gridCell c = hash(p); 

         if(c != b) // if c==b we are done, else… 
         { 
 obj.cellsOcupied.add(c);  //add c to 
     // list 
 // add last point, doesn’t need to be  
               // hashed it is adjacent to min and   

//  max 
             gridCell d; 
             d.x = a.x; 
             d.z = b.z; 
             obj.cellsOcupied.add(d);  // add d 
                                                       // to list 
         } 
    } 
} 
 
If OBBs are used, the min and max must be 
computed every frame due to box rotation. The 
max(x,y,z) point simply becomes the maximum x, y, 
and z values of all the OBB corners (see Figure 4). 
The min(x,y,z) is computed with min values, then 
hashing proceeds as with AABBs.  
 
 

 
Figure 4 – Max and Min of an OBB 
 
 
If bounding spheres are used then sphere center + 
radius values must be hashed.  Namely: center.x + 
radius, center.x – radius, center.z + radius, and 
center.z – radius. Spheres will be slower to hash 
however since four points must always be considered 
(see Figure 5), whereas boxes may short-circuit 
evaluate if min and max hash to the same cell.
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Figure 5 – Hashing a Sphere 

 
 
Hashing Objects Over Time 
 
Since collision must be determined over the course of 
the frame there is another factor to consider – the 
object’s position at the start and the end of the frame.  
For example, suppose at time T1 Object 1 and Object 
2 are in positions designated by Figure 6.  Then 
suppose after update their new positions are as shown 
at time T2.  If collision detection is based only on 
position at time T2, then this collision will go 
undetected.  Clearly collision is a function of position 
and time, not just position. 
 
 

 

Figure 6 – Collision Over Time 
 
 
Thus, we must determine all grid cells the object has 
passed through during the frame (cellsOccupied).  
Determining which cells an object traverses is done 
as follows. 
 

• Determine the initial cell the object occupies 
• Determine the final cell the object occupies 
• Find the cells traversed between them 

 
The issue is somewhat similar to a line raster problem 
– where the endpoints of the line are the initial and 
final positions and the “pixels” are the cells traversed.  
Figure 7 illustrates this, where shaded cells are added 
to the object’s “cellsOccupied” list. 
 

 
Figure 7 – Cells Traversed by an Object 

 
 
There are various ways to approach this problem.  
One issue to note is that simply tracing a line 
between the two objects will yield a margin of error, 
since objects are obviously much wider than lines.  
Figure 8 illustrates this, where the object would 
clearly intersect the lower right cell but does not. 
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Figure 8 – Determining Cells Traversed During the 

Frame 
 
We will take a simplistic approach with no margin of 
error.  Suppose an object hashes to cell A at the 
beginning of the frame and cell B at the end of the 
frame.  We will simply “draw a box” that 
encompasses the cells from A to B.  The algorithm 
works as follows where A and B are Grid Cells (x,z), 
A is the lower valued cell (i.e A.x < B.x and A.z < 
B.z), and A != B. 
 
for(i=A.x; i<(B.x–A.x); i++) 
    for(j=A.x; j<(B.z–A.z); j++) 
         cellOccupied.add( i,j ); 
 
This may seem a sub-optimal or “brute force” 
approach but consider: 
 

• Cells are significantly larger than objects 
• Time between frames is fairly small in real-

time applications 
 
From this we can conclude that an object will almost 
always move no more than one cell from its current 
position during the frame. Clearly a complex 
algorithm for traversing cells is not needed, and may 
actually slow computation somewhat.  In almost all 
situations cell traversal over the course of the frame 
will be similar to one of the three cases presented in 
Figure 9.  Thus our simple nested “for” loop is 
adequate. 
 

 
Figure 9 – Hashing Objects Crossing Cell Boundaries 
 
There is one case however, where tracing a line 
through the grid is entirely appropriate – when the 
object is represented simply by an origin and a 
vector.  Bullets and other “instant hit” weapons are 
often implemented this way in games.  A vector from 
the origin of the projectile out to its range can be 
traversed through the grid.  All objects within those 
traversed cells are possible targets of the bullet.  Note 
that the grid optimizes target computation in this case 
– if the cells are traversed in order from origin along 
the vector, the closest possible targets will be found 
first, allowing early exit. 
 
The T-Collide Algorithm 
 
Given the following: 
 

• Cell Size: size of each cell 
• Grid Cell (x,z): data structure uniquely 

identifying each cell 
• Bounded Objects: each object stores a 

bounding volume, a list of the grid cells it 
currently occupies, an initial position, and a 
final position  

 
Collision detection with the T-Collide algorithm 
proceeds as follows: 
 

• For each object in the scene: 
o Hash object to a set of “cells 

occupied” (Hash Function) 
• For each object in the scene: 

o Compare “cells occupied” list to all 
other object “cells occupied” lists 

o If any cell matches, do collision 
(Collision Function) 
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The Hash Function for AABB or OBB proceeds as 
follows: 
 

• A = hashed cell at beginning of frame 
• B = hashed cell at end of frame 
• If A == B we are done, else 

for(i=A.x; i<(B.x–A.x); i++) 
  for(j=A.x; j<(B.z–A.z); j++) 
    cellOccupied.add( i,j ); 

 
Actual collision and response will vary greatly from 
application to application.  Some suggested resources 
that consider collision over time:  (Dopterchouk 
2000) and (Heuvel 2002) for spheres, (Lander 1999) 
and (Policarpo 2001) for AABBs, and (Blow 1997), 
(Bobic 2000), (Gomez 1999), and (Nettle 2000) for 
ellipsoids, rays, OBBs, or other shapes.   
 
As a final note, one common mistake in writing 
collision loop algorithms that compare “all objects in 
the scene” is to proceed as follows: 
 
for(i=0; i< num_objects; i++) 
    for(j=0; j<num_objects; j++) 
        if(i!=j) doCollision(object[i], object[j]); 
 
This can be abbreviated to the following, which 
avoids the check for whether or not an object is being 
compared to itself (i!=j) but still compares all objects:  
 
for(i=0; i< num_objects-1; i++) 
    for(j=i+1; j<num_objects; j++) 
         doCollision(object[i], object[j]); 
 
Analysis of the Algorithm 
 
 With regard to space complexity T-Collide requires 
only a list of grid cells (2 integers per cell) per object 
in the scene: 
 

• Best case: 2 integers per object in the scene. 
Since a majority of objects will hash to only 
one cell, this case will be the most common. 

• Worst Case: 16 integers (8 grid cells) or 
possibly more, but this will be exceedingly 
rare. 

 
With regard to time complexity the hash function 
breaks down as follows, assuming use of OBB or 
AABB for a single object bounding volume: 
 

• Best Case: 2 floating point multiplies (to 
hash min and max at position_final) and 1 
integer comparison (if A==B).  This case 
will be the most common where each object 
hashes to only 1 grid cell. 

• Worst Case: 6 floating point multiplies (hash 
3 points) and 2 integer comparisons. Also, 
possibly a small nested double “for” loop of 
integer comparisons when an object travels 
across multiple cells.  As noted above, this 
case will be exceedingly rare.  

 
With regard to time complexity, comparison of two 
objects A and B to detect possible collision breaks 
down as follows: 
 

• Best Case: 2 integer comparisons.  
Specifically, if (A.GridCell.x != 
B.GridCell.x && A.GridCell.z != 
B.GridCell.z ) which will short-circuit if the 
first case is not true.  Since a majority of 
objects should hash to a single cell, and 
most objects won’t hash to the same cell, the 
majority of collisions can be safely resolved 
with either 1 or 2 integer comparisons. 

• Worst Case:  comparison of 8 or more grid 
cells (16 integer comparisons).  Fortunately, 
this will almost never happen since: 1) 
individual grid comparisons short-circuit as 
noted in best case above, and 2) once a 
matching grid cell is found the comparison 
stops. 

 
Summary 
 
What T-Collide does provide with respect to 
performance and output is: 
 

• Low Memory Cost – T-Collide requires no 
additional large storage structures to be 
added to an application. A few integers per 
collision object are all that is required. This 
makes T-Collide suitable for applications 
deployed on limited resource clients.  

• Low Execution Cost – This is obviously 
required for any real-time application. A 
majority of object-object collisions can be 
resolved with the comparison of a few 
integers.
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• Real Time Collision Detection of Bounded 
Objects:  T-Collide is meant to be fast, and 
therefore ideally suited for real-time 
applications. It can, of course, be used in 
non-real time applications as well with little 
modification. 

• Flexibility:  All aspects of T-Collide are 
fully customizable – object bounding 
volumes, Grid cell size, level of detail, or 
the hash functions.  Experimentation with 
variables is encouraged since they will 
significantly affect performance. 

• Ease of Implementation: T-Collide is 
designed to be simple enough to add to any 
existing application with and provide good 
results with as little hassle as possible.   

 
What T-Collide does not provide with respect to 
performance and output is: 
 

• Perfect Physical Accuracy:  As with most 
real-time graphics algorithms, the objective 
of T-Collide is not to model real world 
physics perfectly. Its objective is to provide 
“good” or fairly realistic results very 
quickly. 

• Perfect Optimization: T-Collide may not 
necessarily be optimal in some cases. 
However, its simplicity provides an 
excellent effort/results ratio, and its low 
memory cost and speed provide an excellent 
overhead/results ratio. 

• Object-Environment Collision: T-Collide 
does not provide object-environment 
collision which is better left to rendering 
algorithms such as BSP-trees, oct-trees, 
quad-trees, etc… that are optimized for huge 
amounts of static data. T-Collide is for 
collision detection between many highly 
mobile objects. 
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Abstract 
 
We present a scheme for collision detection of 
flexible models. This scheme relies on a multi-
resolution technique of: 1) object location tracking  to 
decrease time complexity, 2) the combination of 
bounding boxes (AABBs) and a hash grid function, 
and 3) computation of distance domain to determine 
collision with a contact surface. Experiments show 
that this approach can efficiently detect collisions in a 
large set of flexible objects. 
 
Keywords: collision detection, multi-resolution 
method, hash grid function, location tracking, flexible 
body 
 
Introduction 
 
There are many collision detection problems 
addressed by many different techniques.  Bounding 
volume hierarchies have been developed to speed up 
intersection tests of close bodies. For example:  
bounding spheres (Hubbard 1995, James and Pai 
2004), axis-aligned bounding boxes (AABBs) 
(Bergen 1997, Teschner et al. 2003), oriented 
bounding boxes (OBBs) (Gottschalk et al. 1996), 
quantized orientation slabs with primary orientations 
(QuOSPOs) (He 1999), and discrete-oriented 
polytopes (K-DOPs) (Klosowski et al. 1998).  
 
VCLIP (Mirtich 1998) and CLOD with dual 
hierarchy (Otaduy and Lin 2003) have been also 
proposed for polyhedral objects collision detection. 
Separation-sensitive collision detection (Erickson et 
al. 1999) was presented for convex objects while 

Kinetic collision detection (Basch et al. 2004) is 
designed for simple polygon.     
 
For many interactive 3D graphics, animation and 
visualization applications, many papers have also 
employed spatial decomposition for both screen and 
input models to reduce time complexity.  The simple 
idea of screen spatial decomposition is to subdivide 
the screen into grid cells and determine the grid cell 
to animated objects from the positions, similarly for 
input models. The spatial decomposition techniques 
that have been proposed  are octtree (Moore and 
Wilhelms. 1988), BSP tree (Naylor et al. 1990), brep-
indices (Bouma and Vanecek, Jr 1991), k-d tree 
(Held et al. 1995), bucket tree (Ganovelli 2000), 
hybrid tree (Larsson et al. 2001) , BVIT(Otaduy and 
Lin 2003), and uniform space subdivision (Teschner 
et al. 2003). Moreover, there are some collision 
detection algorithms for a large environment such as 
I- COLLIDE (Cohen et al. 1995) and CULLIDE 
(Govindaraju et al. 2003).    
 
Most efforts have been in solving the collision 
detection problem for rigid bodies.  This usually 
entails large sets of static data.  Flexible objects 
however, have dynamically changing geometry.  
There may be few, if any, fixed points in the scene. 
Therefore, collision detection techniques optimized 
for rigid bodies are often not applicable, or less 
optimal for collision between flexible bodies.  We 
propose a collision detection technique that can 
efficiently deal with a large set of flexible models.   
 
The remainder of this paper proceeds as follows:  
first, an overview of the  proposed algorithm, then a 
set of the experiments with the algorithm and results, 
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and finally, conclusions and discuss possibilities of 
further work.   
 
Algorithm Overview 
 
For collision detection with flexible objects in a large 
environment, we present the notion of tracking with 
bounding boxes, collision grid domain and contact 
surfaces by following:   
 
1) Tracking with Bounding box (TB): all flexible 
objects are surrounded by a bounding box (AABB) 
for tracking. This tracking depends on the velocity 
gap between time periods. Two points, a minimum 
and a maximum, define the bounding box.  The 
technique may be modified to make use of any 
bounding volume however. 
 
2) Collision Grid Domain (CGD): we also present the 
constraint of animation that can make structural 
objects move smoothly in a 3-dimensional 
environment. We then determine the hash index to an 
object by using a hash function.  If the objects are in 
the same hash index, they are in the same collision 
grid domain. 
 
3) Contact surface (CS): to compute contact surface, 
distances of the flexible objects in same collision grid 
domain (CGD) are calculated.  If the distances are 
less than the collision tolerance, collision or 
collisions will be detected.  
 
Tracking with Bounding box (TB) 
For computation in a linear system at each step time, 
we use location tracking. We put boundary boxes 
(AABBs) to determine the location of object in this 
step. We use the following notation:  
 
Geometry 
xi   is the geometric component in object i.    
vi

0… vi
n are the positions of vertices for object i. 

vi
kx is the postion of vertex vi

k in x direction. 
vi

ky is the postion of vertex vi
k in y direction. 

vi
kz is the postion of vertex vi

k in z direction. 
mi  is the mass of object i. 
 
Direction 
nvei

k is the velocity of vi
k at time n. 

nni
k is the normal vector of vi

k at time n. 
nfi

k is the force of vi
k at time n. 

 nVNi
k  is dot product of  vei

k and ni
k at time n. 

   
To animate the object, we have: 
 
1) Rigid body has one external force. 

    fg is the external force (gravity) 
2) Flexible body has one external force and one 
internal force. 

fg is the external force (gravity)  
fs is the internal force (mass spring) 

  
  nxi indicates the time beginning with an arbitrary 
time t0. 

nxi = xi (t0+ndt) 
nd(xi, xj) is the distance between observed object i 
and j at time n. 
               nd(xi,xj) =   sqrt( Σ   (npi- npj)2  ) 
   np -> nxx, nxy, nxz

 ∆x, ∆y, and ∆z denote the distance of 
moving object in x direction, y direction, and z 
direction in each step time. 
 
 |n-1xi

x – nxi
x| = ∆x 

|n-1xi
y – nxi

y| = ∆y 
|n-1xi

z – nxi
z| = ∆z

 
To display objects moving smoothly, we offer the 
constraint, ∆x+∆y+∆z <= 1 for each time step. 
  
Euler integration 
We use Euler 1st order integration to animate an 
object. Euler integration consists of the following 
steps. First, set time to the initial value t0. Next, 
compute the level of time step by using an interval 
between frame to frame. Then, contribute the rate of 
change from time n to time n+1. Euler integration is 
appropriate for ease of implementation (Desbrun et. 
al 1999). 
 
 From Euler 1st  integration we have 
   dvei

k/dt = fi
k /mi

       dvei
k
 = fi

k dt/mi

             Next, we have 
   n+1vei

k = nvei
k + (nfi

k/mi) dt 
           Then, we have 
      n+1vi

k = nvi
k + n+1vei

k dt 
 
From this equation we get the position of each vertex 
in the flexible objects for each time step. We 
bounded the object with a bounding box (AABB) by 
finding the minimum point and maximum points in 
each flexible object.  Then we can find the 
overlapping between the bounding boxes (AABBs). 
Next, we put the position of each vertex of object i to 
hash grid function. 
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Figure 1: The structure of a flexible object composed 
of a set of vertices, velocities and forces. 
 
Lemma 1: An object xi is not colliding with any 
object if they are not overlapping of bounding box 
volume. 
 
Proof : This is obvious by definition of bounding 
box. The objects bounded with a box will collide if 
there is the intersection between bounding boxes. 
 
Collision Grid Domain (CGD) 
It is very efficient to use a hash grid function for 
spatial subdivision (Teschner et. al  2003).  For each 
time step, we applied hash grid function to each 
vertex in the overlapping objects to determine the 
hash index for the animated objects with respect to a 
user-defined cell size. we can present it by following    

xl = size of grid cells in x axis 
yl = size of grid cells in y axis 
zl = size of grid cells in z axis 
h  = hash(nvi

k,xl, yl,zl)  
h  = (floor(vi

kx/xl) * xconstant +  
                  floor(vi

ky/yl) * yconstant +  
                    floor(vi

kz/zl) * zconstant)/hash index size 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: The combination of Grid hash function and 
bounding box AABB 
 

Suppose there exist m objects (x0,…, xm) in the 
simulation frame. Also, suppose each object is 
composed of vertices vi

0, vi
1,,…,vi

n  where 0 ≤ i ≤ m.  
 
Lemma 2: Given n vertices vi

0,…,vi
n. vi

k does not 
belong to CGD if object xi does not intersect with 
x0,…, xi-1,  , xi+1,…, xm where 0 ≤ i ≤ m and vi

k is not 
in the considering grid cell.   
 
Proof:  Follows trivially from the definition of CGD. 
We use Lemma 2 to check if a vertex belongs to the 
CGD.  
 
 After the hash index and CGD have been 
determined, this technique computes the distance of 
vertices in the CGD. Using the distance, the 
algorithm can detect touching, hitting or throwing.  
 
Contact surface (CS)   
This is the step that we find the distances of vertices 
in CGD and then we compare with collision 
tolerance. This step returns true or false. True is 
colliding while false is not colliding. 
 
Lemma 3: Given vi

k as a point pi and vj
k as a point pj. 

vi
k and vj

k belong to CGD. vi
k and vj

k are collide if 
nd(pi, pj) < collision tolerance and  nVNi

k < velocity 
tolerance at time n.  
  
Proof: By the definition of distance computation, we 
determine collision tolerance. If the distance between 
pi and pj is less than the collision tolerance, the 
vertices are going to touch each other. 

 
Time t = n, d > collision tolerance, they don’t collide. 

 
Time t = n+1, d < collision tolerance and VN < 
velocity tolerance, they collide.   
 

Object A 

Object B 

Object C d

Object A 

Object B 

d

Object C 

Object A 
 
Object B 
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Our algorithm uses three passes to compute collision 
detection in each time step. 
 

• First pass: we check if xi overlaps with at 
least one of the objects x0,.., xi-1 or xi+1,.., xm 
by using intersection of bounding boxes.  

• Second pass:  In case bounding box of 
object xi overlaps with bounding box of 
object xj, we check if vertices vi

1, vi
2, … vi

n  
and vj

1 , vj
2… vj

n are in the same grid cell or 
not. If so, we determine those vertices are in 
the CGD.   

• Third pass: We calculate to see if a surface 
is contacted by another object. 

 
In this algorithm, we can consider more than one pair 
of collision so that multiple flexible objects are 
detected for a large environment of simulation.  
 
Experiments and results 
 
We compared our algorithm with two other 
algorithms using five different simulations (A, B, C, 
D and E) to exam the relative performance of our 
algorithm. Simulation A, B, and C are composed of 
315 vertices in each flexible object whereas D and E 
are created from 1189 vertices. For simulation A and 
D, we made 10 flexible objects in simulation, 
presented in Figure 2. Each object can be touching 
each other and colliding with a sphere. Simulation B 
is created with 100 flexible objects with one sphere 
while C and D are made from 100 flexible objects 
with 100 spheres shown in Figure 3 and 4 
respectively. In case of D and E, we present how 
these features can affect our algorithms if there are 
more vertices in the flexible objects. Our scenarios 
are performed in an update method and the results of 
our algorithms are compared to the results of other 
algorithms.  
 
Model Number of 

flexible 
objects 

Number of 
spheres 

Number of 
vertices 

A 10 1 3150 
B 100 1 31500 
C 100 100 31500 
D 10 1 11890 
E 100 100 118900 

Table 1: The specification of each test model 
 
In our experiments, we used our simulations with 
grid hash function algorithm, bounding Box (AABB) 
algorithm and our algorithm.  
 
 

 
Figure 2: The simulation A and D 
 
 

 
Figure 3: The simulation B 
 
 

 
Figure 4: the simulation C and D   
 
 
 
 
 
 
 
 
 
 

in4243
52



Model Grid 
Hash 

function 
(ms) 

Bounding 
(ms) 

Our algorithm  
(ms) 

A 380.78 95.5067 80.55 
B >3000 419.737 407.183 
C >3000 560.94 556.867 
D >3000 1254.77 652.44 
E >3000 2168.25 1786.07 

Table 2: The running time of each algorithm 
 
Model Best Case 

(ms) 
Average Case 

(ms) 
Worse case 

(ms) 

A 58.1 65.314 80.55 
B 391.313 396.978 407.183 
C 520.75 533.569 556.867 
D 149.587 313.253 652.44 
E 1485.6 1583.048 1786.07 

Table 3: The running time of each model in this 
simulation 
 
Table 2 presents the time spent for each algorithm. If 
we used only a hash grid function, it spent more than 
3000 millisecond in the simulation B, C, D and E 
which is not acceptable in real time animation.  Then 
we applied the bounding boxes (AABBs), it spent 
less time. However, the best performance is our 
algorithm. Similarly, we can see the average time 
spent for the best case, average case, and worse case 
from Table 3.  The best case meant there was no 
collision in the simulation frame and the worse case 
meant there was the most collision during this 
simulated time period. 
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Figure 5: Collision detection performance per time 
step 
 
Figure 5 shows the time spend in milliseconds when 
we applied our approach to each simulation. The 
graphs of simulation A, B, and C are fairly non-
fluctuating or increasing while D and E’s are 
increasing because the flexible objects composed of 
more vertices are colliding. The collision can be 
detected in the acceptable time when we consider 
object creation and collision detection time spends. 

The results show that our algorithm can reduce time 
complexity even though there are more flexible 
objects or vertices in them. 

 
Conclusion and Future work 
 
In this research, we have introduced the concept of 
tracking with bounding box (TB), collision grid 
domain (CGD), and contact surface (CS).  Our 
method essentially extends the benefits of two 
leading existing approaches with concepts of contact 
surface. All flexible objects are surrounded by a 
bounding box with maximum point and maximum 
point. Then, vertices in overlapping bounding boxes 
are determined into collision grid domain by hash 
gird function. The vertices in same collision grid 
domain are, finally, observed for surface contact. The 
result of this work performed with 100k vertices 
showed that this algorithm is efficient collision 
detection for flexible bodies in real-time considering 
the time spent for animation.  
 
This research can be extended to several ways: 
 

• Simplify the operation process to optimize 
the algorithm that has been implemented in 
this paper. 

• Simulate the structure of tree to determine 
the area of collision in the object body and 
perform the collision detection in the 
overlapped area to reduce time complexity. 

• Create the suitable test cases to compare 
with different algorithm.  
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ABSTRACT 
 
This paper presents the outcomes of a research project into 
the field of artificial intelligence (AI) and computer game 
AI. The project considered the problem of applying AI 
techniques to computer games. Current commercial 
computer games tend to use complex scripts to control AI 
opponents. This can result in poor and predictable gameplay. 
The use of academic AI techniques is a possible solution to 
overcome these shortcomings. This paper describes the 
process of applying Markov decision processes (MDPs) 
using the value iteration algorithm to a 2D real time 
computer game. We also introduce a new stopping criterion 
for value iteration, which has been designed for use in 
computer games and we discuss results from experiments 
conducted on the MDPs AI engine. This paper also outlines 
conclusions about how successful MDPs are in relation to a 
real computer game AI engine and how useful they might be 
to computer games developers. 
 
INTRODUCTION 
 
Artificial Intelligence (AI) is required in some form or 
another for practically all commercially released computer 
games today. Current commercial AI is almost exclusively 
controlled by scripts or finite state machines (Cass, 2002; 
Nareyek, 2004; Spronck et al., 2002). The use of these 
techniques can result in poor AI, which is predicable, less 
believable (Thurau et al., 2003) and can be exploited by the 
human player (Spronck et al., 2002). This reduces the 
enjoyment for the human player and makes them prefer 
human controlled opponents (Schaeffer, 2001 in Spronck et 
al., 2003). 
 
The game industry is however constantly involved in 
employing more sophisticated AI techniques for non player 
characters (NPCs) (Kellis, 2002), especially in light of the 
increase in personal PC power, which enables more time to 
be spent processing AI. Recent games, such as Black & 
White (Lionhead, 2001) use learning techniques to create 
unpredictable and unscripted actions. However most games 
still do rely on scripts and would benefit from an 
improvement in their AI. This makes computer games an 
ideal platform to experiment with academic AI; in fact the 
researcher John Laird states that interactive computer games 
are the killer application for human level AI (Laird and Lent, 
2000). 
 
These and other observations formed the basis of a research 
project into the field of AI and computer game AI. The 

objectives of the project were the delivery of a computer 
game AI engine that demonstrated how an AI technique 
could be implemented as a game AI engine and a basic 
computer game that demonstrated the engine. The computer 
game was in the style of a researched computer game, which 
had been identified as needing improvement. 
 
In our previous work Hartley et al. (2004) we presented our 
implementation of Markov decision processes (MDPs) and 
the value iteration (VI) algorithm in a computer game AI 
engine. In this paper we are presenting an implementation of 
the MDP AI engine we developed in a 2D Pac-man (Namco, 
1980) style real time computer game. We are also going to 
answer a number of the questions raised in our previous 
work; namely can the AI engine we developed operate 
successfully in larger game environments and will the use of 
a less than optimal policy still produce a viable solution in 
larger environments. 
 
PAC-MAN – A REAL TIME 2D COMPUTER GAME 
 
The Pac-man computer game is a classic arcade game, which 
was developed by Namco in 1980. The premise of the game 
is simple; a player must guide Pac-man, which is a yellow 
ball with an eye and a mouth, around a maze, while eating 
dots and avoiding four ghosts, each of which has different 
levels of hunting ability (Hunter, 2000). The ghosts form the 
AI element of the Pac-man game. They start in a cage in the 
middle of the maze, they then have to escape from the cage 
and get to the Pac-man character. If Pac-man and a ghost 
touch, the player will lose a life. However there are four 
large dots in each corner of the maze. If Pac-man eats one of 
them, for a brief period he will be able to eat the ghost. If 
this happens the ghost’s eye moves back to the cage in the 
centre and the ghost is reincarnated (Hunter, 2000). Figure 1 
demonstrates a Pac-man game that is about to finish because 
Pac-man is about to be touched by one of the four ghosts and 
has no more lives left. 
 
 
 
 
 
 
 
 
 
 
 
 
The Pac-man computer game was identified as needing 
improvement primarily because the ghosts’ movement in the 
game appeared predictable. This assertion is backed up by 
Luke and Spector (1996), who state, “…that Pac-man would 
be a good application for genetic algorithms to improve the 

Figure 1: A screenshot of Microsoft Return of the Arcade Pac-man game. 
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abilities of the ghosts.”. However this is also contradicted by 
Bonet and Stauffer (2001) who state that the “…core gamer 
has no problem with a game like Pac-man, because even 
though Pac-man is a deterministic game that behaves exactly 
the same way every time you play it, it offers a huge amount 
of gameplay.”. This statement indicates that even though the 
Pac-man game might have poor AI, it is not necessarily a 
problem because there are hundreds of levels and this type of 
AI fits well with this type of game. Also this type of AI is 
what the game player expects. 

Every time a gem is collected the player scores some points. 
When all gems have been collected the player moves onto 
the next level. The game is over when all the human players 
lives (of which there are 3) are lost.  
 
IMPLEMENTATION 
 
In this section we present the implementation of the 
proposed computer game using the MDP AI engine. We also 
discuss some of the questions raised in our previous work; in 
particular can the AI engine operate successfully in larger 
game environments. 

 
This is true to a certain extent; it is reasonable to say that 
predictability can be fun or not fun depending on how the 
game plays. But the Pac-man game was designed quite a few 
years ago for arcade machines (Hunter, 2000), so the Pac-
man AI is quite simplistic and is orientated so that players 
will eventually die and put more money in the machine in 
order to continue. As a result of this it still would be useful 
to improve the Pac-man game AI and games like it for the 
home computer market, because the monetary aspect of 
arcade machines is not a factor any more and game players 
today expect more from a computer game’s AI. In addition 
the Pac-man game also offers an excellent real time 
environment in which to test the MDPs AI engine because 
the game environment can easily be divided into a finite set 
of states. 

 
Markov Decision Processes 
 
Markov decision processes (MDPs) are a mathematical 
framework for modelling sequential decision tasks / 
problems (Bonet, 2002) under uncertainty. According to 
Russell and Norvig, (1995), Kristensen (1996) and 
Pashenkova and Rish (1996) early work conducted on the 
subject was by R. Bellman (1957) and R. A. Howard (1960). 
The subject is discussed in detail in our previous work 
Hartley et al. (2004). Here we give a description of the 
framework in relation to the computer game we developed. 
 
The technique works by splitting an environment into a set 
of states. An NPC moves from one state to another until a 
terminal state is reached (i.e. a goal or an enemy). All 
information about each state in the environment is fully 
accessible to the NPC. Each state transition is independent of 
the previous environment states or agent actions (Kaelbling 
and Littman, 1996). An NPC observes the current state of the 
environment and chooses an action. Nondeterministic effects 
of actions are described by the set of transition probabilities 
(Pashenkova and Rish, 1996). These transition probabilities 
or a transition model (Russell and Norvig, 1995) are a set of 
probabilities associated with the possible transitions between 
states after any given action (Russell and Norvig, 1995). For 
example the probability of moving in one direction could be 
0.8, but there is a chance of moving right or left, each at a 
probability of 0.1. There is a reward value for each state (or 
cell) in the environment. This value gives an immediate 
reward for being in a specific state. 

 
GAME DESCRIPTION 
 
In order to experiment with and demonstrate how the Pac-
man computer game could use and benefit from the AI 
engine, a simple Pac-man style action game, called Gem 
Raider was developed. Figure 2 contains a screenshots of the 
game in action. The purpose of the Gem Raider game was to 
demonstrate the features of the MDP AI engine we 
developed in a real time 2D Pac-man style environment. The 
Gem Raider game is not a direct clone of the Pac-man game, 
but general comparisons of the abilities of their AI’s can still 
be made. 
 
 
 
 

  
A policy is a complete mapping from states to actions 
(Russell and Norvig, 1995). A policy is like a plan, because 
it is generated ahead of time, but unlike a plan it’s not a 
sequence of actions the NPC must take, it is an action that an 
NPC can take in all states (Yousof, 2002). The goal of MDPs 
is to find an optimal policy, which maximises the expected 
utility of each state (Pashenkova and Rish, 1996). The utility 
is the value or usefulness of each state. Movement between 
states can be made by moving to the state with the maximum 
expected utility (MEU). 

 
 
 
 
 
 
 
 
The Gem Raider game revolves around a Pac-man style 
character called Shingo. The user controls Shingo in order to 
collect gems, which are dotted about the game environment. 
Each game environment (or map) is a square area that 
contains environment properties such as water or obstacles, 
such as walls. The player also has to avoid 3 guards. The 
guards represent the Pac-man ghosts and their job is to 
pursue and kill Shingo before he collects all the gems in the 
level. In addition to the guards there are also enemies that 
take the form of sticks of dynamite and have to be avoided 
by both Shingo and the gem guards. 

Figure 2: A Screenshot of the Gem Raider game. 

 
In order to determine an optimal policy, algorithms for 
learning to behave in MDP environments have to be used 
(Kaelbling and Littman, 1996). There are two algorithms that 
are most commonly used to determine an optimal policy, 
value iteration (Bellman, 1957) and policy iteration 
(Howard, 1960). However other algorithms have been 
developed, such as the Modified Policy Iteration (MPI) 
algorithm (Puterman and Shin, 1978) and the Combined 
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Value-Policy Iteration (CVPI) algorithm (Pashenkova and 
Rish, 1996). 
 
In our previous work Hartley et al. (2004) we also 
implemented a variation on the VI algorithm, which was 
designed to reduce the execution time of the process and still 
produce a valid policy, which an NPC can use to navigate 
the environment. We called the new stopping criterion 
“Game Value Iteration” (GVI) and it works as follows: we 
simply wait for each state to have been affected by the home 
state at least once. This is achieved by checking if the 
number of states, with utilities that are equal to or less than 0 
(zero) are the same after 2 successive iterations. All non-goal 
states have a reward (cost), which is slightly negative 
depending on their environment property (i.e. land, water 
etc.). Since utilities initially equal rewards, a state’s utility 
will be negative until it has been affected by the positive 
influence of the home (goal) state.  
 
As a result the number of cells with negative utilities will 
decrease after each iteration. However some states may 
always retain a negative utility, because they have larger 
negative rewards due to their environment property and they 
may be surrounded by states with similar environment 
properties. Consequently when the number of states with 
negative utilities stays the same for 2 successive iterations 
we can say that the states are not optimal, but they should be 
good enough for a workable policy to exist, which the NPC 
can use to navigate the map. Before this point it is likely that 
no workable policy for the entire environment would exist. 
This stopping criterion assumes rewards can only be 
negative and there is a positive terminal state which is equal 
to 1. Also note that, checking if a state’s utility is greater 
than 0 is not required for the terminal states, because their 
utilities never change. 
 
The AI Engine 
 
In addition to developing the computer game we also 
experimented with increasing the size of the grids used by 
the AI engine, in order to assess how VI convergence and the 
GVI algorithm are affected. The AI engine can now 
represent game worlds at the size of 10x10, 20x20 and 
40x40. Due to the processor intensive nature of MDP we 
decided to experiment with learning partial sections of the 
game world, which are around an NPCs location. This 
should significantly reduce the number of iterations required 
to learn an instance of a game map, which is an important 
factor in real time games. 
 
The Game 
 
The game was developed in Microsoft Visual Basic 
specifically for this application. The relevant sections of the 
AI engine source code were imported into the game and a 
game engine was developed. The game runs in real time and 
it allows the user to swap between the VI and GVI 
algorithms and specify whether the algorithms should use the 
whole map or a partial section of the map.  
 
The game world is split up into a grid of 20x20 cells. Each 
cell in the grid has a property associated with it, such as land, 
water or an obstacle. The human player can move freely 

through the game world, but they cannot move through 
obstacles and water slows them down. The NPCs in the 
game can also move freely around the game world, but not 
through obstacles and only slowly through water. Each NPC 
in the game has a set of reward values, which it associates, 
with each cell property. The properties of the environment 
are used by each NPC (i.e. the AI engine) as the reward 
value for each cell. For example water means slower 
movement for the NPC, so by giving cells with the water 
property a more negative reward value it would mean that 
the reward for being in that cell is slightly less than cells 
with no water property. When the utility value of each cell is 
created the utility values of cells with the water property will 
be less than those with no water property. So when an NPC 
makes a choice of which cell to move to it will be less likely 
to move to the cell that has the water property. This means 
the NPCs in the game should produce more humanlike 
movement because they take into account environment 
variables, which could be considered as having a poor effect 
on their progress. 
 
EXPERIMENTAL RESULTS 
 
In the introduction we stated that we were going to answer a 
number of questions raised in our previous work and 
demonstrate MDPs being applied to a 2D Pac-man style 
computer game. The first phase of experiments involved 
increasing the size of the environments used by the AI 
engine, to 20x20 and 40x40 cells. 
 
For all experiments in this phase of testing the following 
things were kept the same: there were two terminal states, +1 
(goal) and –1 (enemy), and there was a slight cost of -
0.00001 for all non-goal states. The probability of moving in 
the intended direction was set to 0.8. The maps used for 
these experiments attempt to represent a limited maze like 
world that you would expect to see in a Pac-man style game. 
However they were kept relatively simple so their size could 
be increased, while the map itself remained the same. We 
also experimented with simpler and more complex maps. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Screenshots of the 20x20 and 10x10 maps used to produce the 
results in table 1. 

Grid Size No. of iterations to Convergence 
 VI (OP) GVI HD 
10x10 63 18 0 
20x20 83 38 0 
40x40 130 79 0 

 
 Table 1: Results from experiments conducted on different size environments. 

The HD column in table 1 stands for hamming distance 
between the GVI generated policy and the optimal policy. 
The optimal policy (OP) is the policy obtained by running 
the VI algorithm with the same initial data and maximum 
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precision (Pashenkova and Rish, 1996). The use of hamming 
to determine the difference between a policy and an optimal 
policy is based on that used in Pashenkova and Rish (1996). 
 
From table 1 we can see that as the size of the grid increases 
the number of iterations required for convergence also 
increases, but it appears that the HD distance of the GVI 
algorithm is not affected by the increase in the grid size. This 
demonstrates that the GVI algorithm still produces viable 
policies, even in larger environments. Similar results were 
also found on different variations of maps. 
 
The second phase of experiments looked at learning only 
partial sections of maps, around the NPCs location instead of 
the whole environment. It can be seen from the first 
experiments that as the size of the map increases the number 
of iterations required to converge the utility values also 
increases. In real time games this may prove processor 
intensive, especially if there is more than one NPC with their 
own set of rewards and utilities. We experimented with two 
different sized partial sections (5x5 and 7x7) around the 
NPCs location. Each cell within the partial area was treated 
normally, except if the home cell was not in the selection. If 
this was the case a new home cell was set.  
 
In order to achieve this, for each accessible state within the 
region, the Euclidean metric between it and the goal was 
calculated. The state with the smallest value was set as the 
temporary home cell. If the Euclidian metric values were 
equal then a state was randomly selected. After the NPC 
moved one step the region and goal position were re-
calculated and the new utilities generated. The map used for 
these experiments (figure 4) was a recreation of a map found 
in the Pac-man game.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Region Size Average No. of iterations to Convergence  
 VI (OP) GVI 
5x5 43.1 6.8 
7x7 48.1 9.7 

 
 
 
The results from the second phase of experiments were 
initially promising. Table 2 shows that the use of regions 
speeds up convergence quite considerably. However this 
seems to be at the expenses of NPC behaviour. After 
analysing the movement of the NPC it generally appeared to 
be less direct than when the whole map was taken into 
account and environment properties had very little affect on 
its behaviour. This decrease in movement quality is 
extremely undesirable because one of the objectives of this 

research is to produce better quality, more humanlike 
behaviour in computer game NPCs. We also found that in 
complex maps the technique tends to need more information 
than that provided by the region area to solve which state 
should be selected as the temporary home state. For example 
a U-shape area in an environment may trap an NPC if it 
cannot view states outside the area. We overcame this 
problem to a certain extent, by only allowing the use of Pac-
man style maps which do not have dead ends and by 
recording the NPCs last position in order to prevent it from 
moving back on itself. 
 
The third phase of experiments looked at how successful 
MDPs were when applied to a real time 2D computer game. 
When running the VI algorithm in the Gem Raider game we 
experimented with a relatively conservative threshold of 
0.001 and 0 (zero). We varied the rewards for each gem 
guard in order to achieve different types of behaviour.  
 
The experiments conducted on the Gem Raider game were 
focused on confirming that the AI engine would work in a 
game environment similar to Pac-man and produce 
intelligent behaviour. It is however difficult to determine 
whether the Gem Raider game specifically offers an 
improvement over the Pac-man game AI for a number of 
reasons, in particular as discussed above, because the Gem 
Raider game is not an exact clone of Pac-man and the quality 
of the Pac-man AI is a subjective issue. From our 
observations the NPCs in the Gem Raider game appeared to 
produce intelligent behaviour, which reacted to the dynamic, 
constantly changing game environments. Some examples of 
this behaviour include the gem guards appearing to take into 
account and react to environment properties. In our opinions 
the behaviour produced by this game appeared to be more 
intelligent than the NPC behaviour produced by the Pac-man 
game. However further work, such as a survey, would be 
necessary to confirm this assertion. 
 
In terms of performance the GVI algorithm performed much 
better than the VI algorithm. When running the VI algorithm 
there was a noticeable slow down while the utilities were 
being calculated. To a certain extent this problem could be 
overcome by implementing the technique in a more 
optimised programming language such as C++, however it 
highlights the problem that this approach is processor 
intensive. Figure 4: Screenshot of the map used to produce the results for the region 

experiments.  
DISCUSION 
 
The results presented in this work show that on different size 
grids the GVI algorithm can be used to produce intelligent 
NPC behaviour in less iterations that the VI algorithm. After 
observing the movement produced by the AI engine we 
found that when only partial sections of an environment 
were used NPC movement was less effective and took less 
account of the environment properties. This is an undesirable 
consequence as it results in the NPC appearing less 
intelligent. 

Table 2: Results from experiments conducted on different region sizes 
around the NPCs location.  

We have also shown how MDPs using the VI and GVI 
algorithm can be applied to 2D real time computer games, 
such as Pac-man. Applying this technique to these types of 
games has proved relatively successful. The GVI algorithm 
offers a more suited stopping criterion for computer games, 
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as it automatically converges to a usable policy in a very 
small number of iterations. The VI algorithm is less suited to 
this type of environment because it requires a fixed number 
of iterations or a convergence threshold, both of which can 
be problematic in dynamic and constantly changing 
environments. 
 
When implementing these algorithms in a 2D real time 
computer game the key factor to consider is processing 
constraints. If each NPC within the game requires individual 
rewards and utilities, then the time it takes to generate the 
utilities could be inhibitive to the playing of the game. A 
solution to this problem would be to determine only a part of 
the game environment, however as we have demonstrated 
here this impacts greatly on the advantages of the technique. 
Other approaches such as fixed regions or a number of NPCs 
making use of the same set utilities may solve this problem. 
However as long as processing power increases the use of 
this technique will become a more interesting proposition for 
the development of unscripted NPC navigation in real time 
computer games. 
 
CONCLUSIONS AND FUTURE WORK 
 
In our previous work we examined how MDPs using the VI 
and GVI algorithms could be applied to an AI engine that 
was suitable for use in a 2D real time computer game. This 
paper has continued this work and shown that these 
algorithms can be relatively successfully applied to 2D style 
games. The results from the experiments conducted here are 
very promising and show that even though the GVI 
algorithm produces a less that optimal utilities it still is 
effective, even in large game environments. The results from 
the Gem Raider game experiments have shown that it is 
indeed feasible to apply MDPs using GVI to real time 
computers, such as Pac-man. However the technique is 
computationally expensive and as a result may prove 
unfeasible for some computer games. 
 
Further work in this area will involve exploring other 
algorithms such as policy iteration, modified policy iteration 
and reinforcement learning (Sutton and Barto, 2000) in 
relation to computer games and comparing them to the GVI 
algorithm. Other interesting areas to investigate include 
applying the technique to other types of games and applying 
the technique to other types of problems, for example state 
machines (Sutton and Barto, 2000). The work conducted 
here could benefit the application of MDPs to other types of 
problems, for example state machines in 3D shoot-em ups 
and real time strategy games (Tozour, 2002). However 
applying these techniques to NPC navigation in these types 
of games may only offer limited use. 
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ABSTRACT 
 
This paper introduces the idea of using a computer application 
to aid in the combat sequence for a popular paper-based role-
playing system called Dungeons & Dragons. The project 
aimed to reduce the complexity of the combat sequence and 
the workload of the Dungeon Master in control of the game. 
Following a survey of current systems and technologies, five 
objectives were formulated for the project. The first 3 
objectives were successfully completed leaving the last two 
for future work. 
 
INTRODUCTION 
 
The paper focuses on the development of a Dungeons & 
Dragons system that aids the players whilst playing the paper-
based game. It does this by looking at different ways in which 
to store the data, the graphical user interface, and a battlefield 
visualisation for combatants. 
 
Dungeons and Dragons: The following is an extract from 
3rdEdition.org, a website dedicated to the latest incarnation, 
describing what D&D is: “Dungeons and Dragons is a Fantasy 
Role-Playing Game wherein the participants take on the roles 
of characters that they create and define, and use those 
characters to create fantastic adventures in an imaginary 
world. Such elements may be as simple as the existence of 
magic, a force by which characters can make incredible things 
happen, or the existence of fantastic creatures like fairies, 
ogres, and of course, dragons.” (Jason Ward 2000). User 
evaluation and informal feedback was used to test the system. 
Users commented on the good ideas used throughout the 
system. The GUI was seen as aesthetically good and the 
system was seen as a good foundation upon which to build. 

LITERATURE SURVEY  
 
There are little or no books specifically aimed at simulating a 
paper-based RPG (role-playing game) so our work was 
extended to include similar solutions in computer games, 
combat simulators, and computer graphics.  
 
Why Dungeons & Dragons: D&D role-play system heavily 
revolves around combat that is complicated. Large-scale 
combat is even trickier as it involves the Dungeon Master 
controlling several entities. Providing a solution to these 
problems is one reason for the project. The following five 
objectives are listed along with their intended benefits. 
 

- The first objective is to provide a way of managing 
individual characters. It needs to allow players to set up their 
characters which are to be used in the system. It removes the 
need for sheets of paper that note down the characters’ 
abilities, which can be lost easily. 
 
- The combat manager, objective two, aims to improve 
awareness of what is going on in combat by providing a 
central place to store combat information and guide the 
players through the combat sequence. 
 
- The third objective is to provide a user-friendly system. The 
system is intended for use in conjunction with the paper-
based system so it must be simple and easy to use so it does 
not impose itself on the game. It is here to speed things up and 
solve problems not to create new ones and slow it down. 
 
- The fourth objective is to create a tool which can be used to 
manage groups of characters that will allow players to fight 
large-scale battles using the D&D system. The aim is to 
simplify this process and allow the players to utilise the 
computer’s ability to calculate lots of numbers very quickly 
but NOT to produce a game. 
 
- The final objective is to attribute artificial intelligence to the 
monsters. It might be more appropriate for DM’s to set the 
monsters AI when controlling large numbers of them. The AI 
would act as a set of behavioural attributes that would guide 
the actions of each monster. This would remove some of the 
strain and complexity from the DM but leave the monsters 
firmly under their control. 

 
Limitations of the Existing System: The existing system, 
with regards to this project, is D&D (3rd Edition). To 
understand the problems within this existing system first the 
scope of the problem must be narrowed down. The focus of 
this project is going to be guiding players through the combat 
sequence. Looking at the combat sequence highlighted several 
problems. 
 
As the number of combatants grows the encounters become 
increasingly difficult for the DM to control. There are several 
reasons for this. Firstly, the DM has to control the actions of 
all the combatants that are not being controlled by players. 
This includes player’s opponents, but also their allies. Not 
only does the DM have to control other characters but also the 
environment and special effects caused by spells. The second 
reason is misunderstanding, and misinterpretation. It is 
difficult for the DM to keep track of all the events that happen 
during combat and displaying this information clearly to the 
players. If players have a poor understanding of the combat 
they are in then they cannot make the right decisions. If they 



 61

misinterpret the situation they can slow the game play down, 
as things need to be explained again. 
 
The Dungeon Master’s Guide (Cook et al. 2000b, pg17) 
suggests that the DM have a pad of paper and to note down all 
the combatants in order to keep track of them. The DM also 
draws rough maps to show the players where everything is 
situated. The pad of paper notes the order in which combatants 
fight and any useful information the DM decides will aid in a 
smooth combat such as spells in effect and player character’s 
(PC’s) hit points. PC's actions can be modified by many 
things; such as cover or being invisible, remember this is a 
fantasy world, and the DM needs to keep all of these modifiers 
to hand when calculating results.  
 
The PHB (Cook et al. 2000a, pg126 and 130) and DMG 
(Cook et al. 2000b, pg13 and 67) suggest the use of metal or 
card figures to represent the players on a board. The 
opponents are numerous and having a model to represent each 
one would be a tall order. Most players prefer to leave the 
figures to war gaming and stick to pen and paper.  
 
Limitations of Existing Solutions: There are no 
commercially available solutions that are aimed at aiding the 
D&D system. There is a Character Generator, available from 
Wizards of the Coast, which guides the user through creating a 
character and updating it as they advance.  
 

 
 

Figure 1 Battleboard’s Main View 
 
There are, however, several applications aimed at simulating 
combat that can be found on the Internet. A lot of time and 
effort was put into finding examples to include in the literature 
survey and most came from the same website. It was the only 
source that regularly popped up from several searches and 
references from other sites. Figure 1, above, shows an 
example of one of the combat visualisation aids 
(SB21@PACIFIC.NET.SG 2003). The website was 
http://www.naparpg.us/downloads.htm and is home to the 
Napa Valley RPG group. This website was the only source of 
any usable software aimed at aiding the combat sequence. 
Other websites that offered role-playing tools offered 
databases of information found in the three core rulebooks, 
name generators and many tools to help create fantasy worlds. 
The area of RPG tools has many applications and few had 
attempted a combat aid. The following examples are all 

available from www.naparpg.org and range from simple 
working solutions, such as Combat Duel, to unusable failures.  
 
Computer Games: Role-playing computer games have 
become a very popular genre and there are countless titles now 
available on most platforms, such as the PS2, X-Box and PC. 
More specifically there have been many based around D&D; 
Pool of Radiance, Baldur’s Gate, Icewind Dale and 
Neverwinter Nights are just a few of the more recent titles. 
The Baldur’s Gate series are the most popular D&D versions 
of this type of game. They provide the option of using the 
game’s core rules making them very close to being a 
simulator.  
 

 
 

Figure 2 Baldur’s Gate 2 screenshot 
 
More recently with the release of Neverwinter Nights comes a 
3rd Edition game. Similar in idea to the Baldur’s Gate series, 
which was using the 2nd Edition rules, it is much more 
advanced. The graphics have moved from a pseudo three-
dimensional view to fully 3D and a full toolset is included in 
order for DM’s to be able to add their own levels. The toolset 
is complicated and requires many hours to develop small 
adventures. E.g. try to imagine listing all the possible things a 
wise sage would say. It would be impossible to list them all. 
This is the DM’s job; to play the non-player characters. RPG 
games are not the only source of ideas that can be used for this 
project. Part of this project is to design a battlefield 
visualisation and what better place to look than strategy 
games. These games have also been around since the 
beginning of gaming with games like Dune: The Battle for 
Arrakis.  
 
Combat Simulators: These usually exist within the area of 
the military and are therefore difficult to research. There are 
several examples of computer games that fall under this 
category. Command & Conquer, Red Alert, Dune: The Battle 
for Arrakis, Battle Isle: The Andosia War and the Total War 
series are all combat based strategy games. The Total War 
series is the closest to a simulation and a slightly modified 
version has been used on television shows as just that, a 
medieval combat simulator.  
 
DESIGN & DEVELOPMENT 
 
The following section looks at the choice of programming 
language, design techniques and implementation. 
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Programming Language (PL): There are many 
programming languages available today of which Visual C++, 
Java, and Visual Basic 6.0 are the most common. There were 
two PL’s chosen, one for the underlying simulation and one 
for the GUI. First of all let us look at the available PL’s. The 
.net languages (c#, VB.net etc) were not considered as using 
them was not an option. – EDIT. 
 
VC++ is a powerful object oriented (OO) language that is 
commonly used for simulation style projects. VC++ has 
several advantages over the other PL’s. Familiarity with 
VC++ and visual studios is a large factor that can affect the 
project, and the visual studios environment provides this. 
VC++ allows the application to be developed as a console 
application, windows application (MFC’s or standard Win 
API), or as a dynamic library link (DLL) that provides a good 
choice of GUI’s. “The Microsoft Foundation Classes and 
Templates (MFC&T) provide tools to create small, 
lightweight controls, database applications, and full-featured, 
Windows desktop applications” (MSDN 2004). 
 
Java is also a strong OO language, even more so than VC++, 
and also offers a powerful GUI through the use of Java 
Foundation Classes. “The Java Foundation Classes (JFC) are a 
set of Java class libraries provided as part of Java 2 Platform 
Standard Edition (J2SE) to support building graphics user 
interface (GUI) and graphics functionality for client 
applications that will run on popular platforms such as 
Microsoft Windows, Linux, and Mac OSX” (Sun 
Microsystems 2004).  
 
Visual Basic 6.0 is the weakest of the three PL’s with regards 
to OO. On the other hand it is the strongest at rapidly 
developing a GUI. VB also provides easy access to a simple 
database such as MS Access.  
 
VC++ was chosen as the programming language based on 
several points. The familiarity and technical knowledge with 
both VC++ and MS Visual Studios is far and above any of the 
others, and this is likely to give the best solution in this 
situation. It also gave the project a good range of GUI API 
(application programming interface) to choose from within the 
developer’s scope of experience and considered best for 
further development of the project with regards to 3D graphics 
being added. VC++ is the most common language for 
developing 3D graphics. Java or VB games are less common 
but are more generally aimed at mobile phone and other non 
PC based systems. 
 
Graphical User Interface (GUI): The GUI is an important 
part of this project, as it needs to provide the user with quick 
and easy access to the program’s functions. With this in mind 
the project needed to get a working GUI up and running 
quickly to allow users to evaluate its use. It was decided that a 
prototype, as described by Bowden (1992 cited Pressman, 
2003 p.23), be designed in VB. VB is a strong choice for rapid 
application development (RAD). 
 
After designing the GUI in Visual Basic 6.0 it was found that 
a dynamic library link (DLL) could be used to connect the VB 
GUI to the VC++ simulation code. The VB was developed as 
the front end to the application and would handle all high level 
graphics. The VC++ code handles all low level functions such 

as moving a character or attacking another character. The 
VC++ code includes an export file that lists the functions that 
can be called from outside of it. The code also includes a layer 
between the two PL’s, such as the conversion of data types. 
The VB needs to include a module that acts as function 
prototype for each of the exported functions. The DLL 
provides an easy layer between the two sets of code. 
 
VB data types do not match C++ data types so it is necessary 
to convert the VB types into VC++ types before it can handle 
the call. In order to keep the VB as a dumb front end all of the 
data passed to the DLL is just to locate the right object in 
memory through VC++ code. For example, when a character 
is created the user enters the data in a VB form. VB does not 
test to see if it is the right data or if the character already 
exists, only that each field needed to create the object exists.  
 
Design Methodology: The program was designed and 
subsequently developed using the spiral methodology 
(Sommerville 2001, p.53). 
 
The typical waterfall model could have been used but the 
project is very large and the design of the complete system 
would take too much of the development time. Any problems 
could have left the project as just a design at the end of the 
course. The project was undertaken as part of a BSc Software 
Engineering course and it was decided that the spiral model 
would produce a useable (viewable) application at almost any 
stage of development even if not entirely finished. VB was 
used as RAD (Rapid Application Development) to develop a 
useable prototype of the front end to the system. This was 
developed alongside the core code. This allowed early testing 
of the GUI to provide an interface that players would find easy 
to use. The C++ and VB were then modified to communicate 
with each other, using a DLL for the communication layer. 
The application was designed with modularity in mind. The 
core classes can all be independently used in other systems 
and the DLL layer allows other graphics to be developed at a 
later date and bolted on (replacing the simple graphics 
developed for this project). 

SOFTWARE DEVELOPMENT 
 
This section follows the development of the character manager 
and combat simulation in VC++, followed by the prototyping 
of the GUI in VB. The chapter ends with a look at how the 
code was converted in to a DLL to use the VB as the actual 
GUI and the conversion of data between VB and VC++. 
 
Core Classes: The core classes were developed as a starting 
point to the system.  
 
Character: The character object is the main focus of the 
system. Essentially a character is a list of variables: height, 
weight, age, race, experience level, strength, dexterity, 
constitution, intelligence, wisdom, charisma are among the 
most basic attributes needed.  
 
Monster: This class is a special type of character. They have 
all the same attributes as characters but they are always the 
same for a particular type of monster, e.g. Orcs always have 
the same ability scores. Certain attributes can and do vary, 
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such as hit points. A standard Orc wields a great axe and has 
four hit points (Cook et al. 2000c, pg 146).  
 
Equipment: An equipment class would be very useful for 
holding all the different objects that a character can hold, such 
as a weapon, a piece of armour, a backpack.  
 
Weapons & Armour: The weapons class includes attributes 
to create all types of weapons from the simple club to the 
composite long bow and, similarly, so does the armour class.  
 
Army & Unit: The army class was written as a simple 
container of units and the unit class a simple container of 
characters or monsters.  
 
Manager: The manager class handles all of the instances of 
object; it encapsulates the object containers and the associated 
functions.  
 
Combat Simulation: At this stage of development the combat 
sequence is added to the code. This involved adding new 
functionality to the manager class to allow encounters and 
objects to be set up. 
 
Battlefield: Before a character can fight a monster they need 
an arena to fight in. It was arbitrarily decided that the class be 
called battlefield, instead of dungeon or arena. The battlefield 
class is very much a container to begin with; holding a number 
of squares.  
 
As can be seen from the following code it is simple to find a 
square within the battlefield; the function requires the x and y 
co-ordinates and uses a simple algorithm to convert them into 
a single position within the vector. The vectors direct access 
allows the square to be accessed and the nature of vectors 
makes the look up constant, which means no matter how big 
the battlefield is, it will always take the same amount of time 
to find a specific square. 
 
1 bool Battlefield::isOccupied( int xPos, int yPos ) 
2 { 
3  int pos = 0; 
4  pos = xPos + ( yPos * width ); 
5  return gridSquares[pos].isOccupied(); 
6 } 
 
The only other function needed by the battlefield is a query to 
see if it is occupied; the function will ask a specific square if it 
is occupied. The battlefield has to ask the square because it is 
a square’s attribute. 
 
Additional Functionality: Now that the characters have a 
battlefield in which to fight new functions can be added to the 
other objects to allow combat to happen. E.g. a character 
needs to be able to perform actions such as attack, move or 
draw a weapon. The standard attack function was looked at 
first.  
 
Data Storage: It was decided early on that data was to be 
stored in simple text files. This allows initial development to 
be spent on core aspects of the system. The data could be 
moved to a database at a later date to provide better storage 
but early on in development there are no extra advantages. 

 
The GUI: The GUI needed to provide the user with an easy to 
use interface which could access all the screens they need to. 
An MDI (multiple document interface) was chosen to keep the 
tool together and give the user the flexibility to choose what 
they can see. The GUI was simple to design and provided a 
neat clean interface to the data. The system is controlled via 
standard GUI menus (Fig 3).  
 

 
 

Figure 3 Menu Choices 
 
Figure 4 is typical of the kind of form created for each object. 
The form shown displays all the attributes of a weapon. The 
drop down menu, currently highlighted, allows the user to 
select any of the weapons loaded into the system. 
 
The create weapon form looks exactly the same, except for the 
inclusion of a create button. It is accessed by selecting | 
Weapon | Add New Weapon. It is further to the right on the 
menu because it is not accessed as often and is grouped on the 
Custom menu choice with other similar options. The blank 
space of figure 4 is included to aid layout and aesthetics. It 
could be used as an image place holder in future expansions. 
 

 
 

Figure 4 GUI screenshot showing Weapon List 

Battlefield Visualisation: This was developed in VB 
alongside the GUI with the main focus being a 2D grid. The 
easiest and simplest way to visualise the combat is to use a 2D 
grid. Each grid square represents five feet of battlefield. The 
battlefield can potentially be larger than the screen size, so a 
way of navigating the battlefield is needed. The battlefield, at 
maximum zoom, shows a 25 foot square area, a typical sized 
room. The other zoom levels are 50 square, 75 foot square and 
100 foot square.  
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Figure 5 Battlefield Visualisation 

DLL: Now that the simulation code and prototype have been 
completed to a suitable point we need to consider how the two 
sets of code were modified to use a DLL. The introduction of 
the DLL meant that the VB prototype could be used as the 
GUI for the VC++ simulation code. It was possible for the 
VC++ code to be recompiled as a DLL with few changes.  
 
VC++ Communication Layer: The VC++ code needed 
several additions; an extern file, a communication layer and 
type conversion. The extern file lists all of the functions that 
can be used by other programs. These are the functions that 
the GUI is going to use. The communication layer provides 
the interface between the VB and VC++.  
 
RESULTS & DISCUSSIONS 
 
At this stage the programming has reached a level where it 
needs testing. The core functionality required for its use has 
been completed and before any new functions are added it is 
best to make sure what is written is sound. 
 
Usability Test: The usability test asks the users to carry out a 
series of predefined tasks and then to mark on a likert scale 
how easy the task was to complete. The aim here was to test 
both the GUI and functionality of the program.  
 
Limitations of the Design: There are several functions not 
included in the design: i) Advanced Combat Actions, ii) Feats, 
iii) Skills, iv) Magic, v) Monsters with special abilities, vi) 3D 
graphics. 
 
CONCLUSIONS & FUTURE WORK 
 
The modern D&D computer games provide a multiplayer 
aspect that is almost as involving as the paper based game but 
is lacking in variety. “An RPG with a human referee … is a lot 
more capable of variety than any computer game” (Rollings & 
Morris 2004). So there will always be paper-based RPG’s 
until such time that computer games have progressed to a 
stage where an almost endless number of possibilities can be 
written into any single game. 
 
This project could be seen as a starting point to providing such 
a game. It is a hybrid of computer game and interactive role-
play. The human referee supplies the plot and intrigue whilst 
the computer supplies the fantastical graphics and game play. 

Artificially Intelligent Monsters: To some people role-play 
is all about rolling dice and bashing lots of monsters. To 
others it is about intrigue and in depth plots. It becomes very 
difficult to get involved in the story line when every time you 
play you end up spending 90% of your time rolling dice to see 
who wins the combat. One of the reasons its takes so long is 
that the DM controls so many aspects of the encounters, e.g. 
the DM controls the 5 Orc warriors, the Orc Shaman, the 5 
Spell effects that the shaman has cast and the weather.  
 
Future Work:  The idea of AI is to set behavioural attributes 
of the combatants, e.g. each round all elves will attack the 
nearest orc. If the orc is adjacent to the elf then the elf will use 
a sword else a bow will be used. This idea of large scale 
combat also suggests the need for some sort of army 
management and this was the idea for objective four. Finally, 
a set of 3D graphics could be used to visualise the fantastical 
elements of the game. 
 
References 
 
BIOWARE CORP, 2000. Baldur’s Gate II [PC CD ROM]. Avalon Interactive. 
 
BIOWARE CORP, 2002. Neverwinter Nights [PC CD ROM]. Atari UK Ltd. 
 
BLACK ISLE, 2001. Icewind Dale [PC DVD ROM]. Avalon Interactive. 
 
BOWDEN, P., 2003. Software Quality, notes to accompany the lectures. [Online]. 
Availabe as Notes1.doc from: -
http://student.doc.ntu.ac.uk/modules/soft30051/files/Notes/Notes1.doc  
 
CAULDREN, 2000. Battle Isle: the Andosia War [PC CD ROM]. Blue Byte Software 
Ltd. 
 
CREATIVE ASSEMBLY, 2002. Shogun Total War: Classic Range [PC CD ROM]. 
Electronic Arts. 
 
COOK et al., 2000a. Dungeons & Dragons Players Hand Book Core Rulebook I. Second 
Printing. Wizards of the Coast. 
 
COOK et al., 2000b. Dungeons & Dragons Dungeon Master’s Guide Core Rulebook II. 
First Printing. Wizards of the Coast. 
 
COOK et al., 2000c. Dungeons & Dragons Monster Manual Core Rulebook III. First 
Printing. Wizards of the Coast.GEBHARDT, 2004.  
 
MSDN, 2004. Microsoft Foundation Class Library and Templates [Online] Available at: 
- http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcmfc98/html/_mfc_about_the_microsoft_foundation_classes.asp 
 
NAPA ROLE-PLAYING GUILD, 2004. Napa Role-playing Guild – Downloads. 
[Online]. Available at http://www.naparpg.us/downloads.htm 
 
ROLLINGS and MORRIS, 2004. Game Architecture & Design. New Riders Publishing. 
 
SB21@PACIFIC.NET.SG, 2003. D&D Battlefield Services (Battleboard) [Online]. 
Available as Battleboard.zip from: - 
http://enworld.cyberstreet.com/news/modules.php?op=modload&name=Downloads&file
=index&req=getit&lid=151 
 
SOMERVILLE, I., 2001. Software Engineering. 6th Edition. Addison-Wesley. 
 
SSI, 2001. Pool of Radiance: Ruins of Myth Drannor [PC CD ROM]. Ubisoft. 
 
SUN MICROSYSTEMS, 2004. Java Foundation Classes (JFC/Swing) [Online]. 
Available at http://java.sun.com/products/jfc/index.jsp 
 
WARD, J., 2000. Dungeons & Dragons - 3rdedition - Articles - What Is Dungeons & 
Dragons? [Online]. Available at http://www.3rdedition.org/articles/viewer.asp?ID=10 
 
WESTWOOD, 1992. Dune 2: Battle for Arrakis [PC CD ROM/FLOPPY DISC]. Virgin 
Interactive. 
 
WESTWOOD, 2002. Command & Conquer Red Alert 2 Classic [PC CD ROM]. 
Electronic Arts. 
 
WIZARDS OF THE COAST, 2004. Dungeons & Dragons. [Online].Available at 
http://www.wizards.com/dnd/DnDArchives_History.asp  



 
 
 
 
 
 

Graphics Developments 
 and Simulation 

 
 
 
 
 
 
Rhodes, D., Cant, R., Langensiepen, C. and Al-Dabass, D. 
Programmable GPUs and shading languages: past, present and future  66 
 
Langensiepen, C., Foster, G. and Cant, R. 
GPU implementation of high quality bump mapping    71 
 
Marshall, D., Delaney, D., McLoone, S. and Ward, T. 
Representing random terrain on resource limited devices   76 
 
Meredith, M. and Maddock, S. 
Using a half-Jacobian for real-time inverse kinematics    81 
 
Arokiasamy, A., Al-Dabass, D.,and Periyanayagam, R. 
Simulating animation by regular deformation using OpenGL   89 
 
 
 
 
 
 
 

in4243
65



PROGRAMMABLE GPU’S AND SHADING LANGUAGES: PAST, 
PRESENT AND FUTURE 

 
DANIEL RHODES, RICHARD CANT, CAROLINE.LANGENSIEPEN, DAVID AL-DABASS 

 
School of Computing & Technology 

Nottingham Trent University 
Nottingham NG1 4BU 

richard.cant@ntu.ac.uk 
 
 
 

KEYWORDS 
Cg, HLSL, GLSLang, RenderMonkey, FX Composer, 
DirectX, OpenGL, Vertex Shaders, Pixel Shaders, Shader 
Model 3, Programmable GPU. 
 
ABSTRACT 
 
We review the current state of play with regards to the latest 
tool in the graphics programmers arsenal; the programmable 
GPU. We discuss the various merits and pitfalls of each 
currently available high level shader language; designed to 
help programmers get the most out of these new GPU’s with 
minimal effort. We also look into the other tools available to 
aid Shader development, along with the latest hardware 
features and the new Shader Model 3 standard. 
 
INTRODUCTION 
 
Over recent years development of computer graphics hardware 
for the home market has progressed at a rate well above that 
stated by Moore’s law [Intel, 2004]. This is due largely to the 
push towards what NVIDIA term as “Cinematic Computing” 
[NVIDIA, 2003]; essentially what they mean is that real-time 
computer graphics are beginning to approach the type of 
effects only previously available with pre-rendered systems 
such as ray-tracing. 
 
The current efforts for more realistic end products are leading 
to the requirement for more advanced techniques in computer 
graphics systems. This has led to many new developments 
within the hardware itself, these developments have come 
particularly rapidly over the last 5 years; we look at the reasons 
for this in the next section. This has led to more complicated 
and advanced techniques being possible and in some cases 
being commonly used and developed for consumer level 
hardware. 
 
One such hardware development is the new generation of 
programmable GPU’s (Graphics/ Graphical Processing Unit 
also known as the VPU or Visual Processing Unit). This 
programmability comes in the form of Pixel Shaders and 
Vertex Shaders. These are a relatively new development still 
well in their infancy; it has yet to be seen just how far they can 

be pushed and what types of graphical algorithms best suit the 
new hardware structure they provide. 
 
BREIF HISTORY OF SHADERS 
 
The invention of Vertex and Pixel shaders was a direct result 
of a panel discussion about the future of graphics hardware as 
part of SIGGRAPH ’99 [Dempski, 2002]. Previously, 
consumer level hardware was restricted to a fixed function 
based system. This meant the only real control the programmer 
had over the effects used within an application was by 
selecting the appropriate API calls to activate a hard-wired 
algorithm which is pre-programmed onto the hardware itself. 
This obviously severely restricted what effects were possible to 
whatever the card manufacturers deemed necessary and 
allowed very little freedom for the programmer. 
 

Fig. 1: Fixed Function Pipeline (top) Vs Programmable Pipeline 
(Bottom, shows current Shader Model 3 GPU architecture) 

[NVIDIA, 2004c] 
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Shaders present more flexibility to the programmer by 
allowing them to define vertex and/or pixel shader programs 
which can be run on any supporting hardware. For example 
they allow the programmer to replace the old style fixed 
function lighting with shader programs. So where previously 
the only options available may have been for example flat 
shading or Gouraud shading the programmer now has the 
option to create their own effects such as anisotropic lighting 
or cartoon rendering. 
 
NVIDIA were the first to develop this new direction in 
graphics on consumer level hardware. This was in the form of 
the GeForce3 [NVIDIA, 2001]; which supported shader model 
1.1 (pixel shader 1.1 and vertex shader 1.1). Shaders 
essentially replace the fixed function pipeline of a standard 
pre-Geforce3 graphics card by providing programmability as 
shown in Figure 1. Although fixed functions can still be used 
in conjunction with most, but not all shader generations. 
Shader model 3 for example cannot be used in conjunction 
with fixed function elements [Microsoft, 2004]. Figure 2 
shows the progression between shader version 1.1 and 2.0 as 
illustrated by NVIDIA within the GeForce series. The latest 
incarnation: Shader Model 3 is covered in more detail later. 

Fig. 2: GeForce4 Vs GeForceFX [NVIDIA, 2002] 
 
While this did provide a much greater level of control to the 
programmer than ever before possible on consumer level 
graphics hardware it did cause the problem of increased 
development times. This was due mainly to the fact that until 
recently Shaders had to be coded directly in Shader Assembly 
language. This limited the scope of possible applications due to 
the specialised and complex nature vertex and pixel shader 
programs and their assembly like language. This caused long 
development times and other complications inherent with 
assembly language programming in general. Considered with 
the faster than Moore’s law progression of GPU technology 
[Hexus, 2002] this meant developers simply couldn’t keep up 

with the rapid pace of technology changes. This posed quite a 
problem, particularly when the complexities inherent with 
assembly language programming are compounded by the 
complexity of many graphical algorithms; yet these shaders 
were designed to encourage realism on consumer level 
hardware. 
 
In an attempt to alleviate this problem NVIDIA, Microsoft and 
SGI (Silicon Graphics, Inc) have all developed their own High 
Level Shader Languages (HLSL’s); Cg, MSHLSL, and 
GLSLang respectively. These HLSL’s aim to have the same 
impact on Shader Assembly language that C and other high-
level languages had in replacing assembler as the development 
tool of choice. HLSL’s are designed to make it easier to map 
algorithms into code as they provide a much more logical way 
of viewing the operations of a shader. 
 
SHADER MODEL 3 
 
Shader model 3 is the latest standard which is unfortunately 
currently only supported by NVIDIA hardware (the NVIDIA 
GeForce 6800 series). The standard requires many benefits 
over previous incarnations including but not exclusive to more 
available instructions and greater floating point precision (as 
shown in figure 3); see [NVIDIA, 2004] and [Microsoft, 2004] 
for a more comprehensive look at Shader model 3. 
 

Fig. 3: Shader Model 2.0 Vs Shader Model 3.0 [NVIDIA ,2004] 
 
Shader Model 3 is required by DirectX 9c and as such any card 
wishing to claim DirectX 9c compliance will have to support 
all the features defined in the Shader Model 3 standard. 
Previous versions of DirectX 9 only required Shader Model 2. 
NVIDIA, 2004 shows comparisons between Vertex Shader 2, 
Vertex Shader 2a and Vertex Shader 3 as well as providing 
comparisons between Pixel Shader 2, Pixel Shader 2a, Pixel 
Shader 2b and Pixel Shader 3 (note there is no Vertex Shader 
2b BUT there is a Pixel Shader 2b). 
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CG, HLSL AND GLSLANG 
 
Cg (C for Graphics) is NVIDIA’s high level shader language 
and was developed in partnership with Microsoft; this 
partnership also spawned Microsoft HLSL (Although 
Microsoft simply like to call it HLSL we shall refer to is as 
MSHLSL to avoid confusion). The two languages are virtually 
identical; in fact Cg is actually a superset of MSHLSL [Case 
2002]. The major difference between Cg and HLSL is the fact 
that the MSHLSL is DirectX specific whereas Cg will happily 
work with both DirectX and OpenGL. Both languages are 
based on C and incorporate some elements of C++, conversely 
due to the constraints inherent with shader programming a lot 
of the functionality of C has been lost. 
 
As of OpenGL 1.5 there is a new contender for high level 
shader language of choice. GLSLang (OpenGL shader 
language) was included as part of OpenGL 1.5 in the form of 
official ARB extensions. Where previously it had only been 
available as unofficial extensions. GLSLang or OpenGL 
Shading Language is OpenGL’s answer to MSHLSL, this is 
again based on ANSI C and again also steals elements from 
C++. See [Kessenich et al. 2002] for a detailed look at 
GLSLang. 
 
Cg 
… 
float3 cSpec = pow(max(0, dot(Nf, H)), phongExp).xxx; 
float3 cPlastic = Cd * (cAmbi + cDiff) + Cs * cSpec; 
… 
Assembley 
… 
RSQR R0.x, R0.x; 
MULR R0.xyz, R0.xxxx, R4.xyzz; 
MOVR R5.xyz, - R0.xyzz; 
MOVR R3.xyz, - R3.xyzz; 
DP3R R3.x, R0.xyzz, R3.xyzz; 
SLTR R4.x, R3.x, {0.000000}.x; 
ADDR R3.x, {1.000000}.x, - R4.x; 
MULR R3.xyz, R3.xxxx, R5.xyzz; 
MULR R0.xyz, R0.xyzz, R4.xxxx; 
ADDR R0.xyz, R0.xyzz, R3.xyzz; 
DP3R R1.x, R0.xyzz, R1.xyzz; 
MAXR R1.x, {0.000000}.x, R1.x; 
LG2R R1.x, R1.x; 
MULR R1.x, {10.000000}.x, R1.x; 
EX2R R1.x, R1.x; 
MOVR R1.xyz, R1.xxxx; 
MULR R1.xyz, {0.900000, 0.800000, 1.000000}.xyzz, 
R1.xyzz; 
DP3R R0.x, R0.xyzz, R2.xyzz; 
MAXR R0.x, {0.000000}.x, R0.x; 
MOVR R0.xyz, R0.xxxx; 
ADDR R0.xyz, {0.100000, 0.100000, 0.100000}.xyzz, 
R0.xyzz; 
MULR R0.xyz, {1.000000, 0.800000, 
0.800000}.xyzz, R0.xyzz; 
ADDR R1.xyz, R0.xyzz, R1.xyzz; 
… 

Fig. 4 Cg Vs Shader Assembler [NVIDIA, 2002] 
 
Cg was the first high level shader language to become widely 
available to developers and was introduced to work with 
DirectX 8.1 and OpenGL 1.3, Cg is now almost at version 1.3 
(Cg 1.3 is at the beta 2 stage at the time of writing). This latest 

version is designed to incorporate the latest features provided 
by the new NVIDIA GeForce 6 series graphics cards. 
 
Figure 4 shows an example of some Cg code taken from a 
Phong shader, as can be seen two lines of Cg code equates to 
twenty-five lines of shader assembly. This illustrates the huge 
difference in development and maintenance time that can be 
made by switching to a HLSL. 
 
ALTERNATIVES 
 
There are alternatives to shader assembly other than 
programming directly in HLSL’s, for example ATI’s 
RenderMonkey. This is essentially and IDE specifically for 
shaders, it provides a method to edit a shader and view the 
results within the same workspace. 
 
RenderMonkey is designed to allow both artists and 
programmers to be able to create and tweak shaders relatively 
simply; Figure 5 shows an example screenshot taken from 
RenderMonkey. 
 

 
Fig. 5 RenderMonkey 

 
While there are alternatives now available Render-Monkey 
deserves special mention as it was the first IDE of its type and 
was ATI’s answer to Cg. Where Cg was still simply a shader 
language, RenderMonkey provided an IDE to encompass the 
whole shader development process and an interface onto 
currently existing API’s. 
 
RenderMonkey in its current incarnation supports both 
MSHLSL and GLSLang but doesn’t claim Cg compatibility, 
no surprises there as ATI’s and NVIDIA’s rivalry is very well 
publicised. As such ATI are rather concerned about the 
possibility of Cg becoming a standard, as this would put a lot 
of power in the hands of its rival particularly as the current Cg 
compiler has been shown by [ATI, 2004] to perform poorly in 
comparison to MSHLSL on ATI based systems; when exactly 
the same code on an NVIDIA system is much more reliable. 
Not to be outdone NVIDIA now has an answer to 

in4243
68



RenderMonkey in the form of the NVIDIA FX Composer 
which unfortunately is specific to MSHLSL development and 
perhaps surprisingly currently provides no support for Cg. See 
[NVIDIA, 2004b] for more details on the FX Composer 
 
HLSL’s ADVANTAGES AND DISADVANTAGES 
 
All the HLSL’s discussed like to claim a certain amount of 
platform independence. For example MS HLSL should have 
no problems running on either NVIDIA, ATI or anyone else’s 
hardware (within MS Windows) and Cg will happily compile 
up to run on Windows or Linux based systems due to its 
compatibility with OpenGL and DirectX. 
 
Surely all this so called ‘platform independence’ can only be a 
good thing? Shouldn’t it simply do what it’s claimed to and 
allow the same code to run on virtually any hardware you care 
to throw it and drastically reduce potential development times? 
 
Well in reality it’s not quite that simple; HLSL’s hide a lot of 
the complexities of the shaders. Pixel shaders in particular 
carry a lot of restrictions that are not inherently obvious while 
coding in a HLSL; restrictions that could easily be picked up 
on while working in shader assembly language. For example 
Cg’s loop statements allow the programmer to write statements 
which will be executed a constant number of times on the 
hardware. This can cause unforeseen results; as in the case of 
DirectX 8 Vertex Shaders (Vertex Shader 1.1) which don’t 
allow looping. What actually happens is that when the code is 
compiled the Cg compiler unrolls the loop so the shader simply 
contains the same set of instructions repeated however many 
times the loop specified [Penfold, 2002]. This means a loop 
which contains say 2 instructions, repeated 10 times in Cg 
suddenly becomes 20 instructions in the shader itself. In this 
manner it would be very easy to exceed the instruction limits 
(or worse) without the programmer realising at least until the 
code is compiled obviously wasting valuable development 
time. 
 
Debugging is another interesting topic of discussion within the 
world of HLSL’s at the moment. Microsoft provide debugging 
support for MSHLSL in the form of an add-on for Microsoft 
Visual Studio .NET. Both ATI’s RenderMonkey and 
NVIDIA’s FX Composer also provide forms of debug support 
for MSHLSL including for example a disassembler within 
RenderMonkey and a jump to error feature in FX Composer. 
Both also provide the advantage of being able to see the results 
of shader changes virtually instantly within the IDE unlike 
within Visual Studio. 
 
Microsoft seems to be leading the way with debugging with 
NVIDIA lagging far behind by providing no such tools for Cg. 
Not even NVIDIAs own FX Composer supports Cg, perhaps 
indicating a switch of focus away from Cg? 
 
But all that said if you’re careful HLSL’s and take advantage 
of the debugging tools available (where possible) they do make 
the whole process of developing shaders much easier and 
quicker. HLSL’s are the future of shader development and as 

intended have begun to replace shader assembly as 
development language of choice in a similar way to how C and 
other high-level languages replaced assembly language as the 
most common way to write computer programs. 
 
THE HARDWARE 
 
The current batch of hardware available on the consumer 
market has at the top of the range the NVIDIA GeForce 6800 
and the ATI Radeon X800, these two cards take decidedly 
different approaches in attempting to top the sales chart. 
 
NVIDIA with the 6800 have chosen to focus on providing 
more functionality and as such have opted to include Shader 
Model 3 Support on the 6800. ATI however have decided to 
stick with their roots and focus on image quality and pure 
power, at the expense of Shader Model 3 and DirectX 9c 
support. 
 
In short in the current market if you want you take advantage 
of Shader Model 3 you have to design for NVIDIA hardware. 
But at the very least you should provide Shader Model 2 
support within your application to allow operation on other 
manufacturers hardware. Unfortunately this will require either 
producing different versions of the application for each shader 
model you wish to support; or limiting your functionality to 
that of an older shader model (e.g. 1.1), thus enabling your 
application to operate on older hardware as well. 
 
Although some good news is that Shader models are by design 
backwards compatible with previous versions meaning pixel 
shader 1.1 code should happily run on the latest Shader Model 
3 hardware. Also the API’s try to make the task of working 
with several different shader versions within an application 
easier, this is done by allowing the programmer to check what 
is and is not supported within the hardware before deciding 
which shader would be most appropriate to run. 
 
THE FUTURE 
 
The greater than Moore’s law progression of graphics 
hardware looks likely to continue. Intel’s PCI Express 
architecture looks set to take off in a big way. In the case of 
graphics the 16x PCI Express slot provides twice the 
downstream bandwidth of the current standard AGP 8x (4Gb/s 
compared to AGP’s 2Gb/s) and allows simultaneous up and 
downstream communication at a total of 8Mb/s (4Mb/s in each 
direction). This should allow the likes of NVIDIA and ATI to 
continue to develop their cards at a high pace without fear of 
hitting a bottleneck there (although this may not necessarily 
make any difference to overall speed as currently all games are 
CPU limited anyway [ATI, 2004]). 
 
The software side of things also looks promising as Shader 
Model 3 continues to gather support; for example ATI having 
chosen not to provide Shader Model 3 support with the X800 
no doubt already have plans to support this in their next 
generation of cards and NVIDIA should continue to be strong 
supporters. 
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The next steps for the APIs will be DirectX 10 and OpenGL 
2.0, the latter of the two having surfaced in early September 
2004. DirectX 10 on the other hand could be years away as all 
the major card manufacturers seem in agreement that DirectX 
9 will be able to support all the foreseeable next generation 
graphics features. 
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ABSTRACT

This work addresses the  removal of aliasing issues in bump
and environment mapping via the use of multiple vectors in
MIP mapping using current 3D graphics acceleration
hardware.

Superficially the current generation of 3D graphics APIs are
incompatible with the use of multiple vectors in MIP maps.
Two approaches were undertaken in an attempt to try to
overcome this problem. The first was based around the
manipulation of texture coordinates to fix the multiple vector
paradigm. It proved unsuccessful due to accuracy limitations,
but future graphics hardware may well be able to employ it.

The second approach was based around the use of multi-
texturing and limited to the use of two simultaneous vectors.
Its implementation was a success, and resulted in a hardware
rendered image where there was a noticeable difference
between the single and double vector versions. Memory
requirements of bump mapping with multiple vectors have
been  analysed, and found not to be taxing.

We therefore conclude that though the use of multiple
vectors in MIP mapping on hardware accelerated platforms
is currently somewhat awkward, the technique definitely has
a future given the rapid and ongoing development of
hardware programmability.

INTRODUCTION

In the mid 1990’s the cutting edge of  graphics was defined
by  fixed pipeline hardware accelerated graphics, brought to
the mass market by 3DFX. But 3DFX are long gone, and we
have come full circle. We are told that we are witnessing
“the dawn of cinematic computing” by NVIDIA. As before
the rise of 3DFX, the emphasis is again on programmability,
rather than the use of a fixed 3D pipe-line. This
programmability is the crux of the new revolution, and
perhaps the phrase “the dawn of programmable graphics”
would have been more apt than “the dawn of cinematic
computing”.

On the back of the new wave of programmability, the
implementation of advanced custom lighting algorithms
becomes feasible.  Indeed, the web sites of ATI and NVIDIA
are littered with example applications ready to prove this fact
to the unbeliever.

In this paper an attempt is made to assess the degree to which
this rediscovered programmability has matured, by
implementing bump mapping with multiple vectors on
current 3D acceleration hardware.

THEORY
Bump mapping, like many other techniques in audio and
visual processing suffers from artefacts caused by aliasing
when implemented, and MIP mapping is the technique most
often applied to remove this problem.  Details of MIP
mapping theory are available from many sources, Watt (Watt
2000) provides a good background.

Texture Aliasing

In both texture mapping, and bump mapping, an array of
texture values (texels) is mapped to the pixels within a
polygon by way of a texture co-ordinate placed at each
vertex. In texture mapping these values are linearly related to
the actual shades that will be displayed.  Aliasing problems
arise due to the fact that the pixel size changes relative to the
texels as the viewpoint in the scene is altered. For distant
polygons there may be many texels within each pixel.

MIP mapping solves this problem by creating a series of
copies of the top level array of values, each a quarter of the
size of the last.  The values in each successive layer are
obtained by filtering the layer above.  When a polygon is
subsequently rendered, it will be possible to select a level
such that the texels in the filtered MIP map match the pixel
footprint.

Bump Mapping

In Bump mapping the texel values are actually normal
vectors that will be used to compute the shades via a
reflection calculation. Although the polygon is scan
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converted as if it was flat, the use of normal vectors derived
from a (fictional) undulating surface provides a convincing
shaded effect as if the surface was in fact rough. Thus if
Phong type specular reflection is being modelled with a
geometric factor (n.h)n the normal vector n will have been
derived from the texture map. (In this expression h is the so
called “halfway vector” – representing the average of the
incident and viewing directions whilst the index “n” is an
arbitrary number (usually an integer) controlling the
shininess of the surface.

An essential feature of this effect is that the transformation
from vectors to shades, whether via a Phong type calculation
or environment mapping, is non-linear. It follows that
filtering the vectors a priori, as in MIP mapping, will not
give the correct result since it will not commute with the
non-linear lighting calculation. There is no simple route
around this problem and in practice one has to be satisfied
with an approximate solution. Several authors have
attempted such an approach  for example: (Fournier 1992,
Schilling 1997, 2001, Cant and Langensiepen in
preparation). In most of these methods the usual MIP map
structure is retained with modifications. The two key
changes are:

1. A modification to the reflection calculation – determined
by the distribution of N vectors xi within the filtered
texel. This distribution may be parametrised by the
“spread” Q where:
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In the references mentioned above the spread is taken
into consideration by modifying the shading calculation.
In both (Fournier 1992 and Cant and Langensiepen, in
preparation) one approach is to modify the index “n” in
the specular reflection calculation quoted above.
Alternatively if MIP mapped environment mapping is
used then Q would determine the MIP map level. Please
see the references quoted for full technical details.

2. The use of multiple vectors to account for the situation
where the vectors within the filtered texel are distributed
such that the average vector m̂  is not representative of
any actual vector. In this case :
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making it inappropriate to use m̂ in the reflection
calculations. To overcome this the vectors need to be
placed in groups G0 G1.. GM-1 where M<<N (for efficent
rendering), the jth group contains Nj vectors and
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Where L represents whatever lighting calculation is is
use and the cj are weights determined by the number of
vectors in each group. Details of how these mechanisms
can be set up are to be found in (Fournier 1992 and Cant
and Langensiepen, in preparation).

The advent of Cg makes the modification to the calculation
comparatively straightforward – however the storage of the
extra vectors, and the extra information needed to control the
modified calculation is not easy to arrange within the current
architecture – as we shall see later.

In the remainder of the paper we will concentrate on the
problem of fitting these structures into the Cg architecture.
We will use the multiple vector sets that we have generated
in the course of our related research (Cant and Langensiepen
in preparation) and in particular the super bump map (.SBM)
file format used in that work. However the results here
would be almost equally applicable to other
implementations. In particular the methods used by Fournier
(Fournier 1992) impose similar requirements. The SBM file
format used in our software only system supports up to 2
vectors per texel at level 1 (level 0 being the original bump
map), 4 at level 2, 8 at level 3 and so on. In practice we
usually cap the number of vectors used as we have found that
there is little advantage in using large numbers of vectors
except for pathological bump maps. As reported below the
hardware supported system is more restrictive and we have
been limited to 2 vectors per texel so far.

IMPLEMENTATION
The platform chosen for development was an Intel® P4 with
an NVIDIA GeForce FX 5900 3D accelerator running the
Fedora Core 1 Linux operating system.  Shaders were
developed in NVIDIA's Cg (C for graphics) shader language
while the core of the program made use of SDL (simple
direct-media layer) and Open GL .

SDL and Open GL were chosen for their portability, a port to
Apple® OSX® or Microsoft® Windows® should require
minimal effort.  Cg was the only realistic choice for cross
platform shader development at the time of writing: that said,
the glslang (Open GL shading language) is an integral part of
the Open GL 1.5 standard and preliminary support was
beginning to appear at the consumer level, see (Kessenich et
al 2003) for more information.  The NVIDIA hardware used
was chosen since it is well supported on every major OS and
works effectively with the Cg toolkit.

Figure 1 shows the simplified C/C++ signature of the Open
GL MIP mapping interface with the important aspects of it
highlighted in bold. It will no doubt have been noticed that
this interface is provided for texture mapping, however, this
same mechanism is used for bump mapping and any other
situation where a shader requires a large volume of data to be
passed to the GPU.
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In the case of Direct X, the major competitor for Open GL,
the interface is similar, but less effective for the purposes of
highlighting the issue at hand.

void glTexImage2D( target, level,

internalFormat, width, height, border, format,

type, pixels )

Figure 1. C/C++ signature of the Open GL MIP mapping
interface

Hawkins (Hawkins et al 2002) makes the following comment
on this interface:

“When creating your MIP-map texture, you need to make
sure you keep all the different sizes of the texture in powers
of 2 from the largest size of the texture to a 1x1 texture map.
For example, if the largest texture map is 64x64, then you
also need to create sizes 32x32, 16x16, 8x8, 4x4, 2x2, and
1x1.”

It became immediately obvious from the interface signature
shown, and comments associated with it in the relevant texts,
that the interface was incompatible with the data that would
need to pass through it for the purposes of this project.

Whilst the normal MIP map data size decreases by a factor
of four at each level, (since each of the two dimensions is
halved) the MIP map with multiple vectors only reduces by a
factor  of two because of the larger number of vectors
present. The incompatibility is slight, but exists nevertheless,
and presented a major problem.

The provisional solution was as follows. The bump map,
with all its component MIP map levels, would be managed
as a whole. MIP map level selection and lookup would then
be done manually.  Consequently the Open GL mechanism
for the use of MIP mapping would have to be ignored, and
the required functionality provided by making  use of the
shader languages.

The SBM data had to be modified in accordance with the
limitations of the Open GL API. As the format and
internalFormat parameter of the glTexImage2D function
show (Figure 1), the data passed to the GPU must be
homogeneous, furthermore, this data must be normalised,
that is to say, in the range 0.0 to 1.0 inclusive. Additionally,
the glTexImage2D interface only allows for RGB, RGBA
and Luminance data to be passed to the GPU. The actual
meaning of these terms is irrelevant, for the purposes of this
project this simply meant that the only acceptable data would
be an array of single values, or a three or four component
vector. (Shreiner et al 2004) provides a complete list of the
values accepted by the glTexImage2D function. It was
decided that each bump map vector would be split into a
three component vector (x, y, z), leaving the power
component and the width component as separate entities.
The basic premise here was to group common data types,
signed byte, unsigned byte and float. By making use of Open
GL multi-texturing, the program would then be able to pass
four textures to the GPU, the fourth for the lookup table. It

was fortunate that only four were required, since even on a
modern graphics card, four is the limit for simultaneous
textures. It was also discovered, that by using NVIDIA
extensions, the requirement for textures with power of two
dimensions and for normalised texture data was removed.

The simple vertex and fragment shaders described by
Kilgard  (Kilgard 2003) were taken as a starting point since
they had already been proven to work. After some
investigation, it became clear that the vertex shader would
require only a small modification at this stage, and that most
of  the extra functionality would need to be added to the
fragment shader. The vertex shader had to be modified to
pass the world space vertex position to the fragment shader
as a texture coordinate. The world space vertex coordinate
would be needed in order to perform standard lighting
calculations with the normals in the bump map, see the book
by Lengyel (Lengyel 2002) for lighting theory. This value
had to be passed as a texture coordinate because that is how
Cg manages parameters that are to be interpolated across a
scan-line.

In the case of the fragment shader, the first requirement was
that it be modified to accept all four of the textures that
would be passed from the main program, making up the
complete SBM normal. Other values required for lighting
were passed directly to the fragment program from the main
application since they did not require modification at the
vertex stage of the pipe-line, these values included the
camera or view position, and the light position.

When this test code was executed, some very strange visual
results were produced. Some debugging was required in
order to discover what was amiss. At this stage, the immense
difficulty of debugging shader programs became apparent.
There was no way to debug Cg code in the manner C++ code
is debugged, it was not possible for example, to follow the
execution of the Cg code, or to watch the values in variables.
In shaders, it is not even possible to output values to the
terminal window, or to a file for analysis. The only way to
assess the value a variable contains was to write that value
out to the fragment as the RGB colour value. Debugging the
program in this manner was difficult and tedious. We hope
that future implementations of Cg will provide better facities
and we understand that this is already true for alternatives
such as Microsoft's HLSL.

Despite fixing some minor faults, the visual results were still
not as expected, and it became clear that something was
wrong on a fundamental level. In order to test this suspicion,
the Cg code that calculated the offsets into the data tables
was carefully evaluated.  It was strongly suspected that the
code as as run in the fragment shader was not sufficiently
accurate to produce the correct texture coordinates, although
of course, this was difficult to prove. The 'blocky' nature of
the resultant texture on the cube suggested that this might
have been the problem.

An easy solution to this problem was available if Open GL’s
MIP mapping facilities could be used but this would require
a different organisation of the SBM data. The new strategy
was to use multiple standard MIP mapped textures.
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The first texture would contain the first vector for all MIP
map levels. The second texture would contain the second
vector for all levels Since the top level has only one vector it
would be empty in this case. The third texture would then
contain the third vector for all levels – and its top two levels
would be empty. In principle this process can continue until
all the vectors in the super bump map format are included.
However this is not possible within Open GL since only four
textures are allowed. In fact each SBM vector and its
associated parameters (the cj and Q or equivalent) would
require two textures, limiting the number of vectors that
could be included to two.

Consequently we decided to temporarily abandon the full
SBM format since even the use of two vectors is a noticeable
improvement over standard bump mapping. This also limited
the system to Phong type lighting, because environment
mapping requires additional textures.

At this stage in the development, there was a requirement for
heavy reorganisation and reformatting of the vector data to
be sent to the GPU.

for i to number of MIP map levels
glTexImage2D(i, SBM[0][i][0])

for i to number of MIP map levels
glTexImage2D(i, SBM[1][i][0])

Figure 2 Pseudo code showing how SBM data was used
with the Open GL MIP mapping interface.

By setting the format parameter to GL_FLOAT in the call to
glTexImage2D, the data could be passed directly to the GPU
without Open GL making any effort to modify the values.
Making the call in this way appeared to be the only way to
pass the data without it being modified. This is the real
reason for a floating point type being used in the 3D STL
vector in the SBM class, obviously the input data had to
match the format parameter used in the glTexImage2D call.
In addition to this change, the call had to take account of the
fact that the Open GL MIP mapping facilities were to be
used.

Textures one and two were used for vector one, and textures
three and four were used for vector two, this meant that
columns one and two of Figure 5 were to be sent to the GPU.
Figure 2 shows this in pseudo code, the diagram shows only
the important aspects of the call, in an effort to illustrate how
well the arrangement of SBM data suited the Open GL API.

After considerable efforts to try to make the shader perform
MIPmapping, it was found that MIP mapping is already
enabled, and simply making a texture lookup on a texture
where MIP mapping has been used is sufficient. The fact that
this was not mentioned in the NVIDIA documentation
seemed astounding: the problem highlighted by this
regrettable waste of resources was  that it is hard when
dealing with Cg to know where exactly the boundary is

drawn between a programmer’s control, and the fixed
portions of the graphics pipe-line.

 RESULTS AND DISCUSSION

In terms of hardware, the memory requirements of the
additional vectors did not appear to be unacceptable. The use
of multiple vectors for bump maps amounts to an increase in
memory use of around 50% over standard Mip mapping.

 Figure 3 The 'secret text' super bump map displayed
with one vector

With respect to execution speed, the frames per second
reported was consistently above 100, reaching 300 at times.
So it would appear that the use of an extra vector was not
damaging to the application performance.  That said, the
application was not optimised, and was of course, built as
more proof of concept than production system. Nevertheless,
it is interesting to note that the frame rate is so high.

Figure 3 shows a screen-shot from the program. In this
illustration, one normal is used to light each fragment. Figure
4 shows the same scene - however in this illustration, two
normals have been used to perform the lighting calculation.
The light source was positioned so as to be at 135 degrees to
each edge connected to the lower left corner of the cube.
This bump map was produced specially to include the words
“secret text” in such a way as to ensure that both vectors are
required for it to be displayed..  Therefore, the text is only
visible when the the lighting is correct and both vectors are
enabled.  These screen-shots prove that the goals set were
met, in that the GPU was successfully programmed to use
MIP mapping with multiple vectors.  In Figures 5 and 6 the
full lighting effects (including specular highlights) can be
seen.
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Figure 4 The 'secret text' super bump map displayed
with two vectors

Figure 5 An image that shows the lighting effects in the
program

CONCLUSIONS AND FURTHER WORK

We have shown that the programmability of  high end
consumer graphics accelerators, combined with the Cg
language, has now reached the stage where it is possible to
implement an algorithm which has been developed
independently of the hardware. However there is
considerable awkwardness in doing this and our
implementation is of necessity quite restricted. We note that
at least some of the of the problems relate to features of the
hardware/software platform that could be changed without
incurring prohibitive cost. We hope that these results can
inform the future direction of hardware development to make
such implementation easier.

Even so the performance of the system is quite impressive,
indicating that the future of programmable graphics
acceleration is bright. We anticipate repeating this exercise
with future improved graphics cards to exploit the ever
improving capabilities of hardware accelerated graphics.

Figure 6 Alternative test image using 2 vectors
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ABSTRACT 
 
Random terrain generation is the procedural creation of a set 
of data that represents closely a believable landscape. 
Common techniques of achieving this include the use of 
fractals and noise. Such techniques usually require a large 
volume of memory, as the geometry of the terrain needs to be 
calculated and stored at run time. Given the limited memory 
available on mobile devices, such as mobile telephones, the 
storage of the data required to represent massive terrains can 
be difficult. In this paper, we propose a novel method of 
storing terrain data on devices with limited memory. This 
method involves placing pre-computed blocks of terrain, 
known as terrain tiles, together in a psuedo-random manner 
as governed by a noise function known as Perlin noise. This 
allows large amounts of terrain data to be represented while 
still giving the appearance of a randomly generated terrain. 
Traditionally, Perlin noise is used in the procedural 
generation of textures and the modeling of naturally 
occurring phenomena. Using Perlin noise, only a subset of 
the overall data generated by the function needs to be stored 
at any one time. The approach outlined in this paper 
associates a tile of terrain with each value generated by the 
Perlin Noise function, meaning that only a subsection of the 
total terrain is stored in memory at any one time. We show 
how this process can be executed in real time on a resource 
limited device known as the Game Boy Advance, and also 
illustrate a significant reduction in the memory requirements 
of terrain storage when compared with traditional methods. 
 
INTRODUCTION 
 
A random terrain is a group of procedurally calculated values 
that represents closely a believable landscape. They are 
utilised in all areas of computer science, especially computer 
graphics and games (Pickover 1995), where they allow for 
the creation of game content with minimal time overhead. 
Also, as terrain maps can be quite large, techniques of 
generating random terrain, such as fractals (Dudgeon and 
Gopalakrishnan 1996), and models of naturally occurring 
phenomena (Kelley et al. 1988), help to minimise fixed 
storage requirements. However, this means that such 
methods usually require a voluminous amount of Random 
Access Memory (RAM).  
 
With recent advances in processing power, computer games 
are becoming more popular on handheld devices (Rittern et 

al. 2003). However, there are still limitations to the amount 
of available RAM for such devices, so that the creation of 
randomly generated terrain for computer games on such 
devices can be problematic. 
 
In this paper, a novel method based on the use of terrain tiles 
and a pseudo random noise known as Perlin Noise is 
described (Perlin 1985; Rabinovich and Gotsman 1997) 
Traditionally, Perlin noise is used in the generation of 
procedural textures and the modeling of naturally occurring 
phenomena such as clouds and smoke (Ye and Lewis 1999; 
Holtkämper 2003) – see Figure 7. Here, we propose an 
approach that associates a tile of terrain with each Perlin 
noise value. A terrain tile describes a square block of terrain 
data. Using Perlin noise, only a subset of the overall data 
generated by the function needs to be stored at any one time. 
Therefore, large terrain maps can be represented in real time 
with a small memory footprint, as only the terrain tiles of 
interest to the user are stored at any given time. 
 
The proposed method is implemented on a limited device 
known as a Game Boy Advance (www.nintendo.com), and 
results are presented for the implementation We show that 
significant saving can be made in terms of memory space 
required when compared to traditional methods of storing 
and representing terrain. As this method makes no use of 
floating point arithmetic it is very efficient, making it suitable 
for use on a wide variety of devices where no dedicated 
floating-point unit is available. It would be particularly 
suitable for mobile telephones, as it allows for the generation 
of massive terrain maps with a minimal over the air 
download. This is of significant importance as large 
downloads have been identified as a limiting factor in the 
next generation of three-dimensional games on mobile 
telephones (EDGE Magazine 2004). 
 
The rest of the paper is laid out as follows. The next section 
introduces Perlin Noise and outlines the suitability of the 
Game Boy Advance as a testbed. The Implementation 
section details the realisation of the proposed method, 
followed by a selection of performance values in the Results 
section. Finally, the paper concludes with suggestions for 
future work. 
 
BACKGROUND 
 
Perlin Noise 
 
Perlin noise is one of the more important noise functions. 
Created by Ken Perlin(Perlin 1985), this noise has the special 
property of appearing random to the perceiver, yet remaining 
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entirely controllable. It works by defining a number of key 
points at set distances apart, and defining the values of the 
intermediate points procedurally using interpolation.  Any 
subsection of the data created by the Perlin noise function 
can be reconstructed, without the need to store and generate 
the entire data set. In this sense, Perlin noise can be 
considered to be quasi-random noise.  Further detail 
regarding an implementation of Perlin Noise is given in the 
Implementation section. 
 
Game Boy Advance 
 
Released in 2001, the Game Boy Advance (GBA) is the 
successor to the multi-million selling Game Boy and Game 
Boy Color. The most important specifications of the Game 
Boy Advance are detailed in Table 1.  

 
 
From Table 1, it can be seen that the GBA is very limited in 
terms of processing power and available Random Access 
Memory (RAM). Coupled with the ease of programming for 
the system, this makes the GBA a perfect platform on which 
to test our implementation. 
 
In the next section, the implementation details of the 
proposed method are described, and example screenshots of 
the application in action on the GBA are given. 
 
IMPLEMENTATION  
 
In this section, the method by which massive terrains can be 
constructed with a minimal memory footprint is discussed. 
The standard Perlin Noise implementation is explained, 
followed by details of our novel use of the algorithm. 
 
Perlin Noise Map of Terrain Tiles 
 
The basis of the technique described here is what is known as 
a terrain tile. A tile describes a square block of terrain. 
Terrain tiles are used extensively in many popular game 
engines such as Torque (Marshall et al. 2004). Each tile is 
typically defined by two groups of data  – a height map, 
which details the geometry of the terrain, and a texture map, 
which details the colours and shading of the terrain 
(Rabinovich and Gotsman 1997). Figure 1 (a) and (b) details 
examples of both category of maps. Both images in Figure 1 
were created using the Wilbur random terrain generation 
application (Slayton 2001). 
 
 
 
 
 
 
 
 

By placing these tiles together in a random order, a large area 
of terrain can be defined – see Figure 2(a). However, as the 
tile size decreases, the storage cost of the order of the tiles 
can become expensive, and can eventually begin to approach 
that of the traditional method of storing each height of terrain 
in an array – see Figure 2 (b) and (c). This can make such an 
approach unsuitable for a limited memory device. 
 
 
 
 
 
 
 
 
 
 
 
 
 
This problem can be alleviated using Perlin noise to govern 
the placement of tiles. As mentioned in the previous section, 
any subsection of the data generated by a Perlin noise 
function can be recreated given the same input values, 
without the need to store the complete data set generated by 
the function. Therefore, only the section of data of interest to 
the viewer needs to be calculated and stored at any one time, 
and it is guaranteed that other subsections of the data will be 
generated consistently with the same values.  
 
The main tenet of the approach outlined in this paper is that 
by defining a number of tiles with small dimensions, and 
associating each value generated by the Perlin noise function 
with a terrain tile, then only the small portion of a massive 
terrain map needs to generated and stored at any one time, 
thus providing dramatic saving in terms of computation time 
and memory - see Figure 3. In Figure 3, each tile is 
represented by a different shade of gray. As the user moves 
about the large terrain map, the subset of terrain tile data is 
repopulated to represent the users immediate environment. 
 
 
 
 
 
 
 
 
 
 
Perlin Noise Implementation 
 
The first aspect of the approach explained in this paper is the 
manner by which the Perlin noise map of terrain values is 
generated. The primary step of this process is the definition 
of a grid that defines the overall layout of the map.  Each 
value in this grid is known as a terrain structure value. These 
terrain structure values are simply random numbers, and are 
not related to any particular terrain tile. Rather, they are used 
in conjunction with adjacent terrain structure values in order 
to define intermediate terrain tile values procedurally. Each 

Processor 16Mhz 
Memory 384 kilobytes 
Screen Resolution 240 * 160 pixels 
Available Colours 32,768  

Figure 2 (a) Four 128*128 tiles (b) Eight 64 *64 tiles. (c) Sixty four 
32 * 32 tiles.  A decrease in tile size increases detail, but leads to an 
increase in memory requirements. 

Figure 1 (a) Texture map (b) Grayscale Height Map. 
 

 (a)   (b)  

Table 1  Important specifications of the GBA 

Figure 3 Only a small subset of all the tile values is stored at any one 
time using a Perlin noise function. This is repopulated as the user 
moves about the terrain. 
 

Full map of terrain 
values generated 
using Perlin Noise 

Only a subset of all the 
terrain values is stored 
at any one time. 

 (a)  (b)  (c) 

Terrain tiles 
are placed in 
a random 
order 

Terrain tiles 
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of these terrain tile values is a reference to a particular terrain 
tile. Although this grid of terrain structure values will have 
tiny dimensions, it can be thought of as being virtually large, 
as each element represents a point along a larger map – see 
Figure 4. So, for example, a 4 * 4 array, with a virtual 
distance of 1024 pixels between elements of the array, 
represents a 4096 * 4096 pixel terrain map.     
 
 
 
 
 
 
 
 
 
 
Next, the terrain structure values are used to procedurally 
define the intermediate terrain tile references that describe 
the terrain immediately surrounding the user. 
 
Firstly, the area within the grid of terrain structure values that 
currently houses the user is located, and the points that define 
the boundaries of that area are recorded. So, taking the 
example from above, if the player was at point (1056,3042) 
on a 4*4 map with a virtual distance of 1024 pixels between 
each element, then the player would be located between the 
terrain structure elements  (1,2), (1,3), (2,2) and (2,3), as 
detailed in Figure 5 below. 
 
 
 
 
 
 
 
 
 
By linearly interpolating between the two top and the two 
bottom bounding values using the player’s horizontal 
position, and interpolating between the results of these 
operations using the player’s vertical position, a value which 
represents the tile in which the user resides can be defined – 
see Figure 6.  
 
 
 
 
 
 
 
 
 
 
 
 
Map of Terrain Tiles 
 
Traditionally, the value generated by the algorithm described 
above would be used in conjunction with other generated 
values in order to represent a texture or naturally occurring 
phenomena procedurally, as in Figure 7. 

 
 
 
 
 
 
 
However, for this implementation, each value is actually a 
reference to a particular terrain tile. As there will be only a 
limited number of terrain tiles, and the generated value may 
exceed the total number of terrain tiles, the result may have 
to be scaled. This can be achieved using a simple modulus 
operation. 
 
This process is repeated using the coordinates surrounding 
the player. The number of repetitions required will vary, 
depending on the size of each individual tile and the overall 
map size required. This results in a temporary array of data 
containing references to the terrain tiles that immediately 
surround the user. An example of such an array is given in 
Figure 8. For clarity, each separate map is represented by a 
different shade of gray. Each colour represents a map similar 
to that in Figure 1(a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, as can be seen in Figure 8, through the use of this 
method alone, a series of distinct patterns can be observed in 
the placement of terrain tiles. Such patterns are exactly what 
Perlin noise is celebrated for. However, in the technique 
under discussion, more randomness is desired to generate 
truly random landscapes. This is achieved via the use of 
another array of random values, which is populated along 
with the terrain structure grid. The value acquired by the 
interpolation process is used to index into this random array, 
allowing for another layer of randomness, with little 
computation overhead. An example of the temporary array of 
terrain tile values produced using this method is given in 
Figure 9. Again, for clarity, each separate map is represented 
by a different shade of gray. 
 
 
 
 
 
 
 

Virtual distance 
between terrain 
structure values 

Bounding 
Values 

Random Terrain Structure 
Value 

Bounding Values 

Player Position 

Virtual distance 
between grid 
values 

0  
 

Terrain structure 
values 

Figure 4 A grid of terrain structure values defines the overall layout 
of the terrain. Intermediate values are calculated procedurally. 

Figure 9 No discernable patterns appear when a random number 
look-up table is utilised 

Position of player 
within the terrain 

Terrain tiles 
surrounding the 
player. No 
patterns occur 
with usage of 
random array. 

Random Terrain Structure 
Value 
Bounding Values 

Player Position 

Terrain tiles 
surrounding the 
player. Distinct 
patterns can 
emerge. 

Position of player 
within the terrain 

Figure 8 Only the terrain tiles that immediately surround the player 
are calculated. The player is located at the centre of these tiles. 
 

Interpolation  
Point 

Step 1: Interpolate 
between top and 
bottom values. 
Step 2: Interpolate 
between results of 
Step 1 above. 

Figure 6 Resolving the terrain tile value based on the players 
position and the calculated bounding values. 

Player Position 

Full map of  
terrain values 

Intermediate terrain tile 
values are calculated 
procedurally 

Figure 5 Location of a player’s position within the terrain structure 
grid. 
 

 1  

2  

3 

Figure 7 An example of a traditional output from the Perlin noise 
function 

 1  2  3 
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This temporary array represents only a small subsection of 
the overall terrain data. However, this fact is not noticeable 
to the user, as the temporary array of terrain tile references is 
repopulated when the player reaches a certain distance from 
the perimeter of the map.   This array is then used as input to 
the rendering process. 
 
Rendering Process 
 
The rendering process uses a method known as ray-casting 
and voxels in order to draw the relevant terrain tiles to the 
screen in a timely fashion (Kreeger et al. 1998; Steinbach et 
al. 2000). Although this method has its limitations, such as 
only two planes of movement, it allows for a pseudo three-
dimensional effect on resource-limited hardware such the 
GBA, at a stable frame-rate. Figure 10 details screenshots of 
the rendering application in action on the GBA. 
Superimposed on the images is a grid defining the 
boundaries of each terrain tile. Figure 10 also reinforces the 
relationship between terrain tiles, as seen in Figure 1 (a) and 
(b), and the temporary array of tile references as seen in 
Figure 8 and 9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESULTS 
 
Computation Time 
 
As a preliminary exercise, the computation time required to 
calculate the temporary array of terrain tiles surrounding the 
player was recorded. This is achieved by using an in-built 
timer on the GBA that is incremented on every clock tick. A 
running average of the amount of time in milliseconds taken 
to populate the tile map is noted. In each case, the tile map 
required was 1024 * 1024 pixels. The tester navigated the 
environment for 60 seconds, and at the end of this time, the 
average computation time was recorded. The results of this 
experiment are presented in Table 2.  
 
As can be seen from Table 2, the computation time required 
is minimal, and can be calculated in real time on the GBA. 
As no floating-point arithmetic is used in the calculation of 
the terrain tile values, this process is suitable for a wide range 
of devices where no hardware support for floating point 
values is available. To further demonstrate the efficiency of 
this approach, the computation time required for the creation 
of a completely new random map was also investigated. In 
each case, random maps were generated for 60 seconds, and 
a running average of the computation time was recorded 

using the in-built GBA timers. As this process simply 
involves the regeneration of the terrain structure grid, the 
computation time required is minimal, as detailed in Table 3. 
 

Tile Size Tiles required Time 
128 * 128 pixels 8 * 8 tiles <1 ms 

64 * 64 pixels 16 * 16 tiles 10 ms 
32 * 32 pixels 32 * 32 tiles 67 ms 
16 * 16 pixels 64 * 64 tiles 165 ms 

 
 
 

Terrain Structure grid dimension Time 
4 * 4 grid elements 1. 25µs 

8 * 8 grid elements 3.5µs 

12 * 12 grid elements 6.625 µs 
16 * 16 grid elements 16.5µs 

 
 
 
Memory Usage 
 
The most critical aspect of implementing the proposed 
technique in mobile devices is how it exploits the available 
memory.  We therefore consider memory usage to be the 
most important metric by which to assess our proposed 
approach. This will be done by performing a comparative 
analysis with the traditional technique of storing a single 
large terrain geometry map and texture map. 
 
In Table 4 the memory usage of a traditional terrain 
geometry map and texture map is analysed. Every element of 
each map is assumed to be a 16 bit unsigned integer. 
 

  
 
As can be seen from Table 4, the storage of a single 
randomly generated map utilises a large volume of memory 
resources. The generation of a small 256 * 256 pixel map 
requires approximately 66% of the entire 384 KB of RAM 
on a GBA. As the map dimensions double, the memory 
requirements quadruple.  
 
Next, the storage cost of the approach detailed in this paper 
was analysed – see Table 5. Results are given for the cost of 
storing one hundred terrain tiles both in fixed storage and in 
RAM. Each tile consists of a height and texture map, and 
every element of a map is an unsigned 16-bit integer.  The 
RAM columns display the cost of storing the temporary array 
of terrain tile references that is procedurally generated. The 
dimensions of this array vary depending on the individual 
terrain tile size. If, for example, a temporary map of 
dimensions 1024 * 1024 pixels is required using terrain tiles 
of dimensions 8 * 8 pixels, then a 128 * 128 temporary 
terrain tile reference array is required.   

Individual Map Size RAM 
256 * 256 pixels 256 kb 
512 * 512 pixels 1024 kb 

1024 * 1024 pixels 4096 kb 
2048 * 2048 pixels 16384 kb 

Figure 10 (a) The temporary array of tile values rendered to the screen. 
Each tile is represented by a separate colour. (b) The associated height 
and colour maps rendered to the screen. 

Table 2 The computation time required for the generation of a 
1024 * 1024 pixel map using terrain tiles of varying size. 

Each value of the temporary array is a reference to a particular terrain tile 

 (a)  (b) 

Table 3 The computation time required for the generation of a new 
random map is minimal as the terrain structure grid size is insignificant. 

Table 4 Values representing cost of storing full maps in memory.  
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 Table 5 shows that the amount of RAM employed by the 
proposed approach is minimal.  If the individual map 
dimensions are increased in size by 100%, the amount of 
RAM required reduces by 75% whereas the fixed storage 
requirements increase by 400%.  However, the cost of 
storing the terrain tiles is nominal at smaller sizes, thus 
making them suitable for download over low bandwidth 
connections, such as on a mobile phone network. 
 
Regardless of the dimensions of the overall terrain map 
required, the figures presented in the RAM columns of Table 
5 remain constant. This is due to the fact that, as discussed in 
the Implementation section, only a subset of the overall 
terrain map is ever stored, regardless of variation in the 
dimensions of the overall terrain map. Therefore, any size 
map could be potentially represented on a resource-limited 
device such as the Game Boy Advance, with no implications 
for the overall memory requirements. 
 
CONCLUSIONS 
 
In this paper we have described a method of representing the 
large volumes of data required to store a random terrain on a 
device with a limited amount of Random Access Memory 
known as the Game Boy Advance. By using terrain tiles and 
Perlin Noise, we have shown how this technique is 
particularly suitable to devices with limited processing 
power, as it makes no use of floating point arithmetic. 
Therefore, the terrain tile positions can be calculated easily at 
run time. In addition, a totally new random terrain can be 
generated rapidly, as only the small terrain structure grid 
needs to be repopulated. 
 
It has also been shown that a massive terrain can be 
represented using a minimal amount of both fixed and 
dynamic memory. The cost required to store the necessary 
terrain tiles can be small, thus making this approach suitable 
for devices with limited storage capacity, and slow download 
speeds such as mobile telephones. As only a portion of the 
overall terrain is stored at any one time, the volume of 
memory used is fixed, regardless of variation in the 
dimensions of the overall terrain. 
 
Future work will involve investigating methods of seamless 
blending between adjacent terrain tiles, such as inter-tile 
interpolation, in order to provide a more uniform visual 
experience to the user. 
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Terrain Tile 
Dimensions 

Cost to store 
100 Terrain Tiles 

RAM  
256 * 256 map 

RAM 
 512 * 512 map 

RAM 
 1024 * 1024 map 

RAM 
2048 * 2048 map 

8 * 8 pixels 25 kb 2 kb 8 kb 32 kb 128 kb 
16 * 16 pixels 100 kb 0.5 kb 2 kb 8 kb 32 kb 
32 * 32 pixels 400 kb 0.125 kb 0.5 kb 2 kb 8 kb 
64 * 64 pixels 1600 kb 0.03125 kb 0.125 kb 0.5 kb 2 kb 

128 * 128 pixels 6400 kb 0.0078125 kb 0.03125 kb 0.125 kb 0.5 kb 

Table 5 Values representing memory cost of storing the terrain tiles and the cost of storing temporary tile value array in Random Access Memory 
(RAM). 
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ABSTRACT 
 
Due to their scalability, numerical techniques often form part 
of an inverse kinematics (IK) solver.  However, because of 
their iterative nature, such methods can be slow.  So far 
research into the field of kinematics has failed to find a 
general non-numerical solution to the problem.  Many 
researchers have proposed hybrid techniques yet these still 
rely on a numerical aspect.  It is therefore important to find 
ways of using numerical techniques as efficiently as possible.  
In this paper we take a look at the Jacobian-based IK solver 
and techniques that allow this method to be used as an 
efficient real-time IK solver.  We demonstrate how the 
half-Jacobian can be used effectively where normally the full 
Jacobian would be considered the principal technique.  The 
result of this is much reduced computational costs when 
applying IK to articulated characters. 
 
 
INTRODUCTION 
 
The problem domain that is tackled by inverse kinematics 
solvers was first formulated in the mechanical engineering 
literature (Craig 1955) and more specifically research into the 
field of robotics.  We are interested in its application in 
computer character animation.  The issue that inverse 
kinematics attempts to resolve is to find a set of joint 
configurations of an articulated structure based upon a 
desirable end-effector location.  This is expressed 
mathematically in Equation 1.1 where θ represents the set of 
orientation values for a structure and 

�
 is the global position 

of a given limb in the hierarchy. 
 

 )(1 Xf −=θ     (1.1) 
 
There have been many varied techniques used as an inverse 
kinematics solver.  The fastest techniques, analytical 
algorithms, tend to suffer from poor scalability, whereas the 
scalable techniques, such as numerical iteration, suffer from 
poor solver times.  Many techniques that have been proposed 
to offer speed advantages utilise numerical solvers therefore it 
is important to consider ways that such techniques can be 
used efficiently.  A review of many of the present IK 
techniques is given in the following section. 
 
We then present an analytical look at the iterative Jacobian 
approach to inverse kinematics and discuss techniques that 
allow the method to used effectively.  Following this we 
present a real-time application that drives a walking character 

around rough terrain to demonstrate the effectiveness of our 
Jacobian interpretation. 
 
 
RELATED WORK 
 
We can identify 4 different categories of IK solver: 
geometric/analytical algorithms, cyclic co-ordinate descent 
(CCD) techniques, differential techniques, and hybrid 
methods (Tolani et al. 2000) which mix together various 
aspects of the first three techniques. 
 
The geometric/analytical algorithms (Chin 1996, Kwang-Jin 
and Hyeong-Seok 2000, Paul and Shimano 1988) tend to be 
very quick because they reduce the IK problem to a 
mathematical equation that need only be evaluated in a single 
step to produce a result.  However, for large chains of links 
the task of reducing the problem to a single-step mathematical 
equation is impractical.  Therefore geometric/analytical 
techniques tend to be less useful in the field of character 
animation. 
 
IK solvers that are based on CCD (Eberly 2001, Wang and 
Chen 1991, Welman 1993) use an iterative approach that 
takes multiple steps towards a solution.  The steps that the 
solver takes are formed heuristically, therefore this step can 
be performed relatively quickly.  An example of a possible 
heuristic would be to minimise the angle between pairs of 
vectors created when projecting lines through the current 
node and end-effector and current node and desired location.  
However, because the iterative step is heuristically driven, 
accuracy is normally the price paid for speed.  Another issue 
with this technique is that only one joint angle is updated at a 
time, which has the unrealistic result of earlier joints moving 
much more than later limbs in the IK chain. 
 
As with the CCD technique, differential-based techniques 
(Watt and Watt 1992, Zhao and Badler 1994) utilise an 
iterative approach that requires multiple steps to find a 
solution.  The steps that the algorithm makes are determined 
via the use of the system Jacobian that relates small changes 
in joint configurations to positional offsets.  Since all the joint 
angles are updated in a single step, the movements are 
dissipated over the whole chain which results in a more 
realistic looking posture. 
 
By their nature, iterative-based techniques are generally 
slower at producing a desirable result when compared to their 
analytical counterparts.  However the problem with the 
analytical methods is their lack of scalability.  Fedor (Fedor 
2003) explores this trade-off between speed, accuracy and 
scalability in an IK solver.  One of the results from this work 
demonstrates that differential-based numerical solutions, 
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although slower than both CCD and analytical techniques, 
provide better results for larger chains.  This highlights the 
importance of refining numerical techniques such that we 
maintain accuracy and scalability but drive solution time 
down. 
 
One such solution proposed by Tang et al. (Tang et al. 1999) 
makes use of the SHAKE algorithm (Ryckaert et al. 1997) to 
achieve a fast iterative-based IK solver.  This technique treats 
a hierarchical structure as point masses that are related by 
system constraints.  This is in contrast to the Jacobian-based 
technique that encapsulates the articulated information and 
thereby provides us the cohesion between links for free. 
 
In order to achieve a desired end-effector location, the mass 
points of the SHAKE system are adjusted per cycle until a 
global goal has been reached.  This includes meeting a 
threshold of acceptable error on the constraints.  However 
because of the lack of node dependency of the algorithm, 
normally the points will lose their distance relationships 
between each other.  To counter this issue, correcting forces 
are iteratively applied to each point to reassert cohesion 
between links therefore the accuracy of parent-child distances 
directly effects solver time.  Without a reasonable level of 
accuracy at this point, the appearance of rigid links moving 
about each other would occur.  This is an issue that the 
Jacobian-based techniques are not affected by. 
 
The time complexity of the SHAKE algorithm is suggested 
by Tang et a.l to be O(n2) with respect to the number of 
constraints.  However since each link in a hierarchical chain 
requires a constraint to impose cohesion, the time to solve a 
system is also minimally O(n2) with respect to the number of 
links in the chain.  The inclusion of additional system 
constraints such as joint angle limits has a further detrimental 
effect on solution time therefore making the algorithm less 
applicable to real-time applications as the number of links 
increases.   
 
Another real-time IK technique proposed by Shin et al. 
(Shin et al. 2001) that is used for computer puppetry makes 
use of a hybrid solution.  This technique attempts to use 
analytical solutions where possible, except in cases where a 
large amount of body posturing is required, where a 
numerical implementation is invoked.  The numerical solver 
only acts upon the IK chain defined between the root and the 
upper body while the analytical solver is used for the limbs of 
the character. 
 
The hybrid use of IK solvers used by Shin et al demonstrates 
a good method for performing real-time IK.  However the 
analytical aspect assumes some knowledge about the 
character’s structure (Lee and Shin 1999, Tolani et al. 1996).  
This means that the overall IK technique is not a general one 
that can be applied to arbitrary IK chains.  The other potential 
problem with the hybrid technique is similar to the CCD 
techniques in that not all joint angles are updated 
simultaneously which means unrealistic and unproportional 
posture configurations could result. 
 
From the research done in the field of real-time IK, it is 
apparent that analytical solutions by themselves are not 
scalable enough to meet the demands of modern 

computer-based IK problems.  Therefore numerical 
techniques are used as either a substitute or in serial with an 
analytical solution, which serves to highlight the importance 
of having fast numerical solutions.  Furthermore these 
solutions should operate on the whole hierarchical structure 
equally to avoid unrealistic postures.  These are the issues we 
address with our Jacobian-based approach for real-time IK. 
 
 
OUR INVERSE KINEMATICS SOLUTION 
 
Jacobian Inverse Kinematics 
 
Our implementation of inverse kinematics is based upon the 
well-established Jacobian technique.  The objective of this 
technique is to incrementally change joint orientations from a 
stable starting position towards a configuration state that will 
result in the required end-effector being located at the desired 
position in absolute space.  The amount of incremental 
change on each iteration is defined by the relationship 
between the partial derivatives of the joint angles, θ, and the 
difference between the current location of the end effector, X, 
and the desired position, Xd.  The link between these two sets 
of parameters leads to the system Jacobian, J.  This is a 
matrix that has dimensionality (m x n) where m is the spatial 
dimensional of X and n is the size of the joint orientation set, 
θ.  The Jacobian is derived from the equation for forward 
kinematics, Equation 1.2, as follows: 
 

)(θfX =     (1.2) 
 
 Taking partial derivatives of Equation 1.2: 
 
 θθ dJdX )(=     (1.3) 
where 

 
i

j
ij x

f
J

∂
∂

=     (1.4) 

 
Rewriting Equation 1.3 in a form similar to inverse 
kinematics (Equation 1.1) results in Equation 1.5.  This form 
of the problem transforms the under-defined system into a 
linear one that can be solved using iterative steps. 
 

dXJd 1−=θ     (1.5) 
 
The problem now is that Equation 1.5 requires the inversion 
of the Jacobian matrix.  However because of the under-
defined problem that the inverse kinematics technique suffers 
from, the Jacobian is very rarely square.  Therefore, in our 
implementation we have used the right-hand generalised 
pseudo-inverse to overcome the non-square matrix problem, 
as given in equation 1.6. 
 
Generating the pseudo-inverse of the Jacobian in this way can 
lead to inaccuracies in the resulting inverse that need to be 
reduced.  Any inaccuracies of the inverse Jacobian can be 
detected by multiplying it with the original Jacobian then 
subtracting the result from the identity matrix.  A magnitude 
error can be determined by taking the second norm of the 
resulting matrix multiplied by dX, as outlined in Equation 1.7.  
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If the error proves too big then dX can be decreased until the 
error falls within an acceptable limit. 
 
An overview of the algorithm we used to implement an 
iterative inverse kinematics solution is as follows: 
 
1) Calculate the difference between the goal position and 

the actual position of the end-effector: 

XXdX g −=  

2) Calculate the Jacobian matrix using the current joint 
angles: (using Equation 1.4) 

3) Calculate the pseudo-inverse of the Jacobian: 
11 )( −− = TT JJJJ    (1.6) 

4) Determine the error of the pseudo-inverse 

dXJJIerror )( 1−−=   (1.7) 

5) If error > e then  
2/dXdX =  

restart at step 4 
6) Calculate the updated values for the joint orientations 

and use these as the new current values: 

dXJ 1−+= θθ  
7) Using forward kinematics determine whether the new 

joint orientations position the end-effector close enough 
to the desired absolute location.  If the solution is 
adequate then terminate the algorithm otherwise go back 
to step 1. 

 
The computational demand of the algorithm is relatively high 
over a number of iterations, so well-defined character 
hierarchies are advantageous.  This means that each node in 
the articulation is defined by the minimum number of degrees 
of freedom (DOF) required thereby making θ as small as 
possible.  For example, pivot joints such as an elbow would 
only be modelled using a single DOF whereas a ball and 
socket joint like the shoulder would need 3 Euler DOFs to 
represent the range of possible movements. 
 
The use of well-defined hierarchies further helps to prevent 
the inverse kinematics solver from producing 
unnatural-looking postures.  However this still does not cover 
all of the potential unnatural poses the solver can return.  In 
order to restrict the IK solver to the orientation space of only 
possible character configurations, joint orientation restrictions 
can be enforced within the scope of the existing algorithm.  
The simplest way of incorporating such constraints is to crop 
the joint angles.  This requires Step 6 of the algorithm to be 
modified in the following way: 
 
6) Calculate the updated values for the joint orientations 

and use these as the new current values: 

��
��
�

+
=

− dXJ

upperbound

lowerbound

1θ
θ     

otherwise

upperbounddXJif

lowerbounddXJif

>+
<+

−

−

1

1

θ
θ

 

 
The time to complete the IK algorithm for a given 
end-effector is an unknown quantity due to an arbitrary 
number of iterations required.  However the time to complete 
a single iteration is constant with respect to the 
dimensionality of X and θ which is unchanged under a 

complete execution of the algorithm.  Therefore by placing an 
upper limit on the number of iterations we can set a maximum 
time boundary for the algorithm to return in.  If the solver 
reaches the limit then the algorithm returns the closest result it 
has seen.   
 
In 3-dimensional space, the dimensionality of X in a 
Jacobian-based inverse kinematics solver is generally either 3 
or 6.  The 6-dimensional X vector is normally used as it 
contains both positional and orientation information whereas 
a 3-dimensional vector only contains positional information 
for an end-effector. 
 
From the inverse kinematics algorithm outlined above, it is 
clear that the 3-dimensional X vector is quicker over its 
counterpart and should always be used when orientation is not 
required.  However there are times that orientation is required 
but it is still possible to use the 3-dimensional vector which is 
demonstrated in our application of the algorithm present later. 
 
To see how much of a cost difference there is between the 
two sizes of X vector, the corresponding complexity analysis 
of them is illustrated in the following section. 
 
 
Complexity Analysis Of The X Vector 
 
We need a technique to perform the inverse of the square 
matrix JJT.  For the 3-dimensional X vector, which uses a 
(3 x 3) matrix we use an analytical solution whereas for the 
6-dimensional X vector, which uses a (6 x 6) matrix, we use 
LU Decomposition. 
 
LU Decomposition and Analytical Inversion 
LU decomposition can be used to determine the inverse of a 
square matrix by using the matrix identity, AA-1 = I, where I 
is an identity matrix (and in this case it has dimensionality 
(6 x 6)).  The application of LU decomposition to this 
equation requires matrix A to be split into 2 further matrices 
that have the form of lower and upper matrices as illustrated 
in Equation 1.8. 
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LUA  

(1.8) 
 
The decomposition of A into the two matrices allows the 
original matrix identity to be rewritten into the form of 
Equation 1.9, which can be solved using forward and 
backward substitution. 
 

ILUA =−1   => IUAL =− )( 1  

=> ILY =    (1.9a) 

YUA =∧ −1   (1.9b) 
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Our algorithm for performing a (6 x 6) LU Decomposition 
inverse gives a complexity of 619 flops (Meredith and 
Maddock 2004). 
 
In comparison, the analytical inversion of a (3 x 3) matrix is 
given in Equation 1.10.  This equation can be directly 
encoded.  The complexity of calculation is 51 flops (Meredith 
and Maddock 2004): 36 multiplications, 1 division and 14 
additions & subtractions. 
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      (1.10) 
 
The decision to use an analytical solver for the smaller matrix 
and LU decomposition for the larger one is demonstrated in 
Figure 1.1.  The results given in Figure 1.1 were obtained 
using a matrix with all elements non-zero so the analytical 
technique was unable to make use of zeros to cut off the 
co-factor expansions.  This is a valid assumption because it 
would be most unlikely that the (6 x 6) matrix that needs to be 
inverted in the pseudo-inverse would actually contain any 
zeros. 
 
Figure 1.1 shows that the analytical approach to solving 
matrix inversion is only better for matrices that have 
dimensionality equal to or less than 3.  After this size, the 
number of flops required to solve an analytical inverse 
increases in a cubic fashion with respect to dimensionality 
whereas the LU technique increases at the lower squared rate.  
This analysis justifies the use of an analytical solution for the 
(3 x 3) matrix while using LU decomposition for the 
inversion of the larger (6 x 6) matrix. 

Calculating The Jacobian 
 
If the Jacobian definition of Equation 1.4 is divided by a 
differential time element, the resulting equivalence provides a 
mapping between angular velocities in state space, θ, and 
linear velocities in Cartesian space, X.  This result is 
illustrated in equation 1.11.  
 

θθ �� )(JX =     (1.11) 
 

In the case of a 6-dimensional X vector, X� consists of linear 
velocity, V, and angular velocity, Ω, components, whereas the 
3-dimensional X vector only includes the linear velocity.  
Both the linear velocity and angular velocity are with respect 
to a global frame of reference as too are the partial derivatives 
of the Jacobian.  The Jacobian linking the linear and angular 
velocity of the end-effector, with the intermediary local 
angular velocities, is given in equation 1.12, where there are i 
DOFs in the IK chain. 
 

�
�
�
�
�

�

	












�

�

�
�

	


�

�

=�
�

	


�

�

Ω

i

i

i

aaa

bbbV

θ

θ
θ



�





2

1

21

21

,...,,

,...,,
  (1.12) 

 
In Equation 1.12, the a components are of the local axes for a 
given link transformed into the global frame of reference.  
The b elements of the Jacobian are the cross products of the 
corresponding a axis with the spatial difference between the 
global origin of the current limb and the absolute location of 
the end of the articulation, Pe (Equation 1.14).  The DOFs 
within the state space are normally ordered such that limbs 
from the root are considered first followed by their children, 
following this pattern to the end of the chain.  Using this 
pattern, the orientation values of the required axes for each 
limb can be obtained from a transformation matrix, 0Tj, that 
converts points defined in the limb’s local orientation into a 
global position.  Equation 1.13 illustrates this for the j th limb 
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Figure 1.1: Demonstration of the complexity of solving a square matrix using an analytical and LU decomposition technique. 
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in the IK chain (note that this assumes a right-handed 
coordinate system): 
 ��

����=
1000

0 jzjyjxj
j

Paaa
T   (1.13) 

 
The parameter Pj in Equation 1.13 also gives the global 
position of the origin of the limb thereby aiding in the 
determination of the b components in Equation 1.14. 
 

)( jei PPab −×=    (1.14) 

 
Using the chaining principle for calculating the transforms of 
the local axes into a global reference frame (0Tj = 

0T1 x 1T2 x 
… x j-1Tj.), the direct implementation of this subsection in 
3-dimensional space yields a constant complexity.  Assuming 
that each link has 3 DOFs, the complexity associated with 
each limb in the IK chain is given by 162 flops: 98 
multiplications and 64 additions & subtractions.  The 
assumption of 3 DOFs does not add a great deal of 
complexity if it is an overestimate since each DOF 
contributes only 9 flops to the overall result (where the 9 
flops is the calculation of the cross product). 
 
 
Determining The Pseudo-Inverse Of The Jacobian 
 
Using the complexity derivation of the inversion of a square 
matrix from the above sections, the complexity of the pseudo-
inverse of the Jacobian, as given in Equation 1.6, can be 
calculated.  Table 1.1 outlines the number of flops required to 
calculate the pseudo-inverse depending on the size of the 
X vector.  The variable n is the size of the state space, θ (i.e. 
the sum of all the links’  DOFs).  It should also be noted that 
there is no inclusion of complexity to calculate the transpose 
of matrices when they are required as this can be handled at 
no extra cost be simply swapping out indexing parameters. 
 
 
Complexity Of The Whole IK Solver 
 
The complexity of a single loop of the IK algorithm described 
above can be derived using the complexity analyses of the 
smaller parts of the algorithm already determined.  This is 
shown in Table 1.2 where m is the number of inner loops 
executed at stage 5 of our algorithm. 
 
As Table 1.2 illustrates, the use of a 3-dimensional X vector 
appears to be about 2½ times less computationally demanding 

than its 6-dimensional counterpart.  Considering only the 
major factor of the complexity, which is the size of the state 
space, n, the 3-dimensional X vector should be 238.9% 
quicker than the alternative.  However, the complexity of 
each algorithm is not only dependent on the size of the state 
space but also on the number of inner loops which are 
required to make the inversion of the Jacobian stable enough 
to provide meaningful results.  Therefore it needs to be shown 
that the use of a smaller Jacobian in the 3-dimensional 
X vector case does not adversely affect the pseudo-inverse.  
This does not appear to be the case as illustrated with the 
empirical dataset present in the following section. 
 
Since the smaller X vector can be shown to be less 
computationally demanding by a significant factor, it raises 
the issue of whether the smaller X vector can be used even 
when orientation is important.  The following section gives a 
brief discussion of possible application areas for using the 
half-Jacobian over the full-Jacobian.  Thereafter we illustrate 
an example for which we have used the half-size Jacobian in 
an application that would normally be considered a full-sized 
Jacobian problem domain. 
 
 
USING THE HALF- OVER THE FULL-JACOBIAN 
 
An obvious application of the half-Jacobian is in applications 
that do not discriminate against the orientation of the final 
link in an inverse kinematics chain.  In applications of inverse 
kinematics where the orientation of the end-effector has little 
consequence, the 3-dimensional X vector should always be 
used to reduce the computation effort required.  For example, 
when configuring a spider’s legs using IK, because the spider 
effectively walks on the tips of its legs, the orientation of this 
end point is immaterial.  Therefore only the 3-dimensional 
X vector would be required.  As illustrated in Table 1.2, using 
the full-sized Jacobian in such cases would be less efficient 
than the half-sized Jacobian. 
 
Another, more subtle, application of the half-sized X vector is 

Size of X Vector 
Algorithm Stage 

3 6 

1. Calc. increment                3 flops                6 flops 
2. Calc. Jacobian              162 flops              162 flops 
3. Calc. Pseudo-Inverse  33n +        42 flops 105n +       583 flops 
4. Check for convergence  18n +        15 flops  72n +        66 flops 

5. Reduce � �
        18m       flops        72m       flops 

6. Update joint angles   6n             flops  12n             flops 
7. Calc. new position  38n             flops  38n             flops 

Total  95n + 18m + 252 flops 227n + 72m + 817 flops 
Table 1.2: Complexity analysis of our Jacobian based IK solver 

Size of Matrix 
Operation 

(3 x n) 
3D X Vector 

(6 x n) 
6D X Vector 

TJJA =  18n -   9 72n -  36 

1−= AB  51 619 

BJ T  15n 33n 

11 )( −− = TT JJJJ  33n +  42 105n + 583 

Table 1.1: Number of flops required to calculate the 
pseudo-inverse of a non-square matrix. 
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in situations where the penultimate link in the IK chain has 
unlimited and full use of all 3 DOFs (in 3 dimensional space).  
In this scenario the first step is to calculate the position of the 
penultimate link based on the desired position and orientation 
of the final node.  The 3-dimensional X vector can then be 
used to position the penultimate node in the chain.  Once this 
is done the desired orientation of the final node can be 
specified thereby allowing the correct end configuration of 
the chain. 
 
Other applications where the half-size Jacobian would prove a 
better technique to employ over the full-size version is in 
situations of low resolution modelling.  For example, if a 
complex articulated model is being animated as a background 
entity in a scene, it would be advantageous to switch to the 
quicker half-Jacobian to solve its configuration.  This means 
that more avatars can be animated in the background of a 
scene. 
 
There are many other applications where the half-sized 
Jacobian could substitute for the traditional full-sized version.  
Currently we have applied the quick half-Jacobian inverse 
kinematic solver to motion capture retargetting and IK-driven 
character walking.  Both of these applications can easily run 
in real-time as demonstrated in the following section which 
describes the latter of our applications. 
 
 
IK-GENERATED HUMANIOD WALKING 
 
The coupling of a procedural model and an inverse 
kinematics solver provides the basic building blocks needed 
to generate the walking motion of a computer character.  The 
procedural model describes the path through which the foot 
travels during a stride while the IK solver positions (and 
orientates) the foot along this path over time.  The task of 
tracing the foot along the path would initially appear to 
require the full-sized Jacobian, inherently requiring the foot to 
be orientated in a forward facing direction.  Without the 
orientation of the foot taken into account, there are an infinite 
number of anatomically correct positions the heel could take 
in order to meet a simple positional constraint.  This is 
possible because the hip joint for a leg can rotate about the 
axis of the femur approximately ±90 degrees from the 
forward facing pose, as illustrated in Figure 1.2. 
 
From the evidence of Figure 1.2, it would seem that the 
full-sized Jacobian is the only choice of IK solver to drive the 
walking motion of a humanoid character.  However, by 
realising that in the course of a walking motion, any large hip 
joint rotations result in unnatural postures, additional 
constraints can be added to restrict movement to only 
plausible ranges.  This would allow the half-sized Jacobian to 
be used to calculate the position of the heal and thus 
simultaneously reduce the potential for orientation error and 
increase the performance of the solver. 
 
This approach has been used in our implementation of an 
IK-driven humanoid character, MovingIK (Meredith and 
Maddock 2004) which has the ability to walk over uneven 
terrain in real-time. 
 

MovingIK, makes use of a procedural stride model to define 
how the foot moves over time as the character is walking.  
The source for the procedural stride model in our application 
comes from a simple mathematical equation whose form is 
illustrated in Figure 1.3 where a complete cycle ranges 
between 0 and 3π. 

 
Along with the procedural model used to drive the character’s 
foot through the air, we have a pre-flight stage that rolls the 
foot from a heel supporting phase to a complete foot 
supporting phase.  This uses the inverse kinematics algorithm 
to simultaneously plant the heel of the character and gravitate 
the toes towards the ground.  This extra bit of the walking 
cycle increases the realistic-looking nature of the resulting 
animation and gives us the ability to model the complete foot 
as opposed to just the heel.  
 

 
Figure 1.2: Infinite number of positional solutions to 
fixing a heel plant without regard to the orientation of 

the foot.  The purple ring shows the location of all 
possible knee positions. 
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Figure 1.3: Graph of procedural stride used in MovingIK 
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The character is driven around an uneven terrain in real-time 
using an analogue joystick that determines parameters such as 
stride length, stride speed and direction of travel. 
 
Using MovingIK we are able to compare the half-sized and 
full-sized Jacobian techniques for both performance and 
realism. 
 
 
Empirical Results 
 
The results in Table 1.4 are obtained from running MovingIK 
on a Pentium 4 1.4GHz processor with a GeForce2 Ultra.  
There was a maximum iteration count imposed on the IK 
solver for the outer loop of 200 cycles while the inner loop 
was subject to a 20-cycle ceiling.  These limits were 
determined by the empirical running of the IK solver to 
determine over what limits a solution was very rarely found.  
The character driven by the user is made up of 18 hierarchical 
segments where only naturally-occurring DOFs within the 
human body were permitted.  The constraints on each 
remaining DOF were further limited to joint angles within the 
scope of normal human movement. 
 
The results given were obtained by driving the character 
around both flat and uneven terrains.  In the case of the 
uneven terrain, several randomly-generated surfaces were 
used (including a flight of steps) and the overall results were 
obtained by averaging the results.  Each of the uneven terrains 
had the same number of vertices and polygons in the model 
(64,082 polygons compared to 2 polygons for even terrain).  
The character displayed was that of either a stick figure or a 
3D model consisting of 11,101 polygons. 
 
MovingIK was not optimised to use either the half- or full 
Jacobian but instead provided the ability to switch between 
the two techniques at run-time.  There are three different 
configurations possible to switch between.  The first two 
modes use only the half- or full Jacobian respectively to 
calculate the configuration of the character to position the 
leading foot and trailing toes.  The third mode uses a hybrid 
approach that uses the full Jacobian to determine the 
configuration of the leading foot and the half-Jacobian to 
anchor the trailing toes. 
 

The empirical results of driving the computer character within 
MovingIK are illustrated in Table 1.4.  It should be noted that 
during a single frame, MovingIK solves two IK chains – one 
for each leg.  An illustration of MovingIK is given in 
Figure 1.4. 
 
The speed-up factor between the full Jacobian and the 
half-Jacobian, based on the empirical average time per 
iteration, is 238.5% which when compared to the analytical 
computed result of 238.9% reinforces the advantages of using 
the half-Jacobian over the full Jacobian whenever possible.   
 
A further conclusion that can be obtained from these results is 
that the use of the full Jacobian does not necessarily make the 
IK solver any more stable.  This logical conclusion comes 
form the fact that the analytical speed-up factor calculated 
assumes that the inner loop is executed an equal number of 
times for both algorithms.  If this were not the case then the 
empirical results would show a larger difference in speed up 
factor due to one algorithm executing the inner loop more 
times than the other. 
 
 
CONCLUSIONS & FUTURE WORK 
 
From this analysis of the empirical and analytical results, 
there is no proven stability advantage from using the full 
Jacobian compared to that of the half-Jacobian.  Therefore 
there is a definite argument for using the half-sized Jacobian 
when only the position of an end-effector is needed.   
 
As we have shown, there is also scope for using the quicker 
half-Jacobian for limited domains when orientation is 
required as well as position.  Although we have only 
demonstrated this for a walking motion, this represents one of 
the most fundamental movements in computer character 
animation.  In other work we have also applied this technique 
to the field of motion capture retargeting with similarly 
successful results in both speed and visual accuracy.  There 
are many other conceivable domains in which this application 
can be used by placing extra dynamic constraints on joint 
angles to prevent the orientation from deviating too much 
from a natural-looking configuration.  An arm, for example, 
would prove just as suitable a subject for the technique. 
 

IK Mode 
Measurement 

All Half Jacobian 
(3D X Vector) 

All Full Jacobian 
(6D X Vector) 

Hybrid Method 

Flat Floor with  
Stick Character 

260 fps 95 fps 115 fps 

Flat Floor with  
Skeleton 

140 fps 69 fps 83 fps 

Uneven Terrain with  
Stick Character 

97 fps 54 fps 64 fps 

Uneven Terrain with Skeleton 
Character 

75 fps 42 fps 53 fps 

Average time to execute each 
IK solver 

0.24 ms 5.5 ms - - - - 

Average Number of iterations 
 

18.15 180 - - - - 

Average time per iteration 
 

0.013 ms 0.031 ms - - - - 

Table 1.4: Empirical Results from MovingIK 
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The advantages of using dynamic constraints to transform an 
orientation and positional IK problem into a position-only 
task are a speed-up factor of about 238%.  There is also no 
extra cost to adding in constraints to the half-sized Jacobian 
algorithm because its framework already operates using joint 
restrictions.  Effectively you get the dynamic constraints for 
free in the Jacobian-based IK solver. 
 
We have already integrated our quick real-time inverse 
kinematics solver into a motion capture retargeting 
application where the next step will be to use the solver to 
simultaneously individualise the character.  For this we are 
looking into the application of weighted IK chains such that 
different parts of the articulation change with a varying rate to 
the others.  This would give rise to the very simple and quick 
production of injuries or even varying character builds in 
computer figures. 
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Figure 1.4: Analogue joystick-controlled real-time IK over uneven terrain; green pyramids represent the intended position of the 

leading foot while the red pyramids indicate desired location of the training toes. 
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ABSTRACT 
 
Images convey a lot of information because the human visual 
system is a sophisticated information processor. It follows, then, 
that moving images have the potential to convey much more 
information and hence animation is treated as an important 
factor in computer graphics. Shape modification can be a 
flexible means for controlling animation, for example, the tail 
of a dog wagging, the swimming motion of a fish, or even 
human figure animation. One of the most important problems of 
available solid modeling systems is that the range of shapes 
generated is limited. It is not easy to model an irregular object 
in a conventional solid modeling system. But it is easy to model 
irregular objects by deforming regular objects that in turn can 
be generated using parametric equations. Without deformation, 
to simulate an irregular object, one has to save every point on 
the object. Then it will become a tedious process. However, one 
can create a regular object and then apply deformation to it to 
create an irregular object with much less data. The main aim of 
this paper is to demonstrate how to achieve animation by 
regular deformation such as tapering, twisting, and bending. 
This work is done in OpenGL as it provides more flexibility to 
implement this work.  
 
 
INTRODUCTION 
 
Animation means “to bring to life”. By providing still images 
that change a number of times per second we can provide the 
illusion of movement, and thus of life. That is rapid display of 
slightly different images create the illusion of motion called 
animation. Animation is one of the most interesting and 
important part of computer graphics. The application of 
graphics is increased significantly by being able to animate 
objects.  
 
Animation adds to graphics the dimension of time, which vastly 
increases the amount of information which can be transmitted. 
In order to animate something, the animator has to be able to 
specify, either directly or indirectly, how the 'thing' is to move 

through time and space. The basic problem is to select or design 
animation tools that are expressive enough for the animator to 
specify what he/she wants to specify while at the same time are 
powerful or automatic enough that the animator doesn't have to 
specify the details that he/she is not interested in. Obviously, 
there is no one tool that is going to be right for every animator, 
for every animation, or even for every scene in a single 
animation. The appropriateness of a particular animation tool 
depends on the effect desired by the animator. An artistic piece 
of animation will probably require different tools that an 
animation intended to simulate reality.  
 
The most popular type of animation is computer animation. The 
use of computer has brought about a new way of approaching 
animations. It started when computer experts saw the possibility 
of computers as a way of developing wonderfully good pictures 
that would have taken a lot more effort in producing or even 
impossible to produce otherwise. The use of computers also 
came in where a dangerous stunt needs to be done. Now, the 
simple flicks done to a computer can save so much more effort 
and resources by the use of computers, we now let it do the 
more menial work that used to be done by junior cartoonist. 
Before this, the chief cartoonist would draw out the key frames 
and others would draw the pages in between. Now, we can use 
the computers to create these scenes and do the in 'betweening' 
(or known as tweening) scenes. This saved the animators a lot 
of effort and time, which is much appreciated. At the same time 
one of the major problems in computer animation is that the 
computer can produce missing drawings based on extreme 
drawings produced by animators (Catmull 1978). 
 
There are several different (general) types of animation 
available such as real time animation, keyframe animation, 
character animation, motion path animation, hierarchical 
animation, shape animation, procedural animation, simulation, 
camera animation etc. Animation adds a lot to a computer 
graphics application. Adding interactivity to animation gives the 
user control. Games, interactive visualizations and learning 
tools all provide users with the ability to control the 
presentation – driving a car, “flying” through a human body, 
etc.  
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OPENGL  
 
OpenGL is a low level, real-time 3D graphics API. It is a 
software interface for applications to generate interactive 2D 
and 3D computer graphics.  OpenGL was originally developed 
in 1992 by Silicon Graphics, as a descendant of an API known 
as Iris GL for Unix.   It was created as an open standard and is 
available on many different platforms. That is where the word 
“Open” in OpenGL derived from. Meanwhile, GL stands for 
Graphics Library.   OpenGL is designed to be independent of 
operating system, window system, and hardware operations and 
many vendors support it.  
 
OpenGL is available on PCs, Macintosh and workstations.  It 
provides a wide range of graphics functions from rendering a 
simple geometric point, line, or filled polygon, to texture 
mapping, NURBS, or curved surfaces.  Developer driven 
advantages of OpenGL are its industry standard, stable, reliable, 
portable, evolving, scalable, easy to use and well-documented 
API.  This API is designed to work efficiently even if the 
computer that displays the graphics is not the computer that 
runs the OpenGL program (Angel 2000, Angel 2002, Woo et al 
1999, Wright11999). With any compiler, the programmer will 
be able to create any 3D graphics within imagination with the 
help of OpenGL libraries.  
 
In OpenGL, animation is achieved by using variables for the 
parameters like position and rotation. The user or the program 
can then update these variables and when OpenGL redraws the 
screen, the image will be diffeent. 

 
DEFORMATION 
 
One of the most important problems of available solid modeling 
systems is that the range of shapes generated is limited. It is not 
easy to model an irregular object in a conventional solid 
modeling system. Without deformation, to simulate an irregular 
object, one has to save every point on the object. Then it will 
become a tedious process. However, one can create a regular 
object and then apply deformation to it to create an irregular 
object with much less data. Deformations are easily combined 
in a hierarchical structure, creating complex objects from 
simpler ones. Deformations are important and highly intuitive 
operations that ease the control and rendering of large families 
of three dimensional geometric shapes. Deformations can be 
incorporated into traditional CAD/CAM solid modeling and 
surface patch methods, reducing the data storage requirements 
for simulating flexible geometric objects, such as objects made 
of metal, fabric or rubber. 
 
In the real world changes of shape are very common. When a 
flower is brushed by a breath of air, the stem bends and the 
petals and leaves may also bend and change shape subtly. When 
a dog curls up and lies down on a rug, its body bends into a 
semicircular arc. The expressions of the human face are almost 
exclusively a matter of the face changing shape. Shape 
modification can be a flexible means for controlling animation, 
for example, the tail of a dog wagging, the swimming motion of 

a fish, or even human figure animation. The first question, 
which needs to be answered, is 'what is shape'? Or ‘what 
transformations change the shape of an object'?  

We may be able to change an actual shape of the object to 
reform or deform the shape of the surface of the object. 
Although we might think that a change of scale is change of 
shape, but a change of scale does not constitute a change of 
shape in the sense meant here (O’Rourke 1995). Scaling an 
object makes it uniformly longer or shorter in one or more 
directions, but it does not alter the basic configuration of the 
surface. It does not alter the “bumps and hollows” of the surface 
(O’Rourke 1995). Shape deformation is a deformation between 
the outlines-either 2D or 3D.  

Deformation, first introduced by (Barr 1984) is a highly 
intuitive and easily visualized set of operations. Deformations 
allow the user to treat a solid as if it were constructed from a 
special type of topological putty or clay, which may be bent, 
twisted, tapered, compressed, expanded, and otherwise 
transformed repeatedly into a final shape. They are highly 
intuitive and easily visualized operations that simulate some 
important manufacturing processes for fabricating objects, such 
as the bending of bar stock and sheet metal. Deformations can 
be incorporated into traditional CAD/CAM solid modeling and 
surface patch methods, reducing the data storage requirements 
for simulating flexible geometric objects, such as objects made 
of metal, fabric or rubber. 

Without deformation, to simulate an irregular object, one has to 
save every point on the object. However, one can create a 
regular object and then apply deformation to it to create an 
irregular object with much less data (Gudukbay, et al 1990). It 
saves time and it will become an easy task too.  
 
One long-term goal of computer graphics and numerical 
methods for three-dimensional design is a unified mathematical 
formalism. Such a unified mathematical formalism for 
geometric representation and computation provides a natural 
base for a geometric modeler of considerable versatility and 
robustness (Farouki and Hinds, 1985). The system uses quadric 
objects that are collections of smooth parametric objects 
producing a new spectrum of flexible forms. The chief 
advantage is that they allow complex solids and surfaces to be 
constructed and altered easily by changing a few interactive 
parameters. The quadrics family consists of sphere, ellipsoid, 
torus, hyperboloids etc.  Quadrics can be defined by either 
nonparametric or parametric equations. Our implementation 
uses parametric equations to generate quadrics since generation 
of surface points is easier with this method. We may also 
deform super-quadric objects using regular deformation 
technique (Gudukbay et al 1990). 
 
The deformation technique used in this implementation is 
regular deformation such as twisting, bending, tapering of 
geometric objects.  Regular deformations are well defined and 
their results are straightforward but it lacks generality. Regular 
deformation is very fast when compared to the other 
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deformation techniques like Free-Form Deformation (FFD) 
[Barr 1984, Gudukbay 1990). A globally specified deformation 
of a three dimensional solid is a mathematical function F  
which explicitly modifies the global coordinates of points in 
space. Mathematically, it can be represented by the equation 

)(xFX =  where x  represents the point in the un-deformed 

solid, and X  represents the points in the deformed solid (Barr 
1984, Gudukbay 1990).  
 
 
ANIMATION BY REGULAR DEFORMATION 
 
Using regular deformation technique such as tapering, twisting 
and bending we may be able to animate the objects. Tapering, 
twisting and bending functions are clearly explained in (Barr 
1984, Gudukbay 1990). Each of the regular deformation is 
explained in detail in the following section. 
 
 
Scaling 
 
One of the simplest deformations is a change in the length of 
the three global components parallel to the coordinate axes. 
This produces an orthogonal scaling operation: 
 

xaX 1=  

yaY 2=  

zaZ 3=  
 
 
Global Tapering 
 
Tapering is similar to scaling, by differentially changing the 
length of two global components without changing the length of 
the third. To do tapering operation along the z-axis one should 
choose a tapering function depending on the z-coordinates of 
the points. When the tapering function 1)( =zf , the portion of 
the deformed object is unchanged; the object increases in size as 
a function of z when 0)(' >zf  and decreases in size when 

0)(' <zf . The object passes through a singularity at 
0)( =zf  and becomes everted when 0)( <zf . Global 

tapering along the z-axis is given by the following equations 
 

zZ
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Global Axial Twists 
 
For some applications, it is useful to simulate global twisting of 
an object. A twist can be approximated, as differential rotation 

just as tapering is a differential scaling of the global basis 
vectors. We rotate one pair of global basis vectors as a function 
of height, without altering the third global basis vector. The 
deformation can be demonstrated by twisting a deck of cards, in 
which each card is rotated somewhat more than the card 
beneath it. 
 
The global twist around the z-axis is produced by the following 
equations: 
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The twist proceeds along the z-axis at a rate of )(' zf  radians 
per unit length in the z direction. 
 
 
Global Bending 
 
Bending simulates an important manufacturing process for 
fabricating objects. An example of this operation is the bending 
of a bar stock or sheet metal. For other applications, it is useful 
to have a simple simulation of bending. To make a bending 
along the y-axis, one has to specify a bent region along the y-
axis. The following equations represent an isotropic bend along 
a centerline parallel to the y-axis; the length of the centerline 
does not change during the bending process.  
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The following relations give the formula for this type of 
bending along the y-axis centerline: 
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The bending angle θ, is constant at the extremities, but changes 
linearly in the central region. In the bent region, the bending 
rate k, measured in radians per unit length, is constant, and the 
differential basis vectors are simultaneously rotated and 
translated around the third local basis vector. Outside the bent 
region, the deformation consists of a rigid body rotation and 
translation. The range of the bending deformation is controlled 
by ymin and ymax with the bent region corresponding to values of 
y such that ymin <  y < ymax . The bending axis is located along [s, 
yo, 1/k]T , where s is the parameter of the line. The center of the 
bend occurs at y = y0 i.e., where one would "put one's thumbs" 
to create the bend. The radius of curvature of the bend is 1/k.  
 
These functions have continuous values at the boundaries of 
each of the three regions for y, and in the limit, for k = 0. 
However, there is a jump in the derivative of the bending angle 
θ at the y = ymin and y = ymax boundaries. The discontinuities 
may be eliminated by using a smooth function for θ as a 
function of y.  
Regular deformation explained above can be combined with 
rotation around some axis so that these operations can be 
performed around other axes. The mathematical details of the 
regular deformations can be found in (Barr 1984, Gudukbay 
1990). By combining these above deformations we can get 
unimaginable beautiful outputs that are listed below. 
 
By varying the different regular deformation functions we can 
animate the geometric objects by varying the different scaling 
values to these deformation functions. This work is done in 
OpenGL because it provides two different modes for animation. 
Especially the double buffer mode is specially meant for 
smoother and flicker free animation. In our program first we 
select the type of regular deformation in which the object is to 
be deformed and animated using the menu option included in 
the program. Then we have to fix one of the deformation 
functions that is simple, sine, cosine and tan function options 
are provided and then the object is animated. OpenGL also 

reduces over work by providing lot of built in commands like 
menu facility. 
 
 
CONCLUSION 
 
Computer animation techniques have achieved a very high level 
of physical realism and nowadays provide a wide character 
control capability. Despite the high quality of the resulting 
animations, their creation still requires the intervention of good 
programmers and graphic designers to build a custom character 
controller or to manually generate the character movements and 
behaviors. 
 
Thus in this paper we have simulated animation with the help of 
regular deformation techniques. Some the snapshots of this 
program are also added in the appendix.  We may also able to 
change the program for different twisting and bending 
functions. We can also animate other quadric objects like 
sphere, ellipsoid, hyperboloid etc. Real time applications of this 
work are it can be used in cartoon film making, game design, 
education and training, presentation graphics. 
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APPENDIX: Snapshots 
 

 
Fig.1 

Tapering a torus using a sine function 
 

             
Fig.2 

Twisting a torus along y-axis using a cosine function 
 

 
Fig.3 

Twisting a torus along y-axis using a sine function 

 
Fig.4 

Bending the torus along y-axis using a bending function 

 
Fig.5 

Tapered and twisted torus along y-axis using a sine function 
 

 
Fig.6 

Tapered and bent torus along y-axis using a tan function 
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ABSTRACT

Narration and interaction are often viewed as contrary
properties in computer games. Games with a high degree
of interaction fail to provide a coherent narration and the
player’s interaction seldom has any direct impact on the
narrative. Games with a high degree of narration often tells
a linear story similar to books or movies with little room
for the player to interact. We proposenon-linear interac-
tive storytelling(NOLIST) as a first step towards develop-
ing games with a high degree of interaction and a coherent
narrative. The main idea is that the narrative is not fixed
from the beginning but instead constructed as the game
progresses based on the player’s interaction. We provide
a simple model that allows writers to specify a NOLIST as
a set ofactionswhich the game engine then combines to
create the narrative. Finally, we propose to develop a game
engine using Bayesian networks to model the probability of
the possible narratives that can be created from the actions,
and use this knowledge to create better narratives.

INTRODUCTION

Narration and interaction are often considered as two in-
compatible properties in computer games. This has lead to
the distinction between games of progression and games of
emergence [Juul, 2004]. Games of progression have been
compared to movies that stop at certain points to allow the
player to choose among a set of options which determine
how the narrative progresses from that point on. In these

games, narration is highly linear with limited player inter-
action, so playing the game more than once rarely provides
the player with a new gaming experience. Games of emer-
gence define a set of simple and deliberate rules which
when combined emerge into more complex patterns, and
thus motivate the player to develop more advanced strate-
gies for playing the game. The high level of player inter-
action is achieved at the expense of a coherent narrative.
Players rarely experience events later in the game as direct
consequences of earlier events, and much of the interaction
has no impact on the narrative [Mallon and Webb, 2000].

This paper proposesnon-linear interactive storytelling
(NOLIST) as a first step towards the development of games
with both a high degree of player interaction and a co-
herent narrative. The main idea is that the narrative is
not fixed from the outset, but instead constructed as the
game progresses. The outcome of events that occur in the
game whether caused by the player’s direct interaction or
by agents in the game world change the likelihood of past
events (not observed by the player) having occurred and
the probability that certain future events can occur. At any
point in the game, the narrative consists of the events ob-
served by the player. These events determine the probabil-
ity and possibility of different pasts and futures for the nar-
rative. The player’s interaction is restricted to events that
are consistent with the possible pasts and futures in order
to ensure a coherent narrative. As more events are observed
by the player, the set of possible pasts and futures narrows.
Consequently, the player’s choices become more and more
restricted as the game progresses until all the events of the
narrative are determined.

We propose a framework to develop NOLIST in com-
puter games. A NOLIST game engine specifies a set of
actions which are the building blocks of the narrative. An
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action could, e.g., be a small movie clip, a sentence in a
dialog, or the description of an event. The game engine
maintains a model of the possible pasts and the possible fu-
tures for the narrative. The game is played in rounds, where
in each round the game engine first determines which ac-
tions are possible. These actions must be part of a possible
future and be consistent with a possible past. The player
then chooses one of them. The chosen action is played out
in the game and then part of the narrative. The chosen ac-
tion influences the possible pasts and futures for the nar-
rative. E.g., in a murder story the investigator (the player)
finds a smoking gun close to the spot where someone was
killed. This action influences the past by making it more
probable that the gun was used to kill the victim and less
probable that the victim was stabbed to death. In turn, all
suspects with access to the gun are more likely to be the
murderer. Changes to the possible pasts influence the pos-
sible futures. E.g., the suspects with access to the gun are
now more likely to try to conceal their actions and mislead
the investigator. The action also influences the possible fu-
tures directly. E.g., it is now more probable that a bullet
will be found in the victim’s body if it is examined. When
the game engine has determined how the chosen action in-
fluences the possible pasts and futures, a new round can
commence. Some actions are possible endings. The game
can only end immediately after the game engine has played
out such an action, however, this is not mandatory.

NOLIST is related to interactive drama. The narrative
engine, IDtension, calculates the set of all possible actions
of the characters based on the current state in the world
of the story and ranks them according to a user model for
their narrative effects [Szilas, 2003]. The NOLIST game
engine ensures consistency between past events observed
by the user and future events as well as prevents stories
with no endings. The narrative quality of stories is not con-
sidered in this paper, however, with NOLIST it is possible
to evaluate the narrative quality based on the probability of
the possible futures of each action. In Facade interactive
dramas are divided into beats and semi-autonomous agents
with a drama manager are used to choose among the pos-
sible beats [McKee, 1997, Mateas and Stern, 2003]. Each
beat has a tension value and beats are chosen to best fit the
Aristotelian story tension value arc. It is the responsibility
of the author to ensure that all states have possible beats.
In NOLIST atomic actions resemble beats, and the engine
ensures that the story never reach a state where no actions
are possible.

NON-LINEAR INTERACTIVE STORY-
TELLING (NOLIST)

A story is usually divided into a number of smaller parts,
we use the term chapter, but any subdivision is valid and
supported. The chapters are supposed to be read in se-
quence, so the first chapter begins the story while the last
chapter ends it. Before reading each chapter, the reader is
required to know about certain characters and events in the
story (those described in all chapters preceding this chap-

ter). Reading the chapters in any other order often makes
the story confusing and incoherent. We say that such a
story is linear because all the chapters must be read in a
specific order. In contrast, a non-linear story allows chap-
ters to be read in different orders and not all chapters have
to be read. We cannot expect a coherent narrative to re-
sult from any random order of chapters, so each chapter
has some prerequisites that must be satisfied by the preced-
ing chapters. E.g., to identify the murderer, a motive and
an opportunity must have been established. However, the
details of what the motive and opportunity are or how they
were established are not relevant and can be established by
different sequences of preceding chapters. Therefore, with
much fewer chapters a non-linear story can represent many
different linear stories. In a non-linear interactive story the
reader can influence the order of chapters.

We introduce actions as the building blocks of a non-
linear interactive story. Some actions are possible endings
(denoted by a suffix ’∗’). An action is characterized by its
content, prerequisites, and effects. Thecontentencapsu-
lates a set of actions, analogical to a chapter being divided
into sub-chapters. If the content is empty, then the action
is atomic. Theprerequisitesare the events that must have
occurred before the action can be performed and theeffects
are the events that occur as a result of performing the ac-
tion. An eventis a simple statement such asthe gun is the
murder weaponor if John has a motive it is not known. The
content of an action may encapsulate actions which in turn
encapsulate other actions. This leads to anaction hierarchy
such as the one illustrated in Figure 1. In the figure the ac-
tion Examine the crime sceneencapsulates the two actions
X found at crime sceneandY found at crime scene, both
of which are atomic actions (since their content is empty)
and possible endings (denoted by the ’∗’).

X found at crime scene∗

No evidence for a motive is known

X indicating motive is found

No evidence for a motive is known

Y indicating motive is found

Y found at crime scene∗

Prerequisites

Effects

Content

No evidence for a motive is known

Examine the crime scene

Figure 1: Action hierarchy forExamine the crime scene.
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A non-linear interactive storyconsists of an action and
a past. Thepastis a set of events that is believed to hold at
a particular point in the narrative, and only actions whose
prerequisites are satisfied by the past can be performed.
Whenever an action is performed, the past is changed to
reflect the effects of that action.

An Example of a Non-Linear Interactive Story

To help illustrate non-linear interactive stories and actions
we provide an example. The example is a murder story
where the player takes the role of an investigator trying to
solve a murder case by investigating the crime scene and
interviewing the three suspects namedA, B, andC. Fig-
ure 2 depicts the action hierarchy for the murder story. At
the top level (1) is the Murder story action with a content of
five actions: Investigate the crime scene (1.1), InterviewA,
B, andC (1.2-1.4), and Reveal the murderer (1.5). Actions
at the lowest level are atomic.

The prerequisites and effects of the atomic actions are in
the appendix. The effects of all non-atomic actions in the
murder story are empty, and the prerequisites of any non-
atomic action is the disjunction of the prerequisites of the
actions in its content.

When the game begins, the past is initialized as follows:

No evidence for a motive is known
No evidence for an opportunity is known
It is not known who found the victim
It is not known ifA had a motive
It is not known ifB had a motive
It is not known ifC had a motive
It is not known ifA had an opportunity
It is not known ifB had an opportunity
It is not known ifC had an opportunity

In order to identify the murderer, the investigator must
establish a strong motive and a clear opportunity for at least
one of the suspects. Note that at this point, the game has
not decided who actually murdered the victim. This will be
determined as the game progresses based on the player’s
interaction with the game.

A Game Example using the Murder NOLIST

In this section we describe an example gaming session
using the murder story described in the previous section.
When using a NOLIST for a game, some actions are cho-
sen by the player or others by the game engine. In this
example, all non-atomic actions are chosen by the player
while the game engine chooses among the atomic actions.
Table 1 summarizes the gaming session.

The game begins at the top level of the action hierar-
chy, where only the Murder story action is available. To
perform this action, we must perform actions in its content
whose prerequisites are satisfied by the (initial) past until
a possible ending is performed. All actions at this level
of the action hierarchy are available except 1.5, and the
player chooses 1.1. Again, the player must choose among
the actions in the content of action 1.1, and chooses 1.1.1.

1 Murder story∗

1.1 Investigate the crime scene
1.1.1 Examine the victim∗

1.1.1.1 M found on victim∗

1.1.1.2 N found on victim∗

1.1.2 Examine the crime scene∗

1.1.2.1 X found at crime scene∗

1.1.2.2 Y found at crime scene∗

1.1.3 Ask who found the victim∗

1.1.3.1 A found the victim∗

1.1.3.2 B found the victim∗

1.1.3.3 C found the victim∗

1.2 InterviewA

1.2.1 Ask A aboutB∗

1.2.1.1 A indicates weak motive forB∗

1.2.1.2 A indicates vague opportunity forB∗

1.2.1.3 A andB have an alibi∗

1.2.2 Ask A aboutC∗

1.2.2.1 A indicates strong motive forC∗

1.2.2.2 A indicates vague opportunity forC∗

1.3 InterviewB

1.3.1 Ask B aboutA∗

1.3.1.1 B indicates weak motive forA∗

1.3.1.2 B indicates clear opportunity forA∗

1.3.2 Present evidence toB∗

1.3.2.1 B acknowledges clear opportunity∗

1.3.3 Ask B aboutC∗

1.3.3.1 B indicates weak motive forC∗

1.3.3.2 B indicates clear opportunity forC∗

1.3.3.3 B andC have an alibi∗

1.4 InterviewC

1.4.1 Ask C aboutA∗

1.4.1.1 C provides evidence indicating motive∗

1.4.1.2 C indicates strong motive forA∗

1.4.1.3 C indicates vague opportunity forA∗

1.4.2 Ask C aboutB∗

1.4.2.1 C indicates weak motive forB∗

1.4.2.2 C indicates clear opportunity forB∗

1.5 Reveal the murderer∗

1.5.1 A is the murderer∗

1.5.2 B is the murderer∗

1.5.3 C is the murderer∗

Figure 2: Action hierarchy for the murder story. Actions
marked with∗ are possible endings.
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P: 1 Murder story
P: 1.1 Investigate the crime scene
P: 1.1.1 Examine the victim
G: 1.1.1.2 N found on victim
P: 1.1.2 Examine the crime scene
G: 1.1.2.1 X found at crime scene
P: 1.1.3 Ask who found the victim
G: 1.1.3.1 A found the victim
P: 1.2 InterviewA

P: 1.2.2 Ask A aboutC
G: 1.2.2.2 A indicates vague opportunity forC
G: 1.2.2.1 A indicates strong motive forC
P: 1.3 InterviewB

P: 1.3.3 Ask B aboutC
G: 1.3.3.3 B andC have an alibi
P: 1.3.1 Ask B aboutA
G: 1.3.1.1 B indicates weak motive forA
G: 1.3.1.2 B indicates clear opportunity forA
P: 1.4 InterviewC

P: 1.4.1 Ask C aboutA
G: 1.4.1.2 C indicates strong motive forA
P: 1.5 Reveal the murderer
G: 1.5.1 A is the murderer

Table 1: An example gaming session of the murder story.

The contents of action 1.1.1 contains two atomic actions
both with satisfied prerequisites. The game engine chooses
among atomic actions and performs 1.1.1.2. The action
is performed immediately (since it is atomic) and its ef-
fects update our belief in which events occurred in the past
by replacing the statementNo evidence for an opportunity
is knownwith N indicating opportunity is found. Since
1.1.1.2 is a possible ending, the enclosed action (1.1.1) can
be completed. Action 1.1.1 is also a possible ending, so the
player may choose to complete action 1.1 as well. How-
ever, the player chooses to complete the two remaining ac-
tions in its content instead before completing action 1.1. At
this point, the player chooses to interviewA and establish a
vague opportunity forC to commit the murder and a strong
motive. The player now questionsB aboutC hoping to es-
tablish a clear opportunity forC and thus revealC as the
murderer (action 1.3.3). The game engine has two atomic
actions with satisfied prerequisites to choose from: 1.3.3.2
and 1.3.3.3. Either a clear opportunity is established forC
or B provides an alibi for bothB andC. In the example,
the game engine selects the latter atomic action. Conse-
quently, neitherB norC are likely suspects, and the player
starts to question them aboutA (who apparently tried to
frameC). This line of questioning leads to a strong mo-
tive and a clear opportunity forA, andA is finally revealed
as the murderer by action 1.5.1. This action is a possible
ending and action 1.5 can now be completed. Action 1.5 is
also a possible ending, so the top level action can finally be
completed, and the game ends.

In the example we did not specifyhowthe game engine
chooses which atomic story part to play next. Satisfaction
of the prerequisites of an atomic story part is not sufficient
to ensure a coherent and interesting story. E.g., in the mur-

der story it is entirely possible for more than one suspect
to be the murderer or for all suspects to have an alibi. In
the latter case, the prerequisites for the chapter marked as
an ending will never be satisfied, so the story continues in-
definitely. In the former case, only one of the suspects will
be revealed before the story ends. To avoid such inconsis-
tent stories, the game engine has to consider the possible
futures for each of the atomic story parts to be played next.
Only atomic story parts with acceptable futures and sat-
isfied prerequisites can be played next. E.g., in the murder
story, atomic story parts leading to everyone having an alibi
or more than one suspect having a clear opportunity and a
strong motive will never be played. As a consequence some
actions may become unavailable to the player although they
are associated with atomic story parts with satisfied prereq-
uisites.

By evaluating the stories produced by the possible fu-
tures for an atomic story part, the game engine can avoid
the least interesting stories. E.g., in round six of the murder
story the game engine could have selected the atomic story
part with the narrative:B indicates clear opportunity forC
if evidence is known. This leads toC being the murderer.
However, since all evidence points towardsC from the be-
ginning, the story is a trivial detective story. Clearly, what
constitutes an interesting story varies a lot between genres.
However, we believe that writers often have a fairly clear
idea about how their own story should develop and that this
can be modeled, at least in part, by considering how the past
develops.

In the example we have only considered which atomic
story parts are possible after each round of the game. In
general, we would also like to know how probable they are.
A story where all atomic story parts played are highly im-
probable might be fun to read but can easily become con-
fusing and incoherent. Similarly, playing only the most
probable atomic story parts produces a predicable and most
likely boring story. Knowing the probability of each possi-
ble future helps the game engine to progress the story ac-
cording to the stated intentions of the writer.

In the next section we introduce Bayesian networks for
as they seem fit for modeling a NOLIST game engine that
considers the probability of possible futures and avoids the
pitfalls of stories without endings.

BAYESIAN NETWORKS

A Bayesian network is a graphical structure, which
is used to represent cause-effect relations in a domain
([Pearl, 1988] and [Jensen, 2001]). In particular, they are
widely used in domains with uncertainty attached to the
impact of a cause. For example, if a investigator asks a sus-
pect where he was at the time of the crime, the fact whether
the suspect is guilty of the crime has a causal impact on the
answer. However, even if the suspect was not at the crime
scene at the time of the crime (and not guilty), you cannot
be sure that he will tell the truth.

A Bayesian network consists of a structural part and a
quantitative part. The structural part is a directed acyclic
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graph (DAG), where nodes represent particular events, and
the directed links represent cause-effect relations. A node
has a finite set of states representing possibilities for this
event. In Figure 3 the situation above is represented.

Figure 3: A DAG representing the situation where a inves-
tigator asks a suspect of his whereabouts at the time of the
crime.

The node Actual represents the suspect’s possible
whereabouts, and it may have the stateshome, crime scene,
mistress,andwork. The nodeGuilty has the statesyesand
no, and the nodeAnswerhas the same states asActualplus
the stateno answer. We refer to the relations in a DAG
using family terms. For example,Actual is a parent ofAn-
swer, andAnsweris a child ofGuilty.

The strength of the cause-effect relations is represented
through conditional probabilities. For each node you have
to specify a probability distribution for its states given all
possible configurations of its parent nodes. For the model
in Figure 3 you for example specify the probability distri-
bution forAnswergivenActual= homeandGuilty=no. This
could be

P (Answer|Actual = home, Guilty = no) =

(0.1, 0.1, 0.2, 0.3, 0.3)

You have to specify eight distributions of that kind. Fur-
thermore, you also have to specify (prior) distributions for
ActualandGuilty.

When Bayesian networks are used they are more com-
plicated than the example in Figure 3. Figure 6 shows a
slightly more complex model.

Basically, Bayesian networks are used to determine new
probabilities given evidence. For example, when you know
the answer of the question it is inserted in the network and
used to determine the posterior probabilities forActualand
Guilty.

Object-Oriented Bayesian Networks

We utilize an extension to Bayesian networks
called Object Oriented Bayesian Networks (OOBN)
[Koller and Pfeffer, 1997, Bangsø and Wuillemin, 2000].
In the object oriented paradigm the basic component is an
object; an entity with identity, state and behavior. Objects
are grouped into classes. A class which is a description
of a set of objects with the same structure, behavior and
attributes. Whenever an object of a class is needed, an
instance of that class is created. Note that each instance
has a unique encapsulating class, the class in which they
are instantiated.

A class is a Bayesian network fragment containing three
sets of nodes:

• O: the set of output nodes; nodes that can be parents
of nodes outside instances of the class.

• I: the set of input nodes; represents nodes that are
not in the class, but are used as parents of nodes inside
instances of the class. Input nodes cannot have parents
in the class.

• P : the set of protected nodes; nodes that can only have
parents and children inside the class.

The input and output nodes constitute theinterface; the
part of instances of a class that interfaces with the surround-
ings of the instance.

When an instance of a class is created, it can be linked
to the rest of the network through the interface. To be able
to do this linking a new type of link needs to be defined;
the reference link. The child node in a reference link must
be an input node and the parent is the node which is used
as parent of the children of the input node, the parent and
child must have the same number of states.

To allow the presence of input nodes without a parent,
a default potential is introduced; a probability distribution
over the states of the input node, used to create a regular
node if the input node is not a child in a reference link. It
is worth noting that the interface nodes are part of both the
instance where they are defined and the class encapsulating
that instance. This means that links from output nodes of
an instance to nodes not in that instance (be it nodes in
the encapsulating class or input nodes of other instances in
the encapsulating class) are part of the specification for the
encapsulating class.

By construction, instances of classes are inside a unique
encapsulating class, ensuring that a tree of instances can be
constructed. We will call such a tree an Instance Tree (IT).
This tree will have the encapsulating class as the root, and
each instance inside this class will define a sub tree with
that instance as the root, and so on.

CREATING AN OOBN FOR A NOLIST

The specification of a NOLIST can be used to make a trans-
lation of the story into an OOBN. This OOBN will be used
to choose actions for the game engine. The translation can
be done automatically by letting :

• Prerequisites and effects for actions be variables.

• Actions be classes where the prerequisites are input
nodes and the effects are output nodes.

• The action hierarchy be reflected in the IT.

In the following the translation will be outlined, and
some problems and their solution described.
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Atomic Actions

A class for an atomic action will consist of the prerequisites
as input nodes and the effects as output nodes.

A class for one of the atomic actions under the “Exam-
ine the crime scene” action can be seen in Figure 4.e m
is the event modeling what evidence on motive has been
found, it has the statesno evidence, M, andN. This event is
both a prerequisite and an effect, so it is present as both an
input node (the name is prefixed withi ) and an output node
(prefixed witho . We need another event stating whether
the prerequisites are fulfilled or not, modeled by the node
Prereq. As we will show later, this will be used by the en-
capsulating action class to determine if the atomic action
can be performed or not, so this must be an output of the
atomic action class.

Figure 4: A class for the atomic action “M found on the vic-
tim” The special event output nodePrereqhas two states;
yesandno for implying that the prerequisites for the atomic
story are fulfilled or not. i e m is the input prerequisite
event ando e m is the effect of the atomic story, and it is
an output node.

Non-Atomic Actions

The representation of Non-atomic actions must ensure that
any possible action it contains (called sub-actions) can be
performed and also that sub-actions are performed until an
end action has been performed. When and end sub-action
has been performed, sub-actions can still be performed, as
long as the last sub-action performed in the action is an end
action. To handle this we make a representation of an ac-
tion that will perform one of the possible sub-actions and
make a several instances of it to perform several of the sub-
actions. In the murder story all atomic actions are marked
as endings of the action they are in, but several atomic ac-
tions can be performed in sequence, e.g. P4 “AskA about
C, whereA first indicates a vague opportunity forC and
then indicates a strong motive forC.

A Non-atomic action class has to make sure that one and
only of its sub-actions is performed in each instance and
that only possible sub-actions can be performed. This is
done by using an instance of each sub-action class, i.e., the
class representing the sub-action, an instance of the con-
straint class in Figure 5 for each sub-action. Evidence will
be entered in theOk nodes to make sure that only legal
sub-actions can be performed. To ensure that at most one
sub-action is performed, a variable with a state for each

Figure 5: The constraint class that is instantiated once for
each sub-action of an action

sub-action and one for nothing happening is created, and a
variable for each sub-action monitoring if that sub-action
can be performed created as a child of this.Sc is the vari-
able describing possible sub-actions, eachChoosablevari-
able monitors if a sub-action is possible, they aretrue, if the
corresponding sub-actions is possible. Note thatSchas Sc
old as a parent, this is to ensure that if nothing happens in an
action instance, nothing will also happen in subsequent ac-
tion instances, of the current action. Also,nothing happen-
ing can only be occur if the last sub-action performed was
an end sub-action ornothing happening. Making sure that
an action ends with an end sub-action is done by introduc-
ing the variableEndwith two states,y andn as a child ofSc
and letting the conditional probability table be constructed
soEnd is in the statey if the sub-action performed inScis
an end sub-action andn otherwise, and entering evidence
ony in the last instance of the action class. Note that ifScis
in the statenothing happening, the last sub-action actually
performed was an end sub-action, sonothing happeningis
also an end. In Figure 6 the OOBN unfolded to a Bayesian
network for an action with two sub-actions, and one event,
e m, is shown, evidence will be entered in the twoOkvari-
ables to ensure that thechoosablevariables are onlytrue if
the prerequisites for the corresponding sub-action are met.

Figure 6: The part of an action class making sure that at
most one sub-action is performed, and that only possible
sub-actions can be performed. Note that the two atomic
actions are calledSch1.1andSch1.2.
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Inputs and Outputs of an Action Class

All that is left for the action class is to make sure that the
appropriate variables are available for the sub-actions, and
that the past is updated according to the actions performed.
This is done by having the union of inputs and outputs of
the sub-actions as input to the action class, and the union of
the outputs of these as output. The input of the action class
ensures that any information that may be needed by a sub-
action is available. The output of an action class ensures
that any changes to events is available outside the action
class instances. As only one sub-actions are performed in
each instance, some of the events that can be changed may
not necessarily be changed. In order for the action class to
have the correct distributions in its outputs we need to know
what these events are before the sub-action is performed. In
Figure 7 a chapter class can be seen. Each output has the
corresponding input as a parent to make sure that if the sub-
action performed does not change the event, the events is
not changed. Furthermore each output has the choosable
variables corresponding to the sub-actions where they may
be changed as parents, and the appropriate output of those
sub-action instances are also parents. We have used parent
divorcing to simplify the conditional probability tables,but
as an example look ato e m, the output of the action class
for the evente m. It can be changed in sub-action 1.1 and
1.2 (Sch11 andSch12), sochoosable1 andchoosable2
are parents along with thee m outputs of these instances.
The conditional probability table ofo e m is the same asi
e m if none of thechoosablevariables are true, otherwise it
will be the same as thee m variable of the instance corre-
sponding to the one that is. The structure and the evidence
on theOkvariables ensures that at most onchoosablevari-
able can be true in each instance of the action class. Note
that the action class should be instantiated several times
where each output is is referenced by the corresponding in-
puts in the next instance.

Figure 7: An action class for an action with eight sub-
actions. The instances have not been expanded for
overview.

Note that the sub-actions may themselves be non-atomic
actions, and that the overall story will also be an action.

An OOBN for the example can be generated automatically
from the specification. We will call an OOBN generated in
this way a NOOBN.

FUTURE RESEARCH DIRECTIONS

The work presented in this paper is still preliminary and
subject to ongoing research. Given an NOOBN, we en-
vision a game engine that, whenever it has to choose an
action, ensures that the game generated will have an end-
ing, regardless of the players actions. It furthermore has to
ensure that the possible continuations of the game will be
interesting, and that two games will not be identical even
if the player always performs the same actions. There are
three problems in constructing this game engine:

1. Ensuring diversity of games.

2. Guaranteeing that the last action of the game is
marked as an ending of the game.

3. Generating interesting games.

Sampling the Actions

Whenever the game engine chooses an action it will start
by entering evidence on the actions already performed in
theScnodes of the NOOBN. We will then sample possible
continuations of the game to make it likely that we get dif-
ferent games, even if everything so far has been the same.
Sampling is done by starting with the first part and hence
the firstScvariable that hasn’t received evidence in this yet.
There are different ways this sampling can be done, one is
to incorporate the probability distribution in the variable by
weighting the possible states with their probability. We will
then sample the nextScvariable given the previous actions.
This however requires a propagation of the network as we
have evidence both before this point of the game (the pre-
vious actions) and later (we want all actions to end with
an action that is marked as an ending. We will continue to
sampleScvariables as long as we have not reached the end
of the overall action. We have reached the end if there are
no more unsampledScnodes. All theScnodes will now
be a complete game, with an ending. Note that we are also
sampling the player actions.

Rating the Game

When choosing the next action, we want to ensure that it
leads to interesting games. This requires a method of scor-
ing a game.

A simplistic approach is to associate a score value with
each atomic action. The measure the value of a story
we can either accumulate the values or compare the val-
ues to some distribution (such as the tension value arc in
[Mateas and Stern, 2003]. Such a simplistic approach will
not capture all the intricacies of a good game, e.g. in a mur-
der story it is usually good form to let the evidence point
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strongly at one of the subjects, only to reveal that this sub-
ject could not have done the crime. Developing useful al-
gorithms to score games based on the narrative content and
other factors is a subject of future research.

Assuming games can be scored, the NOLIST game en-
gine facilitates the rating of each possible next action by
adding the weighting the score of each sampled game re-
sulting from that action with its probability. The next action
can then be chosen among the possible next actions based
on their rating. The chosen action is then performed and
the past updated by it effects, and the process is repeated
until the story ends.
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APPENDIX
In the following table each number defines an atomic ac-
tion. The last line of each entry contains the effects while
the remaining lines are the prerequisites.

1.1.1.1 No evidence for an opportunity is known
M indicating opportunity is found

1.1.1.2 No evidence for an opportunity is known
N indicating opportunity is found

1.1.2.1 No evidence for a motive is known
X indicating motive is found

1.1.2.2 No evidence for a motive is known
Y indicating motive is found

1.1.3.1 It is not known who found the victim
A found the victim,A had vague opportunity

1.1.3.2 It is not known who found the victim
B found the victim,B had vague opportunity

1.1.3.3 It is not known who found the victim
B found the victim,C had vague opportunity

1.2.1.1 It is not known ifB had a motive
B has a motive

1.2.1.2 It is not known ifB had an opportunity
B had vague opportunity

1.2.1.3 B had vague or clear opportunity
A had no opportunity,B had no opportunity

1.2.2.1 X indicating motive is found
C had strong motive

1.2.2.2 It is not known ifC had an opportunity
C had vague opportunity

1.3.1.1 It is not known ifA had a motive
A had weak motive

1.3.1.2 A had vague opportunity,
N indicating opportunity is found
A had clear opportunity

1.3.2.1 B had vague opportunity,M indicating oppor-
tunity is found, it is not known ifB had a motive
B had clear opportunity

1.3.3.1 It is not known ifC had a motive
C had weak motive

1.3.3.2 C had vague opportunity,
N indicating opportunity is found
C had clear opportunity

1.3.3.3 C had vague or clear opportunity
B had no opportunity,C had no opportunity

1.4.1.1 X indicating motive is not found
Y indicating motive is found

1.4.1.2 A had weak motive,
X indicating motive is found
A had strong motive

1.4.1.3 It is not known ifA had an opportunity
A had vague opportunity

1.4.2.1 It is not known ifB had a motive
B had weak motive

1.4.2.2 B had vague opportunity
B had clear motive

1.5.1.1 A had strong motive,A had clear opportunity

1.5.1.2 B had strong motive,B had clear opportunity

1.5.1.3 C had strong motive,C had clear opportunity
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ABSTRACT 

     This paper is a description of our work in creating a 
story director agent which utilises AI techniques. The story 
director controls the storyline in an adventure computer 
game, with the player controlling the hero character, and 
the story director reacting to the player's actions. The story 
is told through subplot-level plans being formulated with a 
case-based planner, and a social simulation system that the 
story director is 'plugged in to', allowing consistent logical 
stories while allowing for player freedom. The system has 
been named OPIATE – Open-ended Proppian Interactive 
Adaptive Tale Engine. 

 

INTRODUCTION 

     This paper follows (Fairclough & Cunningham 2002), 
and (Fairclough & Cunningham 2003); the former proposes 
the system, and the latter describes its development for use 
in multi-player games. After some background, this paper 
describes in detail the AI algorithms used in the system, the 
limitations of the approach, and possible future 
improvements. 

 

BACKGROUND 

     Computer games are currently going through a number 
of contradictory trends. There is a new outcrop of mobile 
and internet-based games that emphasise short bursts of fun 
that are used for advertising, promoting websites and 
services, and even political messages. On the other hand, 
games that people invest more time in, such as adventure 
PC and console games, are becoming larger-scale, more 
complex affairs. This schism is serving to generate a wide 
range of new genres that borrow game concepts from each 
other, and from the older genres, through the short 
evolution of the computer game.  

     Genres that emphasise story and adventure are very 
popular, with 'Spiderman 2' currently topping charts around 
the globe. The current successful model for storytelling in 
games, popularised by GTA3, but initiated with Mario64, is 
to have a series of 'story missions' that advance the plot, 
with a selection of optional missions that enable a feeling of 
freedom of choice in a player. The variability of this model 
is based on the character abilities that the player has, so 
each game seems different, while this basic gameplay 
model is common to a lot of current games. This paper 

proposes a possible next step for this storytelling model, 
abolishing the more traditional pre-scripted main plot for a 
more open-ended, procedural, view of stories themselves. 
This approach has been developed based on previous work 
in the fields of structuralist analysis, and was inspired by 
such contemporary practitioners as Chris 
Crawford(Crawford 2002), Michael Mateas(Mateas 1999), 
Nicholas Szilas(Szilas 1999), Nikitas Sgouros(Sgouros 
1999), Norbert Braun(Braun & Grasbon 2001), and many 
others.  

Some Previous Work 

     AI in storytelling was first concerned with story 
generation as text. In the seventies, Meehan's 
Talespin(Meehan 1977) generated much interest as a simple 
computer storyteller that utilised character-level planning. 
Later, Turner's Minstrel(Turner 1992) expanded on this to 
include author-level goals in a case-based planner. Turner's 
biggest success was in formulating a complete set of rules 
and paradigms for author and character-level planning 
using what he called 'imaginative memory', and analogical 
reasoning, to generate novel situations and plans for the 
characters and author model. 

     Storytelling for computer games has always been faced 
with the problems that occur when a player is given choices 
that could affect the plot. For real-time story generation, it 
has been assumed that these problems can lead to 
combinatorial explosions in complexity for a computer 
story teller, yet our approach demonstrates that this is 
avoidable. Since the OZ project in CMU(Smith & Bates 
1989) began, more and more interest in AI real-time 
storytelling has surfaced, although it is not a technology 
that has been in much use commercially, although Braun's 
work on the Geist project(Braun 2002) has been used in a 
tourist attraction, utilising augmented reality headsets for 
display of characters.  

     Every system that has been developed is necessarily 
focused on a particular genre of story. Mateas focuses on a 
small location with only three characters, for a drama-
intensive story experience. Crawford focuses on using a 
large number of interaction types (verbs) with short story 
segments that can relate to each other. He also provides an 
author tool-kit that enables creation of new storyworlds 
using his technology, but this does not allow for the 
emotional expressiveness of Mateas's approach, and is 
notoriously difficult to use. Nevertheless, his work has 
shown some of the possibilities and promise of interactive 
stories. 

     The challenge of creating a mechanism, whereby a 
player is both engrossed in a story and immersed in a 
world, is one that has been steadily overcome over the 
course of the evolution of computer games. Simulation 
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techniques, such as cellular automata, can enable a greater 
feeling of involvement and freedom in a living world, but 
the traditional concept of a story is incompatible with a 
world like this. Players are seen to create their own stories 
from their experiences in the world, as has been observed in 
'The Sims'.  

     However, a story is not merely a series of causal events. 
Stories have their own innate structures and processes, 
independent of the characters they portray. This was 
asserted in the 19th century by Adolf Bastian(Koepping 
1984), and emphasised by Vladimir Propp(Propp 1982) and 
Claude Levi-Strauss as structuralist theory was developed. 
To enable a simulation-level model of a story, these 
common structures of stories must be simulated using rules 
of dynamics based on the structuralist theory, and they must 
be active in the interactions of the storyworld. A believable 
gameworld can thus be augmented to create events that fit 
into the rules of  world dynamics, but that also fit into a 
suitable story structure.  

     The story structures that we have elected to use are those 
of Vladimir Propp, who analysed Russian Folktales in 1928 
and came up with an extremely empirical methodology for 
classifying his corpus. The applicability of folktale analysis 
to computer game storytelling is compelling, as the nature 
of folktales is ever-changing, allowing for an analysis that 
extrapolates the nonvariant elements of the tales. This has 
enabled the discovery of skeletal structures that can be 
fleshed out differently for each storyworld. 

 

DESIGN 

     This section will deal with the storytelling architecture 
and detail the AI methodology that was used in the 
OPIATE system. The game architecture is detailed in our 
previous work, but consists of a 3D adventure game, with 
characters, objects, and locations being the most important 
components. The characters use a layered architecture and 
feature collision detection, idle behaviours, social 
simulation, attitudes, and goal-directed behaviours. The use 
of objects is how characters perform interactions, which 
generate events. The game engine handles some game 
events, but the independent story director agent initiates 
most events by being aware of the storyworld and giving 
relevant goals to the NPCs (non-player-characters). The 
most important element of the gameworld is the gossip 
system, which provides a dynamic social simulation where 
knowledge of game events is disseminated throughout the 
characters. This allows the player to effect the unfolding of 
the story, as the story director bases its decisions on these 
character dynamics. See (Fairclough & Cunningham 2003) 
for a more detailed description of the current testbed game 
engine.  

Story Modelling 

     Stories are modelled as an interplay between 
autonomous character actions and story director- initiated 
story actions. The autonomous character actions occur as a 
result of a social simulation system, whereby each character 
builds up a set of attitudes for other characters, based on a 
memory of the actions that have happened directly 
concerning them, and actions that they have heard about or 

witnessed. Characters have a gossiping system, which 
propagates information about game events through the cast 
of characters.  

     The story director agent queries the game world about 
character attitudes and locations, and player feedback, and 
bases planning decisions on this information. The plans it 
creates are sequences of character actions, each of which 
can be enacted by any character that fulfills the criteria for 
that action. These are equivalent to Propp's 'character 
functions', defined as 'an act of character, defined from the 
point of view of its importance to the course of action'. The 
system has a case library of plans that were authored based 
on the corpus of Propp's analysis in (Propp 1968). This case 
library encodes the expert knowledge that does not 
represent Propp's expertise, or any one expert's knowledge, 
but the expert knowledge encoded in the folk tales 
themselves, concerning the skeletal structures that define 
the different types of stories Propp analysed. 

     Case-based planning encodes knowledge as a library of 
cases, and deals with new problems through the 
mechanisms of recalling previous similar cases, adapting 
them for reuse, and assessing and storing the resulting new 
solution. Thus, a learning, adaptive system can efficiently 
solve problems similar to old ones. The story director(SD) 
in OPIATE uses the scheme shown below (Figure 1) to 
plan and cast story goals to characters. Each component of 
this process will be detailed in the following sections. 

 

  

 

Figure 1. A flowchart showing the planning process 

 

Suitability of Sub-Plots    

     The case based planning system uses a k-nearest 
neighbour algorithm to find suitable cases based on the 
heuristic shown below (Equation 1). The heuristic can be 
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termed a suitability metric, instead of the normal similarity 
metric used in case based systems. It finds the most suitable 
sub-plot to be enacted given the current state of the 
characters and storyworld, taking into account attitudes of 
the characters to each other, and to the player character. 
The core features that are used in this metric concern roles 
and actions. Roles are occupied by characters when they 
are enacting story functions, and the relevance of a 
character to a certain role is calculated based on past and 
present attitudes and memories concerning the player/hero 
character, and the other characters. Actions are enabled by 
actionObjects that occupy the storyworld, and allow 
characters to perform distinct types of interactions. They 
can all be picked up, given to other characters, and gossiped 
about. 
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     Where Sn is the suitability of case n, Ln is the length in 
functions of case n, Wr and Wa are the relative weights 
attached to roles and actions, and Sri and Sai are the 
suitabilities of the roles and action(s) present in function i. 
Sri is given by Eqn 2, and Sai is given by Eqn 3. 
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     Where #C is the number of characters currently 
available to the SD, and Raj is the relevance of character j 
to the role given by function i. 

Eqn. 3.: ∑
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     Where #A is the number of actions currently available to 
the characters, and Rak is the relevance of those actions to 
the actions required by function i. The relevance values are 
binary, as an action object either fulfils the action given in 
function i, or it doesn't.  

  Case Combination 

     Once an ordered list of suitable cases is found, using the 
quicksort algorithm, a decision is made to use the most 
suitable case (decision diamond A in Fig. 1), or combine 
cases to get a new one. If a hardcoded suitability threshold 
is reached, the former choice will occur, but if a 
combination of cases gets a better suitability, the latter will 
occur. Combination of cases is done on a per-function 
basis. As each function has its own suitability rating, the 
most suitable can be interchanged with less suitable 
functions in the target case. This is done by taking the most 
suitable case and replacing its less suitable functions with 
equivalent, but better scoring ones from the second or third 
ranking cases.  

     An important element in combining cases is to maintain 
integrity of the structures when they are transferred, so 
Propp's groupings of functions are used to facilitate this. If 
a function is selected for transfer, and it has associated 
functions from the source case, these are also transferred to 
the target case. This can entail replacement of target case 

functions, so when the new case is constructed, it is 
reassessed for suitability. The groups are only of two or 
three functions, so this is not a difficult operation. 

Casting 

     Once a suitable subplot plan is selected, it must be 
converted from a list of abstract story functions into a series 
of events in the gameworld, interpretable by the player as a 
storyline. To this end, the story director uses a casting 
system which dynamically casts the game characters into 
eight of the nine possible roles. Propp defined the seven 
roles: Hero, Villain, Mediator, Donor, Helper, False Hero, 
and Princess, and these have been augmented with two 
roles that he mentions, yet in his schema fall into the other 
categories. These are the roles of Family, and King. The 
hero character is always occupied by the player, even if 
they don't act particularly heroic. The usefulness of Propp's 
schema would be reduced if this was not the case. 

     These roles are cast as needed by a subplot. I will 
mention here that the term 'subplot' has been used in this 
paper where in Propp's work and our own previous papers, 
the term 'move' is used. This is to aid readability, as the 
general understanding of 'subplot' is roughly equivalent to 
the sense of Propp's 'move'. The roles required of the 
current subplot are dynamically cast as the subplot is being 
enacted, so that for example, a character can take the role of 
a Donor, and later can be the False Hero if the player/hero 
character falls out of favour with that character.  

     Casting is done using a set of criteria for each role. The 
villain role is filled by the character that opposes the hero 
the most, or else is a character close to that character. 
Opposition to the hero can come out of an attitude 
developed from author-defined backstory, or from events 
that occur in the course of the game. In this way, acts of 
villainy can be carried out by 'henchmen', depending on 
availability of characters. A Mediator can be any character 
that is available and nearby, even if the character is 
antagonistic to the hero. The Donor role can be filled by an 
available character that has not met the hero or has a 
slightly positive attitude. The Helper is filled by a 
previously met character that is fulfilling a positive 
previous encounter. The False Hero character must be a 
character with a previous positive attitude to the hero, who 
has either developed a negative attitude, or else has 
developed a positive attitude to the villain. The princess 
role is one that a character close to the hero can occupy, or 
a character that has not met the hero, but has been pre-
authored as a possible princess character. The characters 
with positive attitudes to the hero can all take the Family 
role, and the King is taken by a powerful character, that a 
large number of characters have positive attitudes to. 

     The specificity of these roles and rules was formulated 
using a familiarity with Propp's work and its applicability to 
the game that has been developed, yet they could be 
editable through a toolkit if this system were to be used for 
other games. The rules are not arbitrary, and have been 
designed to maximise a sense of believability of the 
characters in their enactment of subplots. 

     Once a character is selected for a given function, the 
means of carrying it out is selected through a search of all 
actions available to the character. A character can be given 
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a sub-goal to find and pick up the object, or it can be given 
by another character. The enactment of the story function 
consists of finding the target of the function, animation of 
the actionobject, and the generation of suitable text for 
dialogue. The dialogue is generated with simple verb-noun 
structures, with characters capable of talking about 
characters, objects, events, and attitudes in a simple 
manner. Descriptive or emotional text is not used, and 
syntax is kept extremely simple. Despite this, a story can be 
seen to emerge based on the simple dialogue. 

     Because the system presents stories with animation, and 
is less dialogue-based, it is not suitable to present the output 
of the system here as a listing of dialogue. However, a 
presentation and some video files that illustrate the output 
of the system are available at www.cs.tcd.ie/faircloc/. 

Player Feedback and Numerous Subplots    

     The player can elect to do what is asked of him in 
certain functions, e.g. the Donor function where a character 
tests the hero's worth with some challenge or request, or can 
ignore the request, whereby a recasting of the Donor goal is 
done. If the hero ventures into a new area, with new actions 
and characters available, or if new elements enter his 
current situation as a result of the simulation, an entirely 
new subplot can be selected for enactment (decision 
diamond B in Fig. 1). If this happens, the old subplot is not 
forgotten, but can come back into play if it is found to be 
again suitable for enactment. A set of active subplots is 
maintained, and the player can choose which ones to 
follow.These are the chief mechanisms which allow for 
player freedom of choice in the game, yet because the 
whole case-based planning mechanism works from data 
that is directly alterable by the player, the plot can also be 
directly influenced by player action in this way. For 
instance, if the player is 'liked' by a character, but performs 
some action that alters that characters attitudes towards 
them negatively, a plot with the Falsehero role would be 
more likely to be selected. 

 

LIMITATIONS AND IMPROVEMENTS 

     The OPIATE system is limited by the home-grown 
game engine that is the current testbed. A more believable 
game world would help in evaluating the system's 
usefulness. It was decided not to use an available 
commercial game engine, such as the 'Unreal' engine, due 
to the need for flexibility and the required presence of the 
omniscient story director agent. The game has been 
developed to the point where a player testing scheme is 
possible, for a more objective analysis of the 'storyness' of 
the game experience. This is necessary for evaluation of the 
system, as the assumptions that were made in building the 
system are in question. Some of these assumptions are: 

• That Propp's classification system is correct and 
shows structures that are actually present in tales. 

• That a story can be 'reverse engineered' using these 
structures, and incorporated into a set of character 
dynamics. 

• That sophisticated dialogue is not necessary to 
convey a story, but is used to enhance its quality. 

     The last assumption indicates an improvement that could 
be made to the system by incorporating a more advanced 
natural language module into the characters, which can be 
customised to each character. This would involve an author 
defining 'turns of phrase', colloquialisms, and typical 
adjectives that a character uses. This could form part of the 
social simulation, where characters can grow to use the pet 
phrases of the characters closest to them, and serve as an 
implicit indication of social connections.  

     An important component of creating a story in this 
system is the authoring of the game world and the 
interactions present in it. This is the chief method of 
authoring the high-level 'flow' of the story, defining the 
paths of movement and interaction through the game 
environment. By placing certain actionobjects in key 
locations or with certain characters, an author dictates the 
sort of interactions that will occur in certain stages of the 
game. An author also defines a backstory for the characters 
by giving them attitudes and memories of events. These 
attitudes and events are equivalent to the in-game ones, and 
effect the character dynamics in the same way. 

     The gameplay in our demonstration game is quite 
limited, and poses no real challenge to a player. If the 
player chooses to ignore a puzzle or challenge, then they 
can simply pursue a different subplot. However, there are 
only a limited number of puzzles authored, and no real 
possibility for emergent puzzles in the game. Puzzles are 
authored as specific problems a character wants solved, or 
the required use of a certain object to progress. As there are 
not a large number of locations (22), the player's options are 
quite limited. There are 28 characters and 18 types of 
actionobjects, however, so the player's choices primarily lie 
in their interactions with other characters. Characters can 
develop desires for certain types of object as a result of a 
subplot requiring it, but these are not authored puzzles, and 
play out somewhat artificially, as the desire is not based on 
any internal drives on the part of the character model. In a 
more large-scale, fully simulated world, the OPIATE 
system should perform better, with characters' problems 
and desires emerging from more fully realised character 
simulations. 

 

 

Figure 2: A screenshot of the demo game. 
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     The OPIATE demonstration game is called 'Bonji's 
Adventures in Calabria' (Figure 2) and features three 
distinct 'locales' with about 8 locations in each. Progress 
from locale to locale entails solving a number of puzzles 
that are incorporated into the dynamic storytelling, with 
characters taking different roles depending on the player's 
interactions. However, the variability of the stories is 
limited by the initial setup of the storyworld, so the first 
subplot to be selected is always the same. Once a locale has 
been reached, the player can go back through the locales, 
revisiting characters and prompting new subplots to be 
selected based on the history of interactions.  

     Non-player characters can move around locales, but not 
between them. However, every time a subplot is 
successfully concluded, and as long as the subplot finishes 
with the 'Wedding' character function, a new character is 
available for player control. Propp's Wedding function is 
used as the hero's final reward at the end of folktales, and 
the decision was made to use this function to concurrently 
reward the player, by allowing them to control a new 
character. When a new character is selected, the previous 
hero character behaves like all the other NPCs, gossiping 
about attitudes and events, and is available for story goal 
enactment, consistent with previous interactions. This 
character can then be re-selected for use at any time. It 
would be theoretically possible for the player to gain 
control over every character in the game. 

     Overall, the system has turned out to be a success, 
blending ideas from a number of different projects to 
achieve an attractive option for a storytelling paradigm in 
computer games. The approach is experimental and not 
fully realised yet, but could help in developing more 
flexible story experiences for players. Future work on the 
system could help in its applicability to other game engines. 
This will neccesitate the building of an author toolkit to 
allow for greater author control of the processes that the SD 
uses to direct the story, and a plot script editor for designing 
new subplots and new types of character function, outside 
the ones Propp defined which were used in this work. One 
serious limitation of the approach is that it does not seem to 
be incompatible with the current trend of pre-recorded 
speech in games. However, some games, notably ICO by 
SONY, manage to tell a story with almost no dialogue at 
all, so the more action-based storytelling approach of 
OPIATE could be useful in this type of game. 
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ABSTRACT 
 
We propose a new formal approach for the design process of 
computer games, which involves the modeling of 
spatiotemporal relationships. Logical and temporal 
transactions are modeled using Petri Nets and topological 
relationships of the game universe by hypergraphs. For 
splicing these structures, we introduce connections which 
relate hyperedge replacement with the reachability tree of 
the Petri Net. By using these constructs flexible changes and 
the validation of certain properties of the missions can be 
accomplished.  
 
INTRODUCTION 
 
Game design is a difficult task that combines artistic and 
technical processes. Considering the interactive nature of 
computer games and, especially, their main goal (to 
entertain), the author must leave controlled freedom to the 
player (Bates 2001). The player has to be confronted with 
complex problems which are neither too easy nor too 
difficult to solve, making sure that game experience leads to 
a succession of goals within a reasonable time (Gal et al. 
2002). In addition, the player must have a feeling of freedom 
in this interactive world, even when he is guided towards a 
solution in an unconscious way. To accomplish this, the 
game designer has to create “one or more causally linked 
series of challenges in a simulated environment” (Rollings 
2003). This is not an easy job, as the following example 
shows.  
 
Example: (room-key error) Two rooms A and B are only 
connected by a closed door, the avatar of the player is 
located in room A and its task is to get into room B. To 
achieve this he has to unlock the door with the help of a key. 
But the key is located in room B, thus the avatar will never 
be able to open the door.  
 
 
 
* The author wants to express his sincere gratitude to Prof. Natkin and the 
CEDRIC-CNAM for the invitation to a research visit as Professeur Invité at 
the CEDRIC-CNAM during summer 2004.  
 

Although this seems to be a trivial example, in real games 
different tasks can change the topology of the virtual space 
in a quite complex way, such that it is not easy to prevent the 
game designer from these or similar errors.  
 
In this article, we concentrate on the modeling of 
spatiotemporal relationships of games. We start by giving a 
short overview of common design practices. The 
differentiation into game and level design is reflected by the 
two following sections. Special Petri Nets are used to define 
the missions of a game, and hypergraphs for characterizing 
the topology of the virtual space. To bring these two 
structures together we define after that connections and 
describe their basic applications.  
 
GAME AND LEVEL DESIGN 
 
In this article we consider the design process of a computer 
game from industry’s classical point of view. This process is 
decomposed into two phases: Game Design and Level 
Design. For the description of both a common method is to 
use game design documents. These documents define the 
different elements of game design and illustrate the game 
concept: scenario, game and level missions, character 
description, etc. (Bates 2000, Rollings 2003). It becomes the 
reference document for all production team members. 
 
Game creation starts in most of the cases by an original idea 
and the development of its scenario. Thus in a first 
conceptional stage the principal aspects of the game universe 
are defined (Gal et al. 2002): Epoch and style, context, goals 
to be reached, main type of objects involved, users game 
perception, etc. The definition of the game at this stage is 
known as the Game Design.   
 
Level Design is the next specification stage. A game level 
consists of a virtual space, puzzles, main actions and a set of 
objects to interact with in order to complete a given goal. 
The difficulty of puzzles can be defined by the geometry and 
topology of space, logic, action sequences and objects 
localization. Each level has to be meaningful for the game, 
and goals have to be the central element unifying the level 
theme (Bates 2001). With this in mind, a game designer’s 
task is to motivate the player by balancing objects behavior 
and game rules. Thus he has to take into account at each 
stage the space description, the positioning of objects in the 
virtual world, the logic of actions sequences relating these 
objects and the constraints caused by the topology of the 
virtual world. 
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PETRI NETS 
 
We use Petri nets to model the ordering of action sequences 
in a game. This approach allows us to describe the logic 
structure of the missions in the game. The advantage of 
using Petri Nets (PN) is that they can be represented either 
by graphical or mathematical models, depending on model 
complexity and application context. (Peterson 1981). The 
following discussion is based on (Natkin and Vega 2003) 
approach. 
 
PN game models are composed of transactions (cf. Figure 
1). Transactions represent the atomic actions of the player, 
i.e. only one transaction can be executed at a time. 
Transactions can be in one of tree states: not started, 
executing or finished.  

 
Figure 1. Basic Model of a Transaction.  

 
A transaction net N = (T,G) is a set of transactions T, which 
are combined by three basic constructs. A relation between 
two transactions is denoted by G. Transaction nets describe 
possible choices the player has during the game. Given two 
transactions a and b, they can be combined as shown in 
Figure 2. Each construct represents the possible sequence in 
which a and b can be executed. In Figure 2, the left construct 
show the case where a and b are not related (i.e. they can be 
executed in any order). In the center construct a is before b, 
which means that b can only be executed if a has been 
executed. In the right construct if a is executed b cannot be 
executed.  

Figure 2. Relations between two Transactions a and b. 
 
By combination of constructs, more complex semantics can 
be generated e.g. mutual exclusion between two transactions 
(i.e. if one transaction is executed, then the other one can 
not). 
 
The reachability tree of a Petri Net generates a Petri Net 
language (cf. Diaz 2001). A sequence of firing transitions 
generates the corresponding strings. The reachability tree of 
a transaction net describes all possible sequences of atomic 

player-choices. In transaction nets, transactions are atomic, 
thus we can merge the Begin and End transition of a 
transaction into one letter, generating the language L(N). 
Applying these concepts to the transaction net on Figure 2, 
the left construct in Figure 2 generates the strings {a, b, ab, 
ba}, the middle construct {a, ab} and the right construct {a, 
b, ba}.  
 
Example: The former approach is applied to Silent Hill 2 
(Konami 2002), a horror-adventure game that takes place in 
a mysterious and almost deserted town. The player controls 
an avatar (James) with unclear goals at the beginning. To 
accomplish his mission, he must explore the environment, 
fight against enemies and collect objects (keys, notes, 
information, etc.) to solve puzzles. The game starts at a 
parking bathroom outside town. 
 

 
Figure 3. Silent Hill 2 First Level Transaction Net. 

 
The main action sequence the player needs to execute to 
complete the first level is explained next (cf. Figure 3):  
 
(a) get the map from James car and hit the road to Silent 
Hill.  Once in the town, (c) win the fight against a creature 
in order to be able to continue. (b) Loosing the fight means 
that the game is over. After winning the fight, James can 
execute the next four actions in arbitrary order: 
(d) Recover an unclear inscription from a weird monument.  
(e) Look at the map in the trailer.  
(f) Find a second map in Neely’s Bar.  
(g) Find the apartment key on a dead body. 
(d), (e) and (f) are optional actions that can be repeated an 
infinite number of times with out changing the course of the 
game. (g) is mandatory and marks the end of the first level. 
After this, James is able to (h) enter the apartment to begin 
the next level. 
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SPATIAL RELATIONSHIPS 
 
Besides describing the mission’s logical structure (cf. the 
previous section), describing the game world topological 
properties and its evolution is also important.  
 
There are different approaches to describe spatial 
relationships. One is to use visual languages (Haarslev, 
1996) where description logic is used to combine topological 
and spatial relations and applications can be found in 
geographical information systems. A common way for 
describing topological relationships is to use the usual point-
set topology with open and closed sets. In (Haarslev, 1996) 
an overview of different concepts is given, where often the 
interior and the boundary of sets are also taken into account. 
We do not follow this fine grained typology, but use instead 
a much simpler concept where we do not take into account 
the boundaries of sets. 
 
In (Flury et al. 2003) an overview of location models in 
pervasive computing is given, where they establish the term 
locus / loci for location entities (e.g. regions of physical 
space) and locants for locatable entities, which can be 
passive or active objects (like a user). We adopt these terms 
and will denote a region of the virtual space as locus. In our 
approach, we do not model locants explicitly, but we 
concentrate instead only on the connections between 
different loci. The representation we introduce is a locus 
graph, where loci represent some subsets of space and their 
structural relationships are described by edges. These 
relationships are expressed here by (directed) hypergraphs.  
 
Hypergraphs are generalizations of graphs, for a formal 
description and a thorough discussion of hypergraphs cf. 
(Drewes et al. 1997). For the presentation in the article, we 
take the somewhat simpler definition of (Gallo et. al. 1992). 
A hypergraph H is a pair H=(V,E), where V is a finite set of 
vertices (or nodes) and 1{ , , }mE E E= K  with iE V⊆ for 

i=1…m is the set of hyperedges. Clearly, when | | 2iE =  for 

all i, then the hypergraph is a standard graph. Additionally, 
by a finite nonempty set C of labels and a function 

:lab E C→ the hyperedges can be labeled. 
 
A directed hyperedge is an ordered pair E=(X,Y) of (possibly 
empty) disjoint subsets of vertices. X is the tail of E and Y its 
head. A directed hypergraph is a hypergraph with directed 
hyperedges, which we will denote hypergraph in the 
following for simplicity. Petri Nets can be modeled by 
hypergraphs and also (ordinary) directed graphs. Given a set 
of vertices V and labels C the class of all directed 
hypergraphs over C with these vertices is denoted by H(C).  
 
To construct the topological relationships, the virtual space 
of a game is divided into loci, which are represented by 
nodes V in a hypergraph. Each locus is a pathconnected 
subset of the virtual space, which means that the avatar can 
move to every point in the locus at any time of the game if 
he is within the locus. Typical examples for loci are the 
rooms of a house, or special zones in an outdoor area. The 

set of loci does not change during the game, it is fixed. 
Therefore the partitioning of the virtual world into loci 
defines all the possible places of interest which have to be 
taken into account for the game. Note, that loci do not have 
to be maximal with respect of the pathconnection property, 
which means that it is e.g. possible to divide a room into two 
loci (the left and the right half) while the avatar is able to 
move freely within the room.  
 
The ability for an avatar to move from one locus to another 
at a certain state of the game is modeled by an hyperedge iE . 

Because the hypergraph we use is directed, it is possible to 
model one-way connections, where it is only possible to 
move an object from one locus (the tail of the hyperedge) to 
another (the head), but not the same way back. Note also, 
that the hypergraph is not unique because there may be 
several ways of defining the corresponding hyperedges. We 
use hyperedges because they have more possibilities for 
presenting spatial relationships than edges from ordinary 
graphs, which can only connect two nodes.  
 
While playing the game, the hypergraphs may change, i.e. 
certain hyperedges can be replaced by others or even vanish. 
Formally this can be described by hyperedge replacement cf. 
(Drewes et.al. 1997). As mentioned before, we assume that 
the decomposition of the virtual space into loci is fixed and 
does not change during the game. 
 
Example:  In Figure 4 a map of the first part of Silent Hill 2 
is given (non-real scale).   
 

 
 

Figure 4. Partial Map of Silent Hill 2. White: Street, 
Grey: Building/Area, Black: Roadblock, 1 Parking 
Place, 2 Fountain, 3 Church, 4 Backyard, 5 Tunnel, 6 
Swamp Monument, 7 Neely’s Bar, 8 Trailer, 9 
Apartment Gate Key, 10 Apartment. 

 
The white stripes represent the streets, the grey areas 
buildings or open areas. The circled numbers represent 
special subsets of the virtual world where the player 
experiences special actions or has to fulfill specific tasks. 
These are taken as nodes in the hypergraph of Figure 5, 
where the corresponding spatial relationships between these 
loci at the beginning of the game are represented. 
Hyperedges are represented as arrows with the label of the 
hyperedge within a square. Note, that the hyperedge A and 
A’ are not connected with any nodes (especially not with 
node 1), which reflects that at the beginning of the game, the 
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protagonist can not leave the parking place. For graphical 
representation, we also gather several hyperedges into the 
edge D, which means that you can move freely between any 
of the nodes 3 and 4.  

 
Figure 5. Spatial Relationships at the Start. 

 
CONNECTIONS 
 
The change of the topology of the virtual world can be 
modeled by hyperedge replacement. For a formal definition 
of general hyperedge replacement, we refer to (Drewes et.al. 
1997). For the sake of simplicity we only introduce in this 
article the replacement of one hyperedge at a time. But all of 
the following constructions are also possible for general 
hyperedge replacements on hypergraphs. 
 
Let the set of vertices V be fixed, C a set of labels and H(C) 
denote the corresponding set of hypergraphs over C, let 
A V⊆  be a hyperedge to be replaced by another hyperedge 
B V⊆ . Then the replacement [A/B] is a function [A/B] 
from H to H, where a hypergraph H is mapped to the 
hypergraph H[A/B] by removing A from H and adding the 
hyperedge B to H. If the hyperedge A is labeled, then the 
new hyperedge B inherits this label. 
 
As an example, the hyperedge e = ({},{}) with lab(e) = A in 
Figure 5 does not connect any node. It is replaced by the 
hyperedge e’= ({1}, {2}) with lab(e’)=A in Figure 6, which 
actually connects now the nodes 1 and 2.  
 
In the following we introduce connections relating 
hypergraphs with transaction nets.  
 
Definition: Let V be a set of vertices, C as set of labels, 
H(C) be the corresponding set of hypergraphs and N =(T,G) 
a transaction net with a corresponding language L(N). Let 

{ }ˆ *, ?T T= ∪  be the augmented set of transactions. Then a 
connection is a pair ([A/B], p) where [A/B] is a replacement 
and ˆ *p T∈ . Here ˆ *T  is the set of all strings of T̂ including 
the empty string. We call [A/B] the replacement and p the 
pattern of the connection. 
 
Now the semantics of a connection ([A/B], p) is defined as 
follows. Given the overall mission by a transaction net N 
and the initial spatial relationship of the mission by a 
hypergraph H. By walking through the transaction net, a 
string s of increasing length is created. If the string s 
contains the string p then the corresponding replacement 

[A/B] is applied on the hypergraph. The wildcard symbols 
“*” and “?” have the usual semantics known from common 
pattern matching programs, where “*” means “arbitrary 
symbols” and “?” “at most one symbol”.  
 
Example:  We consider again the Silent Hill example. After 
having examined the car, the avatar is able to leave the 
parking lot. This can be modeled in the following way. Let 
W=({},{}) and X=({1},{2}) with lab(W)=lab(X) = A and 
Y=({},{}) and Z=({2},{1}) with lab(Y)=lab(Z) = A’ be 
hyperedges. Then the connectors are defined as 
 

([W/X], a) and ([Y/Z], a), 
 

where a is the transaction from Figure 3. 

 
Figure 6. After investigating car in (1), 
 the player can leave the parking place. 

 
In the same way, that only after killing the monster in the 
tunnel the avatar is able to leave the tunnel is modeled by 
 

([K/L], c) and ([M/N], g), 
 
with K=({},{}), L=({5},{4}) and lab(K) = lab(L) = C’ 
and M=({3,4},{3,4}), N=({3,4,6,7,8,9}, {3,4,6,7,8,9})  and 
lab(M) = lab(N) = D. (cf. Figure 7).  

 
Figure 7. After the fight with the monster is won. 

 
Finally the accessibility of the apartments after receiving the 
key (cf. Figure 8) is expressed by  

 
([P/Q], g) 

 
with P=({3,4,6,7,8,9},{3,4,6,8,9}), and Q=({3,4,6,7,8,9,10}, 
{3,4,6,8,9,10})  and lab(M) = lab(N) = D. (Note that for 
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presentation reasons we collapsed the nodes of several 
hypergraphs into D). 
 
Given a transaction net, an initial hypergraph and some 
connectors, it is also possible to add some additional 
conditions on the connectors, e.g. that the pattern of a 
connector appears in every word of the transaction net, or in 
at least one. This can be easily verified by standard 
algorithms on Petri Nets. 

 
Figure 8. After getting the key to the apartment. 

 
These instruments can be used for new methodologies in the 
game design process. One method would be to start with the 
map of a mission and define the replacements corresponding 
to certain transactions. After these are defined by 
connectors, the overall logic can be developed by connecting 
these transactions or adding some additional ones to build 
the overall transaction net. The opposite way is also 
possible: start with a transaction net, construct a map and 
define the connectors. In general, game design is a non-
linear process which will follow neither of the ways in a 
strict manner. For this case it is also possible to switch forth 
and back between changing the transaction net and the 
connectors or even the map during the design.   
 
The formalism can also be used to validate certain 
spatiotemporal relationships. To test if certain nodes in the 
hypergraph are connected after specific transactions where 
activated, one has to create the corresponding hypergraphs 
for all the words where the transactions appear, and test with 
standard algorithms (cf. Gallo, 1993) if the nodes are 
connected. 
 
To test if certain nodes are connected at all, one has to 
check, which kind of patterns of the connectors actually can 
be found in the language of the transaction net, create the 
corresponding hypergraphs and check for connectivity.  
 
Also the room-key problem of the introductory example can 
be solved, by checking if two nodes are connected before 
one applies a connector. More general, one can also think of 
defining a sequence of sets of nodes and a sequence of 
transactions where the interconnections of the nodes are 
conditions for the firing of the transactions. 
 
CONCLUSIONS AND FURTHER RESEARCH 
 
We introduced a new methodology for combining spatial 
and temporal relationships in games. For the modeling of the 

spatial relationships we used hypergraphs. But because Petri 
Nets also can be modeled as hypergraphs, it would be 
interesting supplying hypergraphs also with semantics of 
Petri Nets. In this case it has to be investigated, what 
actually then could be modeled by the tokens in the spatial 
hypergraphs and how this Petri Net can be connected to the 
transaction net in a meaningful way.  
 
Although in principle it is possible to express multiplayer 
missions, the current framework has to be extended to 
support the special needs of multiplayer games (e.g. how to 
support cooperation between players). This is also related to 
the question, how other objects in the game (e.g. equipment, 
weapons or power-ups) can be represented in the 
framework.  
 
For an evaluation it is thought of implementing a test 
environment. However, the task of providing game and level 
designers with an appropriate and intuitive user interface has 
to be taken into account. 
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ABSTRACT 
 
The majority of information that we perceive from our 
real-world environment is of audio-visual nature. 
Virtual worlds, which are utilized in computer games 
to line out the story’s stage, are composed of visual and 
auditory environments. These environments are 
designed to provide sufficient information for the 
interaction and exploration of these worlds. The 
authoring – or content creation – of such environments 
can be a very tedious and time consuming task. In this 
paper we focus on a specific chapter of game 
authoring: The authoring of auditory environments for 
virtual worlds. Many of the tools available for auditory 
authoring focus on visual cues rather than on auditory 
cues and common hearing behaviour. We compare 
several existing programs towards their applicability 
for authoring audio-visual as well as audio-only 
applications. In addition, we propose a new system, 
that allows the authoring of auditory environments 
through a non-visual interface by solely utilizing sound 
and specially designed interaction techniques. Our 
work is motivated by the current development of such 
an authoring system for virtual, auditory spaces. The 
implementation is work in progress and currently exists 
as prototypic application.  
 
KEYWORDS 
 
Authoring, sound, auditory environments, audio-only 
applications, sonification, interaction. 

 
INTRODUCTION 
 
The design and development of computer games is a 
very time and resource consuming venture. Unlike 
during the earlier days, where computer games could 
be created by single persons or small groups, today's 
games easily can cost several million dollars and take 
numerous employees and years to complete. The small 
fringe market of electronic games has evolved into a 
huge, global business. Today's games are not only 
bigger and more complex, they also feature unseen 
graphic and sound effects, making these games more 
realistic then ever before. 
 

To develop such games, many groups are working 
collaboratively for years on various aspects of the 
game, ranging from 3D game programming, computer 
graphics and design over concept-art to game authoring 
(Watt and Policarpo 2000). The authoring of a game 
can be seen as the final assembly step where all the 
different parts are put together. The graphics and assets 
are imported into the game engine and connected with 
story related game events. The same procedure applies 
to sound, AI and all the other game elements. Many 
proprietary tools have been developed for game 
authoring and are often shipped with freely available 
game engines (Fly3D). 
 
In this paper we concentrate on the auditory authoring 
of virtual, 3-dimensional worlds. This authoring 
includes the setup of auditory environments for audio-
visual and with a particular focus also on audio-only 
applications. The acoustics of many games in the 
earlier days was often limited to beeps of varying 
length and frequency. Later, with the introduction of 
home computers like the Atari, Amiga or the 
Commodore C64, midi music and the playback of more 
complex sounds were possible. With the advent of 
additional sound hardware in the beginning of the 90s, 
stereo sound and advanced midi music using wavetable 
synthesis were possible and warmly welcomed by the 
gaming industry. Aureal and Creative Labs added a 
new dimension with the introduction of 3D sound in 
the end of the 90s (IASIG 1997). Three-dimensional 
sound moved quickly into the focus of game 
developers and players and is now a well established 
standard in many computer games (Menshikov 2003).  
 
Nowadays, the sound engines, which were designed to 
handle all the audio processing, have evolved by a 
large magnitude and many game developers devote to 
audio processing more and more attention. Several 
technologies have emerged that support software or 
hardware accelerated rendering of 3D sounds and room 
acoustics (Gardner 1999). While playing computer 
games, the most active senses are vision and hearing. 
But the visual and the auditory field of view are two 
independent sensory systems, that respond to different 
activations and highlight different parts of our local 
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environment (Goldstein 2001). Through these 
differences, hearing provides us with information that 
is often distinct from the visual perception and used to 
enhance the cognition provided by the eyes. Hearing is 
often considered to drive the attention: The ears are 
steering the eyes. Adopting this understanding to game 
authoring, methods that highlight on auditory cues 
rather than visual cues can be used to model acoustic 
spaces more intuitively. 
 
So far, many of the existing auditory authoring systems 
used in the industry for film and computer games are 
based on visual cues, where sound sources are selected 
through mouse interaction and parameters are defined 
through visual interfaces (EAGLE 2004). Various 
programs arrange sounds in virtual tracks, in which 
they can be composed together for surround sound 
rendering (Maven3D 2004). 
 
Although, some of the games developed still utilize 
only stereophonic sound, in this paper we explicitly 
focus on three-dimensional sound and acoustic 
rendering. We provide an overview of common 
auditory authoring software with the focus on creating 
entertaining audio-visual and audio-only applications. 
At the end we will concentrate on our new approach for 
authoring auditory worlds through sound alone. 
The paper is organized as follows: In the next section 
we give an introduction to auditory environments and 
compare them with their visual counterpart. As the 
focus is slightly on non-visual applications, special 
assumptions are made to provide additional 
information for navigation and orientation within these 
auditory spaces. The following section  discusses state-
of-the-art audio authoring applications as they are used  
throughout the game and film industry. We highlight 
their advantages as well as show their limitations 
towards authoring non-visual worlds. In the following 
section, we explain how the auditory authoring process 
can be improved and how non-visual authoring tools 
can be designed to aid in the authoring process. In the 
end we will summarize the work and state possible 
directions for future improvements. 
 
AUDITORY ENVIRONMENTS 
 
Auditory Environments are much like visual 
environments. The only difference is that these 
environments are perceived by hearing instead of 
vision. The environmental information conveyed 
through sound is usually different than the one through 
vision (Goldstein 2001). Auditory elements, such as 
object sounds, music and speech can be used to model 
a scene in virtual, auditory worlds and to describe the 
environment through sound alone (Röber and Masuch 
2004). These auditory scenes can vary as much as 
visual scenes and can also be grouped to form a larger 

surrounding with smooth transitions from one auditory 
environment to the other. Special care has to be taken 
with the modelling of these transitions. For non-
interactive environments, like movies, these transitions 
can be previously defined and setup in advance to 
precisely match their desired effect. For interactive 
environments, like computer games, these transitions 
have to be fine-tuned during the game play depending 
on the games status and the players actions. By 
employing a smart blending between the environments, 
smooth transitions are possible within the auditory 
display for both, object-sounds and music (Hämäläinen 
2002). 
 
We define auditory environments as the audible 
analogue of a visual scene which is composed of 
auditory elements describing the objects in this 
scenery. Similar to the real world, virtual worlds are 
constructed of different perceptible environments that 
are intertwined. In audio-visual applications, each 
scene consists of definitions for the visual and the 
auditory part. 
 
As the visual and the auditory field of view are diverse, 
the information conveyed through auditory channels is 
not necessarily the same as the one which is depicted in 
the visual part. While most applications rely mainly on 
visual cues to convey the majority of information, 
many of them utilize sound as additional attractor to 
increase the efficiency of the display. Some 
applications have been developed that only use non-
speech sound to transmit information. Many of these 
applications originate from data sonification (Speeth 
1961) and applications to aid in the navigation and 
orientation of the visually impaired (Strothotte 1995). 
 
The focus of so-called auditory displays is to convey 
information through sound alone. Although most of the 
applications are developed for the blind, many of the 
techniques can also be used by sighted operators to 
utilize sound as enhancement for visual perception or 
for mobile applications where vision and the demand of 
free eyes are mandatory. Examples are audio based 
guiding systems and audio-only games. The Audio 
Games website (AudioGames) contains some good 
introductory articles about this topic. Most of these 
games use the narrative to develop an underlying story 
and the most successful genre are Adventures. Drewes 
(Drewes 2000) developed an immersive audio game, 
employing wearable computing and augmented reality 
technology. Targett et. al. (Targett 2003) examine the 
possibilities of using audio-only games for therapeutic 
applications. They discovered that playing audio-only 
games is not only fun for both, sighted and visually 
impaired, but can also be used to develop certain skills 
in auditory perception.   
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(a) Visual scene (Syberia 2002). 
 

 
 

(b) Auditory scene. 
 

Figure 1:Visual and auditory environments. 
 
For the rendering of acoustic scenes, it is more 
important to focus on the clarity and effectivity of the 
display rather than on physically accurate rendering. 
Special sonification and interaction techniques have 
been developed to convey the information and to 
provide the player with enough intelligence for 
orientation, navigation and object interaction (Röber 
and Masuch 2004). 
 
An auditory environment is composed of object 
sounds, music and speech. These auditory elements are 
sufficient to convey all the information needed.   
Figure 1 shows an example scene which is represented 
visually (Figure 1a) and through auditory elements 
(Figure 1b). In general, less information can be 
transmitted through acoustic channels. To compensate 
for this deficiency in audio-only applications, the 
auditory environment has to be enriched and special 
sonification and interaction techniques have to be 
employed. Every object that is part of such an acoustic 
environment is audible and can be described through 
auditory textures. Each of these sound textures is a 
collection of different sounds that describes an object 

in different situations or under varying conditions. 
Sound types that are used for the compositing of 
auditory textures are: 
 

• A general object sound, 
• Several action or status changed sounds, 
• A call sign for the radar, and 
• A verbal description. 

 
The general object sound is the acoustic representation 
for this object in its usual state. This sound is audible if 
the player is within a pre-defined range for this object. 
Action and status changed sounds are used to 
characterize a current activity or changing situation for 
this object. These sounds are played only once, e.g. 
clicking a button, but can also activate a different 
general representation for this object, e.g. switching on 
a radio. The radar call sign and the verbal description 
are two additional auditory icons, that are used to 
describe the object and to identify its position. These 
are activated on request and only played once.  
 

 
 

Figure 2:Auditory texture (Telephone). 
 
Figure 2 sketches the idea of auditory textures using a 
telephone as an example. The sound texture consists of 
a total of 9 sounds including silence, four action sounds 
and three status changed sounds. Some objects may 
only have one general object sound, like a wall we can 
bump into, while other objects can have many layers of 
different sounds. Which sounds are selected for the 
object representation depends on the underlying story 
engine and the player’s interaction. The selections of 
sounds can be managed through a story engine to assist 
the player in the game play and to push the story 
forward. Therefore, these acoustic textures can also be 
classified as story-related sound textures. Similar to 
story-related sound objects are environmental sound 
textures, which are mentioned here for completeness, 
but are not further discussed in this paper. These 
textures describe an objects physical state and the 
interaction between several objects. Story- and 
environment-related sound textures share many 
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similarities. The environmental audio texture is 
composed of sounds that characterize the object in 
different situations. Depending on the physical state of 
this object, one or more of these sounds are selected 
and composed together. An example would be the 
difference in sound at varying weather or road 
conditions from the tires of a moving car. The 
authoring of these textures works similar as with the 
story-related textures, except that here several sounds 
can be composed together to precisely meet the current 
environmental settings. Which sounds are used 
depends on the underlying physic engine which models 
the environment.  
 
The field of auralization is concerned with the correct 
rendering of the acoustics in a virtual scene. Often used 
techniques involve 3D sound rendering through 
binaural differences and HRTFs1 as well as an acoustic 
simulation model for environmental reverberation 
(Begault 1994). For the latter, statistical 
approximations like EAX are commonly used to 
simulate the reverberation for a specific environment. 
These approximations are often sufficient enough to 
convey general information about the environment, but 
fail in the recognition of special places where 
information is acquired through the analysis of 
reflected sound. 
 
Another – still game related – interface are in-game or 
shell menus, which are used to adjust game specific 
parameters, like loudness, or allow to load a previously 
saved game. In audio-visual applications, especially in 
computer games, many commands are additionally 
commented through an auditory feedback sign. With 
the focus on non-visual applications, auditory displays 
and auditory user interfaces (AUI) are utilized for these 
settings (Begault 1994). For the interaction with these 
menus, similar methods apply as for the non-visual 
authoring, see Section 4. 
 
Depending on the type of application (audio-visual or 
audio-only) different auditory environments have to be 
created to communicate the information that is 
necessary for the later orientation, navigation and 
object interaction. In the following sections, a rough 
overview of state-of-the-art audio authoring tools and a 
definition of requirements for non-visual authoring is 
presented. In the section after, we focus on our new 
approach, highlighting a non-visual authoring 
environment for audio-only applications. 
 
AUDITORY AUTHORING OF GAMES 
 
Auditory authoring is the process of designing, editing 
and integrating auditory information into a virtual 

environment. This is done in two steps, where first the 
required sounds and music are arranged and composed 
and later integrated into the virtual environment. This 
integration includes the definition and the connection 
of sounds and music to gameplay events. 

                                                           
1 Head-related Transfer Functions 

 
For the auditory authoring we mainly focus on the 
second part, the integration of sounds into the virtual 
environment. Music and speech are both placed at 
areas within the environment and activated through the 
story engine. Additionally, the narrator can be triggered 
through the player for assistance and for verbal scene 
descriptions. Based on virtual, auditory environments, 
two groups can be identified for the authoring process: 
 

• Environment-related and 
• Story-related authoring. 
 

The integration of sound in the environment includes 
the specification of the sounds location and the 
possible connection to geometrical objects or regions. 
Additionally, it can include the setup of parameters like 
loudness, range or directional performance. For the 
integration into the story line, events are defined that 
act as switches between the different layers of the 
objects story-related auditory texture. If an object 
additionally uses an environment-related auditory 
texture, these events are defined by the physics engine 
of the environment. 
 
For the authoring we assume that the sounds are 
already engineered and we have a large variety of 
sounds which only need to be integrated into the game 
and connected with the game play events. With the 
focus on audio-only environments, we distinguish 
between authoring for audio-visual and audio-only 
applications. 
 
Some basic functionalities which have to be supported 
by the authoring environment include the import and a 
proper sonification of the underlying geometrical data 
of the virtual environment, as well as standard preview 
and exploration techniques that allow for orientation, 
navigation and object interaction. For the sound 
authoring, we have to be able to perform the following 
tasks: 
 

• Select, create and remove sound sources, 
• Placement of sound sources (connection to 

objects or areas), 
• Setup of sound parameters (loudness, range, 

attenuation etc.), and 
• Setup of background sound sources. 

 
Sound sources are created within the geometrical 
representation of the environment and can be either 
autonomous or connected with scene objects. Sounds 
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or auditory textures are selected and assigned to these 
sound sources and parameters with sound typical 
properties like volume, range or attenuation can be 
adjusted. Many programs additionally allow the setup 
of music and the integration of narrator’s comments, as 
well as simple settings for general background and 
environmental sounds. 
 
The object sound authoring is performed in 
combination with the environmental sound setup and 
includes the following actions: 
 

• Definition of sound textures, 
• Selection of sounds, 
• Setup of sound parameters (loudness, range, 

attenuation etc.), 
• Definition of events and actions, and 
• Switch on/off sound sources or sound groups. 

 
This is basically the construction of story-related 
auditory textures and the definition of events that 
switch between these different object sounds. This 
includes parameter specifications for the individual 
sound layers as well as the group behaviour of sound 
objects. These audio textures are now assigned to 
sound sources created during the environmental 
authoring step. 
 
In most existing applications, the sound setup is 
handled with the help of a 3D modelling program that 
displays the game’s geometrical data and shows 
features of the game play. The sound sources are 
arranged and eventually connected to real objects and 
events. An auditory preview of the scene allows a 
verification of the designed auditory environment. 
Some programs combine the design and the sound 
authoring in one convenient environment. 
 
Tools that are solely used for design and composition  
are Sonic Foundry's Soundforge for wave data 
(SoundForge 2004) and the Cubase (Cubase 2004) and 
Cakewalk (Cakewalk 2004) program families for midi 
editing. These programs are used ahead of the final 
authoring step to design the sound and music samples. 
The functionality of the authoring programs varies 
depending on the target platform and the sound engine 
used. Professional tools are the new XACT system for 
auditory game authoring which is part of Microsoft's 
new XNA game development platform (XNA 2004).  
Other professional authoring applications include 
Sony's SCREAM for the PS/2 (SCREAM 2004), 
Sensaura's gameCODA2 API and authoring 
environment (gameCODA 2004) as well as Creative 
Lab’s EAGLE for EAX environmental authoring 
(EAGLE 2004). 
 

 
 

Figure 3: Screenshot of DieselStudio from AM:3D 
(AM:3D 2004). 

 

 
 

Figure 4: Screenshot of Maven3D (Maven3D 2004). 
 
A popular API for software rendering of spatialized 
sounds is AM:3D's DieselStudio (AM:3D 2004). It 
includes an API for programming 3D sound, as well as 
a simple editor, that can be used to author simple 
scenarios, Figure 3. It allows the animation of sounds 
along pathways and the inclusion of geometry to find 
the correct sound placement within the environment. 
 
An example for a track based authoring system is 
Maven3D from Emerging Systems (Maven3D 2004) 
and the Soundfactory from CRI Middleware 
(Soundfactory 2004). Both allow the design and setup 
of 3D sounds and their integration into the game 
environment.  Figure 4 shows a screenshot of 
Maven3D Professional, mixing several tracks for a 5.1 
audio project. Maven3D also allows for cross-talk 
cancellation and some specifications in acoustic 
rendering. 
 
Interesting and unconventional ideas for user interfaces 
to perform sound setup, design or authoring can be 
found in art and research projects. An overview of 
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alternative music instruments can be found in the 
Master’s Thesis of Jörg Piringer (Piringer 2001). 
Although, many of these interfaces abjure visual 
interaction (Flür 1976), most of the authoring systems 
designed for the authoring of virtual environments use 
visual metaphors (Väänänen 2003). 
 
Most of these authoring tools have evolved over many 
years and are appropriate for the authoring of audio-
visual applications, but do not meet the requirements 
for the setup of audio-only environments. For these 
applications, special techniques have to be used to 
integrate additional information, that is required for the 
successful sonification of these environments. The next 
sections focus on these problems and introduces a new 
authoring idea that uses the same media: sound and a 
non-visual interface for the authoring of acoustic 
spaces. 
 
NON-VISUAL AUDITORY AUTHORING 
 
We propose that for a more immersive and realistic 
setup of acoustic environments, especially with the 
focus on audio-only applications, the authoring should 
take place in and with the same media: sound and a 
non-visual interface. This is both challenging and 
rewarding. Challenging, as we have to express non-
auditory information trough acoustics, and rewarding, 
as we do not break the illusion of being immersed in a 
virtual, auditory world. For the authoring of non-visual 
environments, we have to include additional 
information for non-visual perception. This includes 
auditory textures that describe scene objects as well as 
data to aid in navigation and orientation. Furthermore, 
music and a narrators voice have to be integrated into 
the environment to support the story and to deliver 
extra information. 
 
The non-visual authoring of auditory environments 
works similar to the authoring of audio-visual worlds. 
The only difference is the media of interaction and the 
utilization of specific interaction and data sonification 
techniques (Röber and Masuch 2004). The user is 
provided with the geometrical representation of the 
virtual environment that is acoustically displayed using 
data sonification techniques. Within this environment, 
the user is able to use a 3D auditory pointing device to 
select locations or objects from this data on which 
sound sources can be placed. Parameters and sound 
textures are defined through gestures and audio 
widgets. Additionally, head-tracking is used to allow 
for an easier navigation and orientation within the data 
sets.  
 

 
 

Figure 5: System overview. 
 
Figure 5 shows an overview of the system. The 
authoring itself is split into two parts: the construction 
of auditory textures and the integration of sound 
sources into the environment. At desired places, sound 
sources can be constructed and parameters are setup for 
these sources. Both auditory textures, environmental 
and story-related, can be assigned to the sound source, 
and their internal sounds are linked with the events 
from the story, respectively the physics engine.  
Most of the interaction techniques used for the 
authoring can also be applied to playing audio-only 
games (Röber and Masuch 2004). Supported 
techniques are: 
 

• Head-tracking, 
• 3D auditory pointing devices, 
• Auditory widgets, 
• Gestures and a 
• Gamepad. 

 
Head-tracking and other tracking devices allow  
intuitive operations with the environment by using 
natural hearing behaviour and gestures as interactive 
media. A 3-dimensional pointing device, that is part of  
the tracking system, is used for sound positioning and 
the specification of parameters. These parameters are 
defined through a combination of auditory widgets and 
gestures. A gamepad is utilized for navigation and 
listener orientation as well as for object and sound 
selection to construct auditory textures and to set up 
sound sources. Figure 6 shows a simple scene which 
shall be used to exemplify the authoring process. The 
player is located inside a locked room and has to find 
the keys to open the door. Basically three main sound 
groups are present in this scene. Sounds “S1” and “S2” 
represent ambient sounds from the outside of the 
building and are used as landmark for orientation 
purposes. Other sounds can be added to make the 
scenery more realistic, but care has to be taken to not 
clutter the auditory display with too much information.  
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Through interaction the player will notify that the door 
is locked “S4”. While looking around, the player can 
find the keys “S3” and open the door to proceed. For 
the moment, the focus is not on the interaction to 
accomplish this task, rather on how to model and 
authorize this scene. Sounds “S1” and “S2” can easily 
be defined as a mixture of ambient sounds representing 
noise on the street. If no further interaction is aimed, 
the associated sound texture consists of only one 
sound. The auditory texture of the door “S4” has at 
least three sounds, one that represents a locked door, 
one for an open one and another one for unlocking the 
door. The key object “S3” on the other hand only needs 
a prominent sound that identifies itself as key object. 
The story engine can control the effectiveness of this 
sound and make it more distinctive or more ambient, 
depending on the player’s intuition.  
 
The authoring itself is straight forward. The mesh of 
the environment is imported and sonified and the 
author can walk around freely. Mesh objects are 
identified through their names and groups, but can also 
be selected from an auditory menu. During the 3D 
modelling of the mesh, dummy objects (simple boxes) 
can be placed at positions which are later used to 
identify sound object positions. The author can now 
select these objects and connect them with an auditory 
texture. 
 
These auditory textures are created using an auditory 
menu in which gestures and real 3D pointing devices 
play an important role. As the sounds are readily 
composed, one only needs to select the number of slots 
for the auditory texture and fill them with data. After 
this, each sound and the sound object as a whole can be 
fine tuned by specifying parameters, like direction, 
range etc. These parameters are again specified using 
an auditory menu. The development of a story engine 
and the connection of events with this story engine is 
currently under development. 
 
The system is currently work in progress and at the 
time of writing existent as prototypic implementation. 
This prototype will be extended by additional 
sonification and interaction techniques and the 
resulting application examined in user studies. 
 

 
Figure 6: Example Scene. 

 
The applications for such an authoring tool include 
audio-visual as well as audio-only applications. The 
main benefits are that it allows the creation of 
additional sound sources that provide enough 
information for non-visual applications, such as 
auditory displays or audio-only games. Other 
advantages are that the authoring is accomplished 
within the same environment and using the same 
media. This simplifies the preview process and the 
auditory compositing. A challenging task still is to 
provide enough information for the navigation and 
orientation within this auditory world. Sighted users 
need to rethink their auditory perception and gather 
some experience prior using this system most 
efficiently. 
 
CONCLUSIONS AND FUTURE RESEARCH 
 
With the increased demand of mobile applications in 
the near future, other senses come in the range of 
interest besides vision, VR and augmented reality. 
Mobile auditory applications have the advantage that 
they are easy to build, affordable and with the 
appropriate interaction techniques easy and intuitive to 
use. The biggest benefit is that no vision is required, 
making these systems usable by visually impaired as 
well as by sighted users which need their vision to 
observe other tasks. 
 
Computer Games are often cutting edge applications 
and lead the way for new technology. Mobile games 
already play a large role, including handheld gaming 
platforms like the GameBoy or cell phone based 
games. All of them have in common that they 
implement the classic way of audio-visual gaming. 
Some audio-only games have already been developed 
(AudioGames), but mainly with the focus for the 
visually impaired and are not widespread. 
 
When comparing the information that is perceived by 
visual and auditory senses, less and different 
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information is conveyed through hearing than through 
vision. For real audio-only applications, techniques 
have to be developed that focus on auditory cues and 
allow the integration of additional information in the 
natural auditory environment. The authoring software 
has to support these techniques and allow for an 
authoring of such environments. Although many 
auditory authoring systems exist, most of them are 
developed for the authoring of audio-visual computer 
games. The authoring within these tools is often limited 
to the integration of various sounds and music into the 
game environment. They are insufficient for the 
increased authoring of non-visual environments as they 
do not allow the integration of additional information, 
which is essential for most audio-only applications. 
 
The system that was introduced in Section 4 allows 
both, authoring for audio-visual as well as for non-
visual applications. As an additional benefit, the 
authoring takes place using the same media and in the 
same environment. This is a huge advantage, as the 
authoring process does not break the illusion of being 
immersed in a virtual, auditory world. This fact should 
not be underestimated, as the visual authoring of an 
auditory world is different from non-visual auditory 
authoring. This is of course different for audio-visual 
applications. Given an adequate interface, non-visual 
auditory authoring is superior for audio-only 
applications. One limitation is that sighted users have 
to practice this new form of authoring, as the only form 
of perceiving information is through sound. Beneficial 
is that non-sighted users are able to use these tools as 
well. As the system is currently under development, 
extensive tests and user studies have to be performed in 
the near future as well as the integration of additional 
sonification and interaction techniques to improve the 
non-visual authoring. 
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Abstract 
 
VRML (Virtual Reality Modeling Language) is a 
high level graphic language for describing 3D 
virtual objects and worlds on Internet. The paper 
considers the implementation of VRML and Java 
for story visualization tasks. It focuses on creating 
and manipulating the properties of 3D virtual 
objects by using natural language input. We first 
explore the potential of the binding between 
VRML and Java technologies for generating the 
interactive virtual worlds. We then investigate the 
possibilities and limitations of these methods. 
Finally, we present an inside look into our Story 
Visualiser graphic engine, discussing its internal 
architecture and some of the insights of Java, XML 
and VRML technology we have gained during its 
development. 
 
INTRODUCTION 
 
The development of interactive 3D applications is a 
difficult task. Unlike OpenGL and Direct3D, which 
are high performance graphic techniques with low-
level functionality libraries that can be directly 
used for rendering, VRML, X3D and Java3d 
higher-level graphic techniques are based on scene 
graphs for representing a 3D interactive scene on 
the Web.  The scene and other visual elements are 
described in a hierarchical structure. Apart from the 
rendering of a scene graph the interaction of the 
user with a scene graph is an important part of a 3D 
application (Wetering 2001). VRML is the ISO 
standard and has been widely accepted as a central 
metaphor for presentation, visualization and 
simulation purposes. It already has extensive usage 
in medicine, engineering and scientific 
visualization, entertainment and education. One of 
the strengths of VRML is it can provide 
interactivity in real time and there is not an 
excessive rendering delay. Another powerful 
feature of VRML is its easy extensibility and 
flexibility to add new node types and capabilities to 

the base language (Ames et al 1997; McCarthy and 
Descartes 1998) The VRML Specification defines 
a set of 54 built-in nodes that not only define the 
contents of a virtual world, but also dynamically 
change their properties using event sending and 
processing.  
 
The work described here is part of ongoing 
research into a 3D story visualization authoring 
system (Zeng et al. 2002, 2003; Mehdi et al. 2003). 
Story based natural language was used as the 
primary input source in this system to construct a 
3D virtual environment (3DVE). The natural 
language processing (NLP) and 3D graphic 
presentation techniques were integrated to allow 
construction and manipulation of a VRML-based 
scene graph in real time. In this paper, we explore 
the potential of the binding between VRML and 
Java technologies for generating the interactive 
virtual worlds. We also investigate the possibilities 
and limitations of these methods and focus on how 
to integrate Java, VRML and XML technologies to 
construct our graphic representation system.  
 
DIFFERENT WAYS OF INTERACTION 
BETWEEN VRML AND JAVA 
 
The universal acceptance of VRML as the world's 
first widely used non-proprietary file format for the 
deployment of behaviour-rich, real-time 3D 
applications has profound implications for how we 
envision information (Marrin et al 1997b ). But 
VRML is very limited in terms of interactivity and 
it is not a general purpose programming language, 
and Java is not a 3D presentation language. 
However both were designed as web technologies 
and serve different goals.  While Java has the 
ability to access VRML worlds and has 
dramatically changed the nature of the VRML 
itself while enriching and deepening the meaning 
of the data it encapsulates. The VRML and Java 
link provides a standardized, portable and platform 
independent way to render dynamic, interactive 3D 
scenes across the Internet (Brutzman 1998). For the 
majority of today's web projects, the marriage of 
Java and VRML provides the perfect solution 
(Marrin et al 1997b; Lea et al 1996). There are two 
popular approaches to using Java to extend VRML 
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world: one is internal Java Script Authoring 
Interface (JSAI) and the other is External 
Authoring Interface (EAI).  
 
Java Script Authoring Interface 
 
A VRML file consists of nodes that mimic real-
world objects and concepts such as various 
geometries and material descriptions etc. Script 
nodes defined within the VRML file are used to 
program more complex behaviour for a VRML 
scene. A node can signify or receive events from 
the user or other nodes from the scene and effect 
changes in the scene by using ROUTE to send 
events. The script is the way VRML communicates 
with outside world, encapsulating the Java code 
and providing naming conventions for 
interconnecting Java variables with field values in 
the scene. Program scripts are miniature 
applications that contain the logic and interfaced 
Java classes import the vrml.*; vrml.field.* and 
vrml.node.* class libraries to provide type 
conversion between Java and VRML. In this way, 
we can establish a link between a VRML scene and 
a Java application by making a handle to a 
Java.class file in a script node.   
 
In this approach, the SAI provides a suite of classes 
and methods that enable Java to access its interface 
Fields and EventOuts, converting between data 
types and initialise the Java program and to 
respond to the events when the VRML browser 
run. In spite of its strengths, JSAI is unable to link 
with external data because it runs entirely within its 
plug-ins environment, a universe unto itself (Pesce 
1997). As Kimen (1997) claimed: “VRML is- Java 
does- and the EAI can help”. 
 
External Authoring Interface  
 
The EAI is a set of language-independent bindings 
that provides a conceptual interface between 
VRML scenes and an external environment. The 
virtual scene can be controlled via external 
programs or applets in the case of a web browser 
hosting the VRML browser. A typical web 
application consists of VRML browser window and 
additional controls in a Java applet on a same 
HTML page. The EAI not only allows 
manipulation all of the entities that internal scripts 
can modify. The true power of EAI is in the 
development of applications that incorporate 
VRML as only one of the elements in a 
presentation (Marrin et al 1997a). The creation of 
custom GUIs, the linking of VRML representations 
to external data, and even the possibility of multi-
user interaction are all made possible in part 
because of the EAI. These are exactly the types of 
applications that developers have always wanted 
from VRML (Larsson 1999). The role and use of 

EAI lies in bridging and linking those Java 
applications to the 3D VRML scene. By using EAI 
to bind the data in the Java applet to the VRML 
world, developers are able to create a compelling 
cost efficient, cross-platform solution.  
 
EAI firstly creates an object reference to the 
browser, using the methods of that object to locate 
various nodes which are named using a VRML 
statement DEF within a scene, once the pointer to a 
node is obtained.  It then creates objects that 
encapsulate the EventIn and EventOut constructs of 
that node. Once that is accomplished, manipulating 
values within a VRML world is accomplished in 
the same way as SAI. Another feature of EAI is 
being notified when events are sent from eventOuts 
of nodes inside the scene. In this case the applet 
must subclass the EventOutObserver class, and 
implement the callback() method. The advice() 
method of EventOut is then passed the 
EventOutObserver. It permits handling of events 
from multiple sources, the source being 
distinguished just according to this value (Marrin 
1997). Thus the applet can be notified once 
something has happened in the VRML world. 
 
DISCUSSION 
 
There is no doubt that Java offers sophisticated 
behaviours and enormous functionality to VRML 
worlds. However, whilst JSAI provides a flexible 
rule-based knowledge representation to handle the 
internal events of the virtual worlds easily, it has 
the disadvantage of being entirely contained within 
the plug-in, and references to Java also remain 
entirely constrained within the VRML world. This 
means we must be concerned with programming 
both Java and VRML aspects, and the performance 
of this combination is slow. There are few ways to 
bring the outside data in, so this approach is not 
suitable for programming control system. In 
contrast, the EAI has overcome these shortcomings 
and is useful for systemic node and dynamic 
outside event handling (Marrin 1998). This 
conceptual integration allows a Java applet to 
"query" a plug-in and establish a real-time event-
based communication stream with it. This means 
that potentially any Java applet could invoke and 
use VRML as a visualization interface, and that 
VRML worlds can be manipulated through a Java-
based interface (Pesce 1997).  
 
Experience has been gained using the EAI 
approach the course of this research project. 
However, although EAI offers compelling 
capabilities to interact with VRML world, a 
number of limitations have also been encountered. 
EAI allows new objects to be created on the fly; the 
new objects can be added as child nodes to any 
node in the VRML world. But some methods such 
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as CreateVrmlFromX(String, URL) are clumsy 
(although this also applies to the Scripting 
references as well) (Campbell 1998). When objects 
have been created through these methods, the 
nodes return an array of nodes and are resident in 
the memory. The DEF names are not accessible 
and getNode is unavailable on nodes that are 
created dynamically. We can use TouchSensor to 
solve the problem by asking the user to click on the 
object and then manipulate them, but this solution 
does not work well for complex objects (e.g. 
objects which are assembled from many parts). 
Furthermore, this unfriendly interface is not 
convenient in this work which uses natural 
language input. The second solution is to pre-code 
all of the possible DEFed nodes in a whole Java 
class and connect them to the corresponding Java 
variables. Also pre-define all the eventIn and 
eventOut for each node and attach them to Java 
objects with corresponding types. This method can 
be used for simulations that contain unchanged 

objects in the scene during whole operation. 
Clearly, this is another clumsy approach for our 
purposes because it introduces a massive 
programming overhead and makes future extension 
difficult.  
 
Another limitation is that once getNode overloads 
DEF and any particular name might have been 
multiple used, then only the last occurrence of a 
given name is accessible (Marrin 1997). The 
program may thus be confused as more than one 
identical objects appear in the scene, so the user 
would fail to manipulate through being unable to 
get hold of the specific object.  
 
EAI allows Java to interact with VRML world by 
using a Java applet. However the applet is 
restricted to the security sandbox, i.e. it is not 
possible to write to files on a local hard drive, and 

this extends the limitation of EAI. This is to protect 
from a malicious applet storing a virus on the 
computer. Even a signed applet can access local 
system resources as allowed by the local systems 
security policy. But it is not a good practice for the 
program extension, especially for the program that 
is still in the early development stage.  
 
GRAPHIC PRESENTATION SYSTEM 
IMPLEMENTATION 
 
To address the limitations of the binding between 
the EAI and VRML worlds we have developed a 
graphic presentation system. This user-extensible 
authoring system – termed a Story Visualiser - is 
implemented and based on VRML, Java, EAI and 
XML cooperation. There are three main processing 
layers: File Layer, DOM (Document Object 
Model) Layer and Control Layer. Each layer 
includes several modules and the architecture of 
the system is shown in detail in Figure 1.  

VRML World
EAI

Story Visualiser 

Control Layer EAI Handler 

Descriptionary VODOMHandler

X3D DOM Layer DOM Controller X3DDOMHandler

SentenceHandler

VRML Objects 
Database

File Combiner
File Controller File Layer 

Sentence Analyser

Figure 1. Story Visualiser System Architecture 

 
The system works as follows. Beginning with the 
File Layer, an input sentence is analysed by the 
Sentence Analyser module, the XML formatted 
semantic representation output is extracted and a 
call is made to the corresponding objects from the 
VRML objects database. The objects are combined 
through a File Combiner module and converted 
into a set of XML files through the File Controller 
Layer. Then the output XML data can be operated 
on by the DOM Layer and passed to the EAI 
Handle module in Control Layer. This finally 
enables the Story Visualiser to construct a virtual 
environment. Next we describe some detail of the 
modular approach to discover how each of the 
limitations of using EAI is overcome.  
 
The File Combiner module integrates the objects 
that correspond to the nouns of the semantic 
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presentation output from the input sentence. It first 
reads the base VRML file root.wrl from the VRML 
database, and then read the remaining VRML 
objects into the memory and outputs a new 
combinative VRML file which contains all the 
objects. Once the objects have been merged into a 
new single VRML file, the problem of accessing 
the DEF names of the nodes has been addressed. 
However, given an increase in the number of 
objects and bearing in mind limitations of the 
natural language interface, it is necessary to find a 
way to restrict the DEF names of the objects. 
Currently, we have tackled this by generating a rule 
which allows sending and processing events for the 
specific nodes, i.e. change attributes of the object, 
such as Material node, Texture node and special 
related nodes (Transform node, etc).  For example, 
the File Merge module automatically change the 
DEF ball as ball_1, ball_material as 
ball_1_material, and ball_text as ball_1_texture. If 
the ball appears again, the DEF name will 
increment by 1, e.g. ball_2 etc. Our approach is not 
only to formulate the DEF names of objects that 
provide solutions for data accessibility, consistency 
and efficiency, but also to define the interaction 
between a VRML world and a database by use of 
VRML and Java. Another advantage of this 
approach avoids the problem of possible multiple 
DEF names. Furthermore, because this module was 
written by a Java application, this means we can 
now read the source files, write a new file back to 
the local drive and address the Java applet’s 
limitation.  
 
XML is used for data presentation and can be used 
as middleware to integrate legacy systems with 
other applications. XML defines a standard format 
for representing and exchanging structured data 
and can be extended or embedded in Java through 
the use of a standard API, the Document Object 
Model (DOM), for managing that data, and the 
deployment of standard services for generating and 
viewing XML content. In our system, XML has 
been used as a major data structure for the data 
exchange between the different layers, e.g. output 
of the XML formatted semantic representation of 
the sentence to enable the system to match VRML 
objects and transport object depictions (e.g. 
adjectives, prepositions) to the Story Visualiser to 
manipulate VRML scene.  
  
To enable the Java Applet to interact with a VRML 
scene through EAI, it is necessary to pre-code all 
the DEFed nodes and related events in the Java file 
in advance. This approach results in data 
redundancy and it is also impossible to include all 
the DEFed nodes in a single file. However, to 
extract the DEFed nodes from a VRML file is a 
difficult task. So in this instance, we use X3D 
(Extensible 3D) as the solution because it is 

relative easy to obtain the DEFed nodes. X3D is a 
3D standard for the Web that expresses the 
geometry and behavior capabilities of VRML 97 
using XML. It has been proposed by the Web3D 
Consortium since 1999 and represents the next-
generation VRML. X3D is an Open Standard 
XML-enabled 3D file format that enables real-time 
communication of 3D data across all applications 
and network applications. However, the standard is 
still immature and under review by the ISO. In our 
system the output of the combined VRML file is 
converted into an X3D file using the VRML2X3D 
translator. We then use X3D DOM Handler to 
extract and store the DEFed names as a tree 
structure in memory to enable the EAI Handler to 
access and send or receive events to/from them.  
 
COMPILATION AND EXAMPLE 
 
JavaSoft's JDK 1.3.1 has been used to compile the 
Java classes. JAXP 1.0.1 is used to parse the XML 
file. The EAI is using blaxxunClientSDK which is 
provided by Blaxxun, Inc. For the natural language 
part, we used NLS API which was developed by 
the National Library of Medicine. This 
implementation has been tested on a Windows 
98/2000 platform using Internet Explorer 5.0 and 
6.0; Netscape 4.75, 6.0. 
 
We present here a simple example to illustrate the 
way of how the system works. Currently, the 
system enables generation of the 3D scenes and 
manipulation of the properties of 3D virtual objects 
by using natural language input. Consider a 
storyline that includes the following sentences to 
describe the environment: 
 
There is a yellow room. 
A  table is in the room. 
There is a green vase on the table.  
A book is next to the vase. 
There is a picture on the left wall. 
 
Theses are interpreted and presented one by one. 
The listing shown below presents the XML 
formatted semantic presentation, and Figure2 
shows an output 3D scene from the scene 
descriptions.  

 

<?xml version='1.0' encoding='UTF-8'?> 
<sentence-encoding> 
 
<!-- ==== sentence 1======--> 
<np reference="room_1" adjective="yellow"/> 
<verb-frame  verb="is" object="room_1"/> 
 
<!-- ==== sentence 2======-->  
<np reference="table_1"/> 
<verb-frame  verb="is" subject="table_1" object="room_1" 
preposition="in"/> 
 
<!-- ==== sentence 3======-->  
<np reference="vase_1" adjective="green"/> 
<verb-frame  verb="is" object="vase_1,table_1"  
preposition="on"/> 
 
<!-- ==== sentence 4======--> 
<np reference="book_1"/> 
<verb-frame  verb="is" subject="book_1" object="vase_1"  
preposition="next to"/> 
 
<!-- ==== sentence 5======-->  
<np reference="picture_1"/> 
<verb-frame  verb="is" object="picture_1,"  
preposition="on"/> 
</sentence-encoding> 
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CONCLUSION 
 
The goal of the research described here was to 
generate a 3DVE by using a simplified story-based 
natural language input. In this paper, we explained 
and discussed the different approach of using 
VRML and Java technologies to generate an 
interactive 3DVE. The EAI fills in the gaps 
between the built-in functionality of a VRML 
world and the programmability of Java through the 
use of an embedded Applet on an HTML Web 
page. We then presented the architecture of our 
system which overcomes the limitations of the EAI 
by integration of Java, XML, etc technologies. The 
advantage of choosing XML as the primary data 
structure makes the system easy to extend. Our 
approach also provides solutions for data 
accessibility, consistency and avoids redundancy. 
The example illustrates that the methodology 
works satisfactorily on generation 3D scene by 
manipulating the visual features of the VEs. 
However, the construction of the Story Visualiser 
system is still work in progress. It can be further 
improved by developing an instruction interface 
that will allow users to interact with the 3DVE in 
real time. It will also be necessary to expand the 
Descriptionary and VRML objects database for 
more complex tasks.  
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ABSTRACT 

 
Designers of virtual worlds have known for some 
time that different people want different things 
from these creations. Modern designs are therefore 
broadened to account for playing styles beyond 
those that the designers themselves prefer. The 
results are patchy, however: although designers 
know intellectually what players want, they don’t 
always know emotionally why they want them, 
and have over- and under-emphasised features as a 
result. More dangerously, they have deliberately 
denied some critical player needs in the false 
belief that to allow them would cause their virtual 
world to fail. 
 
This paper examines why players play virtual 
worlds, and identifies a key area where designers 
are getting it wrong. 
 
 
INTRODUCTION 
 
Virtual worlds (a catch-all term encompassing 
MMORPGs, MMOGs, MUDs and a dozen or 
more other acronyms) are persistent, computer-
mediated environments through and with which a 
number of players may interact simultaneously. 
 
It is widely accepted among players and designers 
that different players exhibit different behaviours 
in virtual worlds – that they find different things 
“fun” (Bartle 1996). Further investigation (Bartle 
2003) has demonstrated that: 
 
• Players exhibit dissimilar, but related and 

enumerable, playing styles. 

 
• Players follow predictable paths through 

these playing styles over time as they play. 
 
• Progression along these paths amounts to a 

quest for self-actualisation. 
 
• This is what makes virtual worlds fun to an 

extent beyond that which can be derived 
from (other) computer games. 

 
This later work also showed how following a 
development path through the playing styles was 
equivalent to the “hero’s journey” of myth. 
 
MYTH 
 
In a famous analysis of myths ancient and modern 
from cultures across the world, Joseph Campbell 
identified a single template to which they all 
conformed: the monomyth, or hero’s journey 
(Campbell 1949). In this, a would-be hero 
undertakes a journey to an “other world” of danger 
and adventure, where normal rules don’t apply. 
Irrespective of the originating culture, the hero’s 
journey follows the same, set pattern through a 
series of key events that results in the positive 
transformation of the individual undertaking it. 
 
A hero’s journey can thus be regarded as a 
prescription for self-discovery. If you complete the 
journey, you’re a hero: you have self-actualised 
the “real” you. Unfortunately, you have to go to an 
unreal place to do so. Thus, rarely can an 
individual embark on their own hero’s journey; 
they can only reflect on what it may be like, by 
(through story) identifying with those who have 
completed it. The movie Star Wars (Lucas 1977) 
follows Campbell’s monomyth very rigorously, 
but the viewer doesn’t get to be a hero – Luke 
Skywalker does. 
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Virtual worlds are almost unique in their ability to 
deliver a hero’s journey to ordinary, everyday 
people. They do not do this by putting a character 
through the hero’s journey formula, however: the 
journey is for the player. The journey is real; the 
virtual world is merely the adventure-filled “other 
world” in which most of the important events take 
place.  
 
When a player signs up for a virtual world, what 
follows goes something like this. They create a 
character of a different disposition to their own, 
and role-play it. As they play, they come 
increasingly to identify with their character, 
changing their own disposition and that of the 
character in response to the various challenges that 
are presented to them. Through a continual process 
of adjustment and reflection, they are able to make 
incremental changes to their sense of identity – 
their feeling of who they are. The end result of this 
increasing immersion is that they and their 
character align and become one: no longer does 
the player feel that they are playing a character in 
a virtual world; instead, they feel that they, 
personally, are in that world. 
 
Note that this is a psychological point of view, not 
one of narrative theory. What players consciously 
see as their main goal is actually driven by 
subconscious goals of which few individuals are 
fully aware: it’s rare that players consider 
themselves to be on some grand journey of the self 
– they simply want to have fun. What “having 
fun” means to each player, however, changes as 
they progress; the way it changes is precisely in 
tune with the monomyth. Within a virtual world, 
the challenges presented are arranged such that 
each player can always find whatever is right for 
them at their current stage of development; this 
leads them naturally to the next stage. 
 
It is important that virtual world designers 
understand this process, because otherwise they 
may inadvertently (or otherwise) derail it. As we 
shall shortly see, this can lead to problems in the 
long term. 
 
The hero’s journey comes in three phases: 
departure, initiation and return. Departure takes 
place in the “mundane world” (i.e. the real world). 
Initiation is exclusively in the “other world” (i.e. 
the virtual world). Return concerns the 

homecoming to the mundane world from the other 
world, but takes place in both; for the hero, the 
other world loses its mythical significance and 
becomes just another part of the real world. Again 
as we shall shortly see, this has critical but usually 
ignored consequences for virtual world design. 
 
It should be noted that although the hero’s journey 
takes a male point of view, it works for women 
too. There is proposed a related heroine’s journey 
(Murdoch 1990), but this primarily concerns how 
women (and possibly some men) develop as 
individuals in the real world; it doesn’t involve a 
journey to an “other world”. 
 
THE WORLD OF ADVENTURE 
 
For virtual world designers, the only part of the 
player’s quest for self-understanding that they can 
influence is that which takes place in the virtual 
world itself. For the purposes of this paper,  we 
don’t have to examine all 17 steps of the hero’s 
journey; rather, we need only examine the 
sequence of six that are under the virtual world 
designer’s control up to the point where the 
problems start. These begin with the final step of 
the departure phase. 
 
The Belly of the Whale 
 
To enter the world of adventure is, for the (would-
be) hero, akin to an act of rebirth. This is often 
symbolised in myth by the hero’s disappearance 
into a womb-like object (a cave, a temple, a belly 
of a whale) from which they are expelled into the 
world of adventure. 
 
In virtual world terms, this is character creation. 
The player gets the chance to annihilate the self 
and create a new self as whom they will journey 
into the unknown. If players don’t create a 
character – if they play as themselves – then there 
can be no hero’s journey for them. 
 
The Road of Trials 
 
New-born into the world of adventure, the hero is 
faced with a series of trials – obstacles that must 
be overcome if they are to progress. These are 
usually not too difficult at first (we’ve all killed 
the rats), and some can even be failed. 
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The purpose of the challenges is to teach the hero 
the rules of the special world in which they now 
find themselves. Later challenges don’t have this 
function: they get progressively harder, forcing the 
hero to change to overcome them. 
 
At the end of the road of trials, the player has 
demonstrated sufficient skill, confidence and 
maturity to be prepared for what is to come. 
 
In virtual world development terms (Bartle 2003), 
this matches almost exactly the griefer/opportunist 
stage. The player needs to find out what the limits 
of action are. Those who test the physical limits  
(opportunists) act on the world to see what it 
allows – the natural laws. Those who test the 
social limits (griefers) act on the players to see 
what they allow – the social norms. 
 
The Meeting with the Goddess 
 
In the monomyth, the hero next experiences an 
unconditional love, of the same power and nature 
as that which young children have for their 
mothers. The goddess to whom they give this 
devotion represents the totality of knowledge: the 
perfection that once was, that awaits rediscovery. 
If the hero is not consumed by the knowledge, 
they are liberated by it. 
 
This step is also known as the marriage of 
opposites. The hero is imperfect, and needs to 
learn to stop regarding their self in a dualistic way. 
The goddess is life, but also death; in marriage, the 
hero is shown to be capable of enduring both. 
 
Although this sounds like just so much 
psychological flannel, stripped of its symbolism it 
makes eminent sense: in the light of the new 
knowledge that the hero is gathering, their self-
image begins to coalesce about new points. 
 
In virtual world progression terms, this maps onto 
the scientist/networker phase. The player has a 
good enough model of the world and/or its society 
to be able to interact, rather than merely act. The 
player actively seeks further knowledge, in order 
to realise their potential (i.e. become complete). 
Players with a physical bent (scientists) will 
interact with the world to discover what it reveals 
– they’ll explore.  Players with a social bent 

(networkers) will interact with other players to 
discover what they reveal – they’ll enquire. 
 
Woman as the Temptress 
 
“Woman” here is a metaphor for the temptations 
of the hero’s mundane life. It can be lust, fear, 
uncertainty – anything that might distract the hero 
from the journey. The hero must resist the 
temptation to return to their old ways; they must 
decide whether they are pure enough to continue. 
 
This is a point of change. Knowing what lies 
ahead, the hero rejects (or is repulsed by) their old 
self, and commits to becoming their new self. In 
virtual world terms, it marks the difference 
between gaining knowledge and putting it into 
practice. Do they want to apply what they have 
learned, or were things better before they started 
playing? 
 
Atonement with the Father 
 
This is the most important step of the hero’s 
journey. All previous steps lead to this; all 
subsequent steps lead away from it. In virtual 
worlds, it’s the “game” period – it’s what the 
virtual world is ostensibly about. 
 
The “father” is the most powerful entity in the 
hero’s existence, personified in virtual worlds as 
the (lead) designer. The hero wants the father’s 
acknowledgement that they are worthy, but the 
father only accepts those who have passed all the 
tests. Because the father’s ogre aspect cannot be 
defeated by those who have not passed the tests, 
the approaching hero must have faith that the 
father is merciful, then rely on that mercy. 
 
This is the most transformative of steps, indicating 
the correction of whatever imbalance of the self 
drove the hero to the world of adventure in the 
first place. External validation by the father is 
symbolic of internal validation by the hero. You 
make yourself the father, by finally abandoning 
who you were and becoming who you are. You 
have the ability to control your destiny: all you 
need is the recognition that your faith in yourself 
is justified. 
 
In player development terms, this corresponds to 
the politician/planner step. Players attempt to meet 
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the criteria that the designer has set down as the 
“aim” of the “game”. Players taking the physical 
approach (planners) act on the world to shape it so 
as to achieve their goal – they effect change. 
Players taking the social approach (politicians) act 
on other players to shape them so as to achieve 
their goal – they affect change. 
 
There is a huge problem here, however, in that 
most virtual worlds don’t have a recognised end 
(which is what an atonement with the designer 
amounts to). This is especially true of the large-
scale commercial worlds. Players progress to the 
next step only reluctantly, having kept their part of 
the bargain but feeling frustrated because their 
achievement has not been formally recognised. 
 
Apotheosis 
 
“Apotheosis” means to become (as) a god. The 
hero feels peace and fulfilment, their life in 
harmony with the “other world” and its people. 
They have an implicit understanding of it; old 
challenges no longer seem important. 
 
This corresponds to the hacker/friend stage of 
player development. The player no longer feels the 
need to compete, control and achieve; they no 
longer play a game – they play to be who they are. 
Hackers interact with the world for the sheer joy 
of knowing it; friends interact with players for the 
sheer joy of knowing them. 
 
IMPLICATIONS FOR DESIGN 
 
Most game-like virtual worlds facilitate the hero’s 
journey reasonably well until they reach the end of 
the atonement step. It’s possible that by paying 
attention to the symbolism some of the earlier 
steps could be made more effective (e.g. by siting 
character creation in some dark, cavernous 
setting), but on the whole they work just fine. 
 
With the atonement step, however, things fall 
apart all too easily. This is not through  any fault 
of the players; rather, it’s the designers’ lack of 
appreciation of what they are designing that is to 
blame. There are a number of common difficulties, 
the most significant of which merit explanation.  

 
Lack of Atonement  
 
Players can rarely “win” virtual worlds. This is not 
because there’s no obvious end-point – it’s usually 
almost trivially easy to define one, in fact. The 
problem is that virtual world designers (or those 
who pay their salaries) are afraid to tell players 
that they have won for fear that this will cause 
them to stop playing. 
 
This is ultimately self-defeating. Players are 
profoundly frustrated by a lack of atonement – 
they need closure. They go from virtual world to 
virtual world seeking it but never finding it. They 
judge all virtual worlds by the standards of the 
first, even when by all impartial measures the later 
worlds they visit are superior. The “father” rejects 
them every time, therefore they reject the father 
every time, and their disenchantment deepens. 
 
Ironically, the basic design stance that leads to this 
disenchantment is flawed. It’s OK to give players 
atonement – to let them “win” the “game” – 
because: 
 

• People actually keep on playing after 
they’ve “won”. All the evidence from 
long-term textual virtual worlds points to 
this. Some people have played the same 
virtual world for 15 years or more. They 
don’t leave the virtual world when they 
win atonement: they take it into their 
reality. 

• People who want to leave a virtual world 
will stay with it if they can sense a definite 
point at which it ends for them. If they 
can’t, they’ll just quit there and then. 
Seeing light at the end of the tunnel gives 
them the endurance to carry on until they 
reach it. They’ll still quit, but they’ll play 
longer before doing so. 

• Even if you don’t buy any of this 
monomyth argument, is it better for players 
to leave with positive feelings of success or 
with negative feelings of frustration? 
Which kind of ex-player is going to tell 
their friends to try out your virtual world? 

 
People play virtual worlds to become heroes. 
However, they can only be heroes in the real 
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world. To complete their hero’s journey, they must 
be allowed to leave the virtual world. Only this 
way will they ever wish to stay. 
 
Undeserved Atonement 
 
Praises of the unworthy are felt by ardent minds 
as robberies of the deserving. (Coleridge 1817) 
 
For atonement to mean anything, it must only be 
available to those who have passed the tests. If the 
father can be fooled into granting atonement to 
those who haven’t passed the tests, this makes 
atonement worthless. 
 
Put another way, players don’t like cheating. They 
don’t like anything that undermines their own 
sense of achievement – and that includes the 
buying of atonement (or the means to obtain it) 
using real-world money. Purchasing a high-level 
character has the same effect on high-level players 
as purchasing a qualification would have on 
people who earnt their qualification legitimately – 
it eats at the trust that is necessary for the system 
to work. 
 
It’s not impossible for virtual worlds with 
commodification to offer their players a hero’s 
journey, but it’s rather more difficult. 
 
Premature Atonement 
 
A virtual world that is too easy enables atonement 
to be obtained before the player is ready for it. 
Players normally take several months at normal 
rates of play (which can be quite intense – 2 to 4 
hours a night) to reach the necessary level of 
immersion. If atonement comes too soon (in the 
scientist/networker phase, for example), then it 
will feel all wrong. 
 
This implies that virtual worlds need a critical 
mass of content if they are to be valid. Breadth of 
content is important to begin with, but it cedes to 
depth as players progress. With insufficient 
content, or content of an insufficient level, 
atonement will be reached before the player can 
draw any benefit from it. 
 
This also implies that there is such a thing as too 
much content. Indeed there is, as treadmills 
demonstrate, but too much is better than too little. 

So long as some end is realistically attainable after 
the player has passed the scientist/networker step 
but before they’ve reached the hacker/friend one, 
atonement will feel acceptable to them. 
 
Lack of Journey 
 
Some virtual worlds have no hero’s journey, 
offering as they do no metric by which to measure 
success. For many of these, this is entirely 
appropriate and expected: educational virtual 
worlds are rarely created to teach the realization of 
the self, for example. Yet for other non-game 
worlds, the hero’s journey can still apply. 
 
It’s an observed phenomenon that if players feel 
they are progressing along some dimension that 
the virtual world itself doesn’t recognize, they’ll 
come up with their own pecking order for it 
(Raybourn 1998). This is true even of virtual 
worlds that are formally social- rather than 
adventure-oriented. 
 
In other words, if a virtual world is sufficiently 
separated from real life to qualify in players’ 
minds as an “other world”, they will make up their 
own “game” to drive their activities. 
Unfortunately, these “games” don’t always have 
an atonement mechanism (although some do, for 
example in awarding unrestricted build privileges 
to suitably skilled individuals). 
 
Designers of officially non-game virtual worlds 
should be aware that some if not all their players 
may thus nevertheless embark on a hero’s journey. 
To that end, they should have the apparatus in 
place to grant atonement when necessary – to 
allow players to feel they’ve “won” something that 
was never officially intended to be a “game”. 
 
Meaningless Atonement 
 
This is perhaps the trickiest problem facing 
designers wishing to give their players the 
complete hero’s journey experience. For 
atonement to mean anything, it must only be given 
to those who have passed the tests. The sad fact is, 
however, that not every player is able to pass the 
tests – not everyone can be a hero. 
 
Sooner or later, it occurs to players even of virtual 
worlds boasting a winning condition that failure 
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was never an option. All it takes to keep going is 
time. Tests may get harder, but they’re never so 
hard that you can’t pass them. Anyone with half a 
brain can plod, plod, plod to “the end”, whatever 
that is. What, then, is the point of trying? The only 
way you’re not going to finish the journey is if it 
becomes so boring that you lose interest. 
Atonement is guaranteed for all, it’s just a matter 
of time. 
 
There is a solution to this, but it’s controversial: it 
makes the price of atonement too high for most 
people to bear. This is the introduction of 
permanent death – the possibility that a character 
can be obliterated forever as a result of failing a 
test. Players must create a new character, start 
again, and attempt to recover their lost self 
(creating in the process a stronger, new self).  
 
Permanent death as a concept offers many design 
advantages even without consideration of its 
monomythical elements. Unfortunately, it offers 
one disadvantage that completely trumps all these: 
players hate it when it happens to them. They hate 
it so much that newbies won’t even contemplate 
playing a virtual world where they could “lose two 
months’ play” in a single moment (even if by 
losing it they would then gain twice as much play 
of a kind more suitable to who they are). 
 
Players say they want to be heroes. What they 
often mean is that they want to be treated how a 
hero would be treated. It is only with experience 
that they realize that the only way this can happen 
is for them to become actual heroes themselves. If 
newbies were more up for it, the mere possibility 
of the permanent death of characters would not be 
regarded by so many as a barrier to fun. 
 
CONCLUSION 
 
Players play virtual worlds as a means for self-
discovery. They do this by subconsciously 
following a predetermined path – the hero’s 
journey – that the architecture of virtual worlds 

opens up for them. Unfortunately, this path is 
often blocked by understandable but ultimately 
misguided design decisions. A fuller appreciation 
by designers of the meaning and purpose of the 
path’s various steps would ultimately benefit both 
parties: players would be able to finish their 
journey, and virtual world developers would yet 
keep their custom. 
 
My advice to virtual world designers is this: give 
players a meaningful, deserved “win” condition 
that arrives at the right time, is triggered by a valid 
measure of mastery and is plod-proof; in return, 
they’ll give you your virtual world. 
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ABSTRACT1 

This paper presents the results of an undergoing project 
dealing with issues for mobile multiplayer games. First it 
takes a technical point of view. It presents our work-in-
progress on the following issues: Communication 
middleware (through a prototype compliant to the Open 
Mobile Alliance specifications), high level communication 
abstractions (which can be provided to multiplayer games), 
latency awareness (through a prototype mixing high latency 
GPRS communications with low latency Bluetooth 
communications), consistency (taking into account mobile 
phone limited resources), and databases (investigating three 
solutions based on grid DBMS). Our work also studies 
sociological and psychological aspects. After presenting the 
methodology used for the study, it shows how mobile 
gaming provides a second skin to its player (giving him the 
ability to withdraw from others, or to stay present to them), 
and is a tool for socialisation and appropriating time (by 
favouring a feeling of mastery). This last point suggests that 
mobile multiplayer games can only be appreciated if they 
take into account player’s time constraints. 

INTRODUCTION 

Computer games, whether played on a PC or a console, are 
among the most commercially successful applications. Now 
many companies are convinced there will be such a success 
with mobile games. For instance, Datamonitor projects that 
by 2005, 80 percent of all mobile users in the US and 
Western Europe will play mobile games at least 
occasionally (Leavitt 2003). Indeed customers base more and 
more their decision for buying a mobile phone on the quality 
of its embedded games. Nevertheless when considering 
mobile multiplayer games, the success remains confidential. 
For instance TibiaME (mobile version of PC’s Tibia game) 
experiences 50 daily players (Nokia 2003b) to be compared 
to the thousands of MMOG regular 
players (Woodcock 2004). In order to better understand the 
                                                           

1 The work presented in this paper takes place in the context 
of a Groupe des Écoles des Télécommunications internal 
project, done in cooperation with the following partners: 
CNAM-CEDRIC, France Telecom Research & Development, 
Pastagames, Université Bretagne Sud. 

reasons of this lack of success, the Groupe des Écoles des 
Télécommunications has started an internally funded project 
called MEGA (Mobile MultiplayEr Games Architecture). Its 
goal is to analyse issues for mobile multiplayer games. This 
work-in-progress paper presents the first results of this 
project in the technical field and the usage field.  

TECHNICAL ISSUES FOR MOBILE MULTIPLAYER 
GAMES 

Today technical issues for mobile monoplayer games are 
well known: Limited size for applications (Nokia 2003a), 
scarce energy resources (Capra et al. 2001)... the main issue 
being the devices anarchy (Palm 2003). Indeed when PC 
market is rather homogeneous, mobile market experiences 
heterogeneity is the rule. For instance depending upon its 
firmware the same mobile phone can have a different 
behaviour. 

To identify technical issues for mobile multiplayer games, 
we had a state-of-the-art activity. In addition we provided an 
inquiry towards game industry actors: developers, editors, 
technology providers, mobile operators... Until now we got 
back few answers (some actors consider the subject to be too 
strategic to answer to the inquiry). Nevertheless it confirms 
several issues identified thanks to our state-of-the-art: 
Communication middleware, communication abstractions, 
latency, consistency and databases. 

Communication Middleware 

A console/PC world multiplayer game can be run on a single 
machine as a split-screen application. With a mobile this 
alternative is not realistic: Developers of multiplayer mobile 
game have to deal with network communications. If they do 
not want to move out of their basic trade they may be 
interested in using a communication middleware. 

There are two levels of functionalities in a communication 
middleware: On one hand, the “intermediation level” which 
takes care of the management of game communities, forums, 
high score storage, and on the other hand, the “middleware 
level” responsible for the communications between modules 
during game play. Both levels are standardized by the Open 
Mobile Alliance (OMA 2003, OMA 2004). 

Some companies (e.g. Terraplay (Terraplay 2004)) propose 
products taking care of those levels. Nevertheless they are 
not OMA-compliant. Moreover their cost is not compatible 
with budgets of small developer studios (a mobile game 
budget is about 100 k$ (Nokia 2003a)). 
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This is why, in cooperation with 
Pastagames (Pastagames 2004) and CNAM-CEDRIC, we are 
developing the prototype of an open source middleware: 
GAming Services Platform (GASP). Based on OMA 
specifications, GASP shall offer both functionalities levels 
with GPRS communications between mobiles and a server 
for DoJa (iMalin 2004) or MIDP2 (Knudsen 2003) 
multiplayer games. A version allowing Bluetooth-only 
communications between mobiles is foreseen. 

Communication Abstractions Dedicated to Games 

As it happened in other software industry sectors, it is likely 
that in the mid-term, game developers will use software 
components to increase their productivity (by automatically 
taking care of the device anarchy, for instance). In this 
context communications will be managed by dedicated 
software components (Cariou 2003). 

This is why we have undertaken an analysis of games and 
game middlewares in order to extract the communication 
abstractions present in games. Doing so we will be able to 
specify these communication abstractions and propose 
architectural variants of their implementations. Game 
developers would be able to select abstract communication 
patterns and choose the appropriate implementation 
depending on the underlying platform or the network 
architecture as it is proposed in (Cariou et al. 2002). 

Latency 

Latency is defined by the response time between an action 
and the materialization of its effect on all players’ machines. 
With First-Person Shooter games it must be less than 
100 milliseconds. For Real-Time Strategy games it can be as 
high as 500 milliseconds as long as the jitter (the variance of 
the latency over time) is low (Smed et al. 2001). Now with 
mobile phone networks such as GPRS, observed latency is 
around 1 second (Nokia 2004). 

The first solution to deal with this gap is to develop games 
compatible with this 1 second latency, e.g. turn-based 
games (Nokia 2003a). 

Another solution is to take advantage of all of the available 
communication infrastructures to make other game types 
available. For instance, Real Tournament project relies on a 
wireless MAN consisting of GPRS and IEEE 802.11 
hotspots (Mitchell et al. 2003). 

In MEGA project, we are prototyping the mixing of GPRS 
and Bluetooth, by extending zone-based 
architecture (Matas Riera et al. 2003). In our architecture, we 
use a tree of mobiles. The root of the tree is the server. It 
interacts with its children through GPRS connections. Each 
of them interacts with its own children through Bluetooth 
connection. If scatternets are provided in the Bluetooth 
implementation, these “level-2” children can be in contact 
with “level-3” children, which themselves can be in contact 
with “level-4” children... 

Communications are based on dynamic multicast 
principles (Ramakrishna et al. 2003) with the following 
addition. A child can send two types of messages: “Global” 
messages to be sent to all of the machines participating to the 
protocol whereas “Local” messages to be sent to all mobiles 
having the same “level-1” mobile as the sender. To send a 
message, a mobile sends it to its father, which sends it to its 
own father... If the message is “global”, when it reaches the 
root of the tree, the root is responsible for forwarding it to all 
of its children, which in turn forward it to all of their own 
children... If the message is “local”, this process takes place 
as soon as the message reaches “level-1” child. 

We believe this architecture is well adapted to games where 
several groups of players play together. A subtree of mobiles 
under a “level-1” mobile handles each group. 
Communications inside the group are “local” messages 
handled only with Bluetooth, thus guaranteeing low 
latencies. Communications between groups require GPRS. 
Their latency can be integrated in the game design so that it 
does not reduce game experience. We intend to evaluate the 
behaviour of this architecture regarding latency with 
experimentation. 

Consistency 

Two machines participating to a multiplayer game can have 
at the same time a different vision of the game state because 
message propagation time is not bounded and messages can 
be lost. Several algorithms have been proposed to keep game 
sessions consistent. For example in Trailing State 
Synchronization (TSS), each machine keeps several states of 
the whole game. If an inconsistency is detected TSS 
switched the game from the leading state to one of the 
trailing states (Cronin et al. 2002). 

Our goal is to study the applicability of such algorithms in a 
context of limited resources as with a mobile phone. We are 
currently experimenting a simple mechanism as mentioned 
in (Bernier 2001). The main idea is to send messages like “I 
have moved from x1 to x2; Meanwhile I did this and that” 
and suppose that clients are trustworthy (which is ensured by 
GASP platform). One of the main drawbacks of this 
algorithm is that it can lead to strong inconsistencies of the 
type “I have been shot by a dead man” (Mauve 2000). Now 
if we use this algorithm in the context of a game where 
players cooperate, we avoid such problem. Thus we can take 
advantage of the qualities of this algorithm: Limited stream 
of data from mobiles to server and acceptable streams of data 
from server to mobiles. 

Databases 

In the context of mobile multiplayer games, requirements for 
management of persistent data can be important (important 
number of players, multimedia data...). In MEGA we study 
this subject according to two directions: 
• Characterize the requirements: This direction should 

have received inputs from the answers to the inquiry. As 
these inputs are too scarce, we have decided to 
concentrate ourselves on the game architecture 
presented previously. 
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• Evaluation of solutions based on grid DBMS: MMOG 
games induce high constraints on DBMS 
(100.000 simultaneous players generate a load of 
200 transactions per second on the DBMS (Butterfly.net 
and IDC 2003)). Clearly mobile multiplayer games are 
currently far from overloading that much the DBMS 
they use. Nevertheless we want to study several 
alternatives to mysql and Postgresql commonly used by 
small development studios. Thus we have made a 
comparative analysis of C-JDBC (ObjectWeb 2004), 
lega@net (Ganarski et al. 2003) and Postgres-
R (Postgres-R 2003): By running on grids they allow 
better performances and fault-tolerance. We are 
currently making a deeper evaluation of C-JDBC by 
testing it against TPC-W benchmark (a web site oriented 
benchmark, but significant enough for interactive 
applications like games). 

This section presented several technical issues for mobile 
multiplayer games studied in the context of MEGA project. 
One can notice that there is never a killer solution for an 
issue. There are only solutions more adapted to certain types 
of games than other solutions. 

Next session takes an interest in usage issues. 

SOCIOLOGICAL AND PSYCHOLOGICAL ISSUES 
FOR MOBILE MULTIPLAYER GAMES 

In order to identify the potential usages of interactive games 
in mobility situations, it is necessary to joint mobility 
experiences, game experiences, and mobile phone usage. 

Understanding usage logics means understanding dynamicity 
of mobile interactive games usages thanks to the knowledge 
of mobile usages on one hand and mobile players on the 
other hand. For instance, mobile phone usage plays a part in 
daily life looking more and more like an “occupational 
zapping” (Jauréguiberry 2003); how does it influence the 
way people play? 

Moreover are on-line players the same as mobile players 
and, if it is the case, how to joint these different usages? 

As sociologist and psychologist, our research on these 
questions studies: daily practices of mobility, how players 
using mobile phones occupy time and space, how they carry 
out their social commitments. First subsection describes our 
methodology. Second subsection joints game practises, time 
and socialisation. Final subsection presents our first results. 

Methodology 

We have led one hour-long qualitative interviews with 
players. We followed classical method to collect players’ 
anecdotes in order to understand the impact of the situation 
on game practise. Interviews are oriented according to four 
themes: 1) Game practise (buying act, frequency, duration, 
type of games); 2) Game experience (motivations, game 
pleasure, requirements, experiential dimension); 3) Mobility 
(circumstances, moments which trigger the desire to play) 
and multiactivity (usage of the mobile and its different 

functionalities, mobile and daily life); 4) Sociability 
(communications with other players outside of the game, 
forums, communications during the game). 

Our inquiry was split into two phases. First phase consisted 
in interviews inside a population of players, students of 
Telecommunication engineering schools. Our goal was to 
apprehend categories of most-used games, criteria pertinent 
in game practises, and explanatory phenomena in game 
practises. Second phase concerned a sample of players 
selected thanks to two game development companies (one 
develops Clint a multiplayer game (Clint 2003), the other 
one develops games to be downloaded). We selected this 
sample according to the type of games and the profile of the 
players. Our goal was to check the impact of game and 
technology on the practises: 
1) Teenagers/adults/man/woman; 2) Large audience games 
(Tetris, arcade, sport)/ “gamer” games (action, adventure); 
3) Embedded games/downloadable games/WAP; 
4) Monoplayer/multiplayer. 

Game Practices, Time and Socialisation 

There are almost no multiplayer online games in France. We 
identified one (Clint) where game phases are sequential and 
do not group more than two players. This usage leads to a 
discontinuous time for the player. Only persons very 
motivated by this game play it. 

Generally speaking it seems game practises on mobile take 
fully place in the time (as it is experienced by the players) 
and game vector (that is the mobile phone by itself) has a 
very important role. 

In fact the usage of mobile for playing seems tightly linked 
not only to the actual offer (with its technical and 
ergonomical limits) but also (and perhaps above all) to the 
definition and social representation of time and its 
organisation. 

Mobile phone as a game vector: A second skin 
To summarize, it is the mobile phone by itself, as a device 
extending our body, which gives rise of the desire to play: 
Always accessible, within sight, it seems to invite the player. 
It appears as a console ever and everywhere available. Thus 
it is used in the time interstices, scraps of time made 
available to the player. At the same time, the mobile phone 
plays the role of a second skin: Its user plays a game to show 
his withdrawal from others (in bus or in subway), or on the 
contrary to stay present without fully engaging himself in the 
relation (the person plays in the presence of his partner in life 
who watches television). The mobile phone becomes a tool 
for socialisation. 

A tool for socialisation 
As seen above practising a game on a mobile becomes a tool 
for socialisation. One can use it to show how much he is in 
foreground or background with others. Used in a public life, 
it allows furtive withdrawals in private life, smoothing out 
boundaries between public and private lives, as between time 
at work and off work. It is a tool for socialisation as it allows 
to direct energies and to keep a level of presence with the 
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possibility of withdrawing, for instance during work 
meetings. 

Reappropriating time 
The activity of playing on a mobile is directly linked with the 
boredom, boredom during the constrained time, in particular 
in transport. In an epoch where time is more and more 
constrained, mobile gaming opens a space of freedom and 
gives a feeling of mastery. The game takes place in these 
moments, which last ten to forty minutes. Thus it is obvious 
that the games can only be monoplayer or without time 
constraints, which is not the case of MMORPGs that require 
long durations. 

If the game allows an action, this reappropriation will be 
even more important. Undoubtly players are looking for that: 
An action, which favours feeling of mastery that opposes to 
the permanent uncertainty of our society (Balandier 1988). 
Mobile phone accompanies unceasing movement of its users. 
At the same time playing with it gives the ability to build 
permanence, an individual action, which make sense. 

First Results 

Until now we have made fifteen interviews with players. 
Concerning our first phase of interviews (the one with 
students of telecommunication schools), we can make the 
following statements: 
• They all have a player past: They started to play very 

young with a console. 
• They all play on other kinds of game support (consoles, 

PC). 
• They do not really appreciate multiplayer games and 

WAP games, because either they are too costly in terms 
of connection time or they are not practical to use (“One 
cannot play in the subway”). Some do not know they 
exist. 

• They mostly play to downloadable games of any kind: 
action games, adventure, arcade, and strategy. They 
download 2 to 3 games per month. They like easy to use 
and easy to understand games. They play during short 
period of times: 10 to 30 minutes. 

• As a familiar object, the object “mobile phone” is an 
“inciter” to play. In daily life situations, it appeals to the 
player either because it is in the sight of the player or 
because it is used for another usage. 

• Players play during idle time, waiting period, but also in 
constraint situations: at work, during a meeting or a 
course. 

• Players play also at home on their sofa, in bed... Mobile 
gaming is also a relaxation moment. 

• Two kinds of practises can already be distinguished: 
Some players may interrupt their activity in order to play 
because the desire to play takes over current activity; On 
the contrary, some other players planify their playing 
activity during the day. 

After presenting the methodology used for the sociological 
and psychological study, this section presented how mobile 
gaming provides a second skin to its player (giving him the 
ability to withdraw from others, or to stay present to them), 
and is a tool for socialisation and appropriating time (by 

favouring a feeling of mastery). This last point suggests that 
mobile multiplayer games can only be appreciated if they 
take into account player’s time constraints. 

CONCLUSION 

This paper presents the first results of an undergoing analysis 
of issues for mobile multiplayer games. 

First it takes a technical point of view. It presents our work-
in-progress on the following issues: Communication 
middleware, communication abstractions, latency, 
consistency, and databases. For each of these issues there is 
no killer solution, only solutions suitable to given types of 
games. 

Then the paper takes a sociological and psychological point 
of view. After presenting the methodology used for the 
study, it shows how mobile gaming provides a second skin to 
its player, and is a tool for socialisation and appropriating 
time. This last point suggests that mobile multiplayer games 
can only be appreciated if they take into account player’s 
time constraints. 
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ABSTRACT 
 

The advancement of computer graphics and hardware 
technology have nourished handheld or mobile devices to be 
equipped with fully implemented 3D graphics capabilities 
such as a 3D game. In this paper, we describe a development 
of 3D game engine for PDA device based on PocketPC and 
a pilot game, 3D Puzzle, implemented by our 3D game 
engine. The engine developed by us shows 8~9 fps speed 
rendering about 850 polygons with texture under landscape 
flush mode. 

 
INTRODUCTION 
 
Recent innovation in handheld devices such as PDAs and 
mobile phones made it possible to enjoy high-quality 3D 
games contents on them. The 3D games developed for those 
handheld devices generally fall into genres of simulation, 
shooting, puzzle and role-playing. The followings are the 
most recognized 3D engines.  
 
Fat-Hammer's X-Forge(Fat-Hammer) is a 3D game engine 
for mobile phones, PDA and handheld game consoles. It 
delivers PC quality gaming environment to handheld devices 
by providing 2D, 3D graphics API, multi-channel audio 
capability and so on. Swerve’s Superscape engine(Swerve) 
offers convenient environment such as well defined SDK 
and authorizing tools to game developers and manufacturer 
of mobile devices in order to develop various contents. 
Segundo3D(Ideaworks3D) of Ideaworks3D provides an 
outstanding 3D rendering performance especially as well as 
a compression of game data. Moreover, because of a high 
portability, it is used to porting contents for PC into those for 
PDA.  
 
As the need of standard is claiming in mobile 3D industry, 
international standard organizations for mobile 3D such as 
Khronos Group(Khronos), JSR-184 etc. were founded and 
active. The Khornos Group, a member-funded industry 
consortium focused on the creation of open standard APIs, 
ratified the standard for embedded 3D graphics, OpenGL|ES 
Ver.1.0 and will announce OpenGL|ES Ver.2.0 for 
supporting full shading in 2005. JSR(Java Specification 
Request)-184(JSR-184) is attracting big attention with 
OpenGL|ES in mobile 3D fields. Moreover, because GSM 
phone occupying a communication market over the world is 

adopting a Java environment mainly, the importance of JSR-
184 mobile 3D graphics API for J2METM, an optimized 3D 
graphic API in Java environment, is getting increase 
gradually(KIPA 2004). 
  
In this paper, we describe a 3D game engine and a pilot 
game developed for PDA in point of implementation. We 
don’t follow the standard for mobile 3D in our development. 
Our engine is composed of pure C-codes in WindowsCE 
environment according to constraint in the project and don’t 
use other 3D graphic API. The pilot game was developed to 
check the performance of our 3D game engine out. 
 
CONSIDERATIONS FOR PERFORMANCE 
 
The core architecture of a 3D game engine for handheld 
devices is generally identical to that for PC. However, most 
handheld devices commonly are not getting supports by 
hardware for 3D acceleration. Therefore, due to this kind of 
limited hardware condition, it is important issue to improve 
the performance of 3D engine for handheld 
devices. Therefore, the 3D engine development for game for 
handheld devices requires an elaborate level of consideration 
in implementing algorithms and optimization. 
 
Fixed Point 
 
Although XScale CPU has a co-processor compared with 
ARM core, it has a weak capability for math operation. 
Therefore, we need to use a fixed point for floating point 
operations. In this paper, we used a 16:16 fixed-point real 
number of 32-bit and changed a decimal point to prevent an 
overflow or an underflow dynamically at each calculation. 
 
Sorting 
 
When rendering transparent objects, we should use a sorting. 
In case of rendering opaque objects, a depth buffer to speed 
up rendering rate is used by checking depth value, Z, for all 
faces in view frustum. However, for transparent objects, if 
we use the way like this, we cannot see the opaque object 
hidden by transparent object from camera. Therefore, in case 
of transparency, we have to draw objects being far from a 
camera first. Because the rendering of transparent objects is 
decreased an effect of depth buffer, it is good to minimize 
the number of transparent object in your game environment. 
 
Optimization for Scanline 
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Because a Mits-M400 that is our target hardware for 
development a 3D game engine and a pilot game has 
consecutive addressing order in the direction of portrait, a 
rendering rate is faster on a portrait flush mode than a 
landscape. The initial setting for scanline is performed by 
changing function pointer with render mode and flush mode 
to minimize the loss produced by conditional jumping. 
 
3D GAME ENGINE FOR PDA 
 
Our 3D game engine for PDA has a frame buffer that is 16-
bits unsigned short type and 240x320 dimensions and it 
provides two flush modes that are portrait and landscape. In 
this paper, we mainly describe the rendering engine in whole 
engine. 
 
Render Modes 
 
Our rendering engine provides total 11 render modes for 
raster. They consist of 4 simple render modes like wireframe, 
flat, gouraud, and texture and their 7 compound render 
modes. For example, gouraud_alpha, textured_alpha, 
gouraud_textured, gouraud_correction, textured _correction, 
textured _correction_alpha and gouraud_ 
textured_corrctions. Figure 1 shows that some of screen 
shots at each render mode. 
 

   
(a) WIREFRME                     (b) GOURAUD 

 

  
(d) TEXTURED              (f)TEXTURED_APHLA 

<Figure 1> results according to render modes 
 
In addition, our rendering engine provides two render 
priority modes, engine priority mode and mesh priority 
mode. Therefore, we can organize game environment freely. 
An engine-priority mode force all objects in an environment 
to be drawn by render mode set in an engine and a mesh 
priority mode make each face to be displayed by its own 
render mode. Figure 2 shows the results at each render 
priority mode. Figure2(a) shows an engine priority mode. 
An engine use a TEXTURED_CORRECION render mode. 
A (b) shows a mesh priority mode. In (b), although an 
engine use TEXTURED_ALPHA render mode, each face 
has GOURAUD, TEXTURED_CORRECTION and 
ALPHA render modes respectively is draw with its own 
render mode.  

 

  
(a) Engine-priority mode        (b) Mesh priority mode 

<Figure 2> Results of render priority mode 
 
We think these kinds of various setting methods for render 
mode allow developers to build game environment variously 
and conveniently. 
 
Rasterizer 
 
A scanline algorithm is the most commonly used rendering 
algorithm. In figure 3, a triangle ABC made up of vertex A, 
B and C is drawn by DrawPolyXXX() that is a drawing 
function for just one polygon according to each render mode. 
The name, XXX, of the function means render mode like 
GOURAUD or TEXTURED. In DrawPolyXXX(), 
LineMapXXX() is called for drawing one scan-line 
connected with a start point, XStart and an end point, XStop. 
Figure 3 shows the processes like these. Texture coordinates 
u and v, a depth z and an intensity of current scan-line are 
calculated by interpolating those of each vertex linearly. At 
this time, we use a frame buffer for color intensity and depth 
buffer for depth information. 

 

<Figure 3> Rasterization of Polygon  
 
Texture Mapping 
 
Our 3D engine use TGA formatted image data as a texture 
and we can set up an arbitrary alpha color in game contents. 
For texture mapping, scan-line functions like 
DrawPolyTextured() and LineMapTextured() are called. In 
scan-line functions, we implemented Z-correction to remove 
a perspective-incorrect produced by linear interpolation of a 
Z value. 
 
Z-Correction 
 
The visible differences between perspective correct and 
incorrect interpolation is most noticeable when looking at 
the texture mapped quads as figure 4(a). To interpolate 
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colors and texture coordinates correctly, we interpolate v/z 
and v/z or 1/z instead of interpolate u and v for texture 
mapping or compare z value for depth buffer in scan-line 
functions. Because our engine use a fixed-point real values, 
more elaborate validity check is needed. Figure 4 shows the 
result of the differences between perspective correction and 
perspective incorrection. 

 

  
(a) No Z-correction       (b) Z-correction 

<Figure 4> Result of Z-Correction 
 
Alpha 
 
The order of rendering transparent objects is very important 
to an engine. A mesh data or a chromakey in a texture can 
include whether any object has an alpha property. Our 
engine provides 100% and 50% transparency. Figure 5 
shows the result after sorting of transparent objects. There 
are two objects, which have alpha textures as you can see 
figure 5. 
 

 
<Figure 5> Rendering after sorting transparent objects 

 
Buffer Management 
 
Our 3D game engine has a frame buffer, a depth buffer and 
ID buffer. A frame buffer and a depth buffer are all 16-bits 
unsigned short type and 240x320 dimensions. To minimize 
an access to memory, a frame buffer and a depth buffer share 
the same memory address. Therefore, in case of no sorting 
we can use two buffers by just one access in scan-line 
functions. Because PDA devices do not support hardware 
acceleration for 3D rendering, it is import to minimize the 
number of access to memory. An IDbuffer is used for user 
interactions by picking with stylus on the screen of PDA. 
 
PILOT GAME: 3D PUZZLE 
 
We developed a 3D Puzzle game as a pilot game using our 
game engine. 3D Puzzle is an extension of 2D puzzle game. 
The objective of 3D Puzzle is to complete the game 
environments, which have imperfect objects. When game 
user starts the 3D Puzzle, he selects a category. The category 
is a set of objects, which have common properties such as 
animals and vehicles. If a game user selects a category, he 
can navigate a 3D game world, which is composed of the 

puzzle objects and background environments. For example, 
if user selects the animal category, the gamer goes into the 
zoo environments, which has elephant, monkey, giraffe etc. 
In 3D game world, the game user navigates, finds the 
imperfect puzzle objects and completes the object. If the 
gamer completes all puzzle objects, he can select another 
category.  
 
The 3D Puzzle has 5 screen states as in Table 1. Each state 
has its own initial buffer values and window procedures. 
Table 1 presents the scene and the user’s activities of each 
screen state. 
 

<Table 1> Screen states of the 3D Puzzle 

Screen State Functionality 

Start 
(P_INIT) 

-Shows categories in small 3D view 
port 
-User selects a category 

Moving 3D 
game world 
(P_INIT2NAVI)

-When the gamer selects a category, 
3D view port is gradually expanded to 
full screen.  

Navigation 
(P_NANI) 

-Shows 3D game environments 
-The gamer navigates the game world 
and selects an imperfect model. 

Solving puzzle 
(P_GAME) 

-Shows the whole object and 
fragments. 
-The gamer examines the whole objects 
and pick the incomplete part of the 
model to fit the fragment. 

Option 
(P_OPTION) 

-The gamer setup options and read 
help. 

 
Figure 6 shows some screen shots of the 3D Puzzle. Figure 
6(a) is the initial scene. If the gamer selects start button or 
up-centered 3D view port, the scene is converted into 3D 
game world such as Figure 6(b). Before completing a model, 
it is rendered without textures. If the gamer puts the 
fragments properly, they are textured as Figure 6(c). When 
all fragments are properly placed, the gamer can see the 
suitable scene as Figure 6(d). 
 

  
(a) Initial screen           (b) Before completing a giraffe 
 

  
(c) Solving puzzle        (d) after completing a giraffe 

<Figure 6> Screen shots of 3D Puzzle 
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Game Data 
 
The game data of 3D Puzzle are composed of geometric data 
(*.msh), game configuration data and puzzle data. Table 2 
represents the game data used in 3D puzzle. 
 

<Table 2> Game data of 3D Puzzle 

-game.init -Initialization data 

-zoo.ctg -Category configuration 

-zoo.msh -Geometric game world data 
of the category 

-elephant.msh -Puzzle model data 

-elephant.grp -Fragment data 

-elephant_piece0.msh -Geometric data of 0th 
fragment  

-elephant_pieceN.msh -Geometric data of nth 
fragment 

-elephant_s1.msh -LOD data of the puzzle 
model 

-zoo.ui -User interfaces 

 
The initialization data of 3D Puzzle (*.init) include the 
number of the category, the category configuration file 
names and the 3D game world geometry file names. The 
category configuration file (*.ctg) has an initial position of 
the virtual camera for game world navigation, the puzzle 
models and their LOD mesh and puzzle fragment 
information. The mesh information for 3D game world, 
puzzle models and fragments are represented in the msh file 
supported by our game engine. The fragments are composed 
of some adjacent polygons assigned by a special editor. The 
correspondences between fragment meshes and puzzle 
model is defined in the fragment data (*.grp). 
 
Execution Architecture 
 
The execution architecture of 3D Puzzle is shown in Figure 
7. It has three modules such as initialization, game loop and 
finalization. When the game is started, the game engine is 
initialized and the several game data are loaded. While the 
gamer plays 3D Puzzle, the game loop module processes 
events and changes screen states as in Table 1 and Figure 6. 
When the gamer exits from the game, the finalization 
module returns memories and stops the engine. 
 
Functionality 
 
The pilot game, 3D Puzzle, is based on our game engine. 
The functionalities of the game engine used in this game are 
summarized in Table 3. When the gamer navigates 3D game 
world as in Figure 6(b) and (d), the game engine must 
process the puzzle models as well as the environmental 
meshes.  
 

The game engine has to process a small number of polygons 
to increase frame rate and produce a reasonable scene. As in 
common 3D PC games, 3D Puzzle uses LOD based on the 
distance between the position of the model and the virtual 
camera for navigation. The category configuration file 
(*.ctg) includes the number of LOD level and the distance 
for exchanging meshes. 
 
 

 
<Figure 7> Runtime structures of the 3D Puzzle 

 
<Table 3> the functionalities of 3D Puzzle 

- Landscape flush mode (320X240) 
- Camera Transform & View port Control 
- Shading 
- Texture Mapping (with Z-correction) 
- Alpha Texture 
- Billboard 
- Depth Sorting 
- Bitmap Font,  
- 2D Primitives 
- 2D Sound (Background and picking sound) 
- LOD 
- Stylus Picking 
- User Interface 
- PDA Button control 

 
User Interface 
 
The user interface of 3D Puzzle is made using a user 
interface editor in part of the game engine. This GUI editor 
creates the initial values of the frame buffer, depth buffer 
and ID buffer for picking. This value reduces time in 
clearing buffers each frame.  
 
Figure 8 shows initial buffer values when the gamer 
navigates 3D game world as an example. The initial values 
of the frame buffer include a border frame, a mini-map and 
the sky as in Figure 8(a). Because the border frame and the 
mini-map must be shown every frame, the depth values for 
these parts are minimum values as in Figure 8(b), in red. In 
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this example, there are no GUI components, so the initial ID 
buffer values are all zero. 
 

 
(a) frame buffer       (b) depth buffer         (c) ID buffer 
<Figure 8> Initial buffer values of the 3D game world 

 
RESULT & PERFORMANCE 
 
According to the render modes, sorting or no sorting and 
static or rotation condition, full statistics rendered with a 
mesh data used in figure 1 are summarized in Table 4. The 
data in figure 1 is composed about 480 polygons. We 
examine these performances on Mits-M400 PDA of XScale 
GL3 Asm under horizontal flush mode. Although we 
developed some assembly codes to speed up scanline and 
math operations, they weren’t used for this comparison. In 
the case of being used portrait flush mode, we can get an 
improvement of 2 fps rather than a landscape flush mode is 
used. In addition, when we add our assembly codes to our 
engine, the performance of our engine grow about 2~3fps. 
Finally, we get 12~17fps rendering rate under the textured 
alpha render mode with Z-correction that is regarded as the 
most general render mode used in 3D game. 
 

<Table 4> Comparison of speed at each render mode 
Sorting No Sorting Render mode 

static rotation static rotation
Wireframe 30 18 30 21-22 
Flat 20 13 17 11-12 
Gouraud(G) 18 12 15 10-11 
G + Z-correction(Zc) 18 12 14-15 10 
G + Alpha(A) 17 11 12-13 9 
Textured(T) 14 10 9-10 7 
T + Zc 12 8 8-9 6 
T + A 13 9 9 6 
T + Zc + A 12 8 7-8 5 
G + T 13 9 9 6 
G + T + Zc 12 8 8 5-6 
 
Figure 9 shows the final screen of our 3D Puzzle. User can 
play it with stylus and buttons of PDA. In figure 9, 3D 
Puzzle was composed a zoo category model of about 500 
polygons and 4 animal models of about 350 polygons totally. 
After visibility check, we can see about 150 polygons on 
screen at once. This pilot game is performed with 8~9fps 
rendering rate at least under landscape flush mode without 
supporting by assembly code. 
 

 
<Figure 9> the final screen of 3D Puzzle 
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ABSTRACT 
 
Distributed interactive media such as networked multiplayer 
computer games offer users the opportunity to interact and 
share experiences within a virtual environment. More often 
than not, these interactions are required to be performed in 
real-time, a constraint which poses problems given the 
underlying network capabilities used to transmit information. 
In these real-time distributed systems, the amount of 
information that needs to be shared between participants in 
order to maintain complete game-state fidelity is too large. 
As a result, trade-offs must be made over what information 
requirements are necessary to maintain a level of consistency 
that will provide adequate quality of interaction for the users. 
One possible solution to this problem is the use of statistical 
modeling techniques that attempt to capture the individual 
behaviour of system users. These models can then be used to 
predict the likely future behaviour for the users, thus 
reducing the shared information requirements. In this paper 
we present some preliminary analysis of the behaviour of 
users within a distributed interactive application, with a goal 
towards future work of attempting to develop and incorporate 
statistical models of user behaviour for the purpose described 
above. 
 
INTRODUCTION 
 
Distributed interactive media (DIM) such as networked 
multiplayer games are prone to quality-of-interaction and 
scalability problems as a consequence of non-ideal 
communication infrastructure characteristics such as network 
latency and bandwidth.  This well-known problem is 
generally dealt with through careful entity state update 
procedures that filter the game-state based on criteria such as 
client relevancy or state changes. An example of the former 
is area-of-interest techniques (Singhal and Zyda, 1999) while 
examples of the latter are delta-compression (Van Hook et al. 
1994) and dead-reckoning (IEEE 1993).  In addition QoS 
techniques are sometimes used to ensure that all participating 
clients are given sufficient network resources to meet quality-
of-interaction criteria (Internet2 2004).  The communication 
of game state changes is the key issue in all of the above and 
the games industry-standard techniques are based chiefly on 
variants of dead-reckoning, which is an example of an entity 
state extrapolation mechanism. Rather than updating entities 

over the network once per simulation loop (which we will 
refer to as the game loop) all clients in the DIM maintain a 
local model, usually a linear extrapolation, of entity 
dynamics.  This model is only updated when the client 
responsible for the entity determines that the difference 
between the true entity state and that of the model as used by 
all other clients has deviated by some pre-defined threshold 
amount.  Only this update then needs to be transmitted to all 
the participating clients hence reducing the number of 
packets required to maintain a tolerable fidelity across the 
DIM. 
 
Such a technique obviously helps reduce bandwidth 
requirements and therefore aids in scalability.  More subtly it 
also aids in the reduction of communication latency, one of 
the key factors in maintaining a high quality of interaction for 
the user. This is apparent if we look at the individual 
components which make up latency in distributed interactive 
media for any particular link between two participating 
clients i and j : 

ij
ij

ij
cij O

B

K
++=Τ τ  

where K represents the generation rate of state information 
during the global gameloop in bits per second and B is the 
bandwidth of the link to the particular client in question.  τc 
represents the physical propagation delay.   O represents all 
other processing overheads. Obviously through an increase in 
link bandwidth or a reduction in K the latency can be 
reduced.  It is through such information rate reduction 
techniques such as in dead-reckoning that latency problems 
can be dealt with in DIM. 
 
Recently in an attempt to further improve the power of entity 
state update mechanisms using the concept of state 
extrapolation, a technique known as the hybrid model 
approach has been proposed (Delaney et al. 2003). This 
concept is very powerful and yet quite simple. In this 
paradigm entity state are extrapolated based on a 
combination of low order short term extrapolation and longer 
term statistical inference.  Essentially the technique relies on 
extrapolating state changes based on previous examples of 
state behaviour in similar circumstances.  In the absence of 
good information on typical state changes for an entity, the 
model is switched to simple low order extrapolation as in 
dead-reckoning. By switching between the two models, 
hence the term hybrid model, entity states can be 
extrapolated further than currently possible under dead-
reckoning and other entity state extrapolation schemes.   
Further, in the absence of good statistical information, long-
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term heuristic models can be used in lieu as provided by the 
DIM designer.  Consequently the technique has superior 
performance to dead-reckoning alone as demonstrated in 
(Delaney et al. 2003).  However for the technique to realize 
its potential in the field of DIM it is imperative that 
techniques and methods should be developed to first of all 
recognize, and second of all represent, such statistical 
models. All work in this area so far has concentrated on 
demonstrating the concept for fixed statistical spatial models 
that naturally arise out of static navigation tasks in typical 
DIAs (Marshall et al. 2004). We are currently studying the 
possibility of automatic recognition of statistically similar 
behaviour among entity dynamics in important classes of 
DIM.  
 
In a previous paper we have shown that patterns of behaviour 
emerge for human-human interaction in such DIM (McCoy et 
al. 2004). However, in an attempt to bridge the more solid 
statistical categorization that arose out of fixed spatial 
models with such patterns, an intermediate study has been 
conducted in which the reactive coupling between human 
agents has been loosened through the investigation of 
interaction between human users and finite-state machine-
driven agents (known as ‘bots’). This paper reports on work 
done on this area so far in exploring such human user 
behaviour in these multiplayer computer games. It is hoped 
that through the analysis of such behaviour, categorization 
can be determined with the goal in mind that statistically 
similar patterns of behaviour can be recognized and 
ultimately exploited to predict future behaviour. This would 
allow pre-emptive gamestate changes ahead of time and so 
reduce latency problems in such DIM through both update 
packet rate reduction and perhaps pre-emptive transmission. 
 
TEST ENVIRONMENT AND TEST SCENARIOS 
 
We use the Torque Game Engine from GarageGames 
(Marshall et al. 2004) to construct simple test environments 
and test scenarios. This allows us to perform experiments in a 
relatively controlled manner, and provides us with the ability 
of recording information. During a user’s interaction within 
the test environment, various data is time-stamped and 
collected in a log file for subsequent analysis. Firstly, 3-
dimensional positional data for each user is recorded at 
regular sampling intervals (at the rate of at least 1 Hertz, but 
usually higher), allowing us to reconstruct a user’s positional 
state over time with respect to that of another user and any 
events that occur. This positional data is represented as time-
series datasets for analysis, examples of which can be seen in 
the results and data analysis section. Secondly, direct 
interface control interactions (i.e. keyboard and mouse button 
presses) performed by the user to control their player 
onscreen are time-stamped and recorded whenever they 
occur (this consists of primarily movement and weapon firing 
instructions). This allows us to reconstruct a user’s control 
sequence of actions with respect to any events that occur. 
Given the limited complexity of our test environment 
described below, the only events which we are concerned 
with here are both weapon firing events and disabled events 
(where one user is disabled by weapons fire from another), 
and these are recorded and time-stamped when they occur. 

The test environment that we used for the experiments 
reported in this paper is a simple enclosed environment 
consisting of several building and tower like structures along 
with sets of trees and rocks. These provide some visual 
stimulation for the users and also helps obscure their view in 
certain areas, forcing them to move about. The experiments 
are performed in the style of a First-Person Shooter (FPS) 
game, whereby users interact with the environment as though 
they were looking through the eyes of their player (see Figure 
1). FPS games are one of the most popular genres of games 
currently in the market, and their networked multiplayer 
capabilities make them on obvious choice for research into 
distributed interactive systems in general. 
 

 

Figure 1: In-game screenshot of the test environment. 

 
Test Scenario 1 
 
This was a simple test scenario set up with the intention of 
analyzing the behaviour of a user towards a pseudo-dynamic 
goal. At the beginning of the game, the user is spawned 
randomly inside one of the buildings. In addition, a computer 
controlled opponent (i.e. the ‘bot’) is spawned randomly at 
one of the predefined pathnodes that were placed beforehand 
throughout the environment. These pathnodes join together 
to form a path network, and this path network is traversed by 
the bot pathnode-by-pathnode (a representation of this path 
network can be seen in Figure 2). The bot is set on a looping 
run so that all it does is constantly follow the path over and 
over again – no artificial ‘thinking’ or reacting occurs for the 
bot. The goal for the user in this case is to disable the bot a 
specified number of times using their weapon before the 
specified time-limit runs out. The user is encouraged to score 
as high as possible over a number of runs such that more 
typical focused behaviour is exhibited rather than carefree 
wandering through the environment. This is so as to replicate 
the typical conditions under which FPS games operate. 
Typical behavourial patterns we would expect to see should 
be target seeking, pursuit and firing action. Such classes of 
behaviour are useful labels (albeit not always clearly 
distinguishable) and have been applied with some success in 
our previous work (McCoy et al. 2004). 
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Figure 2: Path network used for navigation by the bot. 

 
Test Scenario 2 
 
This test scenario was set up with the intention of analyzing 
the user’s behaviour towards a bot that had limited reactive 
capabilities towards their own actions, namely the ability to 
fire its own weapon and damage the user. It was set up in 
exactly the same manner as described for test scenario 1, 
with the exception that the bot is given a sensor field that can 
be used to detect the presence of the user. If the user comes 
within the bot’s sensor field and within direct line-of-sight 
(LOS) of the bot, the bot is instructed to fire its weapon in 
the direction of the user. If the user goes out of LOS of the 
bot or out of its sensor field radius, then the bot is instructed 
to stop firing its weapon. The movement capability of the bot 
is fixed as in test scenario 1, meaning that it never deviates 
its position off of the path network on which it navigates 
through the environment, regardless of whether it is currently 
firing its weapon at the user or not. Again, the goal for the 
user in this case is to disable the bot a specified number of 
times before the time-limit is reached. Unlike test scenario 1 
however, it was now possible for the bot to win the game by 
disabling the user the specified number of times. The 
motivation for this test scenario is to determine if any 
resultant defensive or evasive behaviour can be recognized in 
addition to those behaviours stated for the previous scenario. 
 
RESULTS AND DATA ANALYSIS 
 
In this section, we shall present a specific selection of results 
taken from data that was collected for users of varying 
‘expertise’ with regard to not only this particular test 
environment, but also with computer games in general and 
FPS specific games. Each user was asked to play a number of 
successive games in each test scenario, and they were given a 
specific score that they had to reach to complete the game. 
 
Test Scenario 1 
 
Figures 3-5 present state data over time for several different 
users of varying ability. In each figure, the first 3 subplots 
present positional data for the user (Player 1) and the bot 
(Player 2), and are broken into x, y and z coordinates and 

plotted separately. Overlaid on each of these are solid 
vertical lines representing each point in time where the user 
disabled the bot, and these lines allow us to segment the data 
into partitions. The final subplot within each figure uses solid 
vertical lines to represent each point in time where the user 
fired their weapon. In Figures 9-11, we have plotted the 
relative position of the user with respect to the bot (i.e. taking 
the bot’s position as the origin for each time-step). Each of 
the data partitions are plotted individually, with a dark circle 
representing the starting position of the user, and a dark ‘x’ 
marking their end position (i.e. when they disabled the bot).  
 
From visual inspection of Figure 3 (novice user), we can see 
several areas where the positional data of the user and the bot 
seem to correlate highly, with one essentially ‘following’ the 
other one. This corresponds to a pursuit strategy, where the 
user has found the bot and is now pursuing them with the 
intention of disabling them (from time 50 to 100 for 
instance). It is interesting to note that this is less pronounced 
in the data for the advanced and expert user. The primary 
reason for this is that these users tend to wait in a central area 
and let the bot come to them rather than engage in pursuit, 
due to the fact that they often quickly learn the fixed 
movement pattern of the bot along the path network. As a 
result, their movement patterns tend to display significantly 
less variation than that of the novice user. 
 
Also, they tend to take less time disabling the bot than less 
experienced users. This is evident from the shooting events 
seen in each figure, where we see that the novice user tends 
to fire their weapon in large spreads, while the more 
advanced users fire shorter, accurate bursts that tend to 
disable the bot quickly, as evidenced by the correlation 
between the shooting events and disabled events. Obviously 
if the bot had learning behaviour or was controlled by 
another expert user such a fixed strategy would only provide 
short-term results, as Player 2 would soon adapt to deal with 
this. Indeed it is this constant interplay between various 
strategies in the human-human case that makes such online 
games both enjoyable for the user and difficult to predict for 
researchers (McCoy et al. 2004). 
 
Another point of interest is the correlation of the distance 
between user and bot, the firing events of the user, and the 
bot being disabled. In most cases, we can see the positions 
converging close together right before the bot is disabled, 
indicating the user moving closer towards the bot. This is 
particularly evident from inspection of Figures 9-11, where 
we can see the convergence of the user’s trajectories relative 
to the bot (where each trajectory starts as a dark circle and 
works its way towards a dark ‘x’ marker). This agrees with 
our intuitive notion that in order to disable the bot quicker, 
we should get closer to them (particularly in this case where 
the bot does not fire back). We also notice the variance in the 
trajectories that appear under different circumstances.For 
instance, long-winding trajectories typically represent some 
random or wandering type behaviour for a user, whereas 
shorter more convergent trajectories would often represent 
attack-type behaviour. Of interest are the trajectories that 
appear to both diverge and subsequently converge rather 
sharply. These often represent cases where a user has 
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Figure 3: State data over time for a novice user. 

 

Figure 4: State data over time for an advanced user. 

 

Figure 5: State data over time for an expert user. 

 

 

Figure 6: State data over time for a novice user. 

 

Figure 7: State data over time for an advanced user. 

 

Figure 8: State data over time for an expert user. 
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Figure 9: Trajectory for novice user relative to bot. 

 

Figure 10: Trajectory for advanced user relative to bot. 

 

Figure 11: Trajectory for expert user relative to bot. 

 

Figure 12: Trajectory for novice user relative to bot. 

 

 

 

Figure 13: Trajectory for advanced user relative to bot. 

 

Figure 14: Trajectory for expert user relative to bot. 

 
engaged the bot but not disabled it, and having learned the 
bots predictable movement strategy, chooses not to pursue it 
but instead chooses to wait in a suitable area for ambush. 
 
Test Scenario 2 
 
Figures 6-8 present state data over time for users of varying 
level of ability as in the previous section. However, here we 
have chosen to omit the z positional data subplot in favour of 
a subplot showing the 3-dimensional Euclidean distance 
between the user and the bot at each time step. As before, the 
first two subplots of each figure represent the x and y 
positional data for both the user and the bot, overlaid with 
disabled events for both (unlike the last section, which only 
showed disabled events for the bot). Finally, the last subplot 
shows shooting events for both user and bot (where the 
shooting events for the user are above the center line and the 
shooting events for the bot are below the center line). Figures 
12-14 present plots of the user’s position relative to the bot 
for each timestep, as detailed in the previous section. 
 
From inspection of the plots, we can see that in general the 
distance between the user and the bot tends to converge 
before a disabled event occurs, implying the user moving 
closer to the bot in an attempt to increase their chances of 
disabling it. This is again evident from the plots of user 
trajectories relative to the bot (Figures 12-14), where we can 
see the convergence of the trajectories (although in the case 
of the expert user, it is less pronounced). These disabled 
events provide natural partitions of the data due to the 
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random respawning of a player within the environment after 
they are disabled, leading to jumps in the positional state 
(random respawning is a very common system used in FPS 
game in general). 
 
In the case of the novice user (Figure 6), we tend to see less 
of the pursuit strategy that was so prominent for test scenario 
1 (Figure 3). This is quite evident from the subplot showing 
shooting events, where we see bursts of firing spread apart, 
indicating more rapid engagements between user and bot 
rather than prolonged pursuing. Part of the reason for this is 
that because the bot now has the ability to fire back, users are 
much more cautious about how they approach the bot, and 
often like to hide behind cover and attempt to ‘ambush’ the 
bot as it navigates along the path network. It is interesting to 
note the variation in distance between user and bot for the 
case of the expert user, where we can see an extended period 
of time (from 50 seconds onwards) during which distance 
converged but subsequently diverged, coupled with a 
reasonably high degree of shooting events. This would 
indicate that the user engaged the bot and subsequently broke 
off their attack, but did not engage the bot in direct pursuit. 
Rather, having learned the bot’s movement pattern, they most 
likely waited for the bot to return on its course and then re-
engage it, at which point they finally disabled the bot. This is 
consistent with the results shown in Figure 14, where we can 
observe the divergence of the user’s trajectories coupled with 
the subsequent convergence, indicating a section of time that 
most likely involved multiple periods of interaction between 
user and bot. 
 
Also evident is the fact that the end points of the expert 
user’s trajectories (marked by dark ‘x’ points) have a higher 
spread as opposed to both the novice and advanced users 
(Figures 12 and 13 respectively) – this would indicate greater 
accuracy on the part of the expert user at disabling the bot 
with his weapon. 
 
CONCLUSION 
 
From the results already shown for a number of users it is 
clear that certain patterns of behaviour do emerge. In both 
test scenarios correlated dynamical behaviour occurs, 
indicating that the respective entity states cannot be 
statistically independent. In intuitive terms this means for 
example that if the target player changes velocity 
dramatically it is often the case that the pursuing player will 
do likewise. This rather obvious observation could be 
exploited in entity state extrapolation through predicting such 
changes where the conventional paradigm of dead-reckoning 
would have had to transmit a packet indicating a velocity 
change. It may even be possible to preempt shooting events 
which conventional techniques have no possibility of 
predicting. 
 
In another step towards modeling the human-human 
interaction that is so important in DIM another intermediate 
step will be taken in which the bot can exhibit more human-
like behaviour.  This can be as simple as a hunting and 
pursuit behaviour where the bot having spotted Player 1 will 
attempt to close the distance before attempting to disable the 

opponent.  Such behaviour should elicit more interesting 
defensive or evasive behaviour in the human user that will be 
important to analyze. 
 
Further analysis along these lines should yield insight, tools 
and results that will allow better and more comprehensive 
analysis of human users interacting in the same 
environments.  Consequently it will be possible to make 
better guesses about what such users may do next and hence 
achieve quality of interaction and scalability benefits for the 
distributed case. 
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ABSTRACT 
This paper is primarily a review of the differing 
platforms & technologies available for the development 
of MMORPG (massively multiplayer on-line role 
playing games) by developers. Current and future 
technologies that may assist researchers and developers 
to create distributed mobile games are discussed in 
relation to PC migration to mobile platforms.  The 
paper begins with an introduction to the genre, its 
history and the direction the genre is currently heading. 
This is followed by generic elements from PC based 
adventure games including game-play that could be 
easily migrated to the mobile platform. It continues by 
examining the attraction of the genre to the games 
players and how technology is changing the perception 
of the games, detailing some of the latest technologies 
available for mobile phones, PDA’s and next 
generation handheld devices by Nintendo and Sony.  
These technologies are presented with their potential 
limitations and unique features to allow researchers & 
developers a more informed choice when deciding 
which platform would suit their proposed project.  This 
takes into consideration meeting the visual, auditory 
and input challenges, game play and of course the 
target market.  Particular attention has been given to 
the extensive multiplayer options that are implemented 
on a range of platforms with an evaluation for 
multiplayer gaming on a mobile device. 

INTRODUCTION 
As the market for PC and console games slows, 
publishers are looking to other mediums such as mobile 
phones and PDA’s in order to attract traditionally non-
games buyers to the market. This drive along with the 
rapid technological advancement in mobile computing 
and communications has led to ground breaking 
technologies linked to mobile devices such as the 
incorporation of dedicated graphic chipsets by 
NVIDIA on some mobile phones (NVIDIA 2004). For 
the consumer this has meant a very short move from 
2D games that mirrored 80’s classics, to the 

development of 3D games such as FIFA 2004 (EA 
Games). The growth of mobile gaming is clearly 
reflected in many aspects of the industry including the 
jobs being advertised and the emergence of mobile 
phone games charts in industry weekly publications 
such as MCV (www.mcvuk.com). It is safe to say that 
the mobile games industry is seeing both a growth in 
sales & technology that in some respects mirrors the 
console growth of the late 1990’s. 
 
As the number of mobile gamers grows, so is their 
seeming desire for easy to use, fun and non-intensive 
games, clearly shown from the high growth sales of 
arcade classics such as Pacman (Namco). This is 
probably based on the mobility and short usage 
patterns of such devices e.g. whilst on train journeys or 
waiting for appointments. In parallel with a growth in 
mobile gaming is a growing market place for 
distributed gaming across broadband and other 
mediums. Unfortunately at present most games 
downloadable onto phones and PDA’s (Personal 
Digital Assistants) are single player games with 
localised content, but this is changing as gamers seem 
to be looking for a greater challenge by interacting with 
other gamers across the Internet and other mobile 
transmission mediums, one such area is in the PC 
adventure game genre which has one of the largest pay 
to play markets. 
 
This primary focus of this paper is to discuss the area 
of mobile adventure gaming including its history and 
unique selling points, current and future mobile 
technologies, demographics of the market and the 
differences in usability from more traditional solo play 
gaming to offer a compelling argument for more 
research in this area. 

THE PAST & PRESENT OF ADVENTURE 
GAMES 
Adventure games are one of the oldest genres within 
the games industry with roots traceable back to 1976 
and “Colossal Cave Adventure” written by William 
Crowther and Donald Woods.  This and other early 
examples of the genre such as the Zork series were 
completely text based and involved user interaction via 
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the typing of predetermined verbs or actions, the game 
play was based on the premise of  the gamer 
progressing through the game and solving puzzles. 
 
  The first adventure game to feature any kind of 
graphics was Ultima in 1980 (California Pacific), game 
play was still consistent with previously released 
adventure games with the added bonus of limited 
images of landscapes and characters.  As graphic 
technology on computers improved through the early 
1980’s games started to appear with greater use of 
graphics such as the Hobbit. By the mid 1980’s 
adventure games featured both greater interaction for 
the gamer with the use of mice and improved graphics. 
Games such as Bards Tale (EA) allowed both game 
character advancement and control of multiple game 
characters, this was in parallel with a growth in non-
computer role playing  games such as WARHAMMER 
(Games Workshop) and BattleTech (FASA). By the 
early 1990’s games such as the Monkey Island series 
(LucasArts) and the Simon the Sorcerer series 
(AdventureSoft) still relied on the main interaction 
being performed by using the mouse to select the 
allowed verbs from a panel on the screen and then 
using the point and click interface to interact with the 
environment.  By the late 1990’s the market for 
console and PC games had grown to an extent that 
gamers now primarily bought games based on the 
graphics on the back of the box and so a reliance on 
better and more interactive graphics drove the market 
forward with games such as Baldurs Gate and Dungeon 
siege (Microsoft) pioneering interactive adventure 
games allowing improved game play through greater 
visual interaction.  Moving forward to 2004 and a drive 
for easier networking and fast internet connections 
through broadband is predominant in the marketplace, 
an increasing number of gamers are looking to the 
interactivity, community and challenge from other 
human opponents as opposed to scripted AI opponents. 

MMORPG 
Adventure games for the PC market follow set 
formulas governed by the genre and in many ways 
reflect adventure board games such as Dungeons and 
Dragons (TSR).  Games such as Neverwinter Nights 
(Bioware) and Baldurs Gate (Bioware) utilise the rules 
of Dungeons & Dragons (the non-computer role 
playing game), which drastically reduces the need for 
design into rule systems, worlds, stories and characters 
as they rely on over 20 years of tried and tested 
documentation and interactive commercially successful 
gaming.  
Adventure games have grown in recent years into both 
more involved single player games and online 
multiplayer experiences. Some games are built purely 
to be played on-line against other gamers often based 

on either fantasy worlds such as the Lord of the Rings 
style games with mythical creatures or futuristic 
science fiction settings such as Planetarion, and 
Hyperiums.  These games generally have little or no 
actual graphics, other than a basic GUI (Graphic User 
Interface) and instead rely on tactics and planning for 
gameplay rather than the ‘hack and slash’ style games 
found on consoles.  These games do not generally 
follow a set plot, the general idea is to provide the 
gamers with a back-story, the opportunity to create or 
join a community and very simple goals to achieve.  
 
Through this blend of interactivity and a varied number 
of players, games often become fuller experiences 
lasting months (Planetarion) or even years (Hyperiums, 
Warriors 2). These games are often paid monthly to the 
games provider and are known as ‘Massive Multiplayer 
Online Role Playing Games’ (MMORPG for short). A 
growing market in MMORPG  is a much more 
technologically advanced gaming system utilising chat 
windows, 3D graphics and immersive environments 
games such as Eve Online which use the main 
functionality of standard Internet Relay Chat client 
allowing multiple discussions to be tracked by the 
players simultaneously. This is coupled with virtual 
worlds that can be huge in scale allowing for a greater 
number of players to be online in the game 
simultaneously without the game becoming crowded. 
Remembering that each player is paying a monthly fee, 
the greater number of online gamers the greater the 
market share, therefore the support for greater 
interaction and the creation of more immersive 
environments is of paramount importance to 
developers. 

IMMERSIVE MOBILE GAMES  
There are 5 generic elements to computer games design 
(Howland 1998), they are the graphics, interface, game 
play, story and sound. 
When these elements are combined successfully the 
experince starts to become immersive for the gamer 
(Slater 2002). Whether the graphics are 2D or 3D is 
unimportant depending on the genre, but the graphics 
traditionally are the main selling point of many games 
on consoles and PC. The interface between the player 
and the game is important because if the graphics look 
realistic then the players will expect the controls and 
events to be well thought out and user friendly. 
Gameplay is often overlooked in some games but is 
considered to be the fun factor, playability and 
difficulty of the game. The story is important in so 
much that it supports the gameplay and adds to the 
immersion. Developers often use cut scenes to support 
the story line, but this is much more difficult with 
bandwidth limitations of MMORPG and is often 
partially solved by the use of Flash(Macromedia) 
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movies or introductory movies on disk that are viewed 
prior to interaction with the game. Sound is the final 
part of the immersion that allows the user to audibly 
hear character speech or hear music playing to help 
build an immersive environment. 
 
When developers consider portable devices such as 
phones and PDA’s for games development, the design 
elements listed above that combine to create immersive 
experiences become more difficult to implement fully 
due to both limitations with technologies such as 
GPRS, Wi-Fi and Bluetooth (bandwidth limitations) 
and lower target hardware resources such as memory, 
screen size and processing power. The interface is also 
limited on mobile devices many having little in the way 
of support for games. Hardware interface devices such 
as keyboards are a luxury on PDA’s such as the IPAQ 
4350.  This PDA provides all of the required hardware 
for mobile gaming with the inclusion of Wi-Fi, 
Bluetooth and the Microsoft Windows PocketPC 2003 
operating system but the high cost and low availability 
rule it out as a commercial games platform.  Newer 
dedicated mobile gaming devices such as the 
PlayStation Portable and the Nintendo DualScreen look 
set to provide Wi-Fi gaming capabilities, but as with 
mobile phones and PDA’s the memory capacity and 
clock speed of the integral processor are limited.  The 
PlayStation portable has identical controls to the 
normal joy pads provided with PlayStation 1 and 2 
which improves user interaction through common 
control associations (Sony 2004).  The Nintendo 
DualScreen again boasts a directional pad and four 
control buttons, a common implementation for the 
increasingly popular Game Boy hand helds.   
 
 Online games designed for mobile devices 
should have similar gameplay elements to traditional 
PC games which include preventing repetition and 
allowing progression through some type of 
advancement system which starts easy for the gamer, 
moving onto progressively harder challenges as the 
gamers skills and confidence grow.  The artificial 
intelligence system utilised for believable NPC’s (non 
player characters) must also be considered carefully 
because of the limited processing power of mobile 
devices.  AI in online server based games do not suffer 
quite as badly with hardware limitations but the need to 
send this information to the portable devices has to be 
considered. The story element is not particularly an 
issue as this can be enhanced with the inclusion of 
screens to at least show a textual description of the 
back plot and what the character is involved in. Sound 
poses more of a problem with portable devices but the 
technology along with graphics is improving 
dramatically and many phones can utilise MP3’s 
easily.  

The design should incorporate these factors whilst still 
providing atmosphere for the game in terms of 
background music or sound and the careful use of 
sound effects whilst in the game must be linked back to 
the hardware limitations and immersive factors for the 
gamer. 

MOBILE GAME TECHNOLOGY 
Pay to Play adventure gaming is done exclusively away 
from the mobile platforms via PC’s and using the 
world wide web many using bespoke client systems 
which utilise the internet protocol suite to allow players 
to compete on a global scale. The limited penetration of 
mobile gaming is due to a nunmer of factors. Firstly, 
only 8% of the mobile games revenue for the year 2000 
was from wireless play of all genres with a predicted 
growth of 32% by 2005 (Game-Research 2002) . 
Secondly many mobile games are re-releases of 80’s 
classics offering very little in the way of new game 
play or on line experiences, though it has to be said that 
the games charts being seen in many charts such as 
MCV clearly show the demand for classics such as 
Pacman being very high. If the 80’s games such as 
Pacman can be ported easily to mobile platforms then 
why not adventure games such as Zork? Using SMS 
technology, it is possible for players to interact with 
each other whilst following a plot, automated text 
messaging servicea can be set up to send players the 
details about their progress and whether there is 
another gamer in the virtual world they can interact 
with.  The gamer could then be given the option to 
either move from the location, interact with the other 
players at that location (again via the SMS ‘server’) or 
interact with the location itself – searching for treasure, 
opening doors, fighting virtual enemies or indeed other 
players.  All of this can be done by utilising verbs as 
seen in early text based adventures such as Zork.  If 
more immersive or graphical adventure games were 
required then the use of services such as picture and 
multimedia messaging (MMS) could be incorporated. 
These technologies could improve playability for many 
gamers allowing them to ‘see’ their surroundings and 
other player’s avatars.  Although animation is possible 
it’s use in real-time events such as battles or fully 
animated conversations is almost impossible with the 
current transmission mediums. 
 
A recent advance in mobile gaming is the creation of 
location-based services, which are available on 
platforms such as the Nokia N-Gage which allow 
players to utilise mobile networks to create a 
multiplayer gathering without the need of personal 
computers or the related networking hardware.  
Location based services (LBS) are an example of this, 
although the technology was not developed with the 
gaming industry in mind, it provides a framework that 
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can be used by games developers.  LBS technologies 
utilise various means to pinpoint the longitude, latitude 
and altitude of the cell.  The most basic LBS denote the 
use of GSM cells, which vary in size and do not cover 
the entire population.  These cells can be used to 
pinpoint other players in the same geographical 
location as the gamer attempting to find opponents.  
GSM cells are not a standard size and thus cannot give 
a constant sample size to generate games with.  A far 
more accurate method utilises GPS satellites that have 
a far greater accuracy but need specialised receivers 
that are not currently economically viable to include in 
most mobile phone handsets.   Another LBS that can be 
used by games developers to enrich their projects is 
short-range positioning beacons.  Unlike both GSM 
and GPS, these are private circuits that utilise Wi-Fi 
connections and particularly Bluetooth technology.  
The interoperability of Bluetooth services with other 
platforms such as Personal Computers and PDA’s 
gives a distinct advantage over the other mediums as 
discussed above mainly because of the reduced cost to 
the consumers who would merely have to pay monthly 
fees rather than expensive phone charges.  Microsoft 
Windows CE (Pocket PC) and the J2ME from Sun 
Microsystems have the capability to utilise GPS. 

CONCLUSIONS 
Online adventure gaming in comparison to other areas 
of the games industry such as console games sales is 
still in its infancy though the uptake of high speed 
services such as broadband is helping to improve 
market share. Some games such as Neverwinter Nights 
and Diablo II.are purchased in a retail store and there is 
no additional charge to play online.  Other games such 
as Ultima Online and Everquest require little or no 
bespoke software but there is a charge made at regular 
intervals to use the servers that are provided by the 
developer or publishing house. Both styles of games 
can be written in a multitude of programming 
languages  such as browser based games using  PHP, 
JavaScript and ASP. In relation to technology, 
interactive adventure games such as Eve Online. 
provide a bespoke client system that connects to 
servers based on the geographic location of the player 
and has topped ten thousand players in the same arena 
at the same time in April of 2004.  With the client not 
needing any other software to run, the level of 
immersion and presence of other players is greatly 
increased, as the player can feel more in tune with the 
environment that they can see on their systems. The 
inclusion of a bespoke client in some games does not 
wholly detract form those that use browsers or other 
third party software in which their games run.  
Although the immersion from a visual standpoint is not 
as impressive, these games tend to rely more on 
imagination, gameplay and plot and less on graphical 

interfaces and impressive effects.  As the adventure 
game genre tends to be more based around the story 
than the visual detail this leads to the conclusion that 
utilising the browser style of online gaming would be 
more productive as an initial prototype on which to test 
the ideas of the developers. It is these client systems 
which may well be suited to portable devices such as 
PDA’s and phones as much of the processing can be 
done server side and only updates sent to the devices.  
 
The advantages of the mobile platform include its 
versatility in terms of allowing gamers to play 
wherever they are when they feel the desire to play.  It 
also includes the mass market of mobile phones that 
has yet to reach a state of saturation and the multiple 
different techniques that can be used to provide the 
interactivity.The disadvantages can be seen as its 
limited scope in terms of serving many gamers 
simultaneously, the difficulty in creating interactive 
methods for the devices and the  need with MMORPG 
for server based resources to provide the full 
experience to the gamer. 

AUTHOR BIOGRAPHY 

David Thorn is currently a student at Wolverhampton 
University. He is also a Microsoft Student Partner and 
working on a Microsoft supported project into 
developing a games framework to allow multiplayer 
games across mobile devices. 
Stuart Slater is currently working as a Senior Lecturer 
in IT and Computing at the University of 
Wolverhampton, and a member of the “Games 
Simulation and Artificial Intelligence” research group 
(GSAI). His research currently involves both 
developing emotion systems for NPC’s in games and 
the development a cross platform (PC & Mobile) game 
frameworks for teaching games development. 
 

References 
Bioware. nwn.bioware.com. Last Accessed June 2004 
 
Blizzard Entertainment. Diablo II Homepage. 
http://www.blizzard.com/diablo2/. Last Accessed July 
2004. 
 
CCP. Eve Online Homepage. http://www.eve-
online.com/. Last Accessed July 2004. 
 
Crawford, C. (1982) The Art of Games Design.   
 
Eladhari, M. (April 2003) ‘Trends in MMOG 
Developmen’t Game-research.com, http://www.game-
research.com/art_trends_in_mmog.asp. Last Accessed 
June 2004. 

 

http://www.bioware.com/
http://www.blizzard.com/diablo2/
http://www.eve-online.com/
http://www.eve-online.com/
http://www.game-research.com/art_trends_in_mmog.asp
http://www.game-research.com/art_trends_in_mmog.asp
in4243
153



 
Epic Games.Unreal Tournament Series Homepage 
http://www.unrealtournament.com/. Last Accessed 
June 2004. 
 
Evol Interactive, AB Warriors 2 Features Page, 
http://www.warriors2.com/default.asp?iframe=3, Last 
Accessed June 2004 
 
Game-Research.COM (March 2002) Wireless Gaming, 
http://www.game-research.com/wireless.asp, Last 
Accessed June 2004. 
 
Howland, G. (August 1998) “Game Design: The 
Essence of Computer Games”]. 
http://www.lupinegames.com/articles/essgames.htm. 
Last Accessed August 2004. 
 
Hyperium. http://www.hyperiums.com.  Last Accessed 
June 2004. 
 
I4U Future Technology News (March 2003) “Your 
Personal GPS in a Mobile Phone” . 
http://www.i4u.com/modules.php?name=News&file=a
rticle&sid=263. Last Accessed June 2004. 
 
Jones, R.M. (1999) “A Time Line of Events Relevant 
to Computer and Video Games”. Colby College,  
http://www.cs.colby.edu/~rjones/courses/cs398/history.
html Last Accessed June 2004. 
 
Mahmoud, Q.H. (March 2004) “J2ME and Location-
Based Services”. 
http://developers.sun.com/techtopics/mobility/apis/artic
les/location/ Last accessed June 2004. 
 
Manninen, T. (2001) “Interaction Forms and 
Communicative Actions in Multiplayer Games”.  
Gamestudies.org. 
http://www.gamesstudies.org/0301/manninen Last 
Accessed June 2004. 
 
Monson, H. (December 1999) “Bluetooth Technology 
and Implications” 
http://www.sysopt.com/articles/bluetooth/index2.html  
Last Accessed June 2004. 

 
Morrison, M. (1996) “Teach Yourself Internet Game 
Programming with Java in 21 Days” .Sams.net 
Publishing. 
http://bookshelf.sleepnet.net/files/Internet%20Game%2
0Programming%20with%20Java/ch17.htm Last 
Accessed June 2004. 
 
Nvidia, (2004) “NVIDIA Selected by Mitsubishi for 
New i-mode™ Mobile Phone”  
http://www.nvidia.com/object/IO_10598.html 
Last Accessed August 2004. 
 
Partanen, J.P. (June 2001) “Mobile Gaming: A 
Framework for Evaluating the Industry 2000-2005”, 
Gaptime Century Ltd., 
http://www.gaptime.com/mobilegaming.pdf, Last 
accessed June 2004. 
 
Peabody. (1997). Washington State University,  
http://www.vancouver.wsu.edu/fac/peabody/game-
book/Chapter2.html, Last Accessed June 2004. 
 
Sim-tech “Planetarion Manual”. 
http://jpaweb01.planetarion.com/manual.pl.  Last 
Accessed 06/03. 
 
Slater,S. (2002). "Enhancing The Immersive 
Experience" GAME ON 2002 . 3rd International 
Conference on Intelligent Games and Simulation. 
University of Westminster  
 
Sony Computer Entertainment.  (2004) “Sony 
Computer Entertainment Inc Announces Product 
Specifications of Handheld Video Game System, 
PlayStation Portable 
(PSP“.http://www.us.playstations.com/pressreleases.as
p?id=207.  Last Accessed 24/08/04. 
 
Vogiazou, Y (April 2002) “Presence Based Massively 
Multiplayer Games – Exploration of a new concept”,  
Knowledge Media Institute / Open University. 
http://kmi.open.ac.uk/publications/papers/kmi-tr-
123.pdf Last accessed June 2004. 

 

 

http://www.unrealtournament.com/
http://www.warriors2.com/
http://www.game-research.com/wireless.asp
http://www.lupinegames.com/articles/essgames.htm
http://www.i4u.com/modules.php?name=News&file=article&sid=263
http://www.i4u.com/modules.php?name=News&file=article&sid=263
http://www.cs.colby.edu/~rjones/courses/cs398/history.html
http://www.cs.colby.edu/~rjones/courses/cs398/history.html
http://developers.sun.com/techtopics/mobility/apis/articles/location/
http://developers.sun.com/techtopics/mobility/apis/articles/location/
http://www.gamesstudies.org/0301/manninen
http://www.sysopt.com/articles/bluetooth/index2.html
http://bookshelf.sleepnet.net/files/Internet Game Programming with Java/ch17.htm
http://bookshelf.sleepnet.net/files/Internet Game Programming with Java/ch17.htm
http://www.nvidia.com/object/IO_10598.html
http://www.gaptime.com/mobilegaming.pdf
http://www.vancouver.wsu.edu/fac/peabody/game-book/Chapter2.html
http://www.vancouver.wsu.edu/fac/peabody/game-book/Chapter2.html
http://jpaweb01.planetarion.com/manual.pl
http://www.us.playstations.com/pressreleases.asp?id=207
http://www.us.playstations.com/pressreleases.asp?id=207
http://kmi.open.ac.uk/publications/papers/kmi-tr-123.pdf
http://kmi.open.ac.uk/publications/papers/kmi-tr-123.pdf
in4243
154



INVESTIGATING TEAM SPEECH COMMUNICATION 
IN FPS VIDEO GAMES 

 

 

Eleni Spyridou†, Ian Palmer Elric Williams 
School of Informatics Faculty of Media 
University of Bradford Trinity College 

Bradford BD7 1DP, United Kingdom Leeds, United Kingdom 
e.spyridou@btopenworld.comEmail: 

i.j.palmer@Bradford.ac.uk   
Email: elric.williams@btopenworld.com

 
†Eleni Spyridou is a scholar of the Public Benefit 
Foundation Alexander S. Onassis. 

 

KEYWORDS 
Speech communication, human-agent teams, 
multimodal interface, video games 

ABSTRACT 
Speech is natural. It evolved in response to 
human need for communication (Spyridou 2004). 
Participants tend to take turns in speaking, whilst 
giving constant non verbal feedback in the form 
of body language (Spyridou 2004; Shmandt 
1994). A conversation involves at least two or 
more participants, who share knowledge in turns 
providing a mutual feedback. An advanced 
conversational system should not only speak and 
listen, but also understand, pose questions and 
take turns in a conversation. In this paper we 
investigate how users communicate with their 
teammates in a team multiplayer FPS video game. 
How they use speech to seek information, ask for 
help, describe situations, give explanations, 
instructions and commands. If the user is to feel 
comfortable playing alongside an agent, trust it 
and be persuaded by it, it is then vital to 
understand first how human users perform these 
functions and then provide the agent with similar 
behaviour. The experimental framework has 
features that have been emulated from the Unreal 
Tournament™ and Call of Duty™ video games. 

INTRODUCTION 
Speech is a challenging means of interaction and 
communication (Spyridou 2004). In order to 
employ the interaction and communication with 
the computer system effectively, human computer 
interaction techniques and an understanding of 
natural language, selected with immense care, are 
required to bridge the gap between human 
conversation and computer interfaces. 

What makes a team in a team multiplayer FPS 
video game is the presence of a shared goal. 
Within a healthy team, group roles develop and 
change dynamically to meet new and 

unanticipated challenges (Bruemmer, Marble & 
Dudenhoeffer 2002). We are interested to 
investigate how teammates use speech to seek 
information, ask for help, describe situations, give 
explanations, instructions and commands when 
they play alongside other human players and how 
this natural communication can be applied to 
human-agent teams retaining ‘natural 
communication’. 

In this paper we describe our experiments using 
natural language in a multimodal interface in a 
multi-user and single user – single agent 
environment and we then compare our findings. 
We conclude with some discussion points on the 
use of speech control in FPS video games. 

EXPERIMENTS ON NATURAL 
LANGUAGE IN A MULTIMODAL 
INTERFACE 
We have conducted experiments using team 
multiplayer FPS video games using Natural 
Speech (NS), to investigate how users 
communicate with each other when they are in a 
team sharing a common goal. The purpose of the 
experiments is to prepare the foundations for the 
construction of an embodied conversational 
computer agent with the ability to establish and 
maintain a social relationship with a user. If the 
user is to feel comfortable with the agents, trust 
them or be persuaded by them, then it is vital to 
understand how humans perform these functions 
and provide the agents with similar behaviour. 
Since the subjects used NS the commands issued 
were expected to be lengthy and of high 
complexity (Spyridou, Palmer &Williams 2003a; 
2003b; Spyridou 2004). The experiments are 
divided into two categories: Multi-user 
environment, and single user – single agent 
environment. 
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Multi-User Environment 
The multi-user environment is divided to: Public 
and Clan players. Public is the term used for a 
body of people who share some common interest; 
playing FPS video games, for example. Clan, 
however, is an alliance of network shooter 
players, who often fight united against other 
players or clans and compete in video game 
leagues (Spyridou 2004). We can liken public 
players to amateurs and clan players to 
professionals.  

Public Players 
The twenty-one participants (19 male, 2 female) 
were undergraduate and postgraduate student in 
the department of EIMC, of the School of 
Informatics at the University of Bradford. They 
were not paid to attend an hour session on 
successive days and play Unreal Tournament. All 
participants had experience with PC’s and 
familiarisation with video games. 

  

  
Figure 1: Public players in action 

We used Intel Pentium III processors with 128 
RAM, Microsoft Windows 2000 operational 
system, DirectX 8.1 compatible sound card and s 
3D accelerator video card with 16MB VRAM. 
The multiplayer mode was supported with 
Internet (TCP/IP) and LAN (TCP/IP and IPX). 
For speech communication we used Microsoft’s 
Game Voice SideWinder. SONY minidisk 
recorders captured players’ speech commands 
while playing the video game. 

Participants were given a booklet with 
instructions describing the mode ‘Capture the 
Flag’ and examples of the verbal commands they 
could use to communicate with their teammates. 
The users were allowed to change the control 
keys according to their preferences for a more 
natural game play. They then had to adapt those 
commands, create their own and speak to each 
other as naturally as possible. Each individual 
was in a separate room and given full instructions 
of the use of the game and hardware. The players 
were given 15 minutes unrecorded playing time 
to familiarise themselves with the control 
systems. 

Results from Public Players 
As it was expected in the multi-user environment, 
all the users issued commands using natural 

language, with long and highly complex 
sentences. Through the use of dialogue, the 
players constructed plans for the annihilation of 
the enemy team and ultimately the victory of their 
own team. 

From the plethora of the speech commands that 
were gathered from the experiments, a lexicon 
was compiled and broken down by different types 
of phrase issued by the subjects. 

It was found that 80% of the issued instructions 
were statements, 10% were questions and another 
10% was exclamations. Further analysis showed 
that 48% of comments initialised a vocal stream 
while 52% were replies. 

Comparing the 52% replies with 10% questions it 
was concluded that: 

Users reply to statements, which do not require a 
reply (informational statements). For example:  

 [Player 1]: I’m heading for the shaft 

[Player 2]: Right. I’m going for the lift then. 
There is one of them coming down this. 

Users answer exclamations and replies with vocal 
feedback. For example: 

[Player 1]: Do you have the flag? 

[Player 2]: Yeah 

[Player 1]: Ok 

Users require a stream of vocal contact to aid 
communication. 

Any multimodal immersive environment, which 
utilises speech, must supply a large quantity of 
vocal feedback to the user. This feedback should 
be constant and be able to extend the vocal stream 
into a conversation. 

Clan Players 
The fifteen participants (all male) were all 
members of clan X1. They were not paid to attend 
a ninety-minute session and play Call of Duty. 
All participants had experience with PC’s and 
were experts on this particular FPS video game. 

For this experiment a minimum specification of 
Intel Pentium III processors were used with 
memory of 128 MB of RAM. The operating 
system was Windows XP. The audio system was 
a DirectX 9.0b compatible 16bit sound card and 
latest drivers. The video system was a 3D 
Hardware accelerator card; DirectX 9.0b 
compatible 32MB Hardware accelerator with full 

                                                           
1 The clan asked to remain anonymous. Since this 
work will be published, they did not want their 
tactics to be revealed to rival clans. The Author 
named them, the generic name clan X
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T&L capabilities video card and latest drivers. 
The multiplayer mode was supported with 
Internet (TCP/IP) and LAN (TCP/IP). For speech 
communication they used TeamSpeak, which is 
designed to run in the background of online 
games. The team used the ‘Start/Stop Recording’ 
function to record the session in TeamSpeak. The 
recording is done in .wav format, PCM 22Khz 
mono in 16 bits. 

The participants were not instructed to play the 
game in any particular way and were not 
consulted as to how they could communicate with 
each other. The observer was not present during 
the match; the recording was later made available 
to the Author. All clan members knew they were 
being recorded. The recordings are taken from a 
league match clan X fought against another clan 
in the U.K. The players were completely familiar 
with the control system of both the game and 
TeamSpeak. 

Results from Clan Players 
In clan X each player knew his place in the 
environment and when in need of help he would 
ask for back-up making known the relevant 
location. For example: “Can you float Nick? So 
you can hear and come and help down by the 
ramp wall?” 

Each clan member had a task. Both during and 
after the completion of the task the players would 
give feedback. For example: “The ramp is clear” 
or “Got it covered”. 

Although clan X said they had no leader in the 
team, the recording showed the clear presence of 
an Alpha male. This player would congratulate 
them on their efforts, reshape them, track time 
and indicate tactics and formations for attack and 
defence. This person made the majority of long 
and highly complex commands. For example: 
“There is still plenty of time lads, so don’t rush 
it” or “played lads”. 

The team had slang for some locations on the 
map in order to be shorter when spoken. For 
example: instead of “police station” they were 
saying “playstation”. 

The commands used by the clan were highly 
precise at times, which was expected as generally 
clan members are better and more organised 
players than public players. Clan players know 
the maps intimately; they practice together so 
they have a recognised plan and generally are 
more experienced FPS players. For example: 
“Right guys, let’s do a measured approach 
though the T junction” or “Right guys, the assault 
squad will end rush. No nades. The three support 
guys will nade”. 

Locations were identified both relatively and 
absolutely, sometimes both in the same sentence. 
For example: “One on the ramp to your right”. 

It can be surmised that relative commands show 
that clan members are immersed to some extent in 
the environment as if they were playing in a real-
life terrain; Similar to a paintball game. For 
example: “There is still one left, just to your left”. 

Comparison of Results in Public and Clan 
Players 
Public players rarely stick to the plan, if there is 
one. They want a piece of individual adventure, to 
kill the enemy rather than waiting in a defensive 
position. Clan players call this ‘hunting’ and is 
frowned upon as it destroys team-play. Clan 
players stick to their plan. For example: “3PPHSs 
to the garage, 2 with me, the rest run up the 
ramp”. 

Clan members knew that each member has a 
certain position on the map and a task to perform. 
Therefore, questions like “where are you?” were 
superfluous and were not used. Public players 
however, asked this question frequently; 33% of 
all questions. Possibly because they were lost in 
an environment that they did not know intimately, 
although this uncertainty is expected as they have 
no set plan. 

Clan members’ phrase patterns were very difficult 
to identify as none of their communication 
streams were similar. Public members’ phrase 
patterns were similar, in that similar phrases were 
used repeatedly. This makes their communication 
more pattern-identifiable. 

When clan players are in position they frequently 
gave location status updates without being asked. 
For example: “I am at the playstation”, “I am 
downstairs office”. Whereas public players only 
gave their location when asked. 

Single User – Single Agent Environment 
For the second category a new set of experiments 
were conducted. The aim was to find whether the 
complexity of the language used from the user in 
a single user – single agent environment is lower 
than in the natural communication previously 
recorded in the multi-user environment. For this 
experiment the Wizard of Oz paradigm was used. 

The Wizard of Oz allowed the observation of a 
user operating an apparently fully functioning 
system, whose missing services were 
supplemented by a hidden wizard. The subjects 
were not aware of the presence of the wizard and 
have led them to believe that the computer system 
was fully operational. The wizard may observe 
the subject by any means such as a dedicated 
computer system connected to the observed 
system over a network. When the subject invoked 
a function that was not available in the observed 
system, the wizard simulated the effect of the 
function. 

The twenty-one participants (19 male, 2 female) 
were undergraduate and postgraduate students in 
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the department of EIMC, of the School of 
Informatics at the University of Bradford. They 
were not paid to attend a half an hour session on 
successive days and play Unreal Tournament 
2003. All participants had experience with PC’s 
and familiarisation with video games. In this 
experiment the video game, system requirements, 
speech recognition, and method of collecting the 
data are exactly the same with the multi-user 
environment. 

  
Figure 2: Subjects in WoZ 

In this experiment a single user was told that his 
partner was a computer-controlled character, 
which was able to recognise vocal commands. 
The “wizard” controlled this character. The user 
was then asked to play a multiplayer Capture the 
Flag game. 

If the user’s commands were garbled, distorted or 
otherwise unintelligible the wizard would not 
perform any action. Otherwise the wizard acted 
precisely upon the commands. For example: “Go 
up the stairs and cover me”. The wizard will 
guide his avatar up the nearest stairs and attempt 
to protect the user. After the session, the subjects 
discussed their reactions with the Author. 

Results from WoZ paradigm 
Although the users were informed that the system 
would understand natural language, and therefore 
complex commands. 67% of the subjects issued 
simplistic commands similar to the examples 
given on the instruction sheet. 

66% of the users, when they found an initial 
simplistic command that worked, would not 
deviate into a more complex string of 
instructions. For example, once the command “go 
base” was proven to work, the users would 
continue to use it rather than experimenting with 
more complex instructions; for example, “go to 
our base and defend the flag”. 

24% of the subjects altered their natural speech 
habits in order to ‘help’ the computer understand 
their commands, i.e. some subjects would speak 
artificially loudly and slowly. 

 57% of the users garbled and issued unclear and 
unfinished commands. 

Even though it was stated in the instructions that 
the purpose of the experiment was to 
communicate naturally with the A.I., 24% of the 
users played the game to win, ordering the agent 
to defend the base whilst they would attack and 
collect the flag. 

The users were told to use location names for the 
map supplied, should they need covering fire 
from the agent so that it would understand where 
they were and be able to comply. However, only 
24% did as instructed. The rest would ask for 
cover fire without specifying their location. 

While the users were told that the agent would 
not give any verbal or text feedback, 76% of the 
users would still ask questions to the agent 
requesting such things as the agent’s location and 
progress, and 57% would compliment and praise 
the agent’s actions. The most frequent question 
was “where are you?”. 

Some 24% of the users tended to assume that the 
system was more simplistic than they had been 
told and would commonly miss out prepositions 
and definite articles. For example, “go base” 
instead of “go [to] [the] base”. 

90% of the users found communicating with their 
teammate via speech precise, impressive, and an 
interesting experience. They commented that they 
found speech made playing this video game genre 
with agents as teammates much more enjoyable 
and fun. 

They also found that speech enhanced the game 
play a lot since it made a big difference talking to 
their teammate rather than having to type. 

A predictable comment was the great need for 
feedback; both negative and positive evidence 
(Brennan & Hulteen, 1995) of commands and 
communication that has been understood as well 
as confirmation of actions taken. 

There was an understandable disbelief of some 
users that speech recognition software could work 
that well. When informed that in the ultimate 
human-agent team game, the agent would be able 
to give to the human orders, users replied that 
they would not trust the agent’s commands. 

It was concluded that in FPS video games, speech 
should be the only modality to communication, 
giving instructions and queries to the teammates 
in the form of dialogues with appropriate 
feedback. 

DISCUSSION AND FURTHER WORK 
Brennan and Hutleen (1995) found that people 
have many other demands on them while they are 
speaking; such as performing tasks, planning 
what to say next, and they frequently do not 
produce the kind of fluent speech a speech 
recogniser has been trained to process. However, 
fluent speech can be found in formal written 
languages and therefore may apply to some 
speech recognition applications such as Speech-
to-Text software. Our experiments showed that 
users do not speak fluently on syntactic, semantic, 
and pragmatic levels in their communication 
when playing a team video game. 
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Results also showed that clan players do not ask 
“where are you?” or “how are you?” questions, 
similarly present FPS games that utilise speech 
communication do not allow for users to ask these 
questions. This makes us wonder whether game 
developers design FPS video games utilising 
speech around clan gameplay. Although this is 
not documented, it would be unfair to offer a 
clan-oriented product to the public market when 
the latter type of users ask these questions 
frequently. 

Furthermore, it seems that game developers do 
not design games that utilise speech as a fully 
functioning part of the gameplay interface, but 
rather as an optional extra. The speech commands 
in these games can also be triggered through use 
of the normal interface device (gamepad, 
keyboard, etc.). It is the authors’ opinion that 
speech recognition in these games is being used 
solely to make the game stand out from the others 
and sell more copies. That is why the FPS video 
games that utilise speech in the market today 
(SOCOM: U.S. Navy Seals 2002; SOCOM II: 
U.S. Navy Seals 2003; Rainbow Six 3 2003; 
S.W.A.T.: Global Strike Team 2003) specify the 
state-of the-art speech recognition along with 
better graphics and game levels. The common 
denominator is that the human player is always 
put in the Alpha male position; the leader who 
will command the team and plan strategies. 

It is not easy to compare the lexicon of the 
aforementioned FPS video games with the 
lexicon acquired in our experiments. The 
difference is that these FPS games are all based 
on military simulations. Therefore, the commands 
available are of a certain style. A military 
command should be brief, concise, and to the 
point (Spyridou 2004). The less the commander 
says the less chance for any misunderstanding. In 
Unreal Tournament™’s Capture the Flag (CTF) 
game, there are no strict military commands. The 
players may have a base and flag to defend but 
there are no restrictions in their vocal 
communication. There is more freedom to the 
users’ speech when playing for attack and 
defence. Nevertheless, when the users in the 
Wizard of Oz experiment were told that they 
could speak as much as they wanted to the agent, 
give it various commands and test how accurately 
or not it could understand the human voice, none 
did so. Their commands were similar to the 
military ones; short, concise, and straight to the 
point. This can possibly be attributed to the 
subjects being ill at ease with the system and 
experimental environment, their inexperience 
with speech recognition, and perhaps they did not 
realise the full potential of what they could say. 

Throughout the experiments the most important 
finding was the importance of feedback. 
Feedback provides an essential role in video 
game interaction. It gives the player evidence of 

closure, thus satisfying the communication 
expectations users have when engaging in a 
dialogue. The more difficult the communication 
is the more important the partner feedback is. 

A team is about communication (Spyridou 2004). 
Speech is used to seek information, ask for help, 
express feelings, and describe situations, giving 
explanations, instructions, and commands. The 
context and function of speech will vary 
enormously and will have significant effect on all 
aspects of the dialogue, from lexical choice to 
length of utterance (Cockcroft 2000). People 
constantly shift or accommodate their language 
choices, including accent in conversation to fit the 
context and purpose, often without realising it. 

For future work, we are proposing a prototype of 
an embodied conversational computer agent, 
which will be constructed with the ability to 
establish and maintain a social relationship with 
the user in an FPS video game environment. In 
this type of video game, the central principle is 
not only the ability of the human to understand 
the agent’s performance, but also the agent’s 
ability to identify human needs and interfere if 
needed. The objective is to create human-agent 
teams, where each member whether human or 
agent, will take initiatives and through 
communication and team effort, achieve and 
complete a common goal. 

Technologists developing speech-oriented 
systems have a tendency to think that users can 
adjust their speech to whatever they manufacture. 
In general, they have relied on instruction, 
training, and practice with the system challenging 
users to speak in a style that matches the system’s 
processing capabilities (Oviatt and Van Gent 
1996). 

According to Rouse (2001) one of the main 
reasons players play video games is to be 
immersed (Newman 2004). 

Virtual Reality will become the ultimate gaming 
platform. Users will be immersed in a fully 3D 
environment, where they will speak and interact 
with other people, agents, and objects setting off 
realistic games. As VR research will provide the 
technology and implementation to facilitate 
games becoming more immersive and real, 
Natural Speech research should focus on issues of 
dialogue and feedback, rather than the accuracy 
of the underlying speech recognition technology. 
Ultimately, the most successful speech interface 
in a video game should not be the one which 
accurately follows a long list of verbal 
commands, but one that fits gracefully into the 
situation and makes the user feel socially engaged 
and comforted. 
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ABSTRACT 
Over the past 20 years, the topic of artificial neural 
networks has been a vibrant area of AI research, leading to 
new algorithms that have been used in a variety of 
disciplines including engineering, finance, artificial 
perception and control & simulation. Despite this, there 
has been a limited impact on the commercial games 
industry. This paper reviews some of the successful uses of 
neural networks in games and identifies the positive 
elements of their use, and discusses some of the factors 
that have deterred their use amongst game developers. 
Addressing these weaknesses, we outline ideas for future 
research that may aid game developers in producing more 
convincing AI, and may supplement or replace more 
traditional techniques. 

INTRODUCTION 

There have been attempts to use artificial neural networks 
in digital games for quite a number of years now and the 
reason for this is quite straightforward; artificial neural 
networks are about learning, and the effective use of 
learning technology in games has been something that 
many in the game design development industry have 
desired for a number of years now. It also helps that neural 
networks are relatively well known and understood – 
particularly by computer science graduates – and their use 
is also popular because they (loosely) model biological 
neural networks such as those in our own brains, and so 
the link to learning and human-level intelligence is 
therefore very tangible.  

Learning mechanisms in digital games may be offline or 
online. With offline learning we train the AI during the 
development process only. Once the product is released, 
the AI is unable to continue learning as a game is played. 
For example, the AI could observe and model player 
behaviour using learning algorithms such as artificial 

neural networks (McGlinchey, 2003). This may be used to 
create believable characters by imitation of a typical (or 
perhaps expert) player or a combination of features from a 
variety of players, or perhaps to model players or groups of 
players in order to respond appropriately to a player in-game. 
Online learning means that the AI learns (or continues to 
learn) whilst the end product is being used, and the AI in 
games is able to adapt to the style of play of the user. Online 
learning is a much more difficult prospect because it is a real-
time process and many of the commonly used algorithms for 
learning are therefore not suitable. Instead these algorithms 
must be adapted for real-time dynamic processes 0. Real-time 
strategy (RTS) games are a particular candidate for online 
learning algorithms and some interesting approaches are 
being developed (Fyfe, 2004). In some situations a 
combination of both offline learning and online adaptation is 
the most appropriate approach (Livingstone & McDowell, 
2003). These aspects of the implementation of learning 
technologies into games are inherent to the use of neural 
networks in games and we will revisit them often throughout 
the paper. 

NEURAL NETWORK LEARNING 

Most attendees of this conference will be familiar with the 
different categories of learning for neural networks: 
supervised, unsupervised and reinforcement learning. So we 
only provide a brief overview. With supervised learning, we 
provide the network with input data and the correct answer 
i.e. what output we wish to receive given that input data. The 
input data is typically propagated forward through the 
network until activation reaches the output neurons. We can 
then compare the answer, which the network has calculated 
with that which we wished to get. If the answers agree, we 
need make no change to the network; if, however, the answer 
which the network is giving is different from that which we 
wished then we adjust the weights to ensure that the network 
is more likely to give the correct answer in future if it is again 
presented with the same (or similar) input data. This weight 
adjustment scheme is known as supervised learning or 
learning with a teacher.  
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With unsupervised learning there is no external teacher 
and learning is generally based only on information that is 
local to each neuron. This is also often referred to as self-
organisation, in the sense that the network self-organises in 
response to data presented to the network and detects the 
emergent collective properties within the data. 
Unsupervised neural methods are often used in an 
exploratory manner; we use statistical relationships 
between data variables in order to establish an 
understanding of the nature of the data. Unlike supervised 
learning, we do not know the answers before we begin 
training. 

A third less commonly used from of neural learning is 
reinforcement learning. This learning relates to 
maximizing a numerical reward signal through a sort of 
trial-and-error search. In order to learn the network is not 
told which actions to take but instead must discover which 
actions yield the most reward by trying them – if an action 
has been successful then the weights are altered to 
reinforce that behaviour otherwise that action is 
discouraged in the modification of the weights. 
Reinforcement learning is different from supervised 
learning in that with supervised methods, learning is from 
examples provided by some knowledgeable external 
supervisor. With interactive sorts of problems it is quite 
often unrealistic to expect to be able to provide examples 
of desired behaviour that are both correct and 
representative for all scenarios which an agent may 
encounter. Yet this is perhaps where we would expect 
learning to be most beneficial, particularly with agent 
technology where an agent can learn from experience. 

For those just starting to work with neural networks in 
digital games there are now many introductions to the 
topic available (for example (Champandard, 2002, 
Sweetser, 2004) and gameai.com is also well worth a visit. 
To delve more deeply you may wish to refer to one of the 
books in the area such as the introductory text by Gurney 
(Gurney, 1996) or the more advanced book by Haykin 
(Haykin, 1998). 

CURRENT APPROACHES  

It may be observed even from a brief literature review that 
the use of neural networks is still quite rare in mainstream 
commercial games and that the range of neural networks 
used is very limited – the error back-propagation algorithm 
is the most widely used neural network because is the most 
well known. However, the use of neural networks in digital 
versions of classic games such as Mastermind, Othello, 
Checkers (Draughts), and Backgammon is not unusual and 
has been successful in many situations as with Big Blue 
(see gameai.com). However, the use of neural networks in 
this type of game mostly focuses on strategy and the 
games are often more slowly paced. Modern digital games 
generally have more dynamic environments and the CPU 

has to deal with much more than just the AI. Current 
commercial digital games are varied and strategy is only one 
aspect of these games that we may apply neural networks to. 
Having said that, there are surprisingly few examples of the 
use of neural networks in commercial games, a couple of the 
best examples including “Colin McRae Rally 2” which uses 
neural networks to train the non-player vehicles to drive 
realistically on the track, and “Creatures” which uses neural 
networks along with evolutionary algorithms to dynamically 
evolve unique behaviours for game creatures. Black & White 
is the most high profile example of a recent game that utilises 
in-game learning – neurons are incorporated into an AI 
module for the game avatar, and these neurons are iteratively 
re-trained based on game feedback. The game uses a form of 
Perceptron learning within modules, for example, to model an 
avatar’s desire (Evans, 2002). The output of the neuron 
providing a measure of desire based on inputs which 
represent levels of “desire sources” for avatar attributes, such 
as: hunger, tastiness (of food), and unhappiness. The agent 
architecture is loosely modelled in the first place from 
psychological/philosophical ideas.  

Social simulation games such as The Sims (Electronic Arts, 
2001) naturally lend themselves to dynamic learning; these 
games are based on interaction between characters and 
objects due to environmental and social input. A character 
makes decisions within the game based on their current state 
and the state of the environment, for example if a character is 
hungry and they are close to a fridge containing food then 
they will prepare some food and eat it. A character may 
change their preferences or reactions over the period of the 
game based on “experience”. Recent academic research has 
demonstrated the use of neural networks (MacNamee & 
Cunningham, 2003) to create intelligent social controllers for 
agents that represent non-player characters. Other interesting 
recent examples of the use of neural networks within games 
include an approach for strategic decision making (Sweetser, 
2004a), use of a self-organising map for modelling player 
behaviour (McGlinchey, 2003), and modelling player 
behaviour in first person shooters (FPS) using a method 
involving a multi-layer perceptron network (Geisler, 2004). 

POTENTIAL FUTURE APPLICATIONS FOR 
NEURAL NETWORKS IN DIGITAL GAMES 

There are a wide range of neural networks that have not even 
been attempted to be used in games applications, particularly 
unsupervised and reinforcement learning methods. Here we 
discuss a few potential techniques within the context of a 
number of key application areas for neural networks in games 
that have either not been addressed yet or have only been 
tackled recently.  
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Online Learning 

Learning technologies for digital games have become 
increasingly important (Rabin, 2002). Yet, while there a 
number of examples of games that use “off-line” learning 
– for example, Quake III Bots may be trained using 
artificial neural networks or genetic algorithms – there are 
only a few examples of games that explicitly use “on-line” 
dynamic learning within a game, e.g. Black & White as 
discussed earlier.  

The most significant issue with on-line learning is that it 
may produce unpredictable results; sometimes these 
effects serve to enhance but more often it leads to erratic 
game behaviour that reduces the quality of gameplay, and 
in worse scenarios will introduce dynamic game bugs. 
Testing, debugging and balancing games that incorporate 
learning is a challenging task (Barnes Hutchens, 2002). 
With the use of neural networks we have the added 
problem that, although they are very good for learning 
purposes, most neural algorithms can not easily be adapted 
incrementally but would generally require complete 
retraining online. Retraining is often very slow, and in 
many cases a small quantity of new data examples will not 
be enough to significantly impact the training of the 
algorithm, and of course, retraining the network 
completely online may lead to unsatisfactory results. An 
element of control is lost because tuning of the neural 
network by the developer will not be possible, as it is with 
the offline training of the network. These factors are 
presented not to discourage the reader from using neural 
networks for online learning but to encourage the 
development of new techniques and the use of suitable 
existing methods to approach this problem. For example, it 
is likely that dynamic online neural networks may need to 
be constrained to operate within predefined boundaries – 
i.e. the outputs of the networks are restricted to pre-tested 
values. 

There are significant obstacles in the way of developing 
generic, robust and effective dynamic learning algorithms 
and architectures for digital games but the potential 
rewards are great (Charles, 2003). Perhaps the greatest 
potential gain with on-line learning is with the dynamic 
adaptation to player behaviour, play patterns and skill 
levels. In particular, a worthy pursuit is to develop 
technologies that may learn where a human player is being 
challenged too much or too little and modify the player’s 
character attributes, AI opponent behaviour or game 
environment accordingly. These alterations may be 
temporary, just to finish a particularly challenging section 
or the changes may be implemented for a longer time and 
player’s progress monitored. The flexibility afforded by 
dynamic learning mechanisms may also be used to counter 
a player benefiting unduly from – or being hindered by – 
unforeseen player behaviour or minor bugs in the game 
design. The capability of a game to self-adapt in these 
situations to prevent a significant deterioration in 

gameplay due to minor design oversights and player 
behaviour is certainly a laudable goal. 

Player Centred Approaches: Player Modelling and 
Learning about the Player  

It is perhaps not an obvious or much discussed issue relating 
to digital game AI but an important one nonetheless – that of 
attaining a more wide-spread appeal to entertainment of 
playing digital games. We need to keep the state of the games 
industry in perspective, the games industry continues to grow 
rapidly but it still represents only a small proportion of the 
entire entertainment and media industry. Even though there 
are a wide range of age groups playing games now, thanks in 
part to the release and marketing of the PlayStation and the 
more mature content of PC games, there is still a wide range 
of people who never even try to play a game, or simply give 
up after a short attempt.  

All game players are different; each has a different preference 
for the pace and style of gameplay within a game, and the 
range of game playing capabilities between players can vary 
widely. Even players with a similar level of game playing 
ability will often find separate aspects of a game to be more 
difficult to them individually and the techniques that each 
player focuses on to complete separate challenges can also be 
very different. For these reasons and others it can be very 
difficult to design a game that caters for a wide range of 
player capability and preference. Game developers have 
traditionally dealt with the range of player abilities in a very 
straightforward manner, for example, by allowing the player 
to select a difficulty level at the beginning of the game, as 
with the classic first person shooter “Doom”. Once a player 
selects their level of difficulty for a game designed in this 
way, then there is usually no attempt within the game to 
monitor how a player is performing in order to adjust the 
level of challenge or gameplay experience. While the concept 
of an adaptive game is a controversial topic among some 
gamers and developers, there are clear benefits to tailoring 
the game experience to particular player types – especially 
for educational games (Beal et al, 2002). Catering for the 
individual more effectively could help attract a wider 
participation, if for no other reason than making it easier for 
players to get started, progress and complete a game, and 
therefore widening the accessibility of games. 

The use of neural networks for the player modelling process 
is quite an obvious approach but the authors are not aware of 
them having been used for this purpose in games yet and so 
we provide an overview to a few possible supervised and 
unsupervised approaches below. Neural networks are good at 
detecting patterns and clustering data (depending on the 
method) and so we can use a variety of neural network 
techniques in different ways to identify or understand 
different players. For example, we can use player reaction 
times, choices made, styles of play, accuracy of shots/hits, 
how often a stage needs to be repeated before completing, 
average health, number of deaths per level, kills per level per 
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possible kills to build models of player’s offline through 
the training of a neural network such as the multilayer 
perceptron network trained with the error back-
propagation algorithm. These variables may be observed 
online used directly to decide how to change the 
parameters of the game environment, attributes of the 
player character or non-player character behaviour 
dynamically. 

Another neural network approach to player modelling is to 
use a clustering algorithm. In this way we use the neural 
networks to cluster player types according to out-of-game 
and in-game data, grouping player with a similar profile 
into the same group type. There is a wide range of ways in 
which this may be done, for example we could use a radial 
basis network with fixed cluster centres to classify the 
players, with the centres fixed on different areas of the data 
space that we believe to provide a good “centre” for our 
player classification. By monitoring and adapting the 
player profile throughout the game then the player may 
achieve a new classification, and thus the game would 
respond differently. Radial basis networks may also have 
moving cluster centres and so the centres can be moved 
automatically during training to fit the data more 
appropriately. 

We may use unsupervised neural networks in particular so 
as to form a statistical understanding of player data, to 
explore or investigate structure or patterns in data on the 
basis of statistics or information theory (or similar). Using 
projection methods such as Principal Components 
Analysis and Factor Analysis we typically want to explore 
the relationship between the input variables which is a 
different approach to clustering methods. Factor Analysis 
can identify relationships between sub-sets of the data 
variables that may be used to identify more refined aspects 
of player behaviour, e.g. output one could identify the 
overall capability of the player and output two may 
identify whether the player is cautious or just dashes in etc. 
Being able to identify more subtle or complex aspects of 
player behaviour could be very valuable in tailoring the 
game experience to the player, and it also potentially opens 
up new possibilities for dynamic gameplay. For example, 
if we are able to discover patterns that relate more to 
player emotion or motivation then this may be used with 
other sensory devices to discern the needs or desires of the 
player and the game can be adapted to account for this. 

Intelligent Character Animation 

The Artificial Intelligence in a game is perhaps one of the 
most influential ingredients for enabling a game player to 
suspend disbelief long enough to become properly 
immersed into the gameplay. If characters or objects 
behave in an obviously unexpected – or unintelligent – 
way, then the game experience is very much diminished. 
The quality of graphics in digital games has reached an 
incredible degree of realism, as witnessed by games like 

Doom III (ID Software, 2004), and realism of visuals is 
important, of course, because many of us enjoy the “wow” 
factor afforded by the visual impact of the newest and most 
graphically advanced game – this facet clearly sells games. 
Visual realism is only a part of what makes a game world and 
the characters in it believable, if any aspect of the game 
shatters our immersive gameplay experience and we are less 
able to suspend disbelief within the game world. In other 
words we may have a beautifully created wall using the latest 
vertex and pixel shader programs to enhance the illusion of 
the game world existence, but the illusion is shattered when 
our supposedly intelligent character continually bangs his 
head off the wall in an attempt to get round it or walks in 
mid-air!  

Intelligent character animation is one approach to improve 
this aspect of player immersion. For example, a Neural 
Network may be used as the “decision maker” for an 
animating character and when paired to a fuzzy controller 
system this particular agent architecture can be useful (Wen 
et al, 2002). Neural networks may also have broader uses in 
character animation; for example, it should be possible to 
train a neural network to act as a transformation matrix in 
order to interpolate in the mesh blending technique described 
above. This will provide benefits during game development, 
but also opens new possibilities for run-time generation of 
animation data, allowing game characters to be truly 
responsive to game events and user interactions.  

Let us first consider savings that can be made during 
development. Motion captured data can be time consuming 
and expensive to post-process due to several factors. Firstly, 
data from optical motion capture systems is normally 
incomplete due to optical occlusions, and this data must be 
completed by artists. Magnetic motion capture systems also 
have problems since the sensors produce noisy data. 
Mechanical systems have neither of these problems, however, 
actors and artists tend to dislike using these systems since 
they constrain the actor, and they can only be applied to 
simple bone structures. Neural networks have been used for 
dealing with noisy and incomplete data in other disciplines, 
and if new research in intelligent character animation can 
tackle these problems, the cost of using motion capture 
systems would be significantly reduced. Neural networks 
have also been trained on motion data and later used to 
synthesise key-framed motion data and this is the basis of at 
least one commercial tool for automatic generation of 
animation. 

Current methods of animating characters can produce very 
impressive results; however, this comes at a significant cost, 
requiring skilled animators to work at a low level, specifying 
limb and joint positions and orientations, and restricting 
games to replaying fixed animation sequences. The idea of a 
“virtual actor” is to allow a director (or game developer) use 
a high-level set of instructions (e.g. creep, walk, run, read, 
say etc.) to direct the actions of avatars, and this may include 
adverbs describing style and emotional state (e.g., fearfully, 
excitedly). Convincing virtual actors will allow game 
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developers to be less concerned with low-level details, and 
focus their efforts on drama and emotion, which can add 
significantly to the immersive qualities of games. Real-
time generation of animation for virtual actors is an area 
where neural networks may be useful. 

Prediction 

Neural networks have been successfully used for 
prediction in several application areas including finance, 
weather forecasting, power consumption, sales forecasting 
etc. 0. It is not uncommon for a variety of different types 
of neural networks to be used for prediction generally in 
the computing and engineering world but they have not 
been used much (or at all) for this purpose in digital 
games. Prediction can be useful in quite a few ways in 
games, especially in strategic aspects of the games. For 
example in a real-time strategy game it is interesting to 
explore predictive approaches for a computer opponent in 
building its strategy, and in a 1st person action/adventure 
game non-player character prediction of player movement 
or strategy would be interesting in countering their 
movement. An added bonus of the use of a predictive 
approach is that behaviour can be non-deterministic and 
thus potentially more believable and can provide a more 
varied and interesting computer opponent.  

Human-level Intelligence Studies 

In one of the well known early papers (Laird, 2001) of the 
recent surge of interest into digital games research it was 
suggested that digital games provide an excellent platform 
to explore human level intelligence – which is after all one 
of the key original reasons that researchers began to work 
on Artificial Intelligence. Part of the reasoning behind this 
argument being that the virtual worlds and characters of 
commercial games are so rich in detail and that they 
provide an opportunity for a player to become immersed in 
realistic environments and interact with believable 
characters. An individual computer game or videogame 
may be played by millions of people and so this offers 
significant opportunity for study, and many games also 
offer high quality and easy to use game content 
development kits, e.g. “Neverwinter Nights”, that provide 
an opportunity for the creation of suitable tailored 
experimental test-beds.  

However, we must be careful in acknowledging the 
difference between human level intelligence imitation and 
the form of AI common in games which has more of a 
relationship to the Turing Test (Turing, 1950) and creating 
believable behaviour (or fooling the player). The 
inspiration for developing AI opponents for games may be 
traced back the to the Turing Test, since the original 
Turing Test may be thought of as a kind of game in which 
a computer must be programmed to fool an interrogator 
into believing that it is real woman as often as a man can 

fool the interrogator that he is a woman. The original 
question posed by Turing Test has evolved over the years to, 
“can a machine play a game of skill as well as a human 
being?” or “can the program compete with people?” (Fogel, 
2002). In a way this is a distortion of the original goal of 
early AI research in that a central objective has been to 
understand human-level intelligence and replicate this 
functionality holistically. Writing a program that competes 
with a human opponent in a computer game is often as much 
to do with having enough raw computing power to process a 
large set of rules and creating an illusion of intelligence than 
it is about developing convincing human-level intelligence 
models.  

Neural networks and models of the brain that include neural 
networks can prove very useful when exploring more human 
aspects of AI in games – because of their learning capabilities 
and resemblance of brain function. An interesting potential 
future technology related to human-level intelligence research 
involves the development of character AI architectures which 
allow us to “grow” or evolve game characters off-line – 
outside the game – and then insert this character into the 
game so that it will continue to learn. Could such a character 
be retrained and used in future games – a bit like a game 
actor? Would a player be able to extract an intelligent 
character from one game for use, with retraining, in a future 
game release? – sort of like an extended, intelligent, version 
of the character game save. Some work has been performed 
in this area already, where one well-known AI researcher 
believes that he can grow a conscious character on his 
computer (Cohen, 2002) and that characters such as these 
may be sold to game development companies.  

With more lifelike characters and realistic emotional 
representation in our games we may have to consider the 
moral and ethical implications of decisions made by gamers 
even more than we do now and deliberately design-in 
effective consequences for actions. These issues become 
more significant as game characters approach some form of 
realistic consciousness, however, utilising AI to construct 
well-designed moral dilemmas and emotionally effective set 
pieces with games opens a range of new and interesting 
gameplay scenarios. 

DISCUSSION 

Most games allow only limited processing resources for AI, 
and this can often prohibit many advanced AI techniques. It 
is reported that 50% of the processing resources were 
allocated to AI in the game “Creatures” (see 
http://www.gameai.com/cgdc97notes.html). However, few 
commercial games have this rich allocation of processing 
resources to AI; 1% - 5% is a more typical allocation. With 
such limited resources available, it is often perceived that 
neural networks are too computationally expensive to be used 
in the majority of commercial games – particularly when the 
AI is to be trained online. This is a fair criticism of some of 
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the well-known neural network methods such as the error 
back-propagation algorithm. However, there are many 
other neural algorithms that have a comparatively low 
computational cost, such as some Hebbian learning 
methods, topology-preserving maps, radial basis networks 
and Learning Vector Quantisation (LVQ). Moreover, some 
older neural network training methods can be implemented 
using optimisations that vastly reduce their computational 
cost. (Kohonen, 1996) For offline applications, the 
argument of prohibitive computational cost is rarely valid, 
since it is the weight update (training) procedures that 
normally require the majority of the computation – not the 
feed-forward, or sensory phase, which would be used at 
runtime. 

Inexperienced users of neural networks often encounter 
problems with parameter selection. Let us consider the 
radial basis function network as a typical example. For this 
network, the user must choose a suitable number of 
centres, and each of these must be initialised to a point in 
the data space. There are several other parameters that 
need to be “tweaked” to ensure that the network converges 
to a stable state without over-fitting the data, including the 
centre variances, the initial weight values, the learning 
rate, and any learning rate annealing strategy. The set of 
parameters that works best will vary between different data 
sets and applications, and it can be time-consuming for a 
developer to find an acceptable set. The problem is further 
exemplified in online training, where there is no expert to 
hand-pick parameters. The problem of parameter selection 
has been tackled in recent years by several probabilistic 
methods, which have created a great deal of interest 
amongst the computational intelligence community. There 
are now many probabilistic neural algorithms (e.g. 
(Bishop, 1998, Hinton et al, 1995, and Yin & Allinson, 
2002) that work using objective functions to train the 
network. These methods tend to have fewer user-selected 
parameters, and where parameters must be chosen they 
tend to be less sensitive to picking critical values. To our 
knowledge, this exciting area of neural network research 
has yet to be applied to games-specific applications, and 
this promises to be a worthwhile area for future research.  

As implied in this discussion section, progress has been 
limited in the use of neural networks within digital games 
largely due to a lack of knowledge or understanding 
among researchers and game developers of the wide range 
of methods that may be applied to game AI. This situation 
can be improved by those of us with a wider and more 
detailed knowledge of neural methods providing a range of 
successful, persuasive and meaningful neural network 
enhanced game AI examples.  
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ABSTRACT 
 
The paper presents a reinforcement learning algorithm using 
neural networks for learning an agent to play the Othello 
game. The system has no initial knowledge of the game, 
except of its rules. Reinforcement learning techniques allow 
an agent to learn successful game strategies by repeatedly 
playing the game. The only information received by the 
agent during learning is a reinforcement signal at the end of 
each game. Neural networks are known for their good 
generalization for untrained inputs. Since the state space for 
a game like Othello is very large, we use neural networks to 
represent the value function. The approach is similar to that 
of Tesauro for the game of Backgammon. The learned 
network can play Othello at a level close to that of expert 
programs as shown by its performance in world-
championship games.   
 
 
INRODUCTION 
 
Reinforcement learning is an on-line method of learning 
from experience (Sutton and Barto, 1998).  The aim is to 
learn an optimal value function that assigns to each state of 
the environment a value representing the estimated reward 
from that state until the end of an episode.  All learning is 
done while the agent interacts with the environment: the 
agent repeatedly observes states, takes actions, receives 
rewards and updates its value function. The only information 
the agent receives about its actions is a reward signal, which 
is known only at the end of the game. Reinforcement 
learning has been used successfully in spatial navigation 
problems (Arleo and Gerstner, 2000), game playing 
(Backgammon) (Tesauro, 1995),  trading agents and markets 
(Moody and Saffell, 2001; Tesauro and Kephart, 1999) and 
job-shop scheduling (Zhang and Dietterich, 1995).  
 
Reinforcement learning works well for problems with a 
small number of states, where each state can be visited a 
large number of times - a requirement for convergence to the 
optimal value function (Sutton and Barto, 1998). Situations 
with a large number of states require a different approach, 
otherwise an unfeasibly long training time is needed. The 
value function for the visited states is updated during 
learning, while a function approximation method is used to 
evaluate the value function of the rest of the states (Sutton 
and Barto, 1998). We chose neural networks to represent the 
value function (Sutton and Barto, 1998; Arleo and Gerstner, 

2000; Foster et al. 2000).  Neural networks can learn any 
nonlinear mapping based on their well known property of 
universal approximators. Moreover, neural networks have 
very good generalization capabilities for inputs unseen 
during learning.   
 
In this paper, we use a reinforcement learning algorithm 
implemented with neural networks for training an agent to 
play the Othello game. The value function is represented by 
a multi-layer feed-forward neural network trained with the 
back-propagation algorithm (Rumelhart and McClelland, 
1986; Rumelhart et al. 1986). Similar to how Gerald Tesauro 
created an agent to play the game of Backgammon (Sutton 
and Barto, 1998), an agent is created for the purpose of 
learning how to play the game of Othello, which is a game 
with a massive state space and a small set of rules.  It is a 
game played between two players with a simple objective: to 
end the game with more pieces of your color than your 
opponent’s on the board.  Other approaches to playing 
Othello include using min-max trees (that uses a heuristic 
based on the number of pieces of your color) and by directly 
assigning values to specific tiles on the board (and the agent 
would then try to always place a piece on the most highly-
valued tile) (Sutton and Barto, 1998).  The problem with 
these heuristic methods is that it is unknown how useful 
these strategies might be, the agent’s play may be predictable, 
and in the case of game trees it might be impossible to build 
a tree beyond a small number of moves.  By using 
reinforcement learning to allow the agent to develop its own 
strategy, human learning can be simulated. 
 
The results of the best trained agent were compared to the 
performance of world champions.  Several world 
championship games were examined to see how often the 
agent would choose the same move as the expert and how 
often the agent would believe that the expert’s move was a 
good one.  This comparison is used to demonstrate that 
learning did indeed occur.   
 
 
PROBLEM DESCRIPTION 
 
Othello is a game played between two players, Black and 
White, on an eight by eight grid.  Each player has pieces of 
his color on the board; the goal for the player is to have more 
pieces of his color than his opponent’s on the board at the 
end of the game.  To do this, a player must outflank his 
opponent’s pieces, which then causes them to be flipped over.  
The following example diagram shows how White is able to 
outflank her opponent in three different ways, causing 
exactly five of Black’s pieces to become white. 
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Figure 1: In this example, it is White’s turn to move.  White places her disc in such a way as to outflank five of Black’s 

pieces.  All outflanked pieces are flipped over, thereby taking five pieces from Black and giving them to White.

Every turn, a player must make a move that outflanks at least 
one of his opponent’s pieces; if such a move cannot be made, 
the player loses his turn.  If the other player also cannot 
move, the game ends (this most commonly occurs when the 
board is full).  When the game is over, the number of pieces 
of each color is counted; whichever player has more pieces is 
the winner. 
 
A game state for Othello is defined by the arrangement of 
black and white discs on the board, and the name of the 
current player.  The next state would occur after the current 
player has placed a disc on the board, outflanked at least one 
piece, and flipped all outflanked pieces over to her color.  
(The upper bound of Othello’s state space is 364: there are 64 
tiles, each of which can bear a white or black tile, or be 
empty). 

 
 

METHODS 
 
The purpose of reinforcement learning is to find an optimal 
value function, where the value of it in each state (V(s)) 
represents the estimated discounted reward from that state 
until the end of the game (Sutton and Barto, 1998; Tesauro, 
1995). The value function guides the action taking process: 
at every move in the game, the action that is taken is the one 
that leads to the best possible next state. After each action, 
the agent receives a reward signal based on which the value 
function is updated. In TD(λ) - a variant of reinforcement 
learning called temporal difference - the observed reward at 
time t is used to update the value of all states, not only of the 
current state (TD(0)).  Previously visited states and states 
visited closer in time to t - chosen by an eligibility trace - are 
affected more than the rest.  In this way, learning updates not 
only the present state - either good or bad - but also the states 
on the path to it (Sutton and Barto, 1998).  Learning is hard 
because the reward signal is received only at the end of the 
game indicating a win or a loss. Whether an intermediary 
move is good or bad is known only at the end of the game. 
By repeatedly playing the game, learning proceeds from the 
end of the game to the beginning, as reward slowly 
propagates back from later moves to earlier moves.  

Since Othello has a very large state space, the value function 
is difficult to represent with a table, and more importantly, it 
is impossible to ensure that each state will be visited a very 
large number of times - a requirement for convergence to 
optimal value function. That is the reason why, for problems 
like the Othello game, a function approximation method is 
used to interpolate the value function for unvisited states. We 
use feed-forward neural networks to represent the value 
function.  
 
The neural network has three layers as shown in Figure 2. 
There are N nodes in the input layer, H neurons in the hidden 
layer and a single neuron in the output layer. The input and 
hidden layers are both augmented with a bias neuron.  
(Nodes in the input layer are not consider neurons because 
no processing occurs within them). 

 
Figure 2: The structure of the neural network. 

The activity of the N sensory nodes in the input layer 
represents the current state of the Othello board. There are 
194 input nodes: 192 neurons represent White’s and Black’s 
pieces arranged on the 64 tiles, as well as which of the 64 
tiles are empty or not; 2 neurons indicate whose turn it is. 
The hidden neurons receive projections from all input nodes, 
plus the bias neurons. The activation function of a hidden 
neuron is the sigmoidal function: 
 

(1) xk = f(hk) = 1/(1 + e-hk)   
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where  hk = Σ(wki * xi ) is the weighted sum into a hidden 
neuron, wki , the weights between input nodes and hidden 
neurons, and  xi, the values of the input nodes, including the 
bias neuron. The activation function of the output neuron is 
also the sigmoidal function. The output of the network 
represents the value function of the input state at time t: V(st).  
 
All weights are updated using the back-propagation 
algorithm (Rumelhart et al. 1986). The error (δt) that is back-
propagated from the output to the input is the difference 
between the estimated reward from state st  (rt + γ V(st+1))  
and the current value of that state (V(st)) :  
 
(2) δt = rt + γ V(st+1) – V(st)    
    

 

where rt  is the observed reward in state st, and γ  represents 
the rate at which reward from future states is discounted 
(Sutton and Barto, 1998). The value of rt is 0 all through the 
game, except for the last state in each game, where a reward 
signal of +1 is produced if Black has won, and a reward 
signal of 0 is produced if White has won. The update 

ights in the network is:  equation for all we   

(3) Wt = Wt-1 +  α δt et     
   

 

with Wt  the vector of all weights in the network, α  the 
learning rate, and et the eligibility trace, a vector of the same 
size as Wt (Sutton and Barto, 1998):  
 
(4) )(1 tWtt sVee

t
∇+= −γλ    

      
 

with λ,  representing the eligibility of a weight to being 
updated. At each time step, the eligibility trace goes down 
proportional with λ.  The increment of the eligibility trace is 
proportional with the gradient of the network function with 
respect to the weights: . )( tW sV

t
∇

 
Equations (1-4) represent the TD(λ) algorithm implemented 
on neural networks.  The complete learning algorithm is 
described below: 
 
 
 
 
 
 
 

Initialize the weights of the network to small, random values. 
π : the policy for choosing moves.    
α : the learning rate 
ε : the probability of choosing a random move (used 
in π) 
 
Repeat for each episode: 

st  The initial state of the episode 
Repeat for each step of the episode : 
 a  action given by π for st 

Take action a, observe reward r, and next 
state, st+1.  

δt = rt + γ V(st+1) – V(st)  
)(1 tWtt sVee

t
∇+= −γλ  

Wt = Wt-1 +  α δt et    
          st  st+1 
Until st is terminal 
Update α, ε   

 
The above algorithm is implemented as follows: Training 
involves two players (Black and White) sharing a single 
neural network which is updated after every move is made.  
The policy, π, for choosing moves is as follows: choose a 
random move with ε probability; otherwise, choose from 
among the set of moves that differ in value from the best 
move by a small amount (usually 0.02).  After each game, α 
and ε are updated by the following equations: 
 
(5) α  = (α0) * (0.99 Ng/200) + 0.0025    
(6) ε  = (ε0) / (e  Ng/10000) + .002  
    
where Ng is the number of games played. 
 
 
RESULTS 
 
Fifteen neural networks were trained differing in regard to 
four key parameters: the number of hidden neurons, the way 
the learning rate (α) decayed, the way epsilon (ε) decayed, 
and the number of training epochs. The networks were then 
pitted against each other in a round-robin style tournament.  
In order to increase the variety of games played between any 
pair of networks, ε was reduced to 0 in all cases, but the 
tolerance for determining the set of best moves was 
increased to 0.05.  After the tournament, the network that 
achieved the best performance was then chosen for further 
analysis.  
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Figure 3 : A sample board evaluation. 

The one selected had ninety-six hidden neurons, a learning 
rate of 0.5 that decayed the most slowly, an epsilon value of 
0.9 that also decayed very slowly, and had played 100,000 
training games with itself. 
 
Figure 3 gives a sample board evaluation.  The network, or 
agent, looks at each of the next states that can result from 
each of its possible legal moves.  It then evaluates the worth 
of each of those next states, and then chooses the move that 
leads to the most valuable state.  In this scenario, it is 
White’s turn and White can make 11 moves.  Values close to 
0 indicate states good for White, and values close to 1 
indicate states good for Black.  The network considers 3 
moves particularly bad (marked by red X’s), 7 moves good 
(blue checkmarks), and 1 move excellent (the yellow circle).  
The network has learned that the corner can be a valuable 
place to put a piece.  Moreover, it notes that tiles near the 
corner are very poor places to put pieces.  (Placing a piece 
near the corner would allow the enemy to grab the corner the 
next turn). 
 
The seemingly best network was further studied to see how 
its performance compared to the performance of world 
championship games (Mandt, 2003). The games were 
presented to the network state by state; what was analyzed 
was the relationship between the values of what the network 
thought was the best move and the move the world champion 
selected. The point of the analysis is to illustrate that genuine 
learning must have occurred if the network tends to agree 
with experts. Figure 4 shows the results of this analysis.  
 
Around 30% of the time the network chose the exact same 
move the expert did, and around 64% of the time the 
network believed that the expert’s move was close in value 
to the move it chose.  Considering that there are about an 
average of 8 moves a turn, the 30% exact match is much 
better than the 12.5% chance of choosing the move randomly.  
It is also important to note how these results would be 
different for an untrained network.  An untrained network 
would not choose the exact same move as the expert with 
any great probability; however, since to an untrained 
network all states are equally valuable, the untrained network 
would believe that the expert’s move was close to the best 
move in value 100% of the time.  The reason that the results 
are important for a trained network is that, for a given state, 
the trained network assigns widely different values to the 
possible next states (as can be seen from the sample 

evaluation).  The high percentage of closeness of value of the 
expert’s move to the network’s move is only relevant to a 
trained agent. 
 
After this comparison of the network’s choices to an expert’s, 
the network played several games against human players 
experienced with Othello (and thus probably playing at an 
intermediate level).  The players consisted of a senior 
university student majoring in mathematics, a professor of 
computer science, and three on-line players who were 
playing in Yahoo!’s intermediate area for Othello (Reversi) 
players.  The program successfully beat all but the professor, 
who conceded that the program offered a challenging level 
of play. 
 
 
CONCLUSIONS 
 
We have shown that a reinforcement learning algorithm 
using neural networks was able to learn to play Othello 
without an external teacher. Considering that the network 
started with only the rules of the game, it is significant that 
after training, the network tended to agree with world 
champions.  There is a caveat, however: training an agent to 
play Othello using a neural network does not result in 
optimal game play.  One problem with this method of 
learning is that the network only learns to play against one 
style of strategy.  No matter whom the network’s opponent, 
it will always choose the same moves.  In other words, the 
network never considers the opponent’s playing strategy.  
Moreover, against expert computer programs that might 
employ preprogrammed heuristics, the network is at a 
disadvantage.  One possible improvement that could be made 
to the neural network program would be to augment its 
decision-making with a game tree.  For example, perhaps 
during the last five moves of the game, the network could be 
abandoned and a game tree could be used to analyze those 
critical last few moves.  Although the network only reaches a 
good level of play, it was able to reach this level on its own 
without any help from any strategist guiding it.  The 
combination of neural networks and reinforcement learning 
is thus useful in applications in which no strategies are 
currently known; these strategies can then be learned by the 
network. 
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ABSTRACT 
In this paper we will address our efforts to design a 

neural control system that can control a simulated aircraft, 
which ultimately should lead to a realistic artificial pilot. 
The system we designed consists of a flight plan module, 
the actual neural controller module, and a graphic user 
interface. The goal of the flight plan module is to manage 
the global control of the whole system. For the neural 
controller we chose to use a Forward Modeling and 
Inverse Controller. The Jordan Network was used to 
construct the pre-trained identifier and the online learning 
controller. Our first experiments showed that 
improvements were necessary to make the aircraft fly 
more smoothly. Although the aircraft �wobbles� a bit at 
the start of a new flight procedure, the controller is able to 
adapt to changing circumstances during flight. 

1. INTRODUCTION 
The Intelligent Cockpit Environment (ICE) project is a 

project of the Department of Media and Knowledge 
Engineering of Delft University of Technology. 
Originally, the main purpose of this project was to 
investigate techniques that can be used to create a 
situation-aware crew assistance system [Ehlert and 
Rothkrantz 2003]1 . Basically, a crew assistance system 
functions as an electronic co-pilot looking over the 
shoulder of the crew of an aircraft and helping out when 
necessary. 

 
A secondary objective of the ICE project has been to 

create a realistic artificial pilot, also called flightbot, that 
can be used for simulations.  Such a pilot can increase the 
realism of flight simulators and enhance the training of 
real pilots as well as study the different ways different 
pilots are flying. 

 
In this paper we will address our efforts to design a 

neural control system that can control a simulated aircraft. 
The control structure we used for this application is called 
                                                           
1 More information on the ICE project can also be found via 
http://www.kbs.twi.tudelft.nl/Research/Projects/ICE/ 

Feed Forward and Inverse Control and consists of two 
neural networks. One is a pre-trained network and the 
other is an online learning network for inverse control. 

2. RELATED WORK 

2.1. Simulating pilots 
There are several projects that deal with the construction 

of artificial pilots. Here we will shortly mention two 
examples found in literature; the TacAir-Soar and TAC 
BRAWLER projects. 

 
 TacAir-Soar is a rule-based system that generates 

believable human-like pilot behaviour for fixed-wing 
aircraft in large-scale distributed military simulations 
[Jones et al 1999]. Each instance of TacAir-Soar is 
responsible for controlling one aircraft and consists of a 
Soar architecture [Laird, Newel and Rosenbloom 1987] 
linked to the ModSAF simulator [Ceranowicz 1994]. The 
advantage of using Soar is that the reasoning and decision-
making of the system is similar to the way humans are 
generally believed to reason.  

 
TAC BRAWLER is a simulation tool for air-to-air 

combat developed by the Linköping University in 
collaboration with Saab Military Aircraft AB in Sweden 
[Coradeschi, Karlsson, and Törne 1996]. The system is 
designed specifically for air-to-air combat experts and 
allows the experts to specify the behaviour and decision-
making of the intelligent pilot agents, without the help of a 
system expert. The agents in TAC BRAWLER are 
modelled by decision trees. These trees contain production 
rules that describe the agent�s dynamic task priorities. 
During one decision cycle, several branches of the tree can 
be processed in parallel after which all selected actions are 
evaluated for priority and compatibility.  

 
Both TacAir-Soar and TACBRAWLER try to simulate 

realistic pilot flight behaviour and both focus primarily on 
decision-making during flight. However, both systems use 
a rule-based approach for aircraft control. No project was 
found that uses a neural control approach.  
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The possible advantage of neural control over a rule-
based approach is that there is no need to specify rules for 
pilot behaviour. Although rule-based approaches are very 
suitable to model normative pilot behaviour, it is much 
more difficult to model the different styles that different 
pilots use for flying. Secondly, using neural networks 
automated learning can be used to avoid the difficult 
process of explicating flight rules and finetuning rules and 
parameters. Thirdly, neural networks allow automatic 
adjustment to changing circumstances, such as different 
weather conditions, different aircraft, and malfunctioning 
controls. 

2.2. Neural networks and flight control 
The first Neural Network (NN) controller was 

developed by Widrow and Smith in 1963. Since then 
many applications have shown that NNs can be applied 
successfully to control unknown nonlinear systems. There 
have been a number of studies that investigated neural 
networks for flight control, for example [Calise 
1996],[Wyeth et al 2000],[Pesonen et al 2004]. However, 
all neural control studies try to improve (a particular part 
of) automated flight control and focus mainly on the 
control of Unmanned Aerial Vehicles (UAVs), helicopters, 
and missiles. Their goal is simply to create a controller that 
functions as good as possible. We did not find any studies 
that investigated neural networks for simulating realistic 
flight behaviour of real pilots. 

3. SYSTEM DESIGN 

3.1. General system scheme 
The essential element of a powerful and flexible neural 

control system is of course the controller itself. However, 
to create a flightbot we also need some assistant parts, for 
example a flight-planning system. 

 
Our system has been divided into three parts according 

to the different tasks and functions which are; the graphic 
user interface, the flight plan module, and the neural 
controller module. Figure 1 shows the general system 
scheme. The user interface sends orders from the user to 
the flight plan system. The flight plan system will analyse 
the order to determine whether it is reasonable or not.  If it 
is reasonable, the planning system will create a flight plan, 
which consists of at least one flight procedure. Then, the 
planning system will send different data (the desired plant 
output) to the controller module corresponding to each 
flight procedure. The controller will produce the necessary 
control data that will finally be applied to the plant 
(aircraft).  

 

Figure 1: general scheme of the neural flight control autopilot 
system 

3.2. Flight plan module 
The goal of the flight plan module is to manage the 

global control of the whole system. The flight plan module 
will keep an eye on the flight process and update its flight 
records to provide the proper plant output data. To be 
precise the duties of the flight plan module are:  

 
• Analyzing the reasonability of the current goal; 
• Deciding on the flight plan; 
• Providing the controller with the necessary data 

corresponding to each part of the flight plan; 
• Checking the current flight situation. 
 
Figure 2 shows a scheme of the flight plan system 

module. 
 

 

Figure 2: the flight plan system model 

The flight plan module choses one of more procedures 
based on the goal that is currently set by the user as well as 
on the state of the aircraft and the environment. Figure 3 
shows the (simplified) relationship between the goal of the 
flight plan module and the chosen flight procedures. With 
�default flying� we mean straight and level flight. 
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Figure 3: flight strategies 

3.3. Neural control module 
For the neural control module we have looked into 

several neural network control topologies. For our 
purposes we investigated three often-used neural network 
control topologies:. Direct Inverse Control, Neural 
Predictive Control and Forward Modeling and Inverse 
Control. 

Topology comparisons 
In the Direct Inverse Controller the structure will force 

the network to represent the inverse of the plant. However, 
there are drawbacks to this approach. First, if the nonlinear 
system mapping is not one-to-one then an incorrect inverse 
can be obtained. Second, inverse plant models are often 
instable, which may lead to the instability of the whole 
control-system.  

 
The Neural Predictive Controller consists of four 

components, a plant to be controlled, a reference model 
that specifies the desired performance of the plant, a neural 
network modelling the plant, and an optimisation model 
used to produce the plant input vector. The object is to 
have an input vector for which the value of the cost 
function is lower than a defined value. Then the first 
element of the plant input for current time will be applied 
to the plant. The Newton-Rhapson algorithm has been 
widely used for the optimisation model to determine the 
best-input vector. The main disadvantages of Neural 
Predictive Control are that numerical minimization 
algorithms are usually very time consuming (especially if a 
minimum of a multivariable function has to be found), 
what may make them unsuitable for real-time applications. 
When sampling intervals are small, there may be no time 
to perform minimum searching between sampling. 
Additionally, the prediction controller requires an 
accurately trained neural network model to simulate the 
plant, since the result of the whole controller system 
depends on the correct prediction value.  

 
The Forward Modeling and Inverse Control (see Figure 

4) has an additional NN plant model, compared to the 
Direct Inverse Control, which is used in the inverse neural 
network training process. The error signal is propagated 
back through the forward model and to the inverse model. 
However, only the inverse network model is adapted 
during this procedure.  

 

Figure 4: basic Forward Modeling and Inverse Control 

The error signal for the training algorithm in this case is 
the difference between the training signal and the system 
output (it may also be the difference between the training 
signal and the forward model output in the case of noisy 
systems, which is adopted when the real system is not 
viable). Jordan and Rumelhart [1992] have showed that 
using the real system output it can produce an exact 
inverse controller even when the forward model is inexact, 
which will not happen when the forward model output is 
used. Another plus is that since the controller neural 
network gets trained assuming the correct plant input is 
equal to the backpropagated error from the forward model 
plus controller output, the training process will be stable. 
 

All things considered, we have chosen the Forward 
Modeling and Inverse Control, mainly because we want 
our pilot controller to run in real-time alongside flight 
simulator software, so we do not have much CPU time 
available. In addition, as mentioned above Forward 
Modeling and Inverse Control is better in producing an 
inverse controller. 

Airplane system modeling 
Figure 5 shows the representation of the basic airplane 

model used for our application, which has four inputs 
(elevator, throttle, rudder and aileron control) and four 
outputs (airspeed, pitch, heading and bank).  

 

 

Figure 5: the basic airplane model 

The elevator and throttle directly influence the airspeed 
and pitch of an aircraft, whereas the rudder and aileron 
directly influence heading and bank. The ailerons control 
is used to bank the airplane in the direction the pilot wants 
to turn, and the rudder control is used to keep the nose of 
the airplane pointing to the direction of turn. 

 
If we only look at the relation between elevator/throttle 
and airspeed/pitch, we can represent this dynamical system 
as in Figure 6, which is used for the input and output 
analysis. 
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Figure 6: input-output relationship for the elevator/throttle and 
airspeed/pitch model 

This interconnected dynamic system has (d1, d2) as input 
and (y1, y2) as output, in which d1 denotes the elevator 
input, d2 denotes the throttle input, y1 denotes the pitch 
output and y2 denotes the airspeed output. In the dynamic 
sub-system Σ1, the input d1 + y2 produces the output y1, 
which means the current elevator input and current 
airspeed value determine the pitch value of the next cycle.  
In the dynamic sub-system Σ2, the input d2 + y1 produces 
the output y2, which means the current throttle input and 
current pitch value determine the airspeed value of the 
next cycle.  
 

Besides airspeed and pitch, there are also some other 
parameters influenced by the throttle and the elevator 
controls, like altitude and vertical speed. Compared with 
airspeed and pitch, those parameters are the indirect results 
of the throttle and the elevator controls. For example, if the 
airplane is in the air and pitches up, then the altitude will 
increase and the vertical speed will be a positive value. 
Therefore, we regard the altitude value and the vertical 
speed value as the references, instead of the parameters 
that should be used in the system modelling. For example, 
when the user sets a flight order for the airplane, besides 
the flight action he (she) will also be asked to set the 
altitude the airplane should fly to and this value is checked 
by the system during flight to analyse the situation.  

 
For more details on how throttle and elevator influences 

airspeed and pitch, or on flying the Cessna aircraft in 
general, the interested reader is referred to the Microsoft 
Flight Simulator manual [2002]. 

4. IMPLEMENTATION 
All software was written using Visual C++ 6.0 

environment and in C language. For each module we 
tested the functions seperatly before I we did a full 
system�s test. The neural networks were implemented 
using a program that is called the Stuttgart Neural 
Network Simulator (SNNS). SNNS is an open source 
program, which not only provides the interface to 
construct the neural network and simulate its running, it 
also offers a variety of kernel functions for the creation 
and manipulation of networks that can be combined in the 
user�s own program [Zell et al 1995]. The simulator we 
used to test our controller is the Microsoft Flight Simulator 
2000. The default Cessna 172 aircraft was chosen for all 
experiments described in this paper. 

 

For simplicity reasons, in our first implementation we 
only looked at elevator/throttle and airspeed/pitch. We did 
not implement turning. 

 
We first trained a neural network to model the airplane 

plant using SNNS. The topology we used to construct the 
identifier is the Jordan Network. From experiments we 
found that, due to its simplicity, the Jordan Network (see 
Figure 7) is better for on-line training than the other 
network we tried, a Non-linear AutoRegressive Moving 
Average (NARMA) network (see also [Liang 2004] for 
more details).  

 

 
Figure 7: topology of the Jordan Network and the structure of its 

context PE 

The difference between a common neural network and a 
recurrent neural network, such as the Jordan Network, is 
that in a recurrent neural network there is a context 
Processing Element (PE). In the right part of Figure 7 you 
can see, the one-step delay in the context PE. After this 
one-step delay, the output of the neuron is returned as an 
input. For the Jordan network, the context PEs only exists 
in the input layer, and there is no recurrency in the input-
output path.  

 
Based on early experiments, we came to the conclusion 

that for an identifier whose input-output relationship is not 
so complex, one hidden layer with around 20 neurons is 
enough. Of course, one can construct a multi hidden layer 
neural network with each hidden layer having around 12 
neurons. However, it will not improve results much and 
only waste time in training. Therefore, in our application 
we used only one hidden layer. 

 
After training the identifier was fixed. The controller 

was also constructed using the Jordan Network and trained 
in real-time. 

5. TESTING 
During the implementation phase of each module, we 

already tested each function separately. When the 
implementation was finished we performed a full system�s 
test.  During the full system�s test we encountered several 
problems in the current control system: 

 
• The airplane wobbled a lot at the start of each flight 

procedure (visible in Figure 8); 
• The airplane kept descending during the default 

flying procedure (see the lower picture in Figure 9); 
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Taxiing Flying Up Default Flying 

• The airplane changed its behaviour dramatically 
when going from one flight procedure to another 
(see the upper picture in Figure 9); 

 

 

Figure 8: pitch error during the taxiing and flying up procedure 

 

 
Figure 9: pitch error (top) and altitude (bottom) during take-off 

6. IMPROVEMENTS AND EVALUATION 
Trying to solve the above-mentioned problems, we came 

to the following solutions; 
• Limit the controller�s output range of the elevator; 
• Change the desired pitch value for the default flying 

procedure, slightly above 0; 
• Modify the reference table used by the controller to 

make the desired pitch output change gradually. 
 

6.1. Results 
Figure 10 shows the pitch error during the taxiing and 

the flying up procedure. The pitch error shown in the right 
plot is taken from the airplane controlled by the improved 
controller and the data shown in the left plot is from the 
airplane controlled by the previous controller. From the 

comparison, you may see the pitching magnitude has 
decreased considerably. 

 

 
Figure 10: pitch error comparison between original (left) and 

improved controller (right) 

From the pitch signal, which is the lower plot in Figure 
11, you can see that at the start of the default flying 
procedure, the pitch is levelling off gradually, resulting in 
a slow increase of the altitude until it settles on a certain 
value. Compared to the altitude plot in Figure 9, it is clear 
that the improved reference model of the desired plant 
output makes the airplane fly much better.  
 

Figure 11: altitude (top) and pitch error (bottom) during the take-
off and fly to 2000 feet procedures 

 

 

Figure 12: altitude (top) and pitch error (bottom) during take-off, 
flying up and flying down procedures 
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Figure 12 shows the altitude and pitch error during a 
flight were the aircraft flew up to 2000 feet, then up to 
4000 feet, and again down to 2500 feet. The red line in the 
lower part of Figure 12 shows the actual pitch output value 
while the blue line is used to visualize the desired pitch 
output value. From the comparison we can see that the 
neural controller can respond to changes of the desired 
pitch value immediately. In another words, the controller 
has fast reaction ability.  

6.2. Controller stability analysis 
There are several ways to analyse the stability of the 

controller. For example, we may characterize stability 
from an input-output viewpoint, or we can characterize 
stability by studying the asymptotic behaviour of the state 
of the system near steady-state solutions, like equilibrium 
points. We prefer to use the steady-state stability analysis, 
so we studied if the current system is asymptotic stable 
and characterized the attraction region. 
 

 
Figure 13: elevator (left) and throttle input (right) during the 

flying up procedure 

 

Figure 14: pitch (left) and the airspeed output (right) 
corresponding to Figure 13 

Figure 13 shows that at the start of the control phase 
both the elevator input and the throttle input start with an 
arbitrary value. As the process goes on, both slowly settle 
on a certain value to achieve the desired pitch and airspeed 
output. Figure 14 includes the corresponding pitch value 
and the airspeed value taken from the elevator control 
input and the throttle control input. 
 

With a smaller input the output will be smaller also, and 
the control inputs will finally settle on a certain value to 
achieve a certain desired output. These two characteristics 
indicate that this control system is asymptotic stable.  

7. CONCLUSIONS AND DISCUSSION 

7.1. Conclusions 
The results presented in the previous chapter 

demonstrate that the current neural flight controller system 
can: 

• Control the airplane to take off, fly up and fly down; 
• Run alongside the Microsoft Flight Simulator, 

which is a large CPU time consuming application; 
• Control the airplane so that it achieves a stable 

flight; 
• Respond to the changes of the desired plant output 

immediately; 
• Provide the current flight situation to the user and 

visualize the evaluation data in 2D coordinates in 
real time. 

 
The test results also show that the training of the 

controller neural network is affected by the pre-defined 
desired plant output. Therefore, setting the proper desired 
plant output for each flight procedure is very crucial for a 
good controller system. 

 
As mentioned before, one of our improvements was to 

limit the output range of the elevator control to decrease 
the �wobbling� pitching magnitude, but this phenomenon 
still occurs (to a much smaller extent) at the beginning of 
each flight procedure. It does disappear as training 
progresses, as can be seen in Figure 15. 

  

 
Figure 15: normalized elevator input (left) and pitch value (right) 

during flying up procedure  
 

 Figure 16: altitude corresponding to Figure 15 
 

7.2. Discussion 
Unfortunately, the �wobbling� pitch phenomena cannot 

be avoided if we stick to the continuous online training of 
the single neural controller system that we use. However, 
we feel that this is not a big problem, since this 
phenomenon can also be found in normal piloting 
behaviour, which we ultimately intend to simulate.  

 Figure 16 shows that the overall change in altitude 
progresses as normal and small variations are only visible 
on closer inspection. 
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Because of its online training ability, the developped 
neural controller system can adapt itself to new situations 
as they arise. This makes our neural network controller 
more flexible than rule-based control technique, like fuzzy 
control. With fuzzy control one would define the control 
rules beforehand, based on the experience of the expert. 
The advantage of fuzzy control is that for some problems 
one may have an intuitive idea about how to achieve high 
performance control, but the consequent problem is that a 
human expert cannot predict all situations that can occur. 
Even if the expert is able to predict everything and write it 
into rules, the rule base will become large and complex, 
and might not balance the stability criteria and the 
performance objectives.  

 
Our neural flight control system is flexible and can be 

applied to different aircraft applications. The architecture 
will remain the same. Adapting to other aircraft only 
requires replacing the pre-trained neural network identifier 
by another suitable one and indicating the desired output 
of the airplane. 

8. FUTURE WORK 
As discussed in the last section, the neural control 

system will make the airplane fly not smoothly at the start 
of a flying procedure. Although it is not very troublesome 
we would like to be able to simulate pilots that do not try 
to correct the pitch. One possible solution we are thinking 
of is the following. The current neural network controller 
is trained at each time there is a training pattern available, 
which will make the controller quite �sensitive�. Instead of 
training the controller every time a training pattern is 
available, we could train it when, for example, 10 training 
patterns are available. Then the airplane could keep the 
current pitch for a while. 

 
Of course our current neural control autopilot system is 

still quite limited. It can only control the airplane to fly up 
and down in a straight line. For future�s work, we plan to 
incorporate more functions such as turning and landing. 

 
Once we have a fully functional controller we plan to 

compare the behaviour of the resulting controller with the 
flight behaviour of the pilot who delivered the training 
data. Additionally we plan to record flight data from 
different types of pilots, which would allow us to train 
different controllers with different flying behaviour. 
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ABSTRACT 
 
Several feed-forward neural networks were trained to solve 
double dummy bridge problems. The training was solely 
based on presentation of sample deals and target number of 
tricks to be taken by a pair of players. No human knowledge 
of the game of bridge and even no rules of the game were 
presented. Analysis of connection weights of trained 
networks reveals some phenomena, which nevertheless can 
be explained using human knowledge and experience in the 
game of bridge. 
 
INTRODUCTION 
 
This paper presents results of training artificial neural 
networks to solve double dummy bridge problems. In these 
problems all four hands are fully revealed and the question is 
how many tricks can be taken by one pair of players under 
the assumption of optimal play of all sides. This research is 
the first step on the way to create a program able to 
efficiently play bridge without explicitly build-in human 
knowledge. Hence, the training data contained only deals 
with target information about the number of tricks to be 
taken by one pair of players. It must be emphasized that the 
rules of the game were not presented as well. 
 
THE DATA USED IN EXPERIMENTS 
 
All deals used in experiments were taken from GIB Library, 
created by Ginsberg’s Intelligent Bridgeplayer (Ginsberg 
2001). 
 
The total number of deals included in this library is equal to 
717,102. This set of deals was divided into three parts. The 
first part containing 500,000 deals was used during training, 
the next one with 100,000 deals during validation and the 
remaining deals were used for testing. In most cases each of 
these three data sets (training, validation and testing) was 
composed of 100,000 deals. 
 
Each deal included in the library consisted of all hands fully 
revealed and the number of tricks taken by the pair of 
players NS under the assumption of perfect play of both 
parties.  In our experiment the attention was fixed on the no 
trump play with player W making defender’s lead.  

NEURAL NETWORK ARCHITECTURES 
 
In all experiments feed-forward neural networks with 
logistic (unipolar sigmoid) activation functions and 
randomly set initial weights, trained using Rprop algorithm 
(Riedmiller and Braun 1992), were used. Training and 
testing were performed using Java Neural Network 
Simulator (JNNS). 
 
Input neurons 
 
Coding a deal was based on 52 real numbers, one for each 
card. The cards were ordered in a predefined way, i.e. first 
Spades, then Hearts, Diamonds and Clubs. In each color 
cards were ordered from two to ace (see Figure 1). The 
coded value of each card denoted the player having the card, 
i.e. 1.0 for N, 0.8 for S, -1.0 for W and -0.8 for E.  
 
Some experiments with other codings were also performed, 
but accomplished results were worse. The above described 
way of coding a deal leads to a very fast training. Networks 
using this coding needed only several hundreds of iterations, 
compared to a few tens of thousands iterations required for 
alternative codings. 
 
Hidden neurons 
 
The number of hidden layers and hidden neurons varied. The 
best network had 25 hidden neurons (52-25-1). The 
networks with bigger number of hidden neurons 
accomplished better results for training set, but worse for 
testing deals. On the other hand networks with fewer hidden 
neurons yielded worse results, but this degradation was 
relatively small, including the case of a network without 
hidden layer (52-1). 
 
Output neuron 
 
In all experiments presented in this paper, a single output 
neuron represented the number of tricks to be taken by one 
pair of players. The number of tricks was computed as a 
linear transformation from integer values: 0, …, 13 to the 
range of real values [0.1, 0.9]. 
 
Some experiments with different mappings from integer 
number of tricks to real output value of the network were 
also performed, however with no significant difference in 
results. Also some other approaches of representing target 
number of tricks were tested, but the results were inferior.  
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Figure 1. Visualization of trained neural network connection weights values. 
 
RESULTS 
 
Results obtained by neural networks with various numbers 
of hidden layers are summarized in Table 1.  
 

Network 
type 

Results for training 
deals (in %) 

Results for testing 
deals (in %) 

52-1 94.17 | 76.22 | 31.06 94.15 | 76.15 | 31.29 
52-4-1 94.52 | 77.13 | 31.80 94.44 | 77.05 | 32.13 
52-8-1 95.42 | 78.77 | 32.92 95.24 | 78.53 | 32.88 
52-25-1 96.27 | 81.02 | 34.60 95.81 | 79.95 | 34.02 
52-52-1 96.79 | 82.23 | 35.45 95.66 | 79.46 | 33.64 

Table 1. Results obtained by neural networks with various 
numbers of hidden units. The results are presented as three 
numbers: A | B | C, representing the fractions in percent of 
deals for which the network was mistaken by no more than 2 
tricks (A%), no more than 1 trick (B%) and was perfectly 
right (C%). 
 
The network with 25 hidden neurons accomplished the best 
results. The remaining networks were slightly worse. Also 
very simple network, without hidden neurons (52-1) was 
doing surprisingly well. 
 
The results presented in Table 1. suggest that exceeding the 
level of (96 | 80 | 35) on the test set may be a difficult task. 
At first glance, the result of 34% of the faultless prediction 
may seem discouraging. However it must be emphasized, 
that neural networks were trained using information about 
deals only. Actually, no information about the rules of the 
game was provided. In particular, no information about 
some nuances of the play, e.g. finesses or squeezes was 
coded in the input. Only cards in hands and numbers of 
tricks to be taken were presented in the training data. 
 
For further discussion of results, including these obtained for 
alternative deal codings the reader is referred to 
(Mossakowski and Mańdziuk 2004). 

ANALYSIS OF TRAINED NETWORKS 
 
In this section structures of connection weights of several 
trained neural networks are discussed.  
 
Fig.1 presents the way of visualization of network's 
connections. Each circle represents one particular weight. If 
the circle is placed in the leftmost column, it represents the 
weight of connection from hidden to output neuron, 
otherwise - from input to hidden neuron. 
 
The radius of the circle represents the absolute value of the 
connection weight and is calculated as linear transformation 
from the range [0, 1]. All weights with absolute values 
bigger or equal 1 are represented by circles with the same 
radius. The color of the circle denotes the sign of weight's 
value: black for negative and white for positive ones. 
 
Network without hidden neurons (52-1) 
 
Card's value Spades Hearts Diamonds Clubs 

2 0.342 0.327 0.329 0.342 
3 0.340 0.334 0.328 0.353 
4 0.347 0.314 0.351 0.345 
5 0.341 0.332 0.341 0.344 
6 0.356 0.349 0.339 0.329 
7 0.380 0.331 0.354 0.356 
8 0.358 0.361 0.375 0.400 
9 0.496 0.469 0.461 0.473 

10 0.660 0.663 0.671 0.684 
J 1.047 1.032 1.056 1.030 
Q 1.676 1.688 1.675 1.656 
K 2.643 2.643 2.677 2.655 
A 3.975 3.971 3.966 3.989 

Table 2. Weights of connections of trained network without 
hidden neurons (52-1). Each value represents a weight of 
connection from the input neuron assigned to a given card to 
the output neuron. 
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Figure 2. Weights of connections of 4 independently trained neural networks with 4 hidden neurons (52 - 4 - 1). 
 
 
The simplest trained network had no hidden neurons, so it 
contained 52 connections, which weights are presented in 
Table 2. 
 
These weights of connections are very similar to Work point 
count - the human way of estimating the strength of cards 
(ace – 4 points, king – 3, queen – 2, jack – 1). In order to 
have a point of reference this human scoring of cards was 
used to create a naive estimator. The number of tricks to be 
taken by NS was estimated by (13/40)*points_of_NS. This 
estimator for the testing set achieved the result of 
(86.19 | 61.32 | 22.52). 
 
Networks with 4 hidden neurons (52-4-1) 
 
Fig. 2 presents weights of connections of 4 neural networks, 
each having 4 hidden neurons (52-4-1). All these networks 
were trained independently using the same data. The results 
achieved by them were of similar quality. 
 
It can be noticed that most of weights with the biggest 
absolute values are assigned to connections from input 
neurons representing aces and kings. This feature is quite 
natural - these cards are the most important in the game of 
bridge, especially in no trump play. 
 
Some “special” hidden neurons, which fix their attention 
only on one suit, can also be pointed (e.g. the third one in the 
first network). More such neurons will appear in the 
networks with bigger number of hidden neurons. 
 
Another interesting phenomenon concerns big absolute 
values of weights of all connections from hidden neurons to 
the output one. The absolute value of connection weight 
determines the relevance of the source neuron, hence a 

conclusion that all hidden neurons are relevant in these 
networks can be drawn from this feature. 
 
Networks with 8 hidden neurons (52-8-1) 
 
Weights of connections of 2 neural networks each having 8 
hidden neurons (52-8-1), trained using the same data and 
achieving similar results, are presented in Fig. 3 
 
The first conclusion, which can be drawn from the figure, is 
the presence of many hidden neurons focused on one 
particular suit. Another observable feature is gradually 
increasing importance of inputs from two to ace. 
 
There exists one hidden neuron which weights of input 
connections are quite surprising (the first hidden neuron of 
the second network). This neuron seems to be irrelevant for 
the network since the weight of its connection to the output 
neuron equals -0.068, whereas all other connections from 
hidden neurons to the output one have absolute values 
greater than 0.499. The number of such neurons increases 
for more complicated networks. In additional experiments 
we have checked the effect of pruning such “suspicious” 
nodes, but doing so resulted in degradation of network’s 
performance. 
  
Network with 25 hidden neurons (52-25-1) 
 
Fig. 4 presents the network with 25 hidden neurons 
(52-25-1) which achieved the best results (in case of more 
complicated networks, having more hidden neurons or more 
hidden layers, the effect of overfitting was observed). 
 
Rectangles drawn using long-chain lines mark parts of input 
connections of hidden neurons which are specialized in one 
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Figure 3. Weights of connections of 2 independently trained neural networks with 8 hidden neurons (52 - 8 - 1). 
 
 
all neural networks with 25 hidden neurons, trained using 
the same data. 
 
Comparison of absolute values of connections from input to 
hidden neurons in any trained network with 25 hidden 
neurons distinguished exactly 4 leading connections. These 
connections had absolute values much greater than the 
others (in the network presented in Fig. 4 values of these 
connections were equal to: -26.89, 26.71, 26.69 and 24.19, 
resp. while the biggest absolute value of the remaining 
connections was equal to 6.47). It is not surprising that all 
these distinguished connections had input neurons assigned 
to aces. 
 
Another interesting feature which appeared in all trained 
neural networks with 25 hidden neurons, was the presence of 
4 hidden neurons specialized in five cards from one suit: ten, 
jack, queen, king and ace (in Fig. 4 marked using the dotted 
line). In all these groups the most important were queens and 
kings, jacks were less important, but still much more 
relevant than aces and tens. The hypothesis is that these 
hidden neurons are responsible for very important aspect of 
the game - the finesse. 
 
CONCLUSIONS 
 
The most important conclusion, which can be drawn from 
analysis of connections of trained neural networks, is the 
possibility to explain some patterns using human knowledge 
of the game of bridge. 
 
In the trained networks estimating strengths of suits, which 
is fundamental in human analysis of a deal, is performed by 
assigning one hidden neuron for each suit (in Fig. 4 weights 
of these neurons are marked with dotted line). Such neurons 
consider values of cards - the connection from input neuron 
representing an ace has weight of biggest absolute value and 
the connection representing two - the smallest one.  

Another four hidden neurons are specialized in a group of 
cards from one suit - king, queen and jack. This is also a part 
of human analysis of a deal, which allows to take into 
account a possibility of finesse - very important aspect of the 
play phase. 
 
It must be emphasized that all networks were trained only by 
presenting deals and target numbers of tricks. There was no 
human knowledge of the game involved in training and 
actually even the rules of the game were not implemented. In 
this context results achieved by networks and the existence 
of particular weight patterns look interesting and give the 
promise for future research. 
 
FUTURE PLANS 
 
The goal of experiments presented in this paper was to 
verify neural networks’ ability to solve double dummy 
bridge problems. The best networks were able to perfectly 
point the number of tricks in more than one third of deals 
and gained about 80% accuracy when one trick error was 
permitted. Only in less than 5% of deals the error exceeded 2 
tricks. In our opinion these results are satisfactory, especially 
when the fact of avoiding presentation of human knowledge 
and the rules of the game is emphasized. 
 
On the other hand small difference in results between the 
best network and the simplest one (the one without hidden 
neurons) is quite surprising. The training set included 
100,000 deals with no pre-selection. The hypothesis is that 
in such a big set of input data each network fixed its 
attention on the most important aspect (from statistical point 
of view), i.e. scoring hands’ values.  
 
The ultimate goal of this research is to create a bridge 
playing program under the assumption of avoiding explicit 
presentation of human knowledge and experience in any 
form. Due to this assumption we consider using  
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Figure 4. Weights of connections of trained neural network with 25 hidden neurons (52 - 25 - 1). 
 
reinforcement learning methods in further development of 
this work. Results of experiments described in this paper 
give a hope of successful application of neural networks as 
supporting tools for these methods. The very next step of 
this research is to apply an ensamble of networks each of 
which is specialized in particular types of deals, in order to 
enhance the overall test score and to learn more about 
networks’ internal representation of the game. 
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ABSTRACT 
 
Artificial neural network algorithms represent a valid 
approach to the exploration of search strategies for 
computer games systems. The oriental game Go 
presents one of the most challenging search problems in 
the games domain. A set of experiments using artificial 
neural networks are presented in this paper to 
investigate the application of these techniques to the 
game of Go in particular and other computer games in 
general. 
 
INTRODUCTION 
 
This paper presents experiments with neural network 
techniques, designs and methods of use, within a Go 
playing framework. The idea behind this was to develop 
a neural network that could be used with a game tree 
search algorithm to provide a selective full board search 
for the best move available. The network would be used 
to assign values to given moves allowing efficient node 
ordering within a game tree and a method to select 
branches to prune if required. 
 
What is Go? 
 
Go is a board game with its origins in the Far East. It is 
a relatively simple game the complexity of which 
emerges as you become familiar with the ideas 
presented. A comparison with Chess is often made, as 
these are both board-based games of zero-chance 
(Burmeister and Wiles 1995). The rules are simpler in 
Go, however the board is larger and due to the 
unrestrictive nature of the rules there are many more 
moves available for the Go player to consider. 
 

A board of 19x19 intersections is used onto which the 
two players, one placing black stones the other white 
stones, take turns to play a single stone of their colour 
onto an empty intersection. Black plays the first move 
in a non-handicap game. The main aim of the game is to 
surround as much territory as possible whilst confining 
your opponent to a minimum amount of space on the 
board. Territory is defined as empty intersections that 
one side or the other is clearly in uncontested control of. 

A player can pass at any turn instead of placing a stone. 
Stones may be captured anytime after they have been 
placed on the board and are removed if they are 
captured. The captured stones are added to the players 
score at the end of the game. The concept of liberties 
play an important part in the process of keeping stones 
alive or killing them. A liberty is any empty intersection 
directly adjacent to a stone and can be thought of as 
breathing space for the stone or stones it is adjacent to. 
A stone is captured when the last of its liberties are 
removed. Connected stones of the same colour share 
liberties and will live or die together. Suicide counts as 
an illegal move unless it captures some opponent’s 
stones in the process.  
 

The end of the game is reached when both players pass 
consecutively signalling a mutual agreement that the 
game has gone as far as it can. Stones that are 
effectively dead, captured stones and territory points are 
then totalled up and the winner declared. A small 
amount of points is usually added to whoever is playing 
white, since as black plays first in an even game a small 
advantage is assumed. 
 

The board edges and corners have an important role in 
the game as they are treated as an imaginary wall of 
opposing colour stones. This means a lone stone on the 
edge will have only 3 liberties, as opposed to 4 away 
from the edges, and in the corner will have only 2. 
 
NEURAL NETWORKS 
 
The inspiration behind the neural network idea is the 
simulation of neurons in a biological brain. Biological 
neurons receive stimulus signals from other neurons and 
when a certain activation level is reached the neuron 
fires signals to all the other connecting neurons. The 
change in the strength of the connections is dynamic 
and it is this particular feature that allows networks of 
neurons simulated on a computer to be trained to 
respond to patterns of input, giving appropriate patterns 
of output. More information can be found in 
(Heitkoetter and Beasley 1994; Fausett 1994). 
 

Artificial neural networks can be constructed from 
simple processing units, artificial neurons, and can be 
trained to learn complex functions. This seems an 
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appropriate method to use in a Go playing program, 
since these techniques offer a possible way to capture 
some of the intuitive move recognition required to play 
at more advanced levels. 
 
OUR IDEAS 
 
Many uses for neural network methods can be imagined 
for application to the problem of playing Go. The 
authors original intended use for a neural network was 
to score proposed moves given a local board situation, 
for instance a square area of 9x9 intersections centred 
on the move to be score. For a complex task such as this 
there is also the matter of interpreting the output of the 
neural network. Ideally it would be a score relative to 
all other possible moves at that point in the game but if 
it was then it would be easy to write an excellent if not 
perfect Go playing program. 

 

The neural network output must represent some 
measure of the usefulness of the move at this point in 
the game or the training would not improve, so we 
choose to call this output a plausibility score, to 
distinguish it from the idea of a global absolute ‘one 
move is better than another’ score. Diagram 1 illustrates 
how the network would be used in practice. 
 
A Neural Network as a Move Ordering Mechanism 
 
Game tree search algorithms allow the construction of a 
tree of possible moves and responses. When coupled 
with an evaluation function to assess tree nodes the best 
available move can be deduced within a given depth. 
This is a good solution for problems that have a very 
shallow depth and narrow branching factor but as soon 
as we get into games any more complicated than Tic-
Tac-Toe, the limits of game tree search become 
apparent. To know the very best move at any position in 
a game of Go would require the search to cover an 
enormous search space, estimated at around 10170 

positions (Allis et al. 1991). The number of moves 
available at each position in a game of Go averages at 
around 180, combined with a game length of around 
200 moves makes a straightforward game tree search 
impractical. 
 

The order in which moves are generated and processed 
by the search algorithm can greatly affect the efficiency 
of the search when the common Minimax algorithm 
with Alpha-Beta pruning is used. Minimax is a game 
tree search algorithm for zero-chance two player games. 
(Russell and Norvig 2003) The efficiency of the Alpha-
Beta pruning depends on a good ordering of nodes; the 
best available moves should be examined as early as 
possible. One use for the developed neural network 
would be to enhance a game tree search program by 
using the network to provide a good estimated ordering. 
 
Input Schemes 
 
Much time was spent on experimenting with different 
algorithm parameters, input field shapes and sizes, how 
to use the training data and various network input 
schemes. The methods for encoding the board area 
around the move to be scored incorporated and 
contrasted quite a few different features. Varying input 
schemes for the neural network were created, to allow 
comparison of the contribution each feature made 
towards evaluating a move.  
 
A lot of information can be extracted from a raw board 
position. One of the challenges of designing the 
networks was deciding which features would contribute 
positively to the network performance and learning 
capability. Some features impacted negatively on the 
network, they overbalanced or mislead the network 
during learning due to the feature being overly strong 
compared to other features. One such feature found to 
produce a derogatory effect on the performance of a 
network trained by other researchers, was the distance 
to the last move played (Enderton 1991).  
 

It seems an intuitively important feature since play in 
Go tends to be near the last move played, until one 
player has built up enough confidence in the local 
position to play elsewhere on the board. The frequent 
occurrence of consecutive moves played close to each 
other in the training data resulted in this feature 
dominating the network’s play, disproportionately 
scoring moves that were closest to the last move played. 
Part of the reason for this feature causing such a 
problem was the fact that these networks had no 
strategic input (nor indeed was this intended in their 
design). The networks trained here and by some other 
researchers were designed to look at a static local 
position without temporal knowledge, information 
about the global board situation or therefore any form of 
tactical or strategic planning. These concepts were to be 
dealt with by more appropriate mechanisms such as 
game tree search.  
 

 

Diagram 1 – Using the neural network 

Input 
Layer 

Hidden 
Layer 

Output 
Layer 

Source board with scan 
field outlined in red 
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Redundancy within feature sets can easily occur, where 
one feature implicitly provides the information of one 
or more other features, so experiments were conducted 
with networks with varying input architectures to assess 
the impact of the features. The full set of features 
available and the actual input schemas used are detailed 
in Table 1. The experiments mostly focussed on the use 
of multiple state neurons and the inclusion of distance 
to the board edge information. 
 

The initial network design had only raw input from the 
board with a very simple encoding scheme: 1 neuron 
per point, with the value indicating the board point 
content as follows: black(+1), white(-1), empty(+2), 
offboard(-2). After this design multiple state neurons 
per point were used to represent the contents of the 
board point by selecting only one of these state neurons 
to be activated at a time. For the input schemes with 3 
neurons per board point the states were ourcolour, 
theircolour and empty. Those with 4 neurons per board 
point had the addition of an offboard state neuron. 

 

The distinction between ourcolour and theircolour 
rather than black and white was made to allow colour 
reversal invariance to be handled. Just as with rotation 
and reflection symmetries, colour reversal results in an 
equivalent position, but from the other colours point of 
view unlike rotation and reflection. To train the network 
to deal with this would require presenting the network 
with a colour reversed pattern for each training pattern, 
effectively doubling the training time. However 
solutions are possible to solve this issue during network 
input pre-processing. One method is to always look at 
training pairs from blacks point of view, then whenever 
the network is actually used, training included, the stone 
colours must be reversed if it is being used to score 
potential moves for white. The alternative method used 
here is to always score moves from the point of view of 

the colour to play – represented by ourColour. This is a 
more appropriate method to use when the input to the 
network is separated into the possible board point states.  
 
To limit the number of weights and so also the amount 
of computation time required to use and train the 
networks, designs 7 and 8 looked at combining the 
states and encoding them through only 2 neurons. In 
scheme 7 an encoding used successfully by other 
researchers is included (Schraudolph et al. 1994). Using 
2 neurons the states are encoded as ourcolour(+1,0), 
theircolour(-1,0), empty(0,+1), offboard(0,-1). For 
scheme 8 the states black and white replace ourcolour 
and theircolour. 
 
Input schemes 4, 5 and 6 introduce some simple extra 
features to the input. Scheme 4 adds the liberties of the 
surrounding strings, providing 4 neurons per direction, 
north, south, east and west.  One of the set of 4 neurons 
per direction is activated to indicate 1, 2, 3 or >3 
liberties for the adjacent string if present. Scheme 5 
adds an extra neuron to encode the Euclidean distance 
to the last move played. Scheme 6 handles this slightly 
differently by emphasising the input signal of the point 
that was last played. 
 
ALTERNATIVE IDEAS 
 
The main aim for developing the network was to aid the 
ordering of moves but other options were also 
considered, amongst them an area finder network that 
could identify the most urgent part of the board to play 
in. Also the problem of moves being scored according 
to the local situation without considering the relative 
value of alternative moves was looked at.  
 

The urgency network idea was developed to cope with 
the problem of having move plausibility scores that 
related only to the board state with no sense of whether 
one move should be played before another. A network 
architecture that made the move scores relative to each 
other would be much more useful and accurate for the 
task of ordering the moves. To be able to adjust the 
scores so the network could output a relative urgency 
value required it to consider at least two moves at a 
time. A design was drawn up to train a network that 
could judge whether one move was more urgent than 
another. In actual play an appropriate sorting algorithm 
could be used to order the full set of available legal 
moves at a given position after using the network. 
 

Two alternative designs were created. The first used the 
entire 19x19 board as input; introducing two additional 
neurons per board point to the four board point state 
input schema and dropping the redundant offboard state 
neurons. The additional neurons were labelled MOVE 
A and MOVE B, each to be activated for only a single, 
exclusive board point, the points corresponding to the 
first and second move to be compared. Two output 
neurons were specified to allow the network to output a 
relative score for each MOVE A and MOVE B. This 

Input 
Scheme  

State 
Neurons  

Distance 
Neurons Other Features 

0 - Raw  1 0 - 
1 - 3 states 3 2 - 
2 – Binary 
distance 3 18 - 

3 – Offboard 
state 4 18 - 

4 – Liberties 4 18 Liberties of surrounding 
strings. 

5 – Distance 
to last move  4 18 Distance to last move. 

6 – Stress 
last move 4 18 Last move emphasised in 

input. 

7 – Binary 
states 2 0 

Binary encoding of states 
using ourColour 
theirColour 

8 – Binary 
states 2 0 Binary encoding of states 

using black and white 
9 3 0 - 
10 4 0 - 
11 4 2 - 
12 3 18 - 

Table-1 – Input Scheme Details 
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would let the program using the network compare the 
moves relative to each other. If the scores were not 
different enough from one another, i.e. both were less 
than 0.5 or greater than or equal to 0.5, then no 
confidence in the quality of the relative comparison was 
assumed. For training, the example games were stepped 
through taking two consecutive moves of the same 
colour at each board position and randomising between 
presenting the first move as MOVE A or MOVE B. 
This was done so that neither MOVE A nor MOVE B 
would learn a bias as to which neuron represented the 
more urgent move. The more recent move was given an 
output value of 0.9, the later move, 0.1. 
 

The second design took advantage of the previous move 
scorer network experiments and attempted to use some 
of the trained weights from those networks that had 
trained successfully. It used the four state input pattern 
and so could use a ready trained set of weights from any 
network that used the same schema. An additional 2 
hidden layers of neurons were added to create the 
urgency network and the first two layers taken from the 
ready trained networks were frozen, hopefully allowing 
the network to assimilate information about relative 
scoring in the last two layers.  
 

The training for this design used a reinforcement 
scheme. Again two consecutive same colour moves 
were scored and compared at each ply in the training 
games. This time if the earlier move didn’t score at least 
0.2 better than the later move a reinforcement factor of 
+0.2 was added to the output score and used as the new 
output training vector for the earlier move. The output 
score for the later move had a reinforcement of –0.2 
added to its score and this was used as the later moves 
output training vector. Some initial results were 
gathered from these designs. The first design stabilised 
quickly with a poor performance score, suggesting that 
perhaps the network had only learned that the more 
urgent move was MOVE A 50% of the time and MOVE 
B the rest of the time. The second design also stabilised 
very quickly, the extra hidden layers adapting to the 
ready trained weights fast, however the performance 
never bettered the performance of the original source 
network indicating that nothing new was learnt and that 
the extra hidden layers had merely adapted around the 
frozen source weights. 
 
EXPERIMENTS AND RESULTS 
 
Unless specified the training data that was used for 
training all the neural networks was taken from the No 
Name Go Server (NNGS), a games server where Go 
players can conduct games in real-time over the 
Internet. All games played from the year 1995 to 2003 
were collected and in all the experiments where the 
playing rank of the training games was not being varied, 
games with confirmed player ranks of between 25 Kyu 
and 5 Dan were used. The ranks were calculated 
automatically by the server based on player 
performance. 

Unfiltered this gave a total of 395,972 game records in 
Smart Game File Format (SGF 1997), giving 
approximately 80 million training pairs. The results 
presented here represent some highlights from a larger 
more comprehensive set of experiments. 
 

Where it is usual to use a fixed size training set, we took 
the approach of using a non-repeating set of data. Since 
we had a large number of example games from the 
NNGS server we felt it was unnecessary to impose this 
training set size limitation. For comparison, 
experiments were also conducted with limited sized 
training sets and the results are compared later in this 
paper. The validation data set consisted of 10 games in 
SGF format selected from the Nihon Ki-in 
Championship, the Tengen Tournament and a few 
professional level games from NNGS. The networks 
were tested every epoch, for the purposes of non-
repeating training sets an epoch was set to 20,000 
training patterns. The value used to monitor the 
progress of the neural network training was the average 
rank that the network placed the move actually played, 
in each game from the validation set, compared to all 
other legal moves globally available in that position. 
 

0

10

20

30

40

50

60

70

80

90

100

110

120

0 1 2 3 4 5 6 7 8 9 10

Million Training Patterns Completed

A
ve

ra
ge

 G
lo

ba
l R

an
k 

of
 P

ro
fe

ss
io

na
l's

 M
ov

e 1 node (Raw)
2 nodes (Scheme 7)
2 nodes (Scheme 8)
3 nodes (Scheme 9)
4 nodes (Scheme 10)

 
Figure 1  - Comparing the Number of  

Input Neurons Per Board Point 
 
Figure 1 shows the training progress for network 
designs with differing state separation policies. The first 
obvious item to note from these results is that separating 
the possible states a board point can be allows the 
neural networks to be trained to a higher quality and a 
much more stable weight set than by not separating the 
states. This means that the network saves training time 
and effort from having to classify the input itself. This 
is a simple form of input pre-processing which would 
otherwise require a number of weights or possibly an 
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entire layer of free parameters to be dedicated to this 
straightforward classification task. Further 
improvements are apparent as the various states are 
allocated individual neurons. Of course the extra 
neurons will cause the network to use more processor 
time; a balance between accuracy and speed must be 
found to suit the networks intended use. 
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Figure 2  - Detail of Figure 1 

 
Figure 2 shows a detailed view of the more complex 
input schemes. Scheme 8 with the encoding of the 
board point contents using 2 neurons, black(+1,0), 
white(-1,0), empty(0,+1) and offboard(0,-1), makes 
efficient use of the available input neurons and allows 
properties that some states share to be included, such as 
both black and white assigning a value to only the first 
neuron, encouraging the stone present/absent distinction 
to be learnt for both the black and white states. 
Surprisingly further improvement is gained from the 
addition of our method of colour symmetry handling in 
scheme 7, although it is unclear why this should be so.  
 

The difference between using 3 state neurons or 4 
seems to be uncertain, but the similar performance 
certainly suggests that the extra offboard state neuron 
that scheme 10 provides may be redundant. Without an 
explicit state neuron the offboard state would be 
implicitly encoded by not activating any of the other 
state neurons. From figure 2 it appears that this is 
enough for the network to take advantage of the 
properties of the board edges. 
 

The graph in figure 3 displays a comparison between 
training over fixed size training sets and a non-repeating 
set. From this it can be observed that the non-repeating 

set clearly allowed the neural network to train to a 
higher standard than the fixed size sets. It can also be 
noted that the size of the fixed size training sets directly 
correlates with the training performance. A larger 
training set produces better results. The actual sizes of 
the sets used were 20,000 patterns for the small set, 
100,000 for the large set and 140,000 patterns for the 
very large set. It also appears that a limit to the 
performance of a repeated set, given a large enough 
size, could be reached and that the non-repeating set 
either exceeded or at least equalled that limit. 
 

Of further note is the appearance of overfitting, a 
common phenomenon when training neural networks. 
This may be observed in the gradual performance 
degradation shown by the small set after about 1 million 
training patterns have been processed. It might be 
conjectured that the use of a non-repeating training set 
prohibits the occurrence of over fitting since the 
training is not being restricted to an artificial subset of 
the problem. 

 

The sheer mass of possible positions in Go lends itself 
towards a non-repeating set where it will be large 
enough to encompass as many possible situations as 
possible and as with any learning-by-example problem 
a well chosen training set should improve performance 
further. 
 
CONCLUSIONS AND FUTURE WORK 
 
The results presented in this paper compare some 
different network architectures and training methods 
relevant to training a neural network to evaluate a 
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Figure 3 - Using Repeated Training Sets 
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potential Go move given some information about the 
local board area. Several networks were trained that 
could be used in a Go playing program to increase the 
efficiency of game tree search mechanisms already in 
place. 
 

The neural network experiments revealed that under the 
conditions described in this paper, separating the 
possible board point states and using individual neurons 
to indicate the condition of each point could increase 
the training performance. A performance increase was 
also noted when using a non-repeating training set, as 
opposed to a traditional finite sized set. This may be a 
useful alternative to creating a well-chosen set of 
training patterns, when a large amount of well spread 
domain data is available. 
 

The results of further experiments currently being 
conducted to determine the value of combining this 
hard, algorithmic, game tree search approach with more 
flexible machine learning methods represented by 
neural networks will be presented in a future 
publication. 
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ABSTRACT

We apply reinforcement learning to the problem
of finding good policies for a fighting agent in a
commercial computer game. The learning agent is
trained using the SARSA algorithm for on-policy
learning of an action-value function represented by
linear and neural network function approximators.
We discuss the selection and construction of fea-
tures, actions, and rewards as well as other design
choices necessary to integrate the learning pro-
cess into the game. The learning agent is trained
against the built-in AI of the game with different
rewards encouraging aggressive or defensive be-
haviour. We show that the learning agent finds in-
teresting (and partly near optimal) policies in ac-
cordance with the reward functions provided. We
also discuss the particular challenges arising in the
application of reinforcement learning to the do-
main of computer games.

INTRODUCTION

Computer games constitute a very interesting do-
main for the application of machine learning tech-
niques. Games can often be considered simula-

tions of (aspects of) reality (Salen and Zimmer-
man, 2004). As a consequence, modelling the be-
haviour of agents in computer games may capture
aspects of behaviour in the real world. Also, the
competitive and interactive nature of games allows
the exploration of policies in a rich dynamic en-
vironment. In contrast to modelling behaviour in
the real world, there are (at least theoretically) two
great advantages enjoyed by a simulation/game ap-
proach: i.) full control of the game universe in-
cluding full observability of the state ii.) repro-
ducibility of experimental settings and results.

Computer games provide one of the rather few
domains in which artificial intelligence (game AI)
is currently applied in practice. That said, it is a
common complaint ofgamersthat the game AI be-
haves either in boring ways or is too strong or too
weak to provide interesting and entertaining game
play. Hence, adaptive game AI has the potential
of making games more interesting and ultimately
more fun to play. This is particularly true since the
sophistication of other areas of computer games
such as sound, graphics, and physics have leapt
ahead of AI in recent years and it is anticipated
that advances in game AI will be a considerable
driving force for the games market in the future.
In fact, games such asCreatures, Black and White
andVirtua Fighter 4were designed around the no-
tion of adaptation and learning.

Machine learning can be applied in different
computer game related scenarios (Rabin, 2002).
Supervised learningcan be used to performbe-
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havioural cloningof the player, e.g., to represent
him as an avatar at times when he is not available in
person for a multi-player game (this includes miti-
gating latency in network-based games). However,
the most appealing application of learning may be
a non-player character (NPC) that adapts byre-
inforcement learning(Sutton and Barto, 1998) in
response to the opponent’s behaviour and the en-
vironment during game play (see Stone and Sut-
ton, 2001 for a RoboCup application), or even an
agent who learns by playing against a clone of him-
self (see Tesauro, 1995 for a Backgammon appli-
cation). Alternatively, such an adapting NPC may
be useful at development time to create built-in AI
adapted to varying conditions, or even to systemat-
ically test built-in AI for exploitable weaknesses.

In this paper we apply the SARSA reinforce-
ment learning algorithm (Rummery and Niranjan,
1994; Sutton and Barto, 1998) together with a
linear action-value function approximator toTao
Feng, a state-of-the-art commercial fighting game
released for the Xbox game platform in 2003.
Fighting games constitute a classical genre of com-
puter games in which two opponents carry out a
martial arts fight. Tao Feng provides about 12 dif-
ferent fighting characters with varying styles, com-
bat taking place in 10 different arenas. There are
over 100 different actions (moves and combo at-
tacks) available to the player. The game comprises
350 000 lines of code of which 64 000 constitute
the built-in AI, which is implemented as a non-
deterministic finite-state machine.

A particular focus of the paper will be a discus-
sion of the challenges that had to be met in order
to adapt standard reinforcement learning to a real-
time computer game and integrate the learning pro-
cess into such a complex code base. The paper is
structured as follows: We give a brief introduc-
tion to reinforcement learning with an emphasis
on learning the action-value function. Then, we
describe and discuss the specific choices made for
applying reinforcement learning to Tao Feng. Fi-
nally, we present and discuss experimental results.

REINFORCEMENT LEARN-
ING AND THE ACTION-VALUE
FUNCTION

Markov Decision Processes

We model the agent’s decision and learning pro-
cess in the framework of reinforcement learning
(Sutton and Barto, 1998) which aims at finding
an (near) optimal policy for an agent acting in a
Markov decision process (MDP). An MDP is char-
acterised by a tuple(S,A, T ,R) with

1. A state spaceS with statess ∈ S. In the
most straight-forward caseS is a finite set.
In Tao Feng the state can be represented by
nominal features such as physical situation of
a player (on the ground, in the air, knocked) or
spatial features (wall behind, wall to the right
etc.) However, depending on the representa-
tion chosen, real-valued state features such as
distance between players or state of the health
bar are conceivable as well.

2. An action spaceA with actionsa ∈ A. We
will only consider the case ofA being a finite
set. More precisely, we are dealing with ac-
tion spacesA (s) that depend on the current
states. Typical actions in Tao Feng include
punches, kicks, throws, blocks and combo
moves.

3. An unknown stochastictransition dynamics
T a

s,s′ : S × A × S → [0,1] which gives the
probability of a transition from states to state
s′ if actiona ∈ A (s) is taken,

T a
s,s′ := Pst+1|st=s,at=a

(
s′
)
. (1)

In Tao Feng, the dynamics is given by the
(partially stochastic) state machine that drives
the game. In particular, the dynamics derives
from the combination of the game engine and
the built-in AI of the game.
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4. An average reward functionRa
s,s′ : S ×A ×

S → R which assigns a reward to the agent
if it carries out actiona ∈ A (s) in states and
ends up in states′,

Ra
s,s′ := Er t+1|st=s,at=a,st+1=s′ [r ] . (2)

The reward is a key element for learning,
because it provides the feedback signal on
which the learning agent can improve. In Tao
Feng the reward is typically tied to the health-
bar, the traditional goal of the game being
to decrease the opponent’s health-bar while
maintaining one’s own.

As seen above, a Markov decision process models
some relevant aspects of the fighting agent’s situ-
ation. However, one must keep in mind that two
important aspects are neglected in this model:

1. The state space used in practice provides only
an approximation to the true and complete
state, parts of which remain unobservable
(see, e.g., Kaelbing et al., 1998 for a dis-
cussion of partially observable MDPs). The
missing state information includes details of
the environment as well as hidden states in the
opponent’s built-in AI. However, the prob-
lem is partly overcome by the assumption
of a stochastic transition dynamics which al-
lows us to model the resulting uncertainty as
a noise process.

2. The MDP model is ignorant of the adversarial
aspects of fighting in that the behaviour of the
opponent is simply captured by the transition
dynamicsT given in (1). Depending on the
nature of the game AI it might be more appro-
priate to consider game-theoretic models that
take into account that there is more than one
decision-making agent involved (see, e.g., Fi-
lar and Vrieze, 1996 on competitive MDPs)

Learning in Markov Decision Processes

The goal of the agent is to devise a sequence
of actions (at)

∞
t=0 so as to maximise his aver-

age expected reward. In order to make the agent
autonomous in a given environment it must be
equipped with a (stochastic)policyπ : S × A →
[0,1] which prescribes the probability of taking
action a ∈ A (s) in state s ∈ S, satisfying∑

a∈A(s) π (s,a) = 1 for all statess ∈ S. A typical
goal of reinforcement learning is to find a policyπ
that maximises thediscounted return

Rt := r t+1+ γ r t+2+ · · · =
∞∑

k=0

γ kr t+k+1 , (3)

where 0≤ γ < 1 is called the discount rate. The
infinite sumRt takes finite values forγ < 1 (con-
vergence of geometric series),γ = 0 correspond-
ing to a “myopic” agent and larger values ofγ in-
creasing the planning horizon.

We will focus on methods involving the state-
action value functionQπ : S×A→ R for a given
policy π defined as

Qπ (s,a) := Eπ |st=s,at=a [Rt ] (4)

= Eπ |st=s,at=a

[ ∞∑

k=0

γ kr t+k+1

]
.

Its value indicates how beneficial (in terms of fu-
ture expected discounted reward) it is for the agent
to take actiona ∈ A (s) when in states. We prefer
the state-action value functionQπ : S×A→ R to
the state-value functionVπ : S → R, becauseQπ

immediately provides a policy without requiring a
model of the dynamicsT .

The “optimal” way of usingQπ for generating a
policy is by choosing the actiona∗ with the highest
associatedQπ value in a given states. However,
this choice is optimal only with respect to exploit-
ing current knowledge. In order to be successful
in the long run we need to balanceexplorationand
exploitation. We use thesoft-max or Gibbs policy

π (s,a) := exp(βQ (s,a))∑
a′∈A(s) exp(βQ (s,a′))

, (5)

where the “temperature” parameterβ ≥ 0 deter-
mines how peaked the probability distribution is
arounda∗.
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SARSA and Q-Learning

The SARSA algorithm (Rummery and Niranjan,
1994) is an on-policy temporal difference learning
algorithm for Markov decision processes (Sutton
and Barto, 1998). It is based on the following up-
date equation

Q (s,a)← (1− α) Q (s,a)+α [r + γQ
(
s′,a′

)]
,

where 0≤ α ≤ 1 is a learning rate parameter and
0≤ γ < 1 is the discount factor for future rewards.
The update equation states that for a given state-
action pair (s,a) ∈ S×A the new state-action
value is obtained by adding a small (depending on
α) correction to the old value. The correction is
the difference between the immediate rewardr in-
creased by the discounted future state-action value
γQ

(
s′,a′

)
and the old state-action valueQ (s,a).

SARSA (s,a, r, s′,a′) is an on-policy learning al-
gorithm in the sense that it estimates the value of
the same policy that it is using for control. Q-
Learning (Watkins and Dayan, 1992) constitutes
an off-policy alternative to SARSA and replaces
the termγQ

(
s′,a′

)
by γ maxa′∈A(s′) Q

(
s′,a′

)
in

the above equation. This allows for separating the
policy being evaluated from the policy used for
control.

The update equation as given assumes a tabular
representation of theQ function. In practice, even
for small problems such a representation is unsuit-
able for learning because an unrealistic amount of
data would be necessary to estimate all the inde-
pendent table entries reliably. As a consequence
we decided to represent the state-action value func-
tion Q (s,a) with different function approximators
(see Sutton and Barto, 1998).

REINFORCEMENT LEARNING
IN TAO FENG

The goal of our project was to develop a learn-
ing fighter that starts at a level of ignorance com-
parable to a human beginner, plays Tao Feng either

Algorithm 1 SARSA with linear function approx-
imator and game embedding
Require: Learning rate 0< α, SoftMax parame-

terβ > 0 and Discount rateγ < 1
Require: functions getValidActions(),

getStateVector(), getReward()
Require: functions submitAction(a),

getExecutedAction(a′)
Require: function

selectSoftMaxAction(s′,A, {wa} , β) (see
Equation (5))
Initialise∀ã : wã← 0 and seta← undefined,
for every frame in turndo

s′← getStateVector()
A← getValidActions()
a′← selectSoftMaxAction(s′,A, {wa} , β)
submitAction(a′)
if getExecutedAction(a′) 6= a′ then

Continue
end if
if a 6= undefinedthen

wa← wa + α
(
r + γw>a′s

′ − w>a s
)

s
r ← getReward(s, s′)
s← s′, a← a′

end if
end for

against the built-in AI or against a human player,
and develops fighting skills corresponding to the
reward function provided.

Choice of Learning Algorithm

The choice of the learning algorithm was mostly
determined by the design of Tao Feng. Although
we were in possession of the full code base of the
game, in practice, our ability to control the player
as well as to observe the environment was severely
limited by the structure of the code and the concur-
rency of processes. Hence, at any point in time we
know neither the exact state nor the exact transi-
tion dynamics (1) and reward function (2) for Tao
Feng. The application of methods based on the
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state value function would require us to learn a sep-
arate model of the Tao Feng dynamics, thus intro-
ducing a layer of complication.

Although we originally intended to apply Q-
Learning (Watkins and Dayan, 1992) it turned
out to be very difficult to reliably determine the
set A (s) of available actions for the evaluation
of γ maxa′∈A(s′) Q

(
s′,a′

)
. The reason for this

complication lies in the graphical animation sys-
tem of Tao Feng, which rejects certain actions
depending on the animation state. As a conse-
quence, it is only possible to submit a given ac-
tion a (using submitAction(a)) and to check (using
getExecutedAction(a)) which action has actually
been performed. We chose the SARSA algorithm
(Rummery and Niranjan, 1994) because it does not
require knowledge ofA (s).

Choice of Features, Actions, and Rewards

Features There are essentially three groups of
useful features, environment-related, opponent-
related and agent-related features. Environment-
related features such as “blocked behind” are
designed to facilitate navigation of the arena.
Opponent-related features such as “opponent’s
physical state” and “distance to opponent” are de-
signed to make the agent react to the opponent. Fi-
nally, features related to the learning fighters them-
selves such as “my previous action” and “my phys-
ical state” may serve to give the agent’s actions
continuity and consistency.

Actions While the game provides over 100
different actions, we focused on a number of
atomic actions such as simple punches, kicks
and throws. In addition, we constructed meta-
actions that are composed of repeated atomic ac-
tions such asblock , stepleft , stepright
and lungeback . This was necessary because
some of these actions have a very short duration
and their execution in isolation has almost no ef-
fect. As an example, we constructed a meta action

block25 that holds up the block for 25 frames
corresponding to half a second.

Rewards In order to assess rewards it is neces-
sary to define the end of a round. Since in Tao
Feng the two opponents do not act in sync (multi-
threading) there is no clear definition of a round.
We assign reward to the agent only when the sub-
sequent action has been successfully selected thus
indicating completion of the previous one. As a
consequence, rounds have different durations1t
(measured in seconds) over which the reward-per-
actionr is spread out. We take this into account by
considering the rate of rewardr/1t in the learning.

Implementation Issues

The integration of the learning algorithms into the
code base was hindered by the complex multi-
threaded and animation centred architecture of the
system. Systematic monitoring of the learning pro-
cess was only possible because we devised an on-
line monitoring tool that continuously sent data
such as rewards, actions and parameters from the
Xbox via the network to a PC, where the data was
analysed and visualised in Matlab. Although the
implementation as such is not planned to be pro-
ductised, it served as a test-bed for a library of
reusable modules including function approxima-
tors (look-up tables, linear function approximation,
and neural network) and learning algorithms (Q-
Learning and SARSA), which are suitable for use
in future Xbox games.

EXPERIMENTS

We performed experiments in order to see if we
could learn a good policy for fighting against the
built-in AI. We employed the SARSA learning al-
gorithm with function approximation as detailed in
Algorithm 1. Throughout we used the parameter
settingsα = 0.01 andγ = 0.8. We used two
types of reward functions depending on the change
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Figure 1: Average rewards and frequency of se-
lected action classes for a Gibbs policy withβ = 2
in the aggressive setting usinglinear function ap-
proximators. The gray band indicates performance
of a uniformly random policy (mean± 2 standard
deviations)

in health of both combatants,1Hself and1Hopp. In
order to encourage an aggressive fighting style we
definedraggressive:= 0.7×1Hopp−0.3×1Hself. In
contrast, we also defined a peace-encouraging re-
ward functionraikido := −0.5×(1Hopp+1Hself

)
.

In order to represent the game states the learn-
ing agent used the following 15 features, which
were grouped into a feature vectors∈ R3×{0,1}12

suitable for input to the function approximators
used:

• Distance to opponent coded in terms of three
real-valued features based on unit-variance
Gaussians placed at 1, 3 and 5 meters,

• 4 binary features coding which of the four
sides of the agents are blocked,

• 6 binary features coding the previous action
of the opponent,

• 2 binary features coding the physical situ-
ation of the opponent player (in air and
knocked ).

The learning agent was equipped with three classes
of actions:
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Figure 2: Average rewards and frequency of se-
lected action classes for a Gibbs policy withβ = 1
in the aggressive setting usinglinear function ap-
proximators. The gray band indicates performance
of a uniformly random policy (mean± 2 standard
deviations)

• Aggressive: throw , kicktrail ,
kicklead , punchlead , punchtrail .

• Defensive: block10 , block25 ,
block50 , stepleft , stepright ,
lungeback .

• Neutral: getup , run10 , run25 , run50 ,
crouch10 , crouch25 , crouch50 .

In a first set of experiments we consider the re-
ward functionraggressiveand use linear function ap-
proximators for theQ-function. The results for
β = 2 andβ = 1 are shown in Figure 1 and
2. In both cases, the reward rate increases with
considerable fluctuations by 0.8 and 1.1, respec-
tively. Starting from the random policy, which
loses approximately one reward unit per second,
the learning agent achieves a reduction of the loss
to −0.2 sec−1 for β = 2 and even a net gain
of reward of 0.1 sec−1 for β = 1. In the case
β = 2 the average reward stagnates at a sub-
optimal level presumably being stuck in a local
optimum. From the action frequencies it can be
seen that despite the aggressive reward function,
the agent prefers defensive actions and lacks the
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Figure 3: Average rewards and frequency of se-
lected action classes for a Gibbs policy withβ = 2
in the aggressive setting using aneural network
function approximator with 3 hidden units

degree of exploration necessary for discovering the
aggressive moves required for winning. In the
more explorative setting ofβ = 1, the agent learns
more slowly due to increased exploration but even-
tually discovers the usefulness of aggressive ac-
tions around episode 30 000 which results in a win-
ning policy.

In a second set of experiments we replaced the
linear function approximator with a feed-forward
neural network with 3 hidden units. The results
are shown in Figure 3. The learning agent finds a
policy similar in performance to the linear function
approximator at the same SoftMax parameterβ =
2. Interestingly, the learning curve is smoother and
the action selection appears to be less explorative.
However, we did not fully explore the parameter
space in order to avoid such local optimal.

In a third set of experiments, the reward func-
tion raggressivewas replaced withraikido and we re-
turned to linear function approximation. As can be
seen from Figure 4, the learning eventually results
in an optimal policy (zero reward, i.e., no punish-
ment). Note that we only depicted theclassof ac-
tions selected by the learning agent. For example,
in this particular case, a successful behaviour was
achieved by an ingenious combination of side step-
ping and blocking.
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Figure 4: Average rewards and frequency of se-
lected action classes for a Gibbs policy withβ = 2
in the Aikido setting using alinear function ap-
proximator.

In summary, our experimental results show that
good policies can be learnt for varying reward
functions. Some of the resulting fighting agents
displayed interesting behaviour, others exposed
weaknesses of game engine and the built-in AI:
They found simple repetitive patterns of actions
that exploit gaps in the rule-based built-in AI, such
as the optimal policy found in Aikido mode (see
Figure 4). More exploration of the parameter space
and the feature set as well as the incorporation of
an eligibility trace in the SARSA update (Sutton
and Barto, 1998) may further improve the policies
found.

CONCLUSIONS

This work demonstrates that reinforcement learn-
ing can be applied successfully to the task of learn-
ing behaviour of agents in fighting games with the
caveat that the implementation requires consider-
able insight into the mechanics of the game engine.

As mentioned earlier, our current approach ne-
glects hidden state information and adversarial as-
pects of the game. One idea to tackle this prob-
lem is to separately model the game engine and
the opponent. Based on these two models, stan-
dard planning approaches (e.g., min-max search,
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beam search) can be employed that take into ac-
count that there is more than one decision maker
in the game. Also an important aspect of human
fighting game play involves timing which is hardly
captured by the MDP model and requires explicit
representation of time.

ACKNOWLEDGEMENTS

We would like to thank JCAB, Glen Doren and
Shannon Loftis for providing us with the code base
and Mark Hatton for his initial involvement in the
project.

References

Filar, J. and K. Vrieze (1996).Competitive Markov de-
cision processes. Berlin: Springer.

Kaelbing, L. P., M. L. Littman, and A. R. Cassandra
(1998). Planning and acting in partially observable
stochastic domains.Artificial Intelligence 101, 99–
134.

Rabin, S. (2002). AI Game Programming Wisdom.
Hingham, Massachusetts: Charles River Media, Inc.

Rummery, G. and M. Niranjan (1994). On-line Q-
learning using connectionist systems. Technical Re-
port CUED/F-INFENG/TR 166, Cambridge Univer-
sity, Engineering Department.

Salen, K. and E. Zimmerman (2004).Rules of Play:
Game Design Fundamentals. Cambridge, Mas-
sachusetts: MIT Press.

Stone, P. and R. S. Sutton (2001). Scaling reinforce-
ment learning toward RoboCup soccer. InProceed-
ings of the Eighteenth International Conference on
Machine Learning, pp. 537–544. Morgan Kaufmann,
San Francisco, CA.

Sutton, R. S. and A. G. Barto (1998).Reinforcement
Learning: An Introduction. MIT Press.

Tesauro, G. J. (1995). Temporal difference learning and
td-gammon.Communications of the ACM 38(3), 58–
68.

Watkins, C. J. C. H. and P. Dayan (1992). Q-learning.
Machine Learning 8, 279–292.

in4243
200



 
 
 
 
 
 
 

Intelligent Agents   
 
 
 
 
 
 
Anderson, E. F. 
A NPC behaviour definition system for use by programmers and designers 203 
 
Broekens, J. and DeGroot, D. 
Scalable and flexible appraisal models for virtual agents    208 
 
Hirokazu Notsu, Yoshihiro Okada and Koichi Niijima 
Component based approach for emotional behavior of 3D CG characters 216 
 
Jacobi, D., Anderson, D., von Borries, V., Elmaghraby, A., Kantardzic, M., 

Ragade, R., Mehdi, Q. H. and Gough, N. E. 
Building intelligence in gaming and training simulations    221 
 
Szarowicz, A. and Francik, J. 
Human motion for virtual people       228 
 
Wen, Z., Mehdi, Q. H. and Gough, N. E. 
IAgent: A real time intelligent agent animation toolkit    236 
 
Yannakakis, G. N and Hallam, J. 
Interactive opponents generate interesting games     240 
 
Davies, N. P., Mehdi, Q. H., Gough, N. E. Anderson, D., Jacobi, D. and Bornes, 

V.V . 
A review of potential techniques for the creation of intelligent agents in virtual 

environments         248 
 

in4243
201



 

in4243
202



A NPC BEHAVIOUR DEFINITION SYSTEM FOR USE BY PROGRAMMERS AND 

DESIGNERS 
 

Eike Falk Anderson 

The National Centre For Computer Animation 

Bournemouth University, Talbot Campus 

Fern Barrow, Poole, Dorset BH12 5BB, UK 

E-mail: eanderson@bournemouth.ac.uk 
 

 

 

KEYWORDS 
game-bots, behaviour definition, scripting language, virtual 

machine, mini-language. 

 

ABSTRACT 
 
In this paper we describe ZBL/0, a scripting system for defining 

NPC (Non Player Character) behaviour in FPS (First Person 

Shooter) games.  ZBL/0 has been used to illustrate the use of 

scripting systems in computer games in general and the scripting of 

NPC behaviour in particular in the context of a book on game 

development [Zerbst et al 2003].  Many novice game designers 

have clear ideas about how the computer game they imagine should 

work but have little knowledge – if any – about how their ideas can 

be implemented.  This is why books on game creation (design, 

programming etc.), as well as all-in-one game creation systems – 

especially designed for ease of use and intended for an amateur 

audience – enjoy great popularity.  A large proportion of these 

books however merely present solutions in the form of descriptions 

and explanations of specific implementations with inadequate 

explanations of principles.  While this may benefit rapid application 

development it often does not lead to a deeper understanding of the 

underlying concepts.  The understanding of rule-based behaviour 

definition through simple scripting in computer games and the 

development of such scripts by programmers and designers is what 

we aim to address with the ZBL/0 system. 

 

INTRODUCTION 
 
Until very recently the major part of the artificially intelligent 

behaviour displayed by game characters in computer games was 

hard-coded into the game program itself.  Any changes requested 

by the game’s designers needed to be communicated to the game 

programmers who would spend a large amount of development 

time implementing these small changes to the game.  A much more 

efficient approach which is now used more and more frequently is 

to empower designers to implement those changes themselves by 

making games more extensible and easily modifiable and by 

providing designers with the tools to extend and modify the games.  

As a side effect, developers have realized that this also enables 

players to modify a game themselves which adds value to a game 

and dramatically adds to its shelf-life (see Table 1).    The question 

that now arises is how this extensibility can be achieved.  This is 

especially important when it comes to the modification of the NPC 

(Non Player Character) behaviour in those extensible games.  In 

some cases where no hard-coded solutions are used the NPC 

behaviour is generated by project-specific proprietary software 

tools, other games use commercially available middleware systems 

and some games use a scripting language of some sort.  Scripting 

removes a large part of the – previously hard-coded – internal game 

logic from the game engine and transforms it into a game asset. 

 

Are there any truly good reasons to build an 

Extensible AI into your game? 

Absolutely! 40% 

Sure! 23% 

Maybe. 29% 

No way! 4% 

Never! 2% 

Other. 1% 

Table 1 – computer game extensibility reasons poll 

(source: http://www.gameai.com) 

 

This allows the game to be modified without the need for the game 

code to be recompiled, a task that can be accomplished by a game 

designer alone.  “Parallel development” becomes possible, which 

means that the programmers’ time is freed up as they no longer 

need to concern themselves with design elements which designers 

can now manipulate themselves with scripts [Huebner 1997].  

However, a scripting language that is supposed to be used by non-

programmers as well as by programmers needs to be designed 

accordingly.  It is likely that for some game designers this will be 

the first programming language that they encounter so it is only 

logical that it should embrace some of the methods used in 

introductory programming languages. 

 

THE RATIONALE BEHIND THE ZBL/0 

SCRIPTING SYSTEM 
 
The command syntax of the ZBL/0 language is similar to that of 

related procedural languages like C [Kernighan and Ritchie 1988], 

Pascal [Wirth and Jensen 1974] and especially PL/0 [Wirth 1977].  

The ZBL/0 language only supports a limited set of control 

structures (simple iteration, condition/alternative and sequence) and 

the definition of simple procedures.  In that respect, ZBL/0 can be 

counted in the family of mini-languages (toy languages – see Figure 

1) used in teaching [Brusilovsky et al 1997] and in this role it has 

been used as a reference system to illustrate the development of 

NPCs [Zerbst et al 2003] for FPS (First Person Shooter) games (see 

Figure 2).  Like other mini-languages ZBL/0 provides a task 

specific set of instructions and queries which allow users to take 

control of virtual entities acting within a micro world.  In the case 

of ZBL/0 the scripting system and programming language were 

designed specifically with the definition of NPC behaviour in FPS 

games in mind which is reflected in the functions and procedures of 

the language.  The use of computer games as the environment for a 

mini-language programmed NPC is not a new idea.  There are 

several examples of games – most of which are available on-line  
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Figure 1 – Mini-language system “Niki the robot” which partially 

inspired the development of the ZBL/0 language 

(http://www.hupfeld-software.de/niki.php) 

 
like Robocode [Li 2002], Crobots, Jrobots or GUN-TACTYX 

[Boselli 2004]. In such games the player interaction is limited to 

the programming of virtual entities that play the games.  In addition 

to the use of ZBL/0 as an educational tool, the development of the 

ZBL/0 system is our first step towards the development of a generic 

behaviour definition system for artificially intelligent entities in 

computer games.  We are using it to explore various system 

architectures for integrating virtual machines into applications – 

simple games and more complex game engines – that allow scripts 

to be executed and interpreted in real-time.  We have also used the 

system as a test-bed for interfacing behaviour-definition systems 

with computer games. 

 

SCRIPTING LANGUAGES FOR 

BEHAVIOUR DEFINITION IN GAMES 
 
Many developers use well established existing generic scripting 

systems or permutations of these systems (modified according to 

the game’s requirements) to add scripting facilities to their games.  

A popular choice for building the scripting solutions in games is the 

scripting language Lua.  Lua is a generic programming language 

which was originally designed to be used to extend programs by 

adding various scriptable features which is why the creators of Lua 

have dubbed it an “extensible extension language” [Ierusalemschy 

et al 1996].  Most of the other mature scripting languages which 

can be embedded in computer game engines are generic, i.e. not 

specialised for specific tasks [Varanese 2003].  A different 

approach which is also frequently used is to have proprietary 

purpose-built scripting languages that are dedicated to a single 

game, like the scripting languages QuakeC in Quake, UnrealScript 

in Unreal or Scrit in “Dungeon Siege”.  When used to define game 

character behaviours, in simple cases the sole use of scripts is the 

initial configuration of the NPC behaviours.  These initialization 

scripts [Tapper 2003] are the simplest form of scripts.  During 

program runtime they are usually only executed once, at program 

start-up, while the application is initialising, setting internal 

program parameters to the values in the script.  These scripts are 

often nothing more than lists of values, sometimes using additional 

syntactic elements to make them easier to read and edit.  In more 

complex event based scripting systems, the occurrence of an event 

within the game triggers the execution of a script or part of a script.  

This means that scripts do not run in a pre-defined order but rather 

when a specific situation in the game-world has occurred.  Some of 

these scripting systems use events that are built into the game 

engine as predefined events and scripts only define the event 

handlers and possibly additional conditions that may influence the 

 
Figure 2 – sample game implementation “Pandora’s Legacy” 

trigger mechanism.  More sophisticated scripting systems first 

define the triggers and the situations in which they should act on 

events in addition to the event handlers themselves.  These also 

include rule-based scripting systems which can be used for the 

definition of domain knowledge in expert systems, an example of 

which are intelligent NPCs in many computer games.  The most 

complex scripting solutions are programs that use high-level 

abstract descriptions to define complex behaviours.  A scripting 

system that controls the behaviour of autonomous agents in a 

virtual game world usually exists on two levels.  The higher level is 

a scripting language that is often modelled on “traditional” 

procedural, functional or object oriented programming languages.  

The lower level is the corresponding scripting engine which 

interfaces with the game.  Some of these systems will execute 

scripts in a continuous loop, constantly (re-)evaluating the current 

situation within the game.  Other systems will execute a script only 

once and any kind of repeating operation, to be executed by the 

scripting system, will have to be implemented as a looping 

operation within the script itself.  An example of the latter is our 

ZBL/0 scripting system.  Scripting engines of this kind can take the 

form of an interpreter which translates and executes scripts at run-

time.  Alternatively it could be a virtual machine, executing scripts 

that have previously been translated into an intermediate code by a 

compiler.  Both forms of scripting system provide the same benefits 

to games, as both allow the alteration of NPC behaviour by 

modifying a script program.  This means that the game application 

itself does not have to be recompiled for the changes to the game’s 

NPCs to take effect. 

 

Design Issues 
 
While this is clearly advantageous for game development, for 

computer game developers to truly benefit from any kind of 

scripting system it has to be designed to be intuitive, i.e. the 

scripting language must be easy to learn and possibly easier to use 

than traditional programming languages.  One way this could be 

achieved would be by making it as similar to a natural language as 

possible.  It is our belief that a close resemblance of a behaviour 

definition programming language to natural language as suggested 

by Funge [Funge 1998] may easily prove counterproductive.  This 

is because natural languages are context sensitive and contain too 

many ambiguities which require additional specification to clarify 

problems and to resolve these ambiguities.  We think that the 

additional effort required to do this would negate all the benefits 

gained from the use of a natural language structure in the first 

place.  Moreover, linking a programming language’s structure 

intrinsically to a specific natural language would make it much 
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more difficult for non-native speakers of the natural language to 

write meaningful computer programs, while it would become 

practically impossible for programmers who do not know the 

natural language to write programs at all.  Providing multi-language 

versions of a programming language is unrealistic, as the language 

would have to be modified according to the structure of each of the 

supported natural languages.  We are also convinced that the notion 

that a traditional programming language may be too complex for 

non-programmers to use is incorrect.  Robert Huebner’s [Huebner 

1997] case study of how scripting support was implemented in the 

game “Jedi Knight: Dark Forces” describes the C based proprietary 

scripting language COG. The similarity of COG to the 

programming language C not only simplified the development of 

the language but it also made it easier to learn and understand for 

the designers – non-programmers – who used COG for the creation 

of the game.  He concludes that the design was so successful that 

designers managed to generate scenarios which would have 

appeared inconceivable and very hard to realize if it had not been 

for the COG scripting system.  Further evidence for this can be 

found in the film effects industry where many artists have been 

using complex scripting systems for many years.  For many 

designers the use of a scripting system will be the first time they are 

exposed to a programming language.  An important consideration 

in the design of a programming language for novice programmers 

therefore is the analysis of how many of these non-programmers 

will go about using this language.  Poiker [Poiker 2002] explains 

how novice programmers write programs employing a mixture of 

“copy and paste” with “trial and error”.  For this reason, 

programming languages that are supposed to be used by novice 

programmers need to have a WYSIWYG (What You See Is What 

You Get) character with program source code being able to deliver 

predictable results.  In the context of the novice programmer’s 

introductory programming language, McIver and Conway [McIver 

and Conway 1996] have identified seven “deadly sins” and design 

principles and their potential problems and benefits.  They argue 

that a language which has too many different features (“more is 

more”) or too few features (“less is more”) or which contains too 

many syntactical “false friends” (“grammatical traps”, “violation of 

expectation”, “excessive cleverness”) would make it very hard for 

users with little programming experience to comprehend the 

language and to understand what a program does.  However, 

McIver and Conway conclude that the ideas they present can only 

be taken as a guide – not a general solution – and that ultimately the 

success of the language design can only be measured through user 

feedback. 

 

THE ZBL/0 SYSTEM 
 
The requirements for the ZBL/0 scripting system were 

straightforward: 

• The system was to be used to define NPC behaviour as an 

extension to computer games of the FPS genre. 

• The NPCs defined by the language only needed to support 

deterministic behaviour. 

• No complex datatypes or control structures needed to be 

implemented as the system was supposed to be used to 

demonstrate general concepts of NPC behaviour scripting in 

the context of a book on computer game development [Zerbst 

et al 2003]. 

Consequently the development of the system from conception to 

first use was achieved in a very short period of time.  The first fully 

working prototype for the ZBL/0 system for example was 

completed over a period of little more than a fortnight.  ZBL/0 

[Anderson 2003] is a very simple scripting language for the 

definition of game-bots.  The ZBL/0 system consists of a compiler 

for game-bot programs (NPCs) written in the ZBL/0 language and a 

robust virtual machine that can be integrated into any game engine.    

const   do   else 

function  if   return 

then   var   while 
 
alive   armour  back 

backstep  blocked  crawl 

danger   die   duck 

face   find   fire 

front   health  idle 

initialize  jump   jump_back 

jump_left  jump_right  

jump_up  left   memorize 

object   object_ahead 

obstacle  owns   respawn 

right   rnd   spawn 

spawned  step   strafe_left 

strafe_right    target 

target_ahead    target_alive 

target_armour    target_health 

turn   turn_left  turn_right 

use   using 

Table 2 – ZBL/0 keywords (instructions & intrinsic functions) 

 

ZBL/0 is based on the PL/0 model programming language [Wirth 

1977] and therefore belongs to the PASCAL family of 

programming languages.  There is only one variable datatype in 

ZBL/0 which can be used to store numerical values (integer as well 

as floating point).  The function set for controlling bots is intrinsic 

to the ZBL/0 scripting language, i.e. built into the language (see 

Table 2).  As a result they do not have to be enabled by means of 

inclusion of a standard library of functions.  This intrinsic function 

set consists of 45 functions representing actions and sensor queries 

that can be performed by an NPC in FPS games like turning 

towards an opponent, moving in a specified direction or firing a 

weapon.  The function identifiers are self explanatory for easy 

understanding.  The current version of the language allows 

functions to be user-defined, but function parameters in user-

defined functions are not supported.  Instead they have to be 

emulated through the use of global variables.  The ZBL/0 system 

uses a parallel stack-based virtual machine – the system is multi-

tasking and allows more than one ZBL/0 program to run 

simultaneously.  Run-time errors in ZBL/0 programs result in the 

termination of the game-bot program but do not affect the execution 

of the virtual machine within its host application.  The ZBL/0 

virtual machine is self-contained and accessible from the host 

application solely through a fixed interface, the ZBL-API 

(Application Programmer Interface).  The interface to the ZBL/0 

virtual machine provides games with the ability to associate NPC 

functionality with in-game functions for actions which would be 

expected to be performed by a player of these games, therefore 

allowing NPCs to compete with human players on a level playing 

field.   Once a ZBL/0 program has been loaded into the virtual 

machine only a single function-call to the API is required for each 

main program loop to execute the game-bot programs.  The 

simplicity of the system lies in the fact that none of the game-bot 

functions are provided by the language as such.  Instead they need 

to be implemented within the game engine – the host application – 

and mapped to the corresponding intrinsic function identifier in 

ZBL/0.  The game engine itself does all the work while the script 

only ties together the different game engine components that 

provide the NPCs with functionality.  A side effect to this is the 

ability of the system to be adapted to games of different genres (see 

Figure 3).  The function bindings between the host application and 

the ZBL/0 virtual machine are realised using the multiple-

inheritance functionality of the C++ programming language 

[Stroustrup 1997].  Objects of a game-bot class can be registered as 

NPCs with the virtual machine.  This game-bot class is created by 

inheriting player functionality from a player-class in the application 

and the game-bot interface from an abstract class which is part of 

the ZBL-API.  This abstract class provides a number of methods  
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# a moderately sophisticated CycleBot 

var direction; 

function random; 

var r; 

{ 

  r = rnd 20; 

  if r > 5 & r < 15 then 

    return 1; 

  else 

    return 0; 

}; 

{ 

  spawn; 

  direction = random; 

  while alive = 1 do 

  { 

    if blocked front = 0 then 

    { 

      step; 

    }; 

    else 

    { 

      if blocked left = 0 then 

      { 

        if blocked right = 0 then 

        { 

          if direction = 1 then 

          { 

            turn_left; 

          }; 

          else 

          { 

            turn_right; 

          }; 

          direction = random; 

        }; 

        else 

        { 

          turn_left; 

        }; 

      }; 

      else 

      { 

        if blocked right = 0 then 

        { 

          turn_right; 

        }; 

      }; 

      step; 

    }; 

  }; 

}. 

Table 3 – a simple ZBL/0 game-bot script for a Tron-like 

“lightcycle” game (see Figure 3) 
 

that are equivalent to the intrinsic functions of the ZBL/0 language.  

An implementation of these abstract methods in the inherited class 

then allows ZBL/0 programs in the virtual machine to control a 

game-bot character in the application.  However therein also lies 

the main weakness of the ZBL/0 system, as any NPC script – no 

matter how well designed – cannot perform well if the NPC related 

functions of the game engine do not work well.  Also, while this 

method makes it very easy for the virtual machine to execute 

functions within the host application it also limits the extensibility 

of the ZBL/0 system, as the type and number of the functions that 

can be registered with the virtual machine is fixed by the ZBL-API.  

On the other hand, this system allows the designer to create 

effective NPCs through the combination of a small number of 

simple functions (see Table 3). 

 

 
Figure 3 – four ZBL/0 “lightcycles” competing for survival in the 

demonstration application 

 

 

A ZBL/0 Example Program 
 
As an example for the capabilities of the ZBL/0 system as well as a 

sample to demonstrate the integration of the ZBL/0 virtual machine 

into a computer game we have created a version of the “lightcycle” 

racing game (see Figure 3) that featured in the 1982 film Tron 

(http://www.imdb.com/title/tt0084827).  Players in the game move 

their “lightcycles” across the playing field, dragging growing walls 

of light energy behind them.  The aim of the game is for players to 

survive as long as possible by avoiding collision with walls while at 

the same time trying to force other players to collide with walls by 

reducing their freedom to manoeuvre.  In our version of the game 

all players are controlled by scripts written in the ZBL/0 language 

(see Table 3).  The sensors of the scripted players allow them to test 

the path immediately in front of them for two steps ahead and one 

step to each side.  The strategy they employ to play the game does 

not involve any planning but is only a small set of simple rules: 

1. If the path in front of the “lightcycle” is not blocked, it moves 

forward (intrinsic function “step”). 

2. Otherwise if there is no obstacle to the left and no obstacle to 

the right, the player chooses a random direction (determined 

by function random) or if there is an obstacle to the right, the 

player turns left (intrinsic function “turn_left”) and moves 

forward. 

3. In the case of an obstacle to the player’s left but no obstacle to 

the right, the player turns right (intrinsic function “turn_right”) 

and moves forward. 

The result of this script is an effective player that is perceived to be 

far more intelligent by onlookers than it actually is. 

 

FUTURE WORK 
 
The current version of ZBL/0 only provides the basic tools 

necessary for using the system with game engines that are 

programmed using the C++ programming language.  As experience 

has shown that the addition of tools is beneficial for the process of 

program development, future work on the ZBL/0 system will 

mainly focus on the expansion of the toolkit.  The creation of a 

graphical user interface – in addition to the command-line tools – to 

complement the language interface of the system by providing a 

text-editor incorporating a number of intuitive programming aids 

found in modern program development tools (syntax highlighting, 

code completion etc.) will be the first goal.  Further goals will be 

optimizations of the compiler, the addition of support for run-time 

debugging as well as source-level debugging of ZBL/0 programs 

and possibly the provision of language bindings for other 
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programming languages than C++.  We have used ZBL/0 to test 

possible architectures and interfaces for the virtual machine of a 

more generic behaviour definition system for artificially intelligent 

entities in computer games.  This system that we propose is a 

modular and easily extendable system that will provide game 

developers with an intuitive method for the creation of game 

character AI, as well as the tools for doing so.  A newer, 

experimental version of the ZBL/0 system which is still undergoing 

testing can be dynamically extended through a plug-in architecture 

which allows external libraries to be integrated with the system’s 

virtual machine.  This is an important feature which will also be 

implemented in our more generic behaviour definition system. 

 

CONCLUSION 
 
We have presented ZBL/0, a simple behaviour definition system for 

game characters in FPS games, designed to be used by game 

programmers as well as by game designers.  ZBL/0 is much 

smaller, more restrictive and far less extensible than many other 

scripting systems – the language is dedicated to only one genre of 

computer games and the AI entities that populate them.  Following 

the example of mini-languages the ZBL/0 language is based on a 

traditional programming language which has been reduced to the 

simplest features to make the system easily accessible for 

programmers and non-programmers alike.  We strongly believe that 

ZBL/0 is easy to learn and master.  For the past fifteen years, artists 

at the National Centre for Computer Animation have learnt to use 

scripting languages and have successfully used that knowledge for 

scripting procedural animation.  This has convinced us beyond 

doubt that the use of scripting systems can be picked up by users 

with no prior knowledge of computer programming.  The 

functionality of ZBL/0 is entirely dependent on the implementation 

of the host application, yet it shows how relatively simple methods 

can be used effectively for NPC creation in computer games (see 

Table 3).  As an additional benefit this also allows the system to 

transcend its limitations by allowing it to be adapted to other game 

genres than only FPS games (see Figure 3).  Some parts of the 

ZBL/0 system have shown weaknesses in the original design 

concept which we intend to address with our future work.  For 

instance the lack of extensibility provided by the method in which 

function bindings are implemented in ZBL/0 has convinced us that 

a different approach will have to be used for our more generic 

behaviour definition system.  For similar reasons we believe that 

the use of mainly intrinsic functions results in the main cause of 

inflexibility of the ZBL/0 system.  An implementation using 

external libraries to provide the core language with functionality 

would have made the system much more extensible and flexible.  

The plug-in architecture that was implemented in the latest version 

of the ZBL/0 system will be able to deliver a partial solution to this 

problem.  This feature of the ZBL/0 virtual machine will be used in 

a similar fashion in the creation of our more generic behaviour 

definition system. 
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ABSTRACT

Computational models of emotion are useful in a variety of
domains, including games, virtual realty training and HCI to
name a few. Many of these models are inspired by appraisal
theory. Most appraisal theories share with virtual agents the
assumption that beliefs, desires and intentions are the basis of
reasoning and thus of the emotional evaluation of the agent’s
situation. Consequently most computational models of
emotion are deeply embedded into the agent model. In this
paper we address the problem of how to emotionally
instrument a system in a modular and extensible way, so that
emotional sophistication can be added incrementally to a
system. We propose a solution based on a modular, signal-
based approach to computational emotions that allows us to
develop scalable appraisal models that are easily added to
non-emotional systems. Our approach allows runtime trade-
off between emotional quality and performance, which
makes it particularly useful in domains in which available
computation time is unknown, like the gaming domain. We
present experimental results that back-up our approach.

INTRODUCTION

In psychology emotion is often defined as a psychological
state or process that functions in the management of goals
and needs of an individual. This state consists of
physiological changes, feelings, expressive behaviour and
inclinations to act. Emotion is elicited by the evaluation of an
event as positive or negative for the accomplishment of the
agent’s goals. Thus, according to this view an emotion is a
heuristic that relates the events from the environment to the
agent’s goals and needs (Oatley 1999). Additionally, emotion
is a communication medium.
     Computational models of emotion are embedded in agents
in a variety of domains including HCI and electronic tutors,
non-player characters (NPCs) in games, virtual-reality safety
training environments and decision-making and planing.
Emotions are embedded in virtual agents primarily to create
an enhanced sense of realism, using emotional expression
and the interplay between emotions and plans (Marsella and
Gratch 2001). It has been argued that emotions and emotion-
like phenomena are a good way of enhancing realism and
thereby entertainment value of NPCs in games (Baillie-de
Byl 2003, Mac Namee and Cunningham 2003).
     The majority of computational models of emotion
embedded in virtual agents is inspired by appraisal theories,

cognitive theories of emotion that attempt to explain why a
certain event results in one emotional response rather than
another and why a certain emotion can be elicited by
different events. The key concept of most appraisal theories
is that the subjective cognitive evaluation of events in
relation to the agent’s goals and needs is responsible for
emotion (Roseman and Smith 2001). More generically one
can say that events have to be evaluated as having personal
meaning (van Reekum 2000). This evaluation is called
appraisal. Most appraisal theories assume that appraisal is a
necessary and sufficient condition for emotion (Roseman and
Smith 2001).
     Agents often use a belief-desire-intention (BDI) based
architecture (Jennings et al. 1998). If cognitive evaluation of
events in relation to the agent’s goals and needs is sufficient
for emotion then the addition of a subjective evaluation of
events related to the beliefs, desires and intentions of an
agent is sufficient for computational emotions. This explains
the current popularity of appraisal theories in emotional
agents.
     Computational models of emotion must often be deeply
integrated with the agent’s non-emotional components
because they depend on the BDI architecture of the virtual
agent, as mentioned above. This deep integration has two
problems. First, it takes quite some effort to add emotions to
a non-emotional agent, because the computational model of
emotion needs to be embedded into the agent’s architecture.
Second, computational models of emotion are difficult to
adapt and upgrade in an incremental fashion for the same
reason. Both problems are important for game development.
From a marketing and sales point of view one wants to be
able to incrementally add emotional sophistication to NPCs
to sell upgrades of a game. From a technical point of view
one wants to be able to evaluate which version of a
computational emotional model to use based on e.g.
performance, quality and stability.
     We have investigated these problems and propose the
FeelMe framework for computational emotions that is
inspired by appraisal theory and allows the development of
scalable appraisal models. The ability of the FeelMe
framework to dynamically integrate the results of different
emotional instrumentations that run simultaneously enables
the development of scalable appraisal models. A scalable
appraisal model can be used to emotionally instrument an
agent (virtual agents, NPCs) in an incremental manner. A
scalable appraisal model also allows runtime trade-off
between emotional quality and performance. This trade-off
ability makes these models particularly useful in domains in
which computation power is an unknown factor, like the
gaming domain.
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     In the next section we explain scalability of computational
models of emotion and incremental instrumentation in more
detail. Then we describe the FeelMe framework. We
continue with a detailed description of how the FeelMe
framework can be used to integrate different emotional
instrumentations and what constraints exist for these
instrumentations. Finally we present a proof-of-concept
experiment with a game agent that uses our approach. The
experiment shows that scalable appraisal models are
possible, pointing out that the FeelMe framework enables
game-character and virtual agents designers and developers
to incrementally add more and more sophisticated emotions
to their virtual agents.

SCALABILITY AND GAMES

Any system for use in games must be efficient in terms of
computation required (Mac Namee and Cunningham 2003).
Additionally, games must run on different platforms so
computation power is not a known factor. Users with a high-
end PC want to have high-end effects so the minimum system
requirements to run a game cannot be taken as development
standard. A good solution to this dilemma is to use scalable
systems that are able to trade-off quality versus performance.
This trade-off is often seen in 3D-graphic engines and chess-
engines, in which level of respectively graphical detail and
intelligence can be dynamically traded-off for respectively
frame-rate and total game-time.
     The systems that make up a game engine are usually
triggered at regular intervals. Flexibility regarding the
frequency of this triggering enables a different form of
scaling, namely scaling based on a trade-off between
temporal quality and performance. For example a 3D-
graphic-engine can be triggered 10 times per second, in
which case the frame-rate is low and the frames are
staggering. However, individual rendered frames are still
consistent and the sequence of frames still consistently shows
the motion of objects and agents in the game, although less
detailed. A computational emotional model able to do the
same, that is, scalable quality and flexible triggering, thus has
a practical advantage compared to one that can’t. We refer to
these two kinds of scalability as runtime-scalability.

INCREMENTAL INSTRUMENTATION

We define incremental emotional instrumentation of systems
as a development process based on the step-by-step addition
of complexity to a computational model of emotion resulting
in meaningful and more sophisticated emotions of the agent
that is consistent with the emotions of the simpler versions of
the model. Consistent in our case means that the more
complex version behaves equally meaningful as or more
meaningful than the simpler version. By meaningful we mean
that a human observer (e.g. the gamer) can - potentially in
retrospect - understand why the agent exhibits a certain
emotion or chooses to act in a certain way. In other words,
more complex models should add sophistication to the
emotions of the agent as well as add human understanding of
the agent’s emotion and related actions.
     A possible first step to instrument a non-emotional system
is by using event encoding. Based on common-sense, an

event is given a specific emotional property, just like
emotionally laden words in language already have. When an
event is encountered by an agent, the agent’s emotion is
changed accordingly. For example, a Quake bot seeing his
team-mate die could be configured to experience sadness by
defining a high "sadness" property for the ’team-mate-died’
event. It could also be configured to experience anger.
Actually, many different emotions would make sense and are
not depending on the event but more so on the evaluation of
that event. Although efficient and sufficient in some
situations, this way of directly encoding emotions into
properties of events does not work in general and is not
psychologically plausible1. According to appraisal theory,
events are interpreted by the agent, after which the emotion is
influenced. This interpretation includes reasoning about what
the event means to the goals and needs of the agent, which is
depending not only on the event but also on the current BDI
state of the agent. So, an event does not directly influence the
emotion - at least not in general - but the interpretation of the
event does.
     A BDI based approach to computational emotion
evaluates events in the context of the current goal hierarchy
of the agent, and determines the resulting emotion based on
this evaluation. Switching from an event-encoding approach
to a BDI-based approach is necessary for more meaningful
computational emotions. However, some situations might be
much easier to give emotional meaning using event encoding
instead of using BDI-based appraisal. Also, when computing
time becomes a bottleneck, an agent might need to switch to
a simpler emotional instrumentation to save computation
time for other sub-systems of the game.
     Event-encoding and BDI based appraisal are two possible
ways to emotionally instrument – or extend an emotional
instrumentation of - a system. The relevant question for
incremental emotional instrumentation of virtual agents is
thus how to integrate the results of different concurrent
emotional instrumentations? The ability to emotionally
instrument a system in an incremental manner is referred to
as model-scalability.

FEELME: A DYNAMIC APPROACH TO
COMPUTATIONAL EMOTIONS

The FeelMe framework (DeGroot 2004) is a modular
approach to computational emotions and is based on a strict
separation of the computational emotional process in five
main steps (see Figure 1). These steps are described in more
detail in this section. This framework for computational
emotions has been developed to study the effects of emotion
on decision-making by using emotions as first-order objects
in reasoning (DeGroot and Broekens 2003).
� The Decision Support System (DSS) provides mediated

access to the existing system (e.g. an existing arcade
game). Since some information in the environment of an
agent or in its own internal state is not directly suitable
for appraisal, the DSS translates this information before
sending it to the Appraisal System. The DSS constructs
to-be-appraised objects, based on the events occurring in

                                                          
1 In some domains psychological plausibility of emotions is of high

importance, like virtual reality safety training.
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environment of the agent and sends these objects to the
Appraisal System.

� The Appraisal System (AS) continuously emotionally
evaluates the constructed objects and interprets these in
terms of values on a set of subjective measures, called
appraisal dimensions. An appraisal dimension is a
variable - e.g. arousal or valence - used to express the
result of the emotional evaluation of a perceived object,
for example a friend. The evaluation of the AS results in
a continuous stream of n-dimensional vectors
representing the appraisal-results, with n equal to the
number of appraisal-dimensions. These vectors are sent
to the Emotion Maintenance System. The number and
type of appraisal-dimensions is configurable and need
not be defined here. Just for the purpose of consistent
terminology, in this paper we call any mechanism that
produces appraisal-results an appraisal mechanism.
Event-encoding can thus be called an appraisal
mechanism, provided that it produces appraisal-results
as defined above.

� The Appraisal Signal Modulator (ASM) can perform
signal pre-processing on the incoming appraisal-results -
like amplification of, dampening of and correlating
certain appraisal dimension values - before these are sent
to the EMS.

� The Emotion Maintenance System (EMS) continuously
integrates the appraisal-results and maintains the agent’s
emotional-state. The emotional-state is also an n-
dimensional vector. Appraisal-results induce changes to
the emotional-state, thus for the EMS an appraisal-result
is an n-dimensional vector of deltas of appraisal
dimensions. This integration of deltas is what we refer to
as a signal-based approach. The emotional-state of an
agent can thus be understood as a continuously moving
point in an n-dimensional space of appraisal dimensions.
In this paper we use emotional-state when we refer to
the vector that is maintained by the EMS. An emotional-
state actually is not just a computer science approach to
emotions. Many emotion theorists use this concept of a
state to define emotion (Mehrabian 1980, Russell 2003,
Reisenzein 2001, Scherer  2001).

� The Behaviour Modification System (BMS) selects,
controls, and expresses the agent’s emotional behaviour.
The behavioural choices are based on the agent’s
emotional-state and additional knowledge the agent has.

Figure 1. Overview of the components of the FeelMe
framework relevant to this paper. Banks are explained later

     Now, how does this help us integrate the appraisal-results
of different concurrent appraisal mechanisms of an agent?
The introduction of the emotional-state and it’s interaction
with the Appraisal System are key. The AS outputs vectors
that represent changes to the emotional-state. Any

mechanism that produces these vectors can be used. The
Appraisal System can thus consist of multiple subsystems,
provided that these produce the same kind of vectors. This
opens up the possibility of adding more and more subsystems
to add more and more detail to the virtual agent’s emotions.
The EMS integrates the appraisal-results. The most simple
version of the EMS continuously adds-up all vectors sent to
it by the AS (see formula 1 on page 6). Even such a simple
paradigm allows integration of the results of different
appraisal mechanisms into a meaningful representation of the
emotional-state, provided that several guidelines for modular
appraisal are used, as we will show. Also, this signal-based
integration of appraisal-results from different concurrent
mechanisms is highly compatible with the concept of
appraisal integration by appraisal detectors as proposed by
the appraisal theorists Smith and Kirby (2000).

MODULAR AND SCALABLE APPRAISAL

In order to build scalable appraisal models we have defined
appraisal banks. In this section we explain what an appraisal
bank is, why it facilitates the development of scalable
appraisal models and what kind of appraisal-results are
needed for effective integration of these result.

Context Sensitive Appraisal Banks

The Appraisal System (AS) is the complete appraisal system
of an agent and an appraisal bank is a sub-systems of the AS
(see Figure 1). An appraisal bank is an object (in the OO
sense) that contains a set of functions that emotionally
evaluate specific aspects of the agent’s environment and
internal state, for example all events related to survival. An
appraisal bank is context sensitive, that is, the contribution of
the bank’s appraisal-result - as determined by the bank’s
evaluation functions - to the emotional-state of the agent
depends on the situation of the agent. An appraisal bank can
influence the contribution of another appraisal bank’s
appraisal-results through dependencies. Such dependencies
allow the definition of causal connections which enable
modelling of levels of appraisal and evaluation sequence
(Scherer 2001, van Reekum 2000). To facilitate development
of scalable appraisal models we enforce strict modularity of
the AS by assuming that appraisal banks evaluate
independent of each other.
     We now explain why context sensitivity and evaluation
sequence of appraisal banks facilitate the development of
both model- and runtime-scalable appraisal models. First,
context sensitivity facilitates the development of new - more
elaborate - banks on top of older - more generic - banks.
These new banks - for example based on BDI-based
appraisal - can be sensitive to contexts where more
meaningful emotions are needed but not achieved with the
older banks - based on for example event encoding. The
older banks can be sensitive to those contexts in which they
work well. Context sensitivity of a bank can be configured by
a game-character designer. Context sensitivity can also be
implied based on the activity of appraisal banks (e.g. larger
appraisal-results are more important then smaller ones). In
this case the contribution to the emotional-state of one bank
inhibits the contribution of another bank. Dependencies

AS

ASM EMS BMS

DSS
Bank 1

Bank n

Agent’s environment/Agent’s internal state
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determine which bank influences which. These dependencies
can be used to build an interconnected set of appraisal banks
that influence each other. Context sensitivity facilitates
model-scalability because banks evaluate situations they
recognise while other banks are silent.
     Second, simple - computationally cheap - appraisal banks,
and elaborate - computationally expensive - appraisal banks
can be active simultaneously. An agent can dynamically
adapt its appraisal effort (and thus computation time needed)
by switching between simple and elaborate banks, depending
on the context and the maximum amount of computing time
available for its computational emotion system. Alternatively
the user can adapt the emotional detail of the NPCs by
configuring his game. A third way of adapting appraisal
effort can be based on the distance between the NPC and the
user’s viewpoint. All three adaptation examples show the
runtime-scalability potential of appraisal banks. Interestingly,
the dynamic adaptation of appraisal effort depending on the
situation and available resources is consistent with certain
appraisal theoretic approaches towards emotion (Scherer
2001).
     The set of functions in an appraisal bank can be designed
to produce meaningful appraisal-results. A second bank can
be completely separated from the first and also produce
meaningful appraisal-results. If both banks work well
together at the same time, they can be active at the same
time. If they don’t then one bank has to inhibit the other, or
both banks have to be configured to be sensitive to mutually
exclusive contexts (see below). Grouping appraisal in
context-sensitive banks facilitates debugging of the appraisal
model, since designers can focus on specific banks and
assume other banks are deactivated. For example, in a typical
RPG scenario this allows the development and debugging of
an NPC’s appraisal banks for battle, travel/quest and
village/city situations.
     In this paper we analyse the results of an experiment
testing the difference between one bank, and two dependent
banks in which the first inhibits the second.

Constraints for appraisal banks

If we assume that the Appraisal Signal Modulator (ASM)
does not pre-process appraisal-results and the Emotion
Maintenance System (EMS) only integrates appraisal-results
by addition, what kind of appraisal-results do appraisal banks
need to output for successful integration? Multiple
constraints exist, of which we describe three.
     First, appraisal-results need to be defined on the interval
scale, addition of appraisal-results must be meaningful. To be
more concrete, a 0.5 on the Pleasure dimension produced by
bank 1 must emotionally mean the same as a 0.5 on the
Pleasure dimension produced by bank 2. Furthermore, in
order for the EMS to meaningfully integrate the values by
adding up, a 0.5 increase or decrease on a certain dimension
must always mean the same for that dimension. These two
criteria do not have to hold between appraisal dimensions, a
0.5 Pleasure increase does not have to mean the same in
terms of intensity-change as a 0.5 Arousal increase, but we
will not go into this issue here.
     Second, the set of appraisal banks (the Appraisal System)
together must be able to produce non-zero appraisal-values

for all appraisal dimensions. These values must be both
positive and negative. This allows the emotional-state to
potentially be driven in all directions. Note that this does not
need to hold for one bank in particular, since it is perfectly
fine if one bank produces mostly positive values for a certain
appraisal dimension while another produces mostly negative
ones. This would still potentially drive the emotional-state in
both directions. Being able to drive the emotional-state in all
directions is needed to maximise emotional coverage.
Emotional coverage is the ability of the computational model
of emotion to attain all possible emotional-states, as defined
by the appraisal-dimensions used in the computational model
of emotion. Emotional coverage is important for several
reasons, of which we mention only one. An agent that is
designed to express a set of emotions must also be able to
attain these emotions. Not being able to do so presents a
huge loss of development effort (i.e. facial expression
rendering, emotional behaviours, etc).
     Third, appraisal banks need to respond to mutually
exclusive contexts. This can be explained by the following. If
we assume that r1 and r2 are the absolute values of two
appraisal-results produced by respectively bank B1 and B2 at
a certain time, and r2��, and the newer version of an
appraisal model contains both B1 and B2 while the simpler
version contains only B1, then the simpler model produces r1

while the newer version produces r1+r2�U1. Nothing can be
said about how meaningful r1+r2 is, even though r1 and r2

may be meaningful by themselves. At least two ways to
ensure model-scalability - i.e. incremental emotional
instrumentation - exist: first, appraisal banks are never active
together in which case r1+r2 never happens; second, B1

knows about B2 or vice versa so that they can adapt r1 and r2.
This introduces a dependency between two versions of the
appraisal-model, and such a dependency limits model-
scalability. There are several other issues that relate model-
scalability, choice of appraisal dimensions and emotional
coverage to each other, but these would diverge us too much
from the main point.
     Mutual exclusiveness is a rather restricting constraint.
Fortunately another option is available. If r2§� then r1+r2§U1.
This means that, if B1 and B2 are active at the same time and
B2 is an appraisal bank that "fine-tunes appraisal" while B1

"looks at the big-picture", then both banks can be active at
the same time. Now B2 incrementally adds more meaning to
the appraisal model while staying consistent with the model
only containing B1.
     If we assume the Appraisal Signal Modulator (ASM) is
pre-processing appraisal-results before the EMS integrates
these, do the guidelines stay the same? Yes and no, appraisal-
results still need to be defined on the interval scale, because
the EMS still has to integrate them and the set of banks still
must be able to produce non-zero positive and negative
values for all appraisal dimensions in order to maximise
emotional coverage. However, other scenarios are possible
for the interplay between two or more banks. We explain one
of these scenarios. If the ASM constructs a weighted
average2 of r1 and r2 where the weighing function is based on
the intensity of the appraisal-result - intensity can be
                                                          
2 A similar weighted influence of appraisal-results – using attention

as weighing function - has been proposed to explain the effects of
concurrent appraisals on human emotion (Schimmack et al 2001).

in4243
211



calculate using for example the length of the appraisal-result
vector, as shown in equation 2 page 6 - then
min(r1,r2)<r1+r2<max(r1,r2). This means that if both r1 and r2

are meaningful when used separately, the appraisal-result as
integrated by the EMS is between r1 and r2 and has a high
chance of also being meaningful. The problem with this
approach is that appraisal-results from appraisal banks that
should "fine-tune" the appraisal model - like the above
example of B2 - should be added to the appraisal-results of
"big-picture" appraisal banks instead of integrated with these
results in an average. In equations this means: if r2§�  then
(r1+r2)/2§U1/2, while B2 was designed to achieve r1+r2§U1. To
conclude, without further assumptions the ASM cannot solve
the mutual exclusive contexts constraint, but it can soften it.
Appraisal banks that "fine-tune" appraisal can be configured
to be left untouched by the ASM, and all other appraisal
banks can be either averaged by the ASM or mutually
exclusive. When needed, the ASM opens up a wide range of
different mechanisms to pre-process the appraisal-results of
appraisal banks to makes these suitable for integration by the
EMS.

EXPERIMENTAL ASSUMPTIONS

We have instrumented a Java version of the arcade game of
PacMan (Chow 2003). Since we want to test if our signal-
based, modular approach facilitates incremental emotional-
instrumentation, and that this incremental instrumentation is
feasible even for existing non emotional systems,
programming a game ourselves would have seriously
diminished the convincing power of our results.
     The game of PacMan consists of an "eater" in a
rectangular maze, filled with dots, power-pills, fruit and
several ghosts. A  human player controls the "eater". The
goal it is to collect as many points as possible by eating the
objects in the maze. When a ghost touches the "eater", it
loses a life. When no lives are left, the game is over.
However, if the "eater" eats a power-pill, it is temporarily
able to eat the ghosts, thus reversing roles. When all dots are
eaten, the game advances to the next - more difficult - level.

PacMan as Experimental Platform

We have chosen PacMan for the following reasons. First,
PacMan has easy to define goals, like survival and collecting
points. This facilitated development of an appraisal model
with one bank related to survival (e.g. avoiding ghosts) and
then extend this model with a bank related to the goal of
collecting points (e.g. eating dots). Second, the "eater" in
PacMan potentially has many different emotions that make
sense. Eating ghosts, eating dots, being chased, chasing, etc.
are all different situations relating to different emotions. This
allows us to test to what extend emotional coverage changed
depending on the appraisal-model. Third, PacMan is an
’action-packed’ environment, which allows us to test our
signal-based approach, under continuous-time constraints.

Pleasure Arousal Dominance Dimensions

Our approach does not prescribe a specific set of appraisal
dimensions. We have chosen the Pleasure, Arousal,

Dominance (PAD) personality-trait and emotional-state
scales by Albert Mehrabian (1980) for the following reasons.
First, even though Mehrabian is not an appraisal theorist and
his dimensions are generally not considered to be appraisal
dimensions, he argues that any emotion can be expressed in
terms of values on these three dimensions, and provides
extensive evidence for this claim (Mehrabian 1980). This
makes his three dimensions suitable for a computational
approach3. Second, since the PAD scales are validated for
both emotional-states and traits, they provide a useful basis
for a computational framework that consistently integrates
states and traits (even though we don’t use traits in the
experiments, this is very valuable for further instrumentation
experiments). Last, Mehrabian (1980) provides an extensive
list of emotional labels for points in the PAD space. Figure 2
gives an impression of the emotional meaning of
combinations of Pleasure, Arousal and Dominance.

Figure 2: The Mehrabian P-A-D Temperament Scale

     In an attempt to instrument PacMan in such a manner that
the appraisal-results are defined on the interval scale - i.e.
adding results from different banks means something -, we
need guidelines to think about events in terms of appraisal-
dimensions instead of emotions. What does a certain event
mean in terms of P, A and D?
     The Pleasure dimension is highly related to the impact an
event has on the probability of fulfilment of an agent's
desires (e.g. Mehrabian 1980, Reisenzein 2001, Scherer
1993). If the event increases the probability of the outcome,
Pleasure is positive, else it’s negative. The "eater" in the
PacMan game has two desires: survival and collecting points.
According to Mehrabian (1980), arousal is highly correlated
with activity and alertness. This relates to the expectancy and
novelty of an event. The appraisal dimensions expectancy
and novelty are related to the amount of attention a certain
environmental change gets (van Reekum 2000). Based on
these observations we assume that Arousal is the amount of
attention needed to address a certain event. A ghost needs a
lot of attention, while eating a dot needs only a little.
     Dominance is a measure for the influence the situation has
on the agent's freedom of choice to act in different ways
(Mehrabian 1980). High Dominance implies a large freedom
of choice, while low Dominance implies little choice. This
                                                          
3 It might even be very interesting to study in detail how these non-

appraisal dimensions behave in a signal-based appraisal setting.

+P

+A

+D

-A

-P

-D

The following sample ratings illustrate definitions of various
emotion terms when scores on each PAD scale range from -1 to +1:

angry (-.51, .59, .25)
bored (-.65, -.62, -.33)
curious (.22, .62, -.01)
dignified (.55, .22, .61)
elated (.50, .42, .23)
hungry (-.44, .14, -.21)
inhibited (-.54, -.04, -.41),
loved (.87, .54, -.18)
puzzled (-.41, .48, -.33)
sleepy (.20, -.70, -.44)
unconcerned (-.13, -.41, .08)
violent (-.50, .62, .38).

The emotional state "angry"  is a highly unpleasant, highly aroused, and
moderately dominant emotional state. The "bored" state implies a highly
unpleasant, highly unaroused, and moderately submissive state.

From: Albert Mehrabian’s (1980) PAD Scales.
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maps well to the PacMan game. For example, seeing a ghost
decreases Dominance, while seeing an edible ghost increases
Dominance. We have used these guidelines to think in terms
of P, A and D.

Instrumentation of Appraisal Banks: Survival and
Collecting Points

To test if context sensitive appraisal banks facilitate the
development of scalable appraisal models, PacMan is
instrumented in two ways. First, a simple instrumentation
based one appraisal bank that emotionally evaluates events
related to survival. Second, a more complex instrumentation
based on two appraisal banks, one related to survival the
other related to collecting points. In both banks we have used
event-encoding to simulate emotional meaning of events. The
DSS constructs the actual events. We now describe how
events are interpreted by the two appraisal banks..

"Survival" bank
This bank appraises only survival related events (Table 1).
The rationale for the P, A and D values is based on the
guidelines described above. Pleasure depends on the level of
obstruction versus conductance of an event related to a goal.
For example, seeing a ghost is moderately obstructing for
survival, while being eaten is highly obstructing. Arousal is
related to the amount of attention an event needs. For
example, seeing a ghost needs a moderate amount of
attention while losing a ghost needs no attention (because the
ghost poses no thread anymore). Dominance is related to the
amount of freedom the "eater" has. For example seeing a
ghost decreases the amount of freedom, while losing a ghost
increases the amount of freedom.

Table 1: "Survival" bank

Event Pleasure Attention Dominance
See_ghost -.5 0.5 -.5
Lost_ghost 1.0 0.0 0.5
Eaten_by_ghost -1.0 1.0 -1.0

"Points" bank
This bank appraises only events related to the goal of
collecting points. Table 2 shows the events for the "points"
bank. Again, the rationale for the P, A and D values is based
on the guidelines described above.

Table 2: "Points" bank

Event Pleasure Attention Dominance
eaten_ghost, , 1.0 1.0 0.0
see_edible_ghost 0.5 0.5 1.0
eaten_fruit, 0.5 0.2 0.0
eaten_dot, 0.2 0.2 0.0
eaten_power 0.2 0.2 0.0

Appraisal-results

Appraisal-results are produced by both appraisal banks and
are based on situational change. This means that whenever an
event is interpreted by an appraisal bank at time t, it

compares if this event has already been encountered at time
t-1. If this is not the case, the appraisal dimension values
associated with the event are sent as appraisal-result. If it is
the case, nothing is sent. If an event is no longer encountered
at time t while it was at time t-1, a relaxation function kicks
in. This function is responsible for sending enough small
values over a short time period - say until t+x - so that these
values - when summed - are the exact opposite of the
appraisal dimension values associated with the event
encountered at time t-1. The mechanism has been adapted to
work for multiple events, but we will not go into this here.
     One of the reasons for implementing appraisal banks in
this way is that we are now sure that an appraisal bank
outputs both positive as well as negative appraisal values for
all appraisal dimensions that are used by the events the bank
interprets. As mentioned above, this is an important criterion
for emotional coverage. Another reason is that continuous
exposure to, for example, eating dots would permanently
drive the emotional-state to an extreme value (remember that
an appraisal-result is a delta - a change - and that these are
just added up by the EMS). Not going into the discussion of
whether this is or isn’t plausible, it is a problem we would
have had to solve in one way or the other for the current
experiment. We have chosen for a simple but effective
appraisal mechanisms using both situational habituation -i.e.
measuring situational change - and subsequent relaxation.
We would like to stress, however, that this is just one of
many ways an appraisal mechanism could be implemented in
order to produce appraisal-results that maximise emotional
coverage as well as protect the emotional-state from
"walking to extremes".

Context sensitivity

In the simple instrumentation - using only the "survival" bank
- context sensitivity is irrelevant. There is just one bank
active at all times. In the complex instrumentation context
sensitivity is of importance and implemented in the following
way. Since survival is more important than points, the
"points" bank is inhibited by the "survival" bank. This is
implemented by weighing the contribution to the emotional-
state of the appraisal-result of the "points" bank relative to
the amount of emotional activation (appraisal-intensity) in
the "survival" bank. Formula (1) implements the weighing
function, where goal’ is the weighted appraisal-result vector
as to send to the EMS by the “points” bank, goal is the non-
weighted vector, | survival| is the length of the appraisal-result
vector of the "survival" bank and the cubic root of 3 is the
maximum length of an appraisal-result vector4.

ÜÜÝ
Û

ÌÌÍ
Ë D-*D=D

3 3
1’ survival

goalgoal (1)

     If the “survival” bank is highly active, the appraisal-
results from the “points” bank have are almost no influence
on the final appraisal-result sent to the EMS and vice-versa.
This mechanism should result - and the experiment shows it
does - in emotions produced by the complex model that are

                                                          
4 Calculating intensity in a Pleasure-Arousal theory of emotion

based on the length of the Pleasure-Arousal vector is
psychologically plausible (Reisenzein 1994).
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consistent with the emotions produced by the simple model
in survival-related situations. This mechanism exemplifies
context-sensitivity of appraisal banks. Note that appraisal
banks allow abstraction from the actual event interpretation,
facilitating a modular approach to the appraisal model.

Integration of Appraisal-results

Appraisal-results are integrated by the EMS using equation
(2), where Et is the emotional-state at time t, Et+1 is the new
emotional-state, n is the number of appraisal banks and
3$'ti the appraisal-result vector of bank i at time t.

Ê
�

� D+= n

i
titt PADEE

0
1 (2)

The EMS adds up appraisal-results produced by the banks.

EXPERIMENTAL RESULTS

The experiment itself consists of playing the first level of the
PacMan game (by eating all dots), losing a life two times
during the process, and eating at least one Ghost. To be able
to compare the two different instrumentations and the effect
of triggering the appraisal banks of the instrumentations at
different frequencies - i.e. at 5 times per second and 10 times
per second - , we have configured PacMan in such a way that
we were able to test all four instrumentations -i.e. both
instrumentations at 5 and 10 times per second - in just one
test-run. We instantiated four different versions of the
emotion system and events were delivered to the appraisal
banks of all four instantiations. Plots of the emotional-state
changing over time have been generated.

Figure 3: "Survival" PacMan, 200ms instrumentation

Figure 4: PacMan using both banks, 200ms instrumentation

Figure 5: "Survival" PacMan, 100ms instrumentation

Figure 6: PacMan using both banks, 100ms instrumentation

Model scalability

All graphs clearly show broad emotional coverage (the 2-
bank instrumentation shows broader coverage, however),
irrespective of appraisal rate. Even with a minimal
instrumentation based on 3 events, the emotional-state varies
substantially from (-P, +A, -D) to (-P, -A, -D) to (+P, -A,
0D). Furthermore, the ability to define context-sensitive
appraisal-banks clearly allows us to first define this minimal
instrumentation and subsequently scale-up the model by
adding a new bank. The context sensitivity of the banks -
using inhibition of the "points" bank - results in consistent
behaviour of the emotional-state. In the "both banks"
instrumentation the emotional-state is more meaningful due
to the second bank, shown by the overall difference between
Figure 3 and 4 and in particular the effect the "eaten_ghost"
event has on P and D around t=56672. The emotional-state is
at least as meaningful in those situations where the "survival"
instrumentation already produced a meaningful emotional-
state, shown by the effect the "eaten_by_ghost" event has on
P, A and D around t=28448 and t=70784 in Figure 3 and 4.
This shows that context-sensitive appraisal banks - enabled
by our signal-based approach - facilitate model-scalability.

Runtime-scalability

Comparison of the results between the 100ms and 200ms
instrumentations shows that our signal-based, context-
sensitive appraisal banks are insensitive to a 100ms
difference in triggering frequency. We can see that Figure 3
and Figure 5 as well as Figure 4 and 6 are pair-wise identical.
This insensitivity is mainly the result of appraising situational
change instead of the situation itself. Appraisal-results are
identical assumed that the difference between the frequency
of both instrumentations is not so large that the slower-
frequency-instrumentation completely skips both the delivery
and the retraction of an event from its current "blackboard".
A large difference is thus a risk for appraising situational
change, but many ways exist to solve this problem using
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more sophisticated "event delivery". This shows that our
approach supports flexible triggering.
    The potential of our approach for runtime-scalability
related to quality/performance trade-off is indicated by the
fact that the "points" bank actually fills-in the non-emotional
episodes of the "survival" bank. During run-time the "points"
bank can be switched off, still resulting in meaningful but
less detailed emotions, as shown by Figure 3. Of course in
our case both banks consume virtually no resources, but in a
situation where two different appraisal mechanisms are used,
this runtime-scalability becomes useful.

CONCLUSION

In this paper we have addressed the problem of incremental
emotional instrumentation of systems. That is, how to
develop computational models of emotion based on a step-
by-step addition of sophistication to a such a model resulting
in meaningful and more sophisticated emotions of the agent
that is consistent with the emotions resulting from the simpler
models. We have proposed the FeelMe framework (DeGroot
2004) as a solution to this problem. The FeelMe framework
is a modular, signal-based approach to computational
emotions. In this paper we have focussed on the Appraisal
System in the FeelMe framework. Context-sensitive appraisal
banks are introduced to facilitate the development of scalable
appraisal models. The results of an experiment we have
conducted with a game agent show the following. An
appraisal model using two appraisal banks -  the first being
sensitive to all events related to survival and the second
being sensitive to all events related to collecting points -
results in more sophisticated emotions than an appraisal
model with just the "survival" bank. The "survival" appraisal
bank in our experiment inhibits the "points" appraisal bank.
This inhibition provides consistency between the two
instrumentations. Consistency between appraisal models and
incremental emotional sophistication are two of the
requirements for model-scalability and runtime-scalability,
indicating that context sensitive appraisal banks - enabled by
our signal based approach - facilitate the development of
scalable appraisal models.
    Runtime-scaling of appraisal models is useful in domains
in which computation time is an unknown factor, because it
enables trading-off emotional quality with available
computation time, just like 3D-graphic-engines and chess
engines. The experiment also indicates that our signal-based
approach is flexible regarding the frequency of appraisal.
This flexibility enables a different form of runtime-scaling,
namely scaling based on a trade-off between temporal quality
and performance.
    Even though the number of appraisal banks was small in
order to test scalability, we think that these results show that
our modular, signal-based approach to computational models
of emotion has many benefits for the gaming and virtual
agent arena.

FURTHER WORK

Possible extensions of our dynamic approach to
computational emotions include modelling the mood of an
NPC, modelling the effect mood can have on the emotional
state, and the use of our approach in multi-agent
environments.
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ABSTRACT 

 
At present, behaviors of Non Player Characters (NPCs) in 

computer games are not satisfactory because they are pre-

defined and then very simple. To overcome this problem, 

Namee, et al. proposed an agent system with emotional 

model units to create more natural behaviors of NPCs by 

controlling their actions according to their emotion (Namee 

and Cunningham 2001). The research purpose of the authors 

is to propose the software architecture that provides NPCs 

those have emotional behaviors by combining required 

primitive functionalities represented as software components.  

As the first trial to achieve this research purpose, the authors 

designed the agent system proposed by Namee, et al. using 

IntelligentBox, which is a component based 3D software 

development system. This paper explains the design of the 

agent system using IntelligentBox and the implementation of 

its emotional model, i.e., a simple stimulus response model.  

The authors also describe the validity of the implementation 

by showing the experiment. 

 
INTRODUCTION 

 
Recently 3D computer graphics has become frequently used 

in movies and video games.  In this situation, the role of Non 

Player Characters (NPCs), which are 3D CG characters used 

in a video game, has become important and personalities of 

NPCs have become necessary in order to make them have 

various believable behaviors. Actually there are The Sims 

(thesims.ea.com) and Black & White (www.bwgame.com) as 

an example of the successful game, those have shown that the 

personalities, moods, and relationships of NPCs are 

important factors to make the game play entertaining.  

However, game designers have to write a lot of scripts for all 

NPCs to define their behaviors, and this requires much 

computation and sophisticated data structures if there are too 

many NPCs in the game.  For these reasons, behaviors of 

NPCs in conventional games are very simple and then game 

players can easily predict behaviors of NPCs of a game and 

loose interest in playing it after they play several times.  To 

overcome these limitations, an agent system is required to 

create more natural behaviors of NPCs by controlling their 

actions according to their emotion.  Our research purpose is 

to propose the software architecture that allows us to develop 

various agent systems only by combining required primitive 

functionalities represented as software components.  

This paper explains the design of the agent system using 

IntelligentBox (Okada et al. 1995, 1998, 2000), which is a 

component based development system for 3D graphics 

applications.  The paper also describes emotional model 

units implemented as composite components of 

IntelligentBox. Furthermore, we describe the validity of the 

implementation by showing the experiment. 

 

PROACTIVE PERSISTENT AGENT ARCHITECTURE  

(PPA) 

 

First of all, we refer to a proactive persistent agent 

architecture (PPA) proposed in the paper (Namee and 

Cunningham 2001). The PPA architecture has two properties 

as an agent system. One is that agents based on the PPA 

architecture are proactive in the sense that they can take the 

initiative and follow their own goals, irrespective of the 

actions of the player.  The other is persistence refers to the 

fact that at all times, all NPCs in a virtual world are modeled, 

regardless of their location relative to that of the player. A 

schematic illustration of the PPA architecture is shown in 

figure 1.  

 

The architecture is a modular system made up of four key 

components which determine their interaction by referring to 

KnowledgeBase and other components. Finally Selection 

determines next interaction of an NPC by referring 

interactions determined by each component units. These key 

components are as follows: 

 

The Schedule manages schedule of a character. For example, 

a character might get up in the morning at home and go home 

after their work. An NPC moves autonomously without any 

intense computation or sophisticated data structures by 

instilling characters with a schedule.  

 

The Role Passing System gives a role to a character and the 

adoption of each of roles would significantly changes the 

behavior of the character (Namee et al. 2002a). Depending 

on the situation in which the agent is found, different roles 

are layered on top of this simple agent to drive its behavior. 

The adoption of particular roles is driven by the agent’s 

schedule. 

 

The Social Unit determines behaviors of NPCs based on 

their emotional model.  Their emotion consists of personality, 

mood and their relationship. This system is called the µ-SIC 

System (Namee and Cunningham 2002b). 
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Although the scenario of the game which we are going to 

create has not decided yet, these units mentioned above are 

not enough to allow NPCs achieve their goals of a game, so a 

traditional planning unit should be used.  As the first trial of 

our research, we implemented the main functionality of the 

µ-SIC System as the composition of software components of 

IntgelligentBox.  In the following sections, we explain its 

details. 

 

EMOTIONAL MODEL UNITS  

(IMPLEMENTATION OF THE µ-SIC SYSTEM) 

 

In the u-SIC system, behaviors of NPCs are determined by 

Artificial Neural Network (ANN) that already learned their 

emotional model.  Every NPC does not need to have its own 

ANN and there is an only one copy of the ANN in the system.  

Whenever NPCs take a next action, they request one copy of 

the ANN.  The reason why the system was implemented in 

this way is to minimize the storage requirements. 

In the followings, we describe our emotional model for the 

u-SIC system.  Among them are Personality, Mood, 

Relationship and Interaction. 

 

Personality  

 

To define the personality of an NPC, we considered five 

factors model called Big five (Tanno 2003). Big five is based 

on the idea that our human personality can be specified by 

the combination of the fundamental characteristics.  Five 

factors and their characteristics are as follows: 

1. Extroversion    

 Activity and energy level traits, sociability and 

emotional expressiveness. 

2. Agreeableness    

 Altruism, trust, modesty, pro-social attitudes. 

3. Conscientiousness    

 Impulse control, goal directed behavior. 

4. Neuroticism    

 Emotional stability, anxiety, sadness, and irritability. 

5. Openness     

 Breadth, complexity, and depth of an individual life. 

According to Byron (Reeves and Nass 1998), extroversion 

and agreeableness are more significant rather than other 

factors, especially when we classify our personalities based 

on the influence of external stimulus.  Then we decided to 

employ extroversion and agreeableness as two main factors 

to express the personality of an NPC because we assume 

these factors are satisfactory for the emotional expression of 

a game character. 

 

Mood  

 

A character’s mood is specified by two measures, valance 

and arousal.  Valance means whether the mood is positive or 

negative, and arousal means the intensity of that mood.  

These two measures are fundamental elements to express the 

mood and independent on each other so the combination of 

these measures determines primary emotions.  For example, 

we will feel angry when valance is low and arousal is high. 

 

Relationship 

 

The relationship among characters is an important factor to 

determine their action/interaction.  As well as 3D CG 

characters, this agent system is also applicable to robots.  We 

are supposed to apply our agent system to AIBO, which is an 

entertainment robot produced by Sony Corp. as well as a 3D 

CG character.   Then, we uses an AIBO typed CG character 

in the experiment described in the later section.  Our AIBO 

CG character has only friendship as the relationship 

parameter due to the simplicity. 

 

Interaction 

 

This subsection describes character’s actions that an ANN 

determines by referring to emotion parameters. We specify 

seven actions as described below because these actions 

express character’s emotions clearly and strongly correspond 

to primary emotions.  Moreover these actions are considered 

to have the great influence on emotion parameters of other 

characters. 

1. KISS       

 Expression of “love” to a partner 

Action showing “joy” 

2. FLIRT     

 Good impression against a partner 

Action showing “welcome” 

3. CHAT     

 Chat with a partner 

No hostility and no feeling of “dislike” a partner. 

4. NONE     

 No action against a partner. 

5. SLEEP     

 Feeling of “dislike” and insult a partner. 

6. RUNAWAY    

 Feeling of “fear” a partner. 

7. ANGRY     

 Feeling of “anger” with a partner. 

 

ARTIFICIAL NEURAL NETWORK 

 

By referring to the current values of the emotion parameters, 

an ANN determines which interaction should be invoked. 

The back propagation of error was used to train the network. 

The network is a three layer perceptron network, which has a 

single middle layer.  The middle layer consists of six nodes 

Figure 1: A schematic of the PPA architecture. 
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as shown in Figure 2.  The input layer consists of five nodes 

for the personality, i.e., extroversion and agreeableness, for 

the mood, i.e., valance and arousal, and for the relationship, 

i.e., friendship.  Those have a value in 0.0 to 1.0.  The output 

layer consists of seven nodes each for the possibility of each 

action/interaction which the current character should take.  

The output layer nodes also output a value in 0.0 to 1.0. 

The ANN requires a training data set for the training. 

However, there are no available databases which contain the 

believable information on how people or animals interact 

with each other. An artificial data set was required for this 

reason and so we manually created it as follows. As the first 

step, we assumed the relationship as the distance between 

each of the primary emotions and each of the seven actions.  

For example, Angry is semantically far from Kiss but close 

to Sleep. As the second step, we defined the probability of 

each action according to its relationship with the five 

emotion parameters. For example, a character will select 

Angry when the values of extroversion and arousal are high 

and agreeableness, valance and friendship are low. Table 1 

shows the partial data of 140 hand crafted data. 

It is very likely that the network would over-fit to a training 

data set and not be applicable to new input data because the 

network could not be generalized well if the training data set 

is too small. To overcome this problem, we created a larger 

data set, 1400 training elements, by adding Gaussian noise to 

an original data set. A five-fold cross validation was 

performed to check the validity of the ANN trained using the 

set of 1400 training elements. As a result, the ANN achieved 

the accuracy of 82%.  This accuracy means that 82% of 

output data from the ANN are correct against the 

corresponding input data.  Since this validation check is not 

for raising the accuracy, we consider this accuracy is enough 

to obtain satisfactory behaviors of NPCs. 

 

INTELLIGETNBOX AND ITS COMPONENTS FOR 

EMOTIONAL BEHAVIOR 

 

IntelligentBox is a constructive visual 3D software 

development system. IntelligentBox provides 3D reactive 

objects as its primitives called boxes.  Each box has a unique 

functionality and a 3D visible shape.  Its functionality is 

related to variables called slots. By transmitting slot values 

among several boxes, their functionalities are combined.  

IntelligentBox also provides a dynamic data linage 

mechanism called ‘slot connection’ that allows users to 

construct 3D graphics applications by only combining 

existing boxes through direct manipulations on a computer 

screen. 

 

New boxes for ANN 

 

To implement the agent system using IntelligentBox, we  

developed the following four boxes, i.e., NeuralNetBox, 

CharacterBox, CharacterControlBox and 

InteractionControlBox 

 

The functionality of NeuralNetBox is to provide an ANN.  It 

calculates the output results of the network from the input 

values.  CharacterBox holds five parameter values, i.e., two 

personality parameters, two mood parameters and one 

relationship parameter as its five slot values.  The 

functionality of CharacterBox is to change the emotion 

parameters of its corresponding character (NPC) so one 

CharacterBox is attached to each character.  The 

individuality of a character is determined by the difference of 

emotion parameters. CharcterControlBox keeps the name of 

a character which is attempting to instigate an interaction and 

refers to CharacterBox attached to the character.  

NeuralNetBox gets input parameters from the character, 

Figure 2:  Structure of ANN. 

Table 1: Sample of a training data set. 
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strictly speaking from the CharacterBox, specified by 

CharacterControlBox. InteractionControlBox plays the same 

role of Selection unit in the PPA shown in Figure 1.  This 

box determines next action/interaction for the corresponding 

character according to output results gathered from each 

other unit. Although this paper describes only the 

implementation of the emotional model units, this box is 

extensible in order to accept output results from Schedule, 

Goal Planning Unit and so on. 

 

Composite box and slot connection 

 

The new composite box which has the functionality of the 

agent system is created by composing the above new 

developed boxes and by connecting their slots. Figure 3 

illustrates parent-child relationship hierarchy of the 

component boxes.  

 

Figure 4 shows messages to transfer slot data between each 

two boxes.  CollisionControlBox detects the collision of 

characters with each other and then CharacterControlBox 

sets the emotion parameters of the current character to input 

slots of the NeuralNetBox. NeuralNetBox calculates output 

values of the network and hence sets those to the slot value 

of InteractionControlBox. Finally, InteractionControlBox 

determines next action and inform it to the corresponding 

character, strictly speaking the corresponding CharacterBox. 

Simultaneously CharacterBox changes its emotion 

parameters. 

 

EXPERIMENT 

 

Figure 5 shows a screen snapshot of the agent system 

developed using IntelligentBox. The colorful boxes located at 

the upper part of Figure 5 are the components of the agent 

system.  Each box shows the slot values on its right-hand side. 

There are five AIBOs, 3D CG characters, in the field. On the 

upper part of each AIBO, its character name and its current 

action are displayed. AIBO moves in the field with randomly 

changing its direction and, they take an action related to the 

interaction determined by InteractionControlBox whenever 

they collide with other AIBO. The sphere surrounding an 

AIBO expresses the state of its emotion using RGB colors. 

Red expresses the intensity of arousal, Green expresses that 

of friendship and Blue is valance. If emotion parameters of a 

character changed, the color of the sphere also changes. 

Messages flow as explained below is performed when new 

interaction between two AIBOs occurs. In the figure 6, 

CollisionControlBox sends the message of the collision 

between two AIBOs to CharacterControlBox (1 in Figure 6). 

CharacterControlBox gets the emotion parameters from the 

Figure 3: Parent-child relationship hierarchy of boxes. 

Figure 6: Screen snapshot of one scene during the 

simulation. Figure 4: Data flow between each two boxes by slot 

connection. 

Figure 5: Screen snapshot of the agent system using 

IntelligentBox. 
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ChracterBox of the corresponding character which is 

attempting to start the interaction (2 in Figure 6) and sets the 

parameters to the input slots of NeuralNetBox (3 in Figure 6). 

NeuralNetBox calculates outputs of the network and sets 

them to the slot values of InteractionControlBox (4 in Figure 

6). Consequently, InteractionControlBox determines a next 

action/interaction of the character and sets it to the slot of the 

corresponding CharacterBox with reference to the character 

name specified by CharacterControlBox. CharacterBox 

changes the emotion parameters according to the interaction. 

A character name, an interaction, and emotion parameters of 

each character are displayed on the right of the 

corresponding CharacterBox. 

 

AIBOs select their new action according to their current 

emotion and the AIBO which receives the action changes its 

emotion sequentially. Moreover changing the emotion 

parameters affects to the next action of the character.  In this 

way, it is possible to avoid simple and monotonous behaviors 

of NPCs. 

 

CONCLUDING REMARKS 

 

This paper explained the implementation of the agent system 

with emotional model units using IntelligentBox referring to 

the PPA.  IntelligentBox is a component based 3D graphics 

software development system. We developed several 

components for the agent system to implement the main part 

of its functionality. We also checked behaviors of 3D CG 

characters, AIBO type CG characters, by the experiment.  In 

this experiment, NPCs’ interactions are determined based on 

just their emotion parameters, those interactions also affects 

other NPCs’ emotion and then their next interactions are 

determined by the last interaction of other NPCs. We can 

confirm visually emotion changes of characters according to 

the colors of spheres surrounding each of them. In this way, 

game players will enjoy a game since it is difficult for them 

to predict next actions of NPCs even if they play the game 

repeatedly.   

The composite component we implemented referring to the 

µ-SIC System in the PPA is not enough to represent real, 

natural human behaviors.  When we need such real, natural 

human behaviors in 3D games, we should employ another 

sophisticated, complicated emotional model that enables to 

strictly simulate the emotion process of real human. 

As future work, we will develop the functionality for 

applying motion data to NPCs in order to make NPCs walk 

naturally or take natural actions. We will also modify the 

component structure of the agent system to allow the user to 

interact the system.  Moreover, we are supposed to create a 

game scenario and to develop other remaining components of 

the PPA, i.e., schedule units, goal based planning units and 

so on as well as the emotional model units in order to make 

behaviors of NPCs more natural.  
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ABSTRACT 
 
Current war games and simulations are primarily attrition 
based, and are centered on the concept of “force on force.” 
They constitute what can be defined as “second generation” 
war games.  So-called “first generation” war games were 
focused on strategy with the primary concept of “mind on 
mind.” We envision “third generation” war games and battle 
simulations as concentrating on effects with the primary 
concept being “system on system.” Thus, the third 
generation systems will incorporate each successive 
generation and take into account strategy, attrition and 
effects.   
 
This paper will describe the principal advantages and 
features that need to be implemented to create a true “third 
generation” battle simulation and the architectural issues 
faced when designing and building such a system. Areas of 
primary concern are doctrine, command and control, allied 
and coalition warfare, and cascading effects. Effectively 
addressing the interactive effects of these issues is of critical 
importance. In order to provide an adaptable and modular 
system that will accept future modifications and additions 
with relative ease, we are researching the use of a 
distributed Multi-Agent System (MAS) that incorporates 
various artificial intelligence methods. (Anderson 2002a, 
Anderson 2002b) 
 
INTRODUCTION 
 
The act of wargaming has been practiced for centuries as 
more of an art than a science.  The first generation of 
wargames can best be described as “mind on mind” with 
such strategic abstractions as the game of chess.  The second 

generation of wargames can best be described “force on 
force”, with mathematically based attrition models as the 
engine for resolving an engagement.  This paper formally 
introduces what has been called a Third Generation 
Wargame which uses the concept of  “system on system” 
and that incorporates the interactive and cascading effects 
within each and between systems.  The goal of a Third 
Generation system is to simulate as realistically as possible 
the variety of effects that military operations will have on a 
scenario.  We use the term “scenario” to mean the strategic 
level of operations, including not only battle effects, but also 
other factors in the theater of operation such as morale, 
logistics, civilian support/unrest and refugees.  The 
granularity in which to program such a complex system is 
one of the focuses of our research. The level of granularity 
that is sufficient to produce an effective and useable training 
and planning tool are one of the focuses of our research. 
 
The use of a multi-agent (Sycara 1998; Weiss et al. 2000) 
architecture (MAS), with added intelligence was chosen as 
our platform for research for a number of reasons.  
Independent agents mirror the reality of the players in a 
theater of operations and allow for the interactive and 
cascading effects that occur.  Agents can also be created at 
any level of granularity desired from an individual person to 
a large unit.  Our research thus far has indicated that, even 
when the overall granularity level is at regimental level, 
certain key individuals do play important roles.  Certain 
select key commanders, aces, and heroes can be made a part 
of the agent structure to influence the unit as a whole. 
 
The purpose of our research is to design and build an 
architecture that will serve as a strategic training tool.  The 
emphasis is on creating a tool.  This is not a predictor of 
future action, but a tool in which strategic moves can be 
simulated to avoid major mistakes and provide, over several 
iterations, a set of boundaries in which the campaign is 
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likely to be conducted.  Planners can conduct various “what 
if” exercises to measure reaction to their actions.   
 
 
APPROACH AND METHODOLOGY 
 
The approach that has been pursued is to take a portion of 
the North African Campaign during World War II from 8 
November 1942 to 13 May 1943 and provide a well-
researched historical campaign to test the accuracy of a 
computerized model.  The initial version will have its agents 
“built out” with an increasing number of rules and attributes 
that will help determine actions it would take given a 
situation.  Artificial intelligence and learning components 
will be added so that as a player has battle experiences it can 
learn to proceed differently the next time. The initial 
computerized version will be created by the development 
team to prove the methodology of the approach.  A toolkit 
will later be created to provide trainers and planners the 
ability to place specific characteristics into generic agents to 
create their own scenarios.  Key to the development is 
defining methods in which relationships between agents are 
coordinated in a multi-agent system, and who/how the 
relationships are created. 
 
Agent Development 
 
A set of generic agents will first be developed from which 
individualized characteristics can be added.  Using object 
oriented technology concepts, an abstract generic agent will 
be defined, which has these characteristics (called attributes) 
and functions (called methods or member functions). 
Further, each agent has a knowledge base consisting of rules 
to act in given situations. This will be appropriate to 
handling the “what-if” situations. In addition, each agent has 
a learning component to handle learning specific tasks and 
having a learned response as a result. This component 
parallels training issues and subsequent performance. 
 
The initial design of the agent-based system allows the 
integration of agent learning. The learning mechanisms will 
be fully designed and then adjusted based on our 
experimentation result.  An intelligent agent will be created 
that will be given a minimum of background knowledge at 
the beginning (doctrine in the form of rules), and then learn 
appropriate “behavior” as it becomes more experienced. 
Initially, an agent will have in it attributes, methods, rules 
and a “blank” learning component. Attributes include the 
various assets in terms of personnel, equipment and 
capability.  Methods are doctrinal based ways of operation.  
Rules provide the boundaries and limitations for the unit. 
Initial setting for the learning component may come from 
historical precedent, as in the case of a training system, or 
intelligence data, as in the case of a planning system.  This 
would essentially bring the agents or “military unit” up to 
pre-battle readiness.  Gradually, as the agent gains 

experience, more knowledge would be stored for decision-
making. This learning approach presents a satisfactory 
solution to the trust and competence problems of intelligent 
agents. While the agent gradually develops its ability, the 
users of the system obtain more trust in the agent’s 
decisions and actions. The generic design of the agent layers 
is show below in Figure 1. 
 
 

 
 
 
 
 
 

ID 
Attributes 
Methods 

Rules 
Learning Component  

 
Figure 1. Generic Agent Structure 
 
 
Given this abstract agent concept which provides a template, 
specific agent types can be defined as a subclass 
(extension). This process may have further subclasses to 
desired levels, including one to one, many to one, one to 
many or many to many relations among agents as 
appropriate. Clearly, there may be an exponential growth in 
the complexity of these agents and their relationships.  
Hence agents will be aggregated at appropriate levels of 
granularity and the simulation will examine the relevant 
scenarios. (Davis 1995; Herz and Macedonia 2002; Smith 
1998) Scenarios (theaters or circumstances) and transitions 
amongst the scenarios will determine which agents will be 
under consideration in the theater. 
 
Mechanisms for learning by agents are discussed in Section 
2.3. By acquiring knowledge from different sources, the 
agent gradually learns how to better execute the desired 
objective. Through incremental learning agents become 
more competent.  As they accumulate knowledge about 
different situations they can handle them more successfully. 
Also, the agents can be trusted.  (Palmer, Stone 2000) 
 
 
Advantages of a Multi-agent Architecture 
 
Four main characteristics describe the development of a 
military Multi-Agent System (MAS):  
 

• Real-time domains are those in which success 
depends on acting in response to a dynamically 
changing environment.  

• Noisy domains are those in which agents cannot 
accurately perceive the world, nor can they 
accurately affect it. 

• Collaborative domains are those in which a group 
of agents share a common goal.  
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• Adversarial domains are those in which there are 
agents with competing goals.  

 
Multi-agent systems in complex, real-time domains require 
agents to act effectively both autonomously and as part of a 
team. Focus should be placed on the problem of designing a 
collective of autonomous agents that individually perform 
sequences of actions such that the resultant sequence of joint 
actions achieves a predetermined global objective. The 
crucial design step in multi-agent systems centers on 
determining the private objectives of each agent so that as 
the agents strive for those objectives, the system reaches a 
desired global solution. Because of the inherent complexity 
of this type of multi-agent system, we will investigate the 
use of machine learning within multi-agent systems. 
 
MAS takes care of the mechanics of executing actions 
controlled by an agent, passing messages between actions, 
coordinating multiple agents, arbitrating resource conflicts 
between agents, updating sensor values, and interleaving 
higher-level processes such as planning. When a group of 
agents in a multi-agent system share a common long-term 
goal, they can be said to form a team. Team members (or 
teammates) coordinate their behaviors by adopting 
compatible cognitive processes and by directly affecting 
each other’s inputs via communicative actions. Other agents 
in the environment that have goals opposed to the team's 
long-term goal are the team's adversaries. The team member 
agent architecture within a flexible structure proposed, 
allows agents to decompose the task space into flexible roles 
and allows agents to smoothly switch roles while acting. 
The agents are assumed to have at their disposal the 
following resources:  
 

• Inputs from the environment that give partial, noisy 
information;  

• The ability to process the input information and use 
it to update a world model;  

• Learning mechanisms that dynamically affect the 
model;  

• Communication capabilities.  
 

A MAS will also allow or even require distribution of the 
agents among either remote or co-located computer systems.  
The distributed system will allow for great flexibility in the 
processing power of the simulation, since computational 
tasks can be spread across multiple PC’s. In an instructional 
setting, each command center could be run from a separate 
PC in geographically diverse locations.  
 
An advantage of a distributed MAS is that each agent or 
groups of agents may be executed on different computers 
and in different operating systems (OS).  Additional agents 
can also be added into the system without modifying 
existing agents. This creates a system that is more robust 
and less prone to failure. Agent classification is object 

oriented which allows the sub-classing of agents to match 
the hierarchical classifications of the agent families. The 
methodology of our design is to divide a large task into a lot 
of sub-tasks to allow each sub-task to be solved by different 
agents.  This creates an easier programming task by 
allowing a greater number of less complex programs to be 
written.   
 
One of the major issues in defining an action set for an 
agent, and, arguably, one of the major issues in defining any 
kind of intelligent behavior is the problem of forming 
abstractions. No agent designer will want to specify the 
solution to a given problem in terms of primitive low-level 
actions and sensations. Instead, the designer will first build 
more powerful abstract actions, which encode solutions to a 
range of problems, and use these actions when faced with a 
new problem. Our MAS should support abstraction by 
providing the mechanisms to construct a hierarchy of 
actions. In the hierarchy, abstract actions are defined in 
terms of simpler ones, ultimately grounding out in the 
agent's effectors. The very lowest level of the hierarchy 
consists of very primitive actions, like move or apply-force. 
Although actions are abstract at higher levels of the 
hierarchy, they are nonetheless executable. At the same 
time, the hierarchy implements a multi-level computational 
architecture, allowing us, for example, to have both 
cognitive and reactive actions within the same framework. 
This means that higher levels should provide goals and 
context for the lower levels, and lower levels provide 
reports and messages to the higher levels (goals down, 
knowledge up). A higher level cannot overrule the 
information provided by a lower level, nor can a lower level 
interfere with the control of a higher level. 
 
The term “plan” is used to denote an action that satisfies a 
goal. More specifically, an activity plan usually begins with 
a system at some initial state, specifies some desired final or 
goal state, and identifies constraints on the allowable 
sequence of actions. Usually, military planning is a part of a 
five-stage process: 
 

• Mission analysis 
• Intelligence preparation of the battlefield 
• Development of courses of action 
• Analysis of courses of action 
• Decision and execution 

 
These steps rely on a detailed and extensive knowledge base 
of the domain, environment, enemy and friendly 
capabilities. Planning is necessary when the goal is satisfied 
by several actions and we have to decide between them. A 
planner’s effectiveness is determined by the ability to cope 
with the complexities of a continuous, dynamic, real-time 
domain. The planner's distinguishing feature is that it 
evaluates plans by efficiently simulating ahead in a more 
abstract space.  
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Learning Approaches 
 
There are three main learning approaches that are being 
used in our research:  Machine Learning (ML), 
Reinforcement Learning (RL), and Artificial Neural 
Networks (ANN). Implementation of Machine Learning 
mechanisms is a promising area to merge with the inherent 
complexity of multi-agent systems. Central to the process of 
learning, is the adaptation of behavior in order to improve 
performance. ML has the potential to provide robust 
mechanisms that leverage upon experience to equip agents 
with a large spectrum of behaviors, ranging from individual 
performance in a team, to collaborative achievement of 
independently and jointly set high level goals. Using 
hierarchical task decomposition, multiple ML modules can 
be combined to produce more effective behaviors than a 
monolithic ML module that learns straight from inputs and 
outputs.  
The approach will break the problem down into several 
behavioral layers and use ML techniques when appropriate. 
Given hierarchical task decomposition, layered learning 
allows updates at each level of the hierarchy, with learning 
at each level directly affecting learning at the next higher 
level. Starting with low-level behaviors, the process of 
creating new behavior levels and new ML subtasks 
continues towards high level strategic behaviors that take 
into account both teammate and opponent strategies.  
 
A learning component acquires its competence from 
different sources and in different ways: 
 

• Observing and imitating the successful actions and 
decisions of other agents  

• Receiving positive and negative feedback from the 
user and higher command  

• Receiving explicit instructions from the user  
• Communicating and obtaining advice from other 

agents in the  
 

Reinforcement Learning (RL) represents the second 
alternative for learning in our MAS. This is the branch of 
machine learning that is concerned with an agent who 
periodically receives “reward” signals from the environment 
that partially reflect the value of that agent's private utility 
function. The goal of an RL algorithm is to determine how, 
using those reward signals, the agent should update its 
action policy to maximize its utility.  
  
The maturing field of Reinforcement Learning provides 
much-needed mechanisms for model free and  “online'' 
learning features. It is ideally suited for the distributed 
environment where a “teacher'' is not available and the 
agents need to learn successful strategies based on 
“rewards'' and “penalties'' they receive from the overall 
system at various intervals. As the number of agents 

increases, the effects of any agent's actions will be swamped 
by the effects of other agents (noise), making the agent 
unable to learn well, if at all. In addition, agents cannot be 
used in situations lacking centralized calculation and 
broadcast of the single global reward signal. Complexity of 
synchronization and coordination increases exponentially. 
The problem is that the space of possible action policies for 
such systems is too big to be searched. (Chen et al. 2000, 
Mehdi, et al. 2002) 
 
Artificial neural networks are a third promising approach in 
MAS learning. They provide a robust statistical learning 
process in noisy, uncertain, and dynamically changing 
environments, and therefore a possible solution for learning 
in war games. Many applications have shown that these 
networks have sufficient computational power to 
approximate a very large class of nonlinear functions; non-
linearity is one of the main characteristics of complex 
military systems. Therefore, artificial neural networks offer 
great potential and power for developing intelligent agents 
with the inductive learning component based on previous 
experience. At the same time, these models are also very 
difficult to integrate into existing military applications. One 
of the important reasons and disadvantages of this approach 
is the requirement for a large number of cases (massive 
experience) to support significant improvements in the 
learning process. One method that can used to compensate 
for these disadvantages is the use of Case Based Reasoning. 
(Pal, et al. 2001; Kolonder 1993) 
 
 
Case Based Reasoning 
 
Military operations have a very strong theory and historical 
record. In domains with strong experience another 
advantage of case-oriented techniques is their ability to 
learn from historical cases. Gathering these cases may 
improve the systems ability to find suitable similar cases for 
current problems. Therefore, the knowledge of experts does 
not only consist of formalized rules and procedures, but of a 
mixture of doctrinal knowledge and experience. The 
arguments for case-oriented methods of learning in are as 
follows: 
 

• Reasoning with cases corresponds with the training  
process of military commanders. 

• Incorporating new cases means automatically 
updating parts of the changeable knowledge. 

• Textbook knowledge and experience can be clearly 
separated in a knowledge base, but used together in 
solving new cases. 

 
The essential benefit from the CBR approach for our system 
is that the methodology can be applied with a small, or 
limited amount of experience and incrementally develop the 
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performance adding more cases to the case base as they 
become available. The main argument is that users of our 
system, even the experts, may not have enough or correct 
historical knowledge/experience in every situation.  
 
Most of the previous inductive learning methods require a 
significant amount of cases and situations to build the 
agent’s knowledge. Therefore, it was decided to design 
learning agents in our system using Case Based Reasoning 
(CBR) methodology. Some of the characteristics of a 
domain that indicate that a CBR approach might be suitable 
include:  
 

• Records of previously solved problems exist or 
they will be acquired. 

• Historical cases are viewed as an asset that ought to 
be preserved. 

• Remembering previous experiences is useful 
especially in a new non-established domain. 

• Experience is at least as valuable as textbook 
knowledge.  

 
Case based learning models are simple yet surprisingly 
successful in providing extremely good prediction for 
human behavior in a variety of military applications. 
Furthermore, the case-based approach provides a more 
complete account of learning phenomena than rule-based, 
neural network or reinforcement learning. Essentially, 
learning occurs in case-based models through storage of a 
multitude of experience with past problems. New problems 
are solved through the retrieval of similar past problems. 
However, it is very important to select the right assumptions 
about the retrieval of past examples if we want learning with 
appropriate quality.  Each historical case is represented as a 
point in n-dimensional space, and multidimensional scaling 
is necessary to treat all dimensions with the same weights in 
the comparison process. On the other side, based on 
experience or formalized previous knowledge, some 
features should receive more weight or attention in the 
learning process. The similarity (Si) between new case C 
and old one xi (stored in the knowledge base of cases) is 
assumed to be inversely related to the distance d:  
 
  Si = exp(-d(xi,C)n) 
 
 
Evidence for one hypothesis, such as “the presence of a 
military threat”, is computed by summing of all of the 
activated samples that share the hypothesis: 
 
  E1 = sum(Si) 
 
Evidence for alternative hypothesis, for example “the 
absence of a threat”, is computed for alternative samples: 
    
  E2 = sum(Sj) 

 
The final decision is based on a comparison of the evidence 
for each hypothesis, and for example the possible parameter 
is a probability of choosing the first hypothesis E1 over the 
second E2: 
 
  P = E1 / (E1 + E2) 
 
While a flat case base is a common structure in most of the 
CBR applications, a hierarchical structure that stores the 
cases by grouping them can reduce the search process and 
increase its performance.  There are no universal CBR 
methods suitable for every domain of application. The 
challenge in CBR for military wargames is to create 
methods that are suited for problem solving and learning in 
particular subject domains and for particular application 
environments.  
 
Although case-based models have proven to be highly 
successful, there are some mainly theoretical problems we 
have to be aware of. These problems will be analyzed and 
solutions will be proposed in the implementation phase. 
Also, despite the obvious potential to the gaming world, it 
must be used carefully to avoid certain pitfalls such as:  
 

• Mimicking Stupidity - copying a human strategy 
that is taught badly  

 
• Overfitting  - taught a certain section of a problem 

with a lot of details, and then expected to display 
intelligent behavior based on its local experience 
for the entire problem  

 
• Local Optimality - a non-optimal solution is 

reached, in which any small change cannot 
improve performance of the system 

 
• Past Behavior - the behavior that has been 

successful for the learning process in the past, is 
not useful any more 

 
The practical approach for the learning process is to 
combine CBR mechanisms with methods of rule-based 
agent design. CBR retrieval is used to search for similar 
cases to support evidences for rule-based decisions obtained 
by other agents in a distributed system. A CBR part and a 
rule-base are applied in parallel, the results and the co-
ordination of further steps is handled by meta-rules. Further 
investigation should be conducted with the implementation 
of a prototype of a Distributed Case-Based Learning System 
for multi-agent systems. In such a system, each of the agents 
has a partial and imperfect view of the problem-solving 
situation. This gives rise to a need for the agents to 
cooperatively access their case-bases to retrieve the “best 
sub-cases,” and to support or to revise their decisions and 
actions. A specialized learning agent will have a task to 
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coordinate all these activities with a case base in a 
consistent manner, and to provide cases for other agents that 
are most useful for the present problem-solving situation. 
 
Particle Swarm Technology 
 
Strategic level games have traditionally used a variety of 
methods from a simple roll of the dice to complex game 
engines to resolve conflicts of opposing game pieces.  This 
often results in players trying to “game” the system instead 
of trying to anticipate enemy actions as in a real conflict.  
Our architecture will use agents as major commands, but 
will explore the use of particle swarm technology for 
conflict resolution.   Particle swarm allows a large number 
of individual pieces to be controlled by their commanding 
intelligent agent and use relatively simple rules for moving 
around terrain and enemy engagement.  Resolution of 
competing goals within an adversarial domain occurs 
through a series of individual and group actions.  An agent 
structure can model the command levels and carry out the 
planning functions of those headquarters, but the 
management of agents is not optimal for resolution of the 
conflicting goals. Resolution will be done at the smallest 
level possible because that is a reflection of the real word 
that we are attempting to model.   
 
Particle swam algorithms are goal oriented in which the 
swarm is given a goal and each particle finds its path toward 
that goal.  These goals are often thought of as static, but 
they can also be dynamic.  The authors have experimented 
with particles detecting the changing edge of a cloud as it is 
moved by the wind.  This experimentation provides a basis 
for the use of particles for conflict resolution in a dynamic 
environment. Under the guidance of its controlling agent, 
particles can have their immediate objective change based 
on what they encounter in their environment.  Each particle 
will initially have simple rules to follow upon encountering 
a particle or group of particles from an opposing swarm.  
Each particle will have a value that represents its combat 
power and will be compared against the values of opposing 
particles.  Within a defined engagement area, particles with 
the higher local combat power will proceed toward their 
main objective while those with the lower local value will 
be removed from the game board.  The complexity of the 
rules and values of the particles can increase to take into 
account such factors as the level of supply, moral, 
experience, armament as well as a variety of other human 
and logistical factors. 
 
Particle Swarm Optimization (PSO) defines each particle as 
a potential solution to a problem in D- dimensional space.  
Thus:  
 
• Particle “i” is represented by: Xi = (xi1, xi2, …, xiD) 

• Memory of “i’s” previous best position: Pi = (pi1, pi2, 
…, piD) 

• Velocity of “i” along each dimension: Vi = (vi1, vi2, …, 
viD) 

 
A new position for the particle is computed for each 
iteration by combining the P vector of the particle with the 
best fit for the local area designated “g” and the P vector of 
the current particle to adjust the velocity.  The cognition 
component is the portion of the velocity influenced by the 
individual particle’s previous best position.   
 
Our experience with the variety of swarm models indicates 
that the Full Model with variations may be of greatest use.  
Modification to vary each unit along with the different 
classes of particle groups will provide a unique conflict 
resolution tool.  Minar et. al. has conducted research 
regarding swarm and agent technologies similar to what we 
are proposing.  We have also experimented successfully 
with the applications of particle swarm algorithms in 
imaging and more recently in robot mapping of hazardous 
environments. (Hardin, et. al, 2004) 
 
 
CURRENT STATE OF AUTHORS’ RESEARCH 
 
Research and development activities that pertain to the 
development of this research has been completed to two 
related key areas:   
 

• A MAS used for medical decision making 
• A historically based strategic board game 

 
A demonstration system for medical decision-making has 
been completed and tested.  This provides the foundation to 
the agent architecture detailed above.   
 
Research has also been completed on a historically based 
strategic board game.  This research provides the historical 
validation foundation for a computer simulation.  It also 
provides a game template that can provide a basis for the 
first round of computerization.  Historical decisions, 
conditions and constraints can be used to “replay” history to 
test the accuracy of the system.  The research team, with 
direction from the United States Air Force, has selected the 
Tunisian campaign of 8 November 1942 through 13 May 
1943 as the template   This topic was chosen because: 
 
With these two initial steps completed, research can be 
conducted in adding a learning component into the MAS, 
and computerizing the historical scenario with the intelligent 
MAS architecture. 
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CONCLUSIONS 
 
A concept of Third Generation Wargames is advocated 
using intelligent multi agent systems (MAS).  The dynamic 
characteristics of military operations lend themselves well to 
a multi-agent system.  The value of Case Based Reasoning 
along with learning mechanisms for (artificial) agents 
(which can be embedded in modern military hardware) is 
tremendous. The exploration of the use of swarm 
technology for the resolution of competing goals is an 
innovative and efficient method of modeling the large 
numbers of individuals and weapon systems on the 
battlefield.  The benefits of a completed system is the ability 
to train   leaders more effectively to meet the demands of a 
increasingly smaller military decision cycle.  Providing 
realistic wargaming tools for military planners further aids 
shortening the decision cycle and creating more accurate 
plans and contingencies for military operations.   (Miller 
1997) 
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ABSTRACT 
 
While computer animation is currently widely used 
to create characters in games, films, and various 
other applications, techniques such as motion cap-
ture and keyframing are still relatively expensive. 
Automatic acquisition of secondary motion and/or 
motion prototyping using machine learning might 
be a solution to this problem. Our paper presents an 
application of the Q-learning algorithms to generate 
action sequences for animated characters. The tech-
niques can be used in both deterministic and non-
deterministic environments to generate actions 
which can later be incorporated into more complex 
animation sequences. The paper presents an appli-
cation of both deterministic and non-deterministic 
updates of the Q-learning algorithm to automatic 
acquisition of motion. Results obtained from the 
learning system are also compared to human motion 
and conclusions are drawn. 
 
INTRODUCTION 
 
This paper presents learning techniques for ani-
mated characters that mimic human behaviour, es-
pecially in the context of interaction with physical 
objects. Anthropomorphic characters have been 
used before to simulate object manipulations, in-
cluding interactions between individuals 
(Tomlinson et al, 2000, Russel and Blumberg, 
1998) but this did not include action learning. A 
good example of an architecture addressing the 
problem of action learning is C4 (Isla et al, 2001). 
C4 tackled the problem of learning on the cognitive 
level – characters (usually four-legged creatures) 
learn how to respond to new commands and events. 
An extension of C4, which includes much greater 

learning capabilities, is described in Blumberg et al 
(2002). The applied learning algorithm is a modifi-
cation of the reinforcement learning technique (Sut-
ton and Barto, 1998). However the task of the learn-
ing engine is not to learn the necessary motor skills 
but rather is defined on a higher level and happens 
in real-time during the interaction with the system. 
The system uses a so-called pose-graph to generate 
motion, the nodes of which are derived from source 
animation amended by an interpolation technique. 
Thus the animation is realistic and transitions can 
be generated in real-time but the actions must be 
prepared by an animator and pre-programmed into 
the system. Another example of applying rein-
forcement learning (RL) to animation includes 
Yoon et al (2000), where RL techniques were used 
to create motivational and emotional states for a 
human character. This system incorporates such 
concepts as motivation driven learning, organisa-
tional and concept learning but not motor learning. 
Similarly as before the learning occurs on a higher 
level and only affects the character’s behaviour in 
an indirect way.  
 
These  systems visualise motion of the characters 
using a blend of motion-capture, keyframing and 
kinematics-based techniques. Quite often, however, 
motion is generated using dynamic simulation. This 
allows to create characters with very complex mo-
tor skills. Terzopoluos and his colleagues (Terzopo-
luos et al 1996) present a system for animating dy-
namically simulated fish and snakes. They em-
ployed machine learning to acquire complex motor 
skills for the simulated fish. The virtual characters 
are able to learn low-level motions and also high-
level behaviours. In this approach physics-based 
simulation was used, based on a dynamic model of 
the fish with muscles and springs. However a simi-
lar approach applied to dynamic simulation of hu-
man figures requires that the characters have many 
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degrees of freedom thus making it computationally 
expensive. Despite that complication a lot of re-
search is being conducted in this field. Hodgins et al 
(1995) propose controllers for three different ath-
letic behaviours. Apart from dynamic simulation 
they also use state machines, techniques for reduc-
ing disturbances to the system introduced by idle 
limbs, and inverse kinematics. Van de Panne and 
others (van de Panne et al, 2000) propose a limit 
cycle algorithm for the animation of a walking bi-
ped and a dynamic motion planner for simplified 
characters (Acrobot, Luxo). Anderson and Pandy 
(1999) investigated realistic simulation of human 
gait using a 23 degree-of-freedom model. 
 
There have been few attempts to build dynamic 
controllers, which could control more than one spe-
cific motion. Examples of these are the ones pro-
posed by Pandy and Anderson (1999) who tried to 
create a controller applicable to both jumping and 
walking behaviours and also the work presented by 
Faloutsos and his colleagues (Faloutsos, 2002), who 
combined several different controllers and addition-
ally applied Support Vector Machines (see Christi-
anini and Shawe-Taylor, 2000) to automatically 
learn preconditions of different dynamic actions as 
an off-line process. An alternative to physically-
based simulation was proposed by Lee et al (2000) 
by implementing a system in which constraints im-
posed on motion of a character are calculated in a 
procedural way. Thus the calculations are faster and 
more stable and can easily be used in real-time ap-
plications. Metoyer and Hodgins (2000) presented a 
framework for rapid crowd motion prototyping, 
where simplified bipeds are playing American foot-
ball. Additionally their agents can learn high level 
behaviours from real data using a memory-based 
learning algorithm. 
 
Classic reinforcement learning has been applied to 
create successful board games implementations 
(Thrun, 1995), with unmanageable state spaces. 
Backgammon is the most successful example (Te-
sauro, 1994). Reinforcement learning has also been 
used in robotics to control one or more robotic arms 
(Davison and Bortoff 1994, Schaal and Atkeson, 
1994), Sutton (1996) succesfully applied RL to 
various optimisation tasks. Recently Tedrake and 
Seung presented a reinforcement learning technique 
for expanding a controller for the planar one-legged 
hopping robot (Tedrake and Seung, 2002). Solu-
tions based on the Q-learning algorithm (Watkins, 

1989) have also been modified and adapted. Exam-
ples include ant systems (Monekosso et al, 2002) or 
reward shaping (Ng et al, 1999) a technique in 
which additional rewards are used to guide the 
learning. A survey of reinforcement learning tech-
niques can be found in Kaelbling et al (1996) and 
Touzet (1999). 
 
Animation prototyping is a topic which has recently 
gained much popularity in the animation research 
community. Rapid prototyping techniques offer an 
opportunity to quickly sketch an animation se-
quence without need for a fully simulated motion. 
Fang and Pollard (2003) proposed a system for fast 
generation of motions for characters having from 7 
to 22 degrees of freedom using physical simulation. 
Another recent system for creating and editing of 
character animation based on motion capture were 
presented, among others, by Dontcheva et al (2003) 
and Lee et al, 2002. The generated results are com-
parable to recorded human motion. Li with his col-
leagues (Li et al, 2002) described a system for syn-
thesis of complex human motion (dancing) from 
motion captured data. The system learns so called 
motion textons (repetitive patterns in complex mo-
tion) and their distributions and can synthesise new 
motion. A similar concept was introduced by Liu 
and Popovic (2002).  
 
In order to create believeable characters, both the 
physical and cognitive aspects of an avatar must be 
implemented - or some variants thereof (Funge, 
1999, Isla et al, 2001, Szarowicz and Forte, 2003). 
Modeling learning agents also includes a more or 
less complex structured environment where the 
characters thrive (Monzani, 2002). Realistic envi-
ronments are usually implemented by imposing in-
ternal and external physical constraints, such as 
gravity, obstacles and body limitations (for example 
the limited movements of body limbs). 
 
THE AVATAR MODEL 
 
The used avatar model borrows its biomechanical 
characteristics from robotics. An avatar has a set of 
joints whose movements can be either prismatic 
(movements constrained on a 3D plane) or revolute 
(movements involving a rotation about an axis in 
3D space). Then the kinematics of manipulators 
(Craig, 1989) rules all possible movements of joints 
as combinations of prismatic and revolute elemental 
movements. A standard goal usually includes more 

 

in4243
229



or less complex object manipulations. In fact, using 
forward and inverse kinematics for a simple but ar-
ticulated avatar the optimal sequence of simple ac-
tions fulfilling a goal can indeed be learnt 
(Szarowicz and Remagnino, 2004).  
 
Learning is implemented by creating a suitable state 
space and applying reinforcement learning tech-
niques to learn the optimal movements to reach an 
object of interest. Figure 1 illustrates the concepts 
of forward and inverse kinematics and the current 
model of the avatar. 
 

 
Figure 1 Position of the end effector can easily 
be calculated when all joint rotations are given 
(forward kinematics), the opposite task is the 
problem of inverse kinematics. 

 
REINFORCEMENT LEARNING FOR 
AUTONOMOUS AVATARS 
 
The avatars can perform a number of actions. The 
standard way of adding new actions and behaviors 
(seen as compositions of actions) to an avatar reper-
toire is to manually script them. Ideally, an avatar 
should allow for new actions but should also have a 
form of automatic generation of new actions. The 
reinforcement learning technique lends itself very 
well to the automatic acquisition of actions and be-
haviors. The implemented avatars use the Q-
learning technique. All standard reinforcement 
learning techniques, and Q-learning in particular, do 
assume a scene evolving along a discrete time line, 
indicated by the t variable. A suitable state space is 
defined as well as all available actions for each de-
fined state. The reader should refer to (Watkins, 
1989, Sutton and Barto, 1998) for a detailed discus-
sion on reinforcement learning techniques. 
The quality of an action is kept up to date either us-
ing a table of quality values Q(st, ai) or a neural 
network (Bertsekas and Tsitsiklis, 1996) or more 
stable alternatives (for instance Baird and Moore, 
1999). Results on both deterministic and non-
deterministic approaches are described in the next 
sections. In all experiments the state space and the 
goals of the agent are explicitly defined. The Q-

learning was implemented by discretising the 
space into states and using a Q-table. The follow-
ing list  describes more details of the current im-
plementation (see also Szarowicz et al, 2005, 
Szarowicz et al, 2003): 
• An avatar can perform a number of simple actions 
including arm, forearm and hand motion illustrated 
in Figure 2 and textually described in Table 1. 

 

 
Figure 2 Avatar degress of freedom for the tea-
pot task: FK (first four) and IK (last) control 

• The state space is different for each mode of con-
trol but in both cases it is discretised defining a 
number of degrees of freedom for the used joints. In 
the case of forward kinematics the degrees of free-
dom of the arm were defined as rotations around 
spatial axes (see first four illustrations of Figure 2), 
all rotations were discretised and constrained to re-
alistic physical movements. In the case of inverse 
kinematics the discretisation is performed on the 3D 
space location of the end effector of the avatar, that 
is its hand (see last illustration of Figure 2). 
• In both forward and inverse kinematics, walking 
along one dimension is considered as an additional 
action. Descretisation here is implemented along 
one axis in the two main directions of the ground 
plane, where the avatar moves. Similarly grabbing 
an object is considered to be an additional action. 
• Other external objects (such as the door shown in 
the experiments) were represented as additional 
variables. 
• For each possible state space dimension there are 
always two possible actions, indicating a movement 
of a body part (i.e. an arm, a forearm, a hand etc.) 
along such dimension in the two opposite direc-
tions. Examples include the avatar walking forward 
and backwards or moving its hand along the vertical 
axis resulting in lowering or raising the hand. 
• Successful fulfilment of a goal is rewarded, colli-
sions with the environement and violence of the 
biomechanical constraints are punished. 
Although Q-learning convergence is not affected by 
the initial state, for optimisation reasons all anima-
tion experiments were biased towards a realistic 
starting state (ie with the avatar upright and both 
arms aligned with the body). 
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Table 1 Low-level actions used to train the avatar: 

Forward kinematics  Inverse kinematics  
1. Rotate arm up/down by ∆α Move palm by ∆x 
2. Rotate arm forward/backward by ∆α Move palm by ∆y 
3. Rotate forearm by ∆α Move palm by ∆z 
4. Rotate hand along Z axis by ∆α  
5. Rotate shoulder along Z by ∆α  
6. Perform a grabbing action Perform a grabbing action 
7. Move forward/backward by ∆x Move forward/backward by ∆x 

 
LEARNING TASKS 
 
Two example learning tasks are presented below, 
for more details the reader is referred to Szarowicz 
and Remagnino (2004). 
 
The door opening task 
For this task the goal of the agent was to get 
through a locked door. The door would be unlocked 
upon touching the door handle. The avatar would 
then have to push the door and pass through it. The 
agent was rewarded whenever its position was be-
hind the door. The simple actions available to the 
agent were selected from Table 1 (actions 
1,2,3,4,5,7), for the FK, α was set to 20 degrees, 
step size (∆x in action 7) was 35 cm, in all experi-
ments γ = 0.95. Eight simple actions were available 
to the agent at each time step. These were three ro-
tations – two for the arm and one for the forearm – 
in two opposite directions and walk along one 
(2*3+2). The task of the IK-controlled experiment 
was the same as for the FK previous one but the 
mode of control and the state and state-action 
spaces were changed. The simple actions available 
to the agent were 1,2,3 and 7 (Table 1, inverse 
kinematics column), x = 35 cm for walk (the size of 
a single step) and ∆x = ∆y = ∆z = 5cm for the mo-
tion of a hand, γ = 0.95. Therefore the agent could 
choose from 8 simple actions - hand motion along 3 
spatial axes in two opposite directions for each axis 
plus walk (2*3+2). 
 
The teapot lifting task 
The goal here was to lift a teapot (z co-ordinate of 
the teapot position had to increase). Therefore the 
agent was rewarded whenever the end position of 
the teapot was higher than the start position. The 
simple actions available to the agent were selected 
from Table 1, for the FK these were actions 
1,2,3,4,6,7. The learning parameters were set as fol-
lows: α was set to 10 degrees and γ = 0.95. The di-
mensionality of the task was 5 - 2 degrees of free-
dom for the left arm, 1 for the left forearm, 1 for 

hand rotation and 1 for the state of the teapot. Ten 
simple actions were available to the agent at each 
time step (2 for each state-space dimension, as de-
scribed earlier). An experiment with biped control 
using inverse kinematics was also conducted. The 
simple actions available to the agent in this case 
were actions from Table 1 (actions 1,2,3,7 of the 
inverse kinematics column), and ∆x = ∆y = ∆z = 8 
cm for the motion of a hand, γ = 0.95. Therefore the 
state-space was 4-dimensional and the agent could 
choose from 8 simple actions - hand motion along 3 
spatial axes in two opposite directions for each axis 
plus the grabbing action. In all experiments the Q-
table was represented as a lookup table and the val-
ues were initialized to 0 before the simulation. 
 
LEARNING USING THE  
NON-DETERMINISTIC ALGORITHM 
 
This section presents results obtained when apply-
ing the non-deterministic update of the Q-learning 
algorithm to the task of action acquisition. The task 
implemented using this technique is the IK-
controlled teapot problem. The state space is same 
as in the deterministic implementation, and the 
length of the shortest solution obtained is also the 
same (10 simple actions). The convergence is 
reached faster – in approximately 800 interactions 
as opposed to about 3000 in the deterministic case 
(Figures 3 and 4) and the time necessary to reach 
the optimum solution is shorter as well – about 90 
minutes on average (550 iterations). The conver-
gence is also more stable (Figure 3). This suggests 
that the non-deterministic version of the algorithm 
generates comparable results in a shorter amount of 
time. 
 
LEARNING WITH NON-DETERMINISTIC 
ACTION SELECTION 
 
An additional simulation with the non-deterministic 
update has also been executed, in which the out-
come of the action selection was randomised in 
some percentage of cases. The action selected by 
the agent according to its Q-table was replaced with 
a random action with some probability. The results 
of that simulation for different levels of action ran-
domisation are presented in Figure 5. 
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Figure 3 Convergence graph for the IK teapot non-

deterministic problem 
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Figure 4 Convergence graph for the IK teapot 
deterministic problem 

 
As presented in Figure 5 the speed of convergence 
is decreased with the growth of the uncertainty of 
the action selection mechanism. However, conver-
gence is still reached, even for relatively high un-
certainty levels. Although the results of this ex-
periment do not have much significance in a fully 
predictable animated landscape, they suggest possi-
ble utilisation of the action acquisition scheme for 
robotic environments. 
 
EVALUATION OF THE LEARNING 
RESULTS 
 
The results obtained from applying the learning 
meachnism indicate that the IK learning mode is 
faster and easier to implement. The convergence is 
reached in a smaller number of iterations, compared 
to the FK case, and is more pronounced. However 
the ultimate assessment can only be made upon ana-
lysing the resulting animations. For the simpler 
door problem the generated motion resembles hu-
man actions to a large extend (Figure 6). Experi-
ments with the teapot task have shown that a rela-
tively low resolution of the state space discretisation  
is  sufficient  to  generate  believable result  (α=10  
degrees) 

 
Figure 5 Convergence for randomised action 

selection updates 
 
and in this case the motion can also be compared to 
human performance. Lower values of α (20 de-
grees) for the FK teapot task generate motion which 
is too jerky and inaccurate. Some artefacts are still 
present however, even in the quality motion for the 
FK problem, this mainly concerns unnecessary mo-
tions and especially a zigzag-like way of approach-
ing the teapot which is present in some animations, 
but the result is resembling human motion with a 
sufficient detail as demonstrated in Figures 7 and 8. 
Indeed the way of executing the action achieved 
using the FK mode of control matches the way of 
executing the same action by a human actor without 
giving her additional guidelines prior to performing 
the task (Figures 7 and 8).  
 

 

 

 

 
Figure 6 Motion generated in the Door experi-
ment compared to human motion  
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Figure 7 FK controlled motion compared to 
motion of a human actor 

 
Results yielded by the IK controlled experiments 
(both deterministic and non-deterministic) are also 
interesting. First of all the state space is substan-
tially smaller than for the FK experiments and 
therefore the solutions are found in fewer iterations. 
The resulting motion looks realistic, despite the fact 
that the human actor did not initially perform the 
action the way suggested by the IK solution. This 
does not mean humans can not perform the lifting 
task in this way as demonstrated in Figures 9 and 
10, and the reason for this way being less natural is 
only in the fact that the table was relatively high. 
Reducing the height of the table changes the way of 
performing the task by humans (the hand does not 
have to be moved around the table). Moreover, the 
generated motion still looks natural, and contains 
fewer unnecessary artefacts compared to the FK 
solution, because IK control implicitly rejects some 
of the unnecessary moves. The IK state space can 
be represented in a more compact way (only three 
values need to be stored regardless of the hand posi-
tion). This however causes problems when more 
expressive motion or combination of different 
modes of control are required (for the door opening 
task it was necessary to combine IK hand control 
and walking), as the representation of the state 
space for such extensions is more uniform when 
using the FK approach. The main problem with FK 
approach is its extensibility – additional degrees of 
freedom very quickly expand the state space and 

substantially increase the number of iterations re-
quired to find a solution. Therefore tasks for which 
more than 6-7 degrees of freedom is necessary may 
have to be simulated using the more compact IK 
control. 
 

 

 

 

 
Figure 8 FK controlled motion compared to 
motion of a human actor 

 
 

 

 

 

 
Figure 9 IK controlled motion compared to mo-
tion of a human actor 
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Figure 10 IK controlled motion compared to 
motion of a human actor 

 
It also appears that the non-deterministic algorithm 
generates the solution faster than the deterministic 
one, maintaining the same quality of the results. Fu-
ture implementations therefore should rely on this 
version of the Q-learning technique. 
 
CONCLUSIONS 
 
In summary, the learning technique presented here 
generated satisfactory results when applied to a 
non-trivial task. Comparison of the generated mo-
tion to the motion of a human actor indicates that 
the sequence is sufficiently realistic to be applied in 
an animation system mimicking human behaviour. 
Although the technique appears to be averagely 
scalable, some extensions, especially using the IK 
control and neural networks for state space ap-
proximation, will be possible to it, allowing to add a 
few additional degrees of freedom to simulate a task 
requiring the use of both hands or the head motion 
by the simulated biped. Additionally results ob-
tained with a better hardware configuration suggest 
that a modern computer will improve the learning 
times by at least one order of magnitude. 
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ABSTRACT 
 
This paper describes the design and implementation of IAgent: 
a real time intelligent agent animation toolkit on a PC platform. 
The animation system consists of 5 main components, namely 
environment, perception, behaviours, motion generator and 
rendering. The intelligent agent in the system is represented as 
a 3D human-like avatar that has a complex underlying 
structure with multiple degrees of freedom (DOFs). The agent 
relies on a fast virtual perception system to capture 
information from its environment and a behaviours system to 
determine what actions should be taken. A novel motion 
generation architecture and animation blending system have 
been developed to produce non-repetitive behaviours for the 
intelligent agent based on its momentary goal, internal and 
emotional states. The proposed system has been implemented 
in DirectX. Experiments have been carried out using the 
toolkit and the results have clearly demonstrated that the 
method produces convincing real time behaviours for a 3D 
virtual human agent. 
 
INTRODUCTION 
 
Today software titles demand ‘smarter’ participants in the 
simulated virtual world. For instance, in the entertainment 
industry like PC games, the Non-Player-Characters (NPCs) 
controlled by the computer are expected to exhibit convincing 
behaviours in respond to dynamic change of the environment 
and human player’s activities. The major problem for 
characters in those real time applications is that the character 
often performs its motion in the same way resulting in 
repetitive and unrealistic behaviours. Furthermore, the creation 
of human like virtual intelligent agent for real time 
applications presents even more challenges due to the complex 
underlying structure of the character. The main objective of 
this paper is therefore to design and implement an innovative 
intelligent agent animation system that integrates research 
efforts from several fields, notably computer graphics and 
animation and artificial intelligence, to animate a complex and 
realistic human like virtual agent in a 3D environment on a PC 
platform. 
 
The virtual agent has a complicated underlying hierarchical 
skeleton for producing real time motion according to its 
perception from environment and behaviours module. The 
final rendering of the agent is implemented by using the 
skinned mesh algorithm to achieve smooth skin deformation 

effect. The proposed animation system has the mechanism to 
dynamically generate realistic agent’s motions based on a 
hybrid method that combines parameterized motions, 
kinematics and animation blending.  
 
Section 2 describes the design of the animation system and its 
major functional components. Section 3 briefly illustrates the 
implementation and a simple animation example. Section 4 
finally draws conclusions. 
 
THE ANIMATION SYSTEM 
 
The animation system is divided into 5 main components, 
namely environments, perception, behaviours, motion 
generator and rendering module. Figure 1 shows high-level 
functional architecture of the framework. 
 
The virtual environment normally contains geometrical objects, 
sound objects, and events. Geometrical objects refer to 3D 
objects with vertices and texture maps, which are detectable by 
the agent’s virtual vision. In a complex virtual environment 
containing large number of 3D objects, spatial partition 
techniques are useful to arrange these objects in some kinds of 
hierarchy that accelerate the agent’s objects detecting process 
(Mehdi et al. 2002). Geometrical objects are normally “seen” 
by the agent with additional properties being memorized such 
as the location of the object, time of being detected, ID of the 
object etc. Sound objects in the environment can be detected 
by the agent’s virtual audition sensor, subsequently affecting 
the agent’s behaviours.  
 
The environment contains another special object called events. 
Events can generally be divided into two categories, namely 
functional events and dynamics events. Functional events can 
be considered as the “built-in” behaviours of the objects and 
they can be triggered by under some conditions. For instance, 
a door in a scene can be opened or closed by the agent. 
Dynamics event is generally generated in related to agent’s 
activities. This type of event will have significant impact on 
the agent’s emotional state, which will subsequently affect the 
agent’s behaviours or the way the agent execute its behaviours. 
For instance, the result of an agent’s attempt to capture some 
objects will cause agent become happier or angrier. One of the 
novelties of the proposed animation system is that it has the 
mechanism to visualize the subtle change of agent’s emotional 
states via its animated behaviours.  
 
The Behaviours module contains several key functional 
components to perform action selection for the agent, namely 
decision-making, emotion, personality, memory, and internal 
states. The decision-making component relies on a hierarchical 

in4243
236



action network to select actions for agent according to its 
perceptual information, internal states, memory and goals. 
Emotion plays an important role in creating believable agent 
behaviours (Bates 1994; Blumberg 1994). Psychological and 
neuroscience research indicates that emotions have a 
significant impact on human behaviours, both through their 
use as a non-verbal communication channel such as gesture, 
posture, facial expression and so on (Oatley and Johnson-Laird 
1987). It is therefore important to incorporate emotion into our 

animation system. Emotion model in the system is based on 
the OCC model (Ortony et al.1998). The OCC model specifies 
how events, agents and objects are appraised according to 
respectively their desirability, praiseworthiness and 
appealingness, which are defined by a set of parameters such 
as goals and attitudes. The process of integrating OCC model 
into agent behaviours can be divided into 4 steps, namely 
classification, quantification, interaction, and mapping 
(Bartneck 2002).  
 
It is believed that personality and emotion have significant 
influences on behaviours and how behaviours are expressed 
(Marsella and Gratch 2002; Ball and Breese 1998). Different 
personality model has been studied in the psychology 
community such as the OCEAN model (Costa and McCrae 
1992). This model has five dimensions, namely openness, 
conscientiousness, extraversion, agreeableness, and 
neuroticism. The link between personality and OCC emotion 
model is described in (Egges et al. 2004). Their idea is 
essentially to construct a Personality-Emotion Influence 
Matrix, in which indicates how each personality factor 
influences each emotion. A simple emotion update equation as 
proposed in (Egges et al. 2004) is therefore used in the 
animation system. 
 

),(),,(1 tttt papee ωβωα ++=+   
 
Function ),,( ap tωα  is to calculate the changes of the 
emotional state based on personality p , emotional state 

history tω , and emotion influence a  from OCC model. 

),( tp ωβ  is calculate the decay of emotional sates based on 
personality and emotional state history. 
 
Emotion in the developed animation system is primarily used 
to decide how the selected behaviours will be executed 
depending on agent’s momentary emotional states, which is 
realized by the Motion Generation module described in the 
following contexts (Figure 2). 
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Memory Personality 
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Figure 1 Architecture of animation system 

The Motion Generation module decomposes those behaviours 
into low-level motions with control parameters that can be 
realized by the motion clips library. The Motion Coordinator, 
upon receiving motions with parameters, retrieves base 
motions from the motion clips library and joints from the 
character skeleton that are required to perform the motions. 
Base motions are primarily produced by motion interpolation. 
On top of these base motions, parameterized motions are 
generated based on outputs from the Emotion to Motion 

Module. Such outputs are normally motion control parameters 
that are used to alter the way the base motions are animated or 
parameters to change the posture of the agent. All these 
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Figure 2 Architecture and functionalities of the motion 
generation module 
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generated motions are finally blended together to produce the 
final motions for the agent. The DOFs management assure that 
motion blending does not violate the limits of character’s 
joints therefore avoiding un-natural motion. The functionalities 
of this Motion Generation module can be extended by 
incorporating new developed components. For instance, a 
physically-based modelling based motion module can be 
incorporated to increase the motion realism. In such cases, the 
adjustments (e.g. the update to involved DOFs) from this 
module can be blended into the existing motions via animation 
blending and DOF management.    

As shown in Figure 4, the events of failure or success to 
capture the object is evaluated and used to update the agent’s 
emotional states, which subsequently resulting in different way 
of exhibiting its motions. The Motion Generation module 
produces parameterized motions and subsequently blends into 
the existing base motion animation sequences to achieve non-
repetitive behaviours without the need to explicitly model such 
different style of animations in advance in modelling packages. 
The user is able to alter the agent’s internal and emotional 
states through the user interface, observing the instant change 
of agent behaviours. Frame rate of the above simulation 
achieves an average of 100 based on a machine with Pentium 
IV 2.8 GHz CPU and a Geforce 2 MX 400 graphics card. The 
graphics card used for the simulation is obsolete and current 
graphics hardware can deliver much better rendering 
performance. 

 
Rendering module is responsible for displaying both of 
character animation and the virtual world onto the screen. It 
receives animation requests from the Motion Generation 
module and activates corresponding animation procedures with 
control parameters. The major challenge of designing such 
module is to achieve a balance between visual realism and the 
controllability of the animated 3D agent. The skinned mesh 
animation algorithm is used in the system (Wen et al. 2002).  

 
CONCLUSIONS AND FUTURE WORK 
 
This paper has presented an integrated system to animate 
human-like virtual intelligent agent. The agent has the ability 
to capture information from its environment and determine 
what actions should be taken based on its behaviours module. 
An innovative Motion Generation module is developed to 
realize the selected behaviours and produce parameterized 
motion along with pre-generated animation sequence 
depending on agent’s momentary emotional states. 
Furthermore, as the Motion Generation module has the control 
of the character model to a degree of freedom level and a 

flexible animation blending component, it is possible to 
integrate various existing motion planning, kinematics, and 
physically based motion into the framework in order to 
increase the realism of the human agent’s motions. Future 
work can be enhanced by investigating the relationship 
between agent’s mental states and body motions (e.g. posture, 
gesture) and how emotions can be expressed by such body 
motion.  

 
IMPLEMENTATION AND RESULTS 
 
The system was implemented in DirectX with MFC on a PC 
platform. The initial 3D human model contains around 6000 
polygons and has around 23 degree of freedoms. The agent, 
for simplicity and experimental purpose, has 1 internal state 
(Energy) and two emotional states (Happy, Angry). The agent 
has base motions, namely Walking, Running, and Resting. It 

also has three parameterized motions, namely 
HeadMovement(), PostureChange(), and ArmMovement(). Its 
motions are arranged into a hierarchical actions network. 
Agent changes its base motions based on the fuzzy internal 
state Energy. Parameterized motions are generated based on 
the two emotional states, Happy and Angry. Figure 3 shows 
that the agent is in wandering state. In this state, the agent only 
exhibits its base motions and emotional states are not being 
updated. 

(a) Agent is walking. 
Energy=0.8, Speed=0.16, EnergyDecay=0.1

(b) Agent is running. 
Energy=0.7, Speed=0.35, EnergyDecay=0.15 

Figure 3 Agent in wandering state (emotional states is not taking effect) 
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ABSTRACT 

 

In this paper we present experiments on neuro-

evolution mechanisms applied to predator/prey 

multi-character computer games. Our test-bed is a 

computer game where the prey (i.e. player) has to 

avoid its predators by escaping through an exit 

without getting killed. By viewing the game from 

the predators’ (i.e. opponents’) perspective, we 

attempt off-line to evolve neural-controlled 

opponents, whose communication is based on 

partial implicit information, capable of playing 

effectively against computer-guided fixed strategy 

players. However, emergent near-optimal 

behaviors make the game less interesting to play. 

We therefore discuss the criteria that make a game 

interesting and, furthermore, we introduce a 

generic measure of this category of (i.e. 

predator/prey) computer games’ interest (i.e. 

player’s satisfaction from the game). Given this 

measure, we present an evolutionary mechanism 

for opponents that keep learning from a player 

while playing against it (i.e. on-line) and we 

demonstrate its efficiency and robustness in 

increasing and maintaining the game’s interest. 

Computer game opponents following this on-line 

learning approach show high adaptability to 

changing player strategies which provides 

evidence for the approach’s effectiveness against 

human players. 

 

INTRODUCTION 

 

In (Yannakakis et al. 2004), we introduced a 

predator/prey computer game named ‘Dead End’ 

for emerging complex and cooperative behaviors 

among agents through evolutionary procedures. In 

this game the prey (i.e. player) has to avoid its 

eight predators (i.e. Dogs) by escaping through an 

exit without getting killed. Since there are eight 

Dogs on the game field, they are designed to be 

slower than the Player so that the game is fairer to 

play. This game’s fundamental concepts are 

inspired from previous work of Yannakakis et al. 

(2003) where efficient cooperative behaviors, 

supported only by partial implicit communication, 

emerge amongst the agents of a complex multi-

agent environment. 

 

Similar to Luke’s and Spector’s (1996) work on 

the Serengeti world, we view Dead End from the 

predators’ perspective. Our first aim is to emerge 

effective complex teamwork behaviors by the use 

of an off-line training approach, based on 

evolutionary computation techniques, applied to 

homogeneous neural controlled agents (Yao 1999). 

Dogs have to demonstrate good cooperative 

strategies in order to kill the Player and/or to 

defend the Exit. Such behaviors can be aggressive, 

defensive, or a hybrid of the two. Given the 

specific game, we believe that 8 predators are 

enough for cooperative behaviors to emerge. 

 

However, playing a computer game like Dead End 

against well-playing opponents with fixed hunting 

behaviors cannot be regarded as interesting. The 

first stage of experiments on this test-bed, given an 

implicitly defined notion of interest, is presented in 

(Yannakakis et al. 2004). We believe that the 

interest of any computer game is directly related to 

the interest generated by the opponents’ behavior 

rather than to the graphics or even the player’s 

behavior. Thus, when ‘interesting game’ is 

mentioned we mainly refer to interesting 

opponents to play against. In (Yannakakis and 

Hallam 2004), we argue that the interest measure 

proposed (for the well-known Pac-Man game) 

defines a generic measure of any predator/prey 

game. Results obtained from Dead End and 
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presented here give evidence for this interest 

measure’s generality, which defines one of the 

goals of this work. 

 

We present a robust on-line neuro-evolution 

learning mechanism capable of increasing the 

game’s interest (starting from well performing 

behaviors trained off-line) as well as maintaining 

that interest at high levels as long as the game is 

being played. In our Dead End predator/prey 

computer game we require Dogs to keep learning 

and constantly adapting to the player’s strategy 

instead of being opponents with fixed strategies. In 

addition, we explore learning procedures that 

achieve good real-time performance (i.e. low 

computational effort while playing). 

 

Recently, there have been attempts to mimic 

human behavior off-line, from samples of human 

playing, in specific virtual environments. In 

(Thurau et al. 2004) among others, human-like 

opponent behaviors are emerged through 

supervised learning techniques in a first person 

shooter console game. Even though complex 

opponent behaviors are emerged, there is no 

further analysis on whether these behaviors 

contribute to the satisfaction of the player (i.e. 

interest of game). In other words, researchers 

hypothesize --- by looking at the vast number of 

multi-player on-line games played daily on the 

web --- that by generating human-like opponents 

the player gains more satisfaction from the game. 

This hypothesis might be true up to a point; 

however, since there is no explicit notion of 

interest defined, there is no evidence that a specific 

opponent behavior generates more or less 

interesting games. 

 

DEAD-END GAME 
 

Dead End is a two-dimensional, multi-agent, grid-

motion, predator/prey game. The game field (i.e. 

stage) is a two-dimensional square world that 

contains a white rectangular area named “Exit” 

(see Fig. 1) at the top. For the experiments 

presented in this paper we use the 16 X 16 cm 

stage presented in Fig. 1, which is divided into 

grid squares (of length 0.5 mm). The characters 

visualized in the Dead End game (as illustrated in 

Fig. 1) are a dark grey circle of radius 0.75 cm 

representing the Player and 8 light grey square (of 

dimension 1.5 cm) characters representing the 

Dogs. 

 

The relationship between the Dogs and the Player 

is mutually highly competitive. The aim of a 

Player is to reach the Exit, avoiding the Dogs. On 

the other hand, the aims of the Dogs are to defend 

the Exit and/or to catch the Player. In Dead End, if 

a Player succeeds in arriving at the Exit, this event 

is described as a win. Additionally, if a Dog 

manages to catch a Player, this event defines a kill. 

If there is neither a Player win nor a kill for a 

predetermined large period of time, then the 

outcome of the game is a win again. After either a 

win or a kill, a new game starts. 

 

The Player moves at four thirds the Dogs’ 

maximum speed and since there are no dead ends, 

it is impossible for a single Dog to complete the 

task of killing it. Since the Player moves faster 

than a Dog, the only effective way to kill the 

Player is for a group of Dogs to hunt 

cooperatively. 

 

The simulation procedure of the Dead End game is 

as follows. Player and Dogs are placed in the game 

field (initial positions) so that there is a suitably 

large distance between them. Then, the following 

occur at each simulation step. (a) Both Dogs and 

the Player gather information from their 

environment and take an individual movement 

decision, up, down, left or right. (b) If the game is 

Fig. 1. Snapshot of the Dead End game 
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over (i.e. Player escapes through the Exit, Player is 

killed, or the simulation step is greater than a 

predetermined large number), then a new game 

starts from the same initial positions for the Dogs 

but from a different, randomly chosen, position at 

the bottom of the stage for the Player. 

 

The Player 

 

The difficulty of the Dead End game is directly 

affected by the intelligence of the Player. Its nature 

is significant because Dogs’ emergent behavior is 

strongly related to their competitive relationship 

against it. To develop more diverse agents’ 

behaviors, different playing strategies are required. 

We therefore chose three fixed Dog-avoidance 

and/or Exit-achieving strategies for the Player, 

differing in complexity and effectiveness. The 

non-deterministic initial position of the player is 

devised to provide Dogs with diverse examples of 

playing behaviors to learn from. 

 

Randomly-moving (RM) Player 

A Randomly-moving Player takes a movement 

decision by selecting a uniformly distributed 

random picked direction at each simulation step of 

the game. 

 

Exit-achieving (EA) Player 

An Exit-achieving Player moves directly towards 

the Exit. Its strategy is based on moving so as to 

reduce the greatest of its relative distances from 

the Exit. 

 

Cost-based path planning (CB) Player 

A cost-based path planning Player constitutes the 

most efficient Dog-avoiding and Exit-achieving 

strategy of the three different fixed-strategy types 

of Player. A discrete Artificial Potential Field 

(APF) (Khatib 1986), specially designed for the 

Dead End game, controls the CB Player’s motion. 

The overall APF causes a force to act on the Player 

which guides it along a Dog-avoidance Exit-

achievement path. For a more detailed presentation 

of the CB player, see (Yannakakis et al. 2004). 

 

Any motion strategy that guides a Player to arrive 

quickly at the Exit, avoiding any Dogs and keeping 

to the straightest and fastest possible trajectory, is 

definitely a “good” strategy in terms of the Dead 

End game. Hence, the CB Player presents a “good” 

behavior in this game and furthermore a reference 

case to compare to human playing behavior.  
 

Neural Controlled Dogs 

 

Artificial neural networks (ANNs) are a suitable 

host for emergent adaptive behaviors in complex 

multi-agent environments (Ackley and Littman 

1992). A feedforward neural controller is 

employed to manage the Dogs’ motion and is 

described in this subsection. 

 

Using their sensors, Dogs inspect the environment 

from their own point of view and decide their next 

action. Each Dog receives input information from 

its environment expressed in the ANN’s input 

array of dimension 6. The input array consists of 

the relative coordinates of (a) the Player, (b) the 

closest Dog and (c) the Exit. A Dog’s input 

includes information for only one neighbor Dog as 

this constitutes the minimal information for 

emerging teamwork cooperative behaviors. We 

deliberately exclude from consideration any global 

sensing, e.g. information about the dispersion of 

the Dogs as a whole, because we are interested 

specifically in the minimal sensing scenario. 

 

As previously mentioned, a multi-layered fully 

connected feedforward ANN has been used for the 

experiments presented here. The hyperbolic 

tangent sigmoid function is employed at each 

neuron. The ANN’s output is a two dimensional 

vector which represents the Dog’s chosen motion 

in X, Y coordinates. 

 

Fixed strategy Dogs 

 

Apart from the neural controlled Dogs, an 

additional fixed non-evolving strategy has been 

tested for controlling the Dogs’ motion. Dogs of 

this strategy are called ‘Followers’ and they are 

designed to follow the Player constantly by 

moving at half the Player’s speed (i.e. 1.0 

cm/simulation step). This strategy is used as a 

baseline behavior for comparison with any 

emergent neural controller behavior. 

 

INTERESTING OPPONENTS 

 

In order to find, as objective as possible, a measure 

of interest in the Dead End computer game we first 
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need to define the criteria that make a game 

interesting. Then, second, we need to quantify and 

combine all these criteria in a mathematical 

formula. The game should then be tested by human 

players and have this formulation of interest cross 

validated against the interest the game produces in 

real conditions. This last part of our investigation 

constitutes a crucial phase of future work. 

 

In order to simplify this procedure we will ignore 

the graphics’ as well as the player’s contribution to 

the interest of the game and we will concentrate on 

the Dogs’ behavior that effects the game’s interest. 

That is because, we believe, the computer-guided 

opponent character contributes the vast majority of 

features that make a computer game interesting. 

 

By being as objective and generic as possible, we 

believe that the criteria that collectively define the 

interest of the Dead End game are as follows (see 

also (Yannakakis and Hallam 2004) for interest 

criteria definitions for the  Pac-Man game). 

 

• When the game is neither too hard nor too 

easy. In other words, the game is 

interesting when Dogs manage to kill the 

player sometimes but not always. In that 

sense, optimal behaviors are not interesting 

behaviors and vice versa. 

 

• When there is diversity in Dogs’ behavior 

over the games. That is, when Dogs are 

able to find different ways of hunting and 

killing the player in each game so that their 

strategy is less predictable. 

  

• When Dogs’ behavior is aggressive rather 

than static. That is, Dogs that move 

towards killing the player but meanwhile, 

move constantly all over the game field 

instead of simply following it. This 

behavior gives player the impression of an 

intelligent strategic Dogs’ plan which 

increases the game interest. 

 

In order to estimate and quantify each of the 

aforementioned criteria of the game’s interest, we 

follow the same procedure introduced in 

(Yannakakis and Hallam 2004). Thus, the metrics 

for the three criteria are given by T (difference 

between maximum and average player’s lifetime 

over N games --- N is 50 in this paper), S (standard 

deviation of player’s lifetime over N games) and 

}{ nHE  (stage grid-cell visit average entropy of 

the Dogs over N games) respectively. All three 

metrics are combined linearly (1) 
 

εδγ

εδγ

++

++
=

}{ nHEST
I                    (1) 

 

where I is the interest value of the Dead End game; 

εδγ  and , are criterion weight parameters (for the 

experiments presented here 1,2,1 === εδγ ). 

 

The measure of the Dead End game’s interest 

introduced in (1) can be effectively applied to any 

predator/prey computer game (e.g. see 

(Yannakakis and Hallam 2004)) for a successful 

application on the Pac-Man game) because it is 

based on generic quantitative features of this 

category of games. These features include the time 

required to kill the prey as well as the predators’ 

entropy throughout the game field. We therefore 

believe that (1) --- or a similar measure of the 

same concepts --- constitutes a generic interest 

approximation of predator/prey computer games. 

In fact, the two first criteria correspond to any 

computer game whereas the third criterion 

corresponds only to predator/prey games. 
 

OFF-LINE LEARNING 
 

We use an off-line evolutionary learning approach 

in order to produce some ‘good’ (i.e. in terms of 

performance) initial behaviors for the on-line 

learning mechanism. The ANNs that determine the 

behavior of the Dogs are themselves evolved 

(evolutionary process is limited to the connection 

weights of the ANN). 

 

The evolutionary procedure is as follows. Each 

Dog has a genome that encodes the connection 

weights of its ANN. A population of 40 (we keep 

this number low because of the computational 

cost) ANNs (Dogs) is initialized randomly with 

initial uniformly distributed random connection 

weights that lie within [-5, 5]. Then, at each 

generation: (a) Each Dog in the population is 

cloned 8 times. These 8 clones are placed in the 

Dead End game field and play the game against a 

selected Player type for an evaluation period T 
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(e.g. 125 simulation steps). The outcome of this 

game is to ascertain the total number of wins (W) 

and kills (K). (b) Each Dog is evaluated via (2) 
 

WKf βα −=                       (2) 

 

where K and W are the total numbers of kills and 

wins respectively; α  is the reward rate of a kill; β  

is the penalty rate of a win. (c) A pure elitism 

selection method is used where only the 20% 

fittest solutions are able to breed and, therefore, 

determine the members of the intermediate 

population. (d) Each parent clones an equal 

number of offspring in order to replace the non-

picked solutions from elitism. (e) Mutation occurs 

in each gene (connection weight) of each 

offspring’s genome with a small probability mp  

(e.g. 0.01). A uniform random distribution is used 

again to define the mutated value of the connection 

weight. 

 

The algorithm is terminated when a predetermined 

number of generations g is completed (e.g. g=300) 

and the fittest Dog’s connection weights are saved. 

 

ON-LINE LEARNING 

 

This evolutionary learning approach is based on 

the idea of Dogs that learn while they are playing 

against the Player. In other words, Dogs that are 

reactive to any player’s behavior and learn from its 

strategy instead of being predictable and, therefore, 

uninteresting characters for game playing. 

Furthermore, this approach’s additional objective 

is to keep the game’s interest at high levels as long 

as it is being played. 

 

Beginning from any initial off-line trained (OLT) 

group of homogeneous Dogs, the on-line learning 

(OLL) mechanism attempts to transform them into 

a group of heterogeneous Dogs that are interesting 

to play against. The OLL procedure is as follows. 

An OLT Dog is cloned 8 times and its clones are 

placed in the Dead End game field to play against 

a selected Player type. Then, at each generation: 

 

(a) Each Dog is evaluated every T (T is 25 here) 

simulation steps via (3), while the game is played 

(where ),( k
d

k
d

yx  and ),( k
p

k
p yx  are the cartesian 

coordinates of the Player’s and the Dog’s center 

respectively at simulation step k). 
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By using (3), we individually promote each Dog 

that attempts to stay as close as possible to the 

Player during an evaluation period. (b) If the 

average fitness of the population is greater than a 

fixed threshold value then, go to (a) else, continue. 

(c) A pure elitism selection method is used where 

only the fittest solution is able to breed. The fittest 

parent clones an offspring that replaces the worst-

fit member of the population. This offspring takes 

the worst-fit member’s position in the game field. 

(d) Mutation occurs in each gene (connection 

weight) of the offspring’s genome exactly as in the 

off-line learning algorithm. 

 

 

Fig. 2. The on-line learning mechanism 

 

The algorithm is terminated when a predetermined 

number of generations g is completed (e.g. 

g=5000) and all 8 Dogs’ connection weights are 

saved. Fig. (2) illustrates the main steps of the 

OLL algorithm. 

  

We mainly use small simulation periods (i.e. 

T=25) to evaluate Dogs during OLL. The aim of 

this high frequency of evaluations is to accelerate 

the on-line evolutionary process. However, the 

evaluation function (3) constitutes an 

approximation of the examined Dog’s overall 

performance for large simulation periods. Keeping 

the right balance between computational effort and 

performance approximation is one of the key 

features of this approach. We therefore use 
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minimal evaluation periods capable of achieving 

good estimation of the Dogs’ performance. 
 

RESULTS 

 

Results obtained from experiments applied on the 

Dead End game are presented in this section. 

These include, off-line and on-line learning 

emergent behavior analysis as well as experiments 

for testing robustness and adaptability of the OLL 

mechanism proposed. 
 

Performance Measurement 
 

In order to evaluate the performance of a team of 

Dogs, we record the total number of both kills K 

and wins W of the examined team, against a 

specific Player, by placing these agents in Dead 

End and letting them play the game for 3
105.12 ⋅  

simulation steps. We believe that this is a long 

enough period for testing a playing-behavior of a 

team of Dogs in an efficient way. This evaluation 

is called a trial. We then calculate the value P = 

100[K/(K+W)]. This performance measurement 

(P) quantifies the Player-killing (K) percentage 

over the total number of games played (K+W). 
 

Off-line Learning Experiments 
 

The experiment presented in this subsection is 

focused on producing well-behaved Dogs in terms 

of the performance measure previously described. 

We train Dogs against all three fixed-strategy 

types of Player through the off-line learning 

mechanism. In this experiment we select 

1== βα  in fitness function (2) --- providing 

equal opportunities for promoting both Player-

hunting and Exit-defensive behaviors. The off-line 

learning experiment is described as follows. 
 

(a) Apply the off-line learning mechanism by 

playing against each type of Player separately. 

Repeat the learning attempt (run) 10 times --- we 

believe that this number is adequate to illustrate a 

clear picture of the emergent behavior --- with 

different initial conditions. (b) Evaluate each one 

of the 10 teams of OLT Dogs against all three 

types of Player. Their performance and interest 

measurement are given by the average values 

obtained over the 10 trials. (c) Evaluate non-

evolving randomly generated (i.e. untrained) as 

well as Player-follower Dogs (i.e. Followers) 

against every Player type (run 10 trials and 

calculate their average performance and interest). 

The outcome of this experiment is presented in 

Table I. 

 

Table I. The effect of off-line training on the Dogs’ average 

performance (E{P}) and interest (E{I}) over 10 learning 

attempts 

 Playing against 

 RM EA CB 

 E{P}    E{I} E{P} E{I} E{P} E{I} 

OLT/RM 91.27 0.728 24.36 0.682 3.82 0.243 

OLT/EA 62.55 0.555 96.01 0.661 51.27 0.486 

OLT/CB 93.09 0.628 55.09 0.681 72.98 0.425 

Followers 98.54 0.466 78.94 0.763 71.51 0.709 

Untrained 75.58 0.401 62.46 0.498 17.77 0.425 

 

As can be seen from Table I, there is a large 

performance improvement of the OLT Dogs in 

comparison to the untrained or even the Follower 

Dogs against all three types of Player. However, in 

most cases, OLT Dogs against a specific Player 

seem to get lower average performance values 

when playing against a Player other than the Player 

they have been off-line trained against. Dogs 

trained off-line against CB Players showed good 

overall performance against all types of Players. 

Therefore, among the three fixed-strategy Players, 

the CB Player provides the best off-line training 

for the opponent agents. This suggests that when 

Dogs learn from more complex and effective types 

of Players, they tend to generalize better. 

 

An increased interest value when Dogs are trained 

off-line is also noticeable in all cases (see Table I). 

However, these emergent behaviors fail to 

compete the interest generated by the Followers in 

the majority of cases (mainly against the EA and 

CB Players). 

 

The most typical emergent behaviors are pure 

Exit-defensive or pure Player-hunting behaviors 

but hybrids also occur frequently. The off-line 

learning mechanism, in the majority of cases, 

produces Dogs that defend the Exit and/or hunt the 

Player in a cooperative fashion. As stressed before, 

opponents in this game have to learn to cooperate 

in order to be successful (achieve a high 

performance value) against any playing strategy. 
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On-line Learning Experiments 

 

The off-line learning procedure is a mechanism 

that attempts to produce near-optimal solutions to 

the problem of killing the Player and defending the 

Exit. These solutions will be the OLL 

mechanisms’ initial points in the search for more 

interesting games. The OLL experiment is 

described as follows. 
 

(a) Apply the OLL mechanism to all teams of OLT 

Dogs (see Off-line Learning Experiments section) 

playing against each type of Player separately. (b) 

Evaluate performance and interest values of each 

OLL attempt against each Player type. The 

outcome of this experiment is presented in Table II 

and Fig. 3. 

 

As seen from Table I and Table II, the OLL 

mechanism manages to find ways of increasing the 

interest of the game regardless of the initial OLT 

behavior or the player. Due to space considerations 

we present only 3 out of the 9 OLL experiments in 

detail here. Fig. 3 demonstrates the learning 

mechanism’s ability of producing games of higher 

than the initial interest as well as keeping that high 

interest for a long period. The mechanism 

demonstrated a similar adaptive behavior for all 9 

different OLL experiments. This suggests that the 

evolutionary approach proposed shows a behavior 

of high robustness which furthermore manages to 

generate opponents’ behaviors of much higher 

interest values. 

 

The OLL mechanism tends to be a highly 

disruptive procedure (via the mutation operation) 

for high-interest group behaviors towards 

individual rewards. Such disruptive mutations can 

cause undesired drops in the game’s interest 

generated by a team of Dogs. However, 

experiments show that Dogs trained by individual 

rewards (while playing) manage to maintain and 

even increase the game’s interest.  

 

Another important feature of the mechanism is its 

ability to quickly emerge interesting opponents to 

play against. It takes, in the worst case 

experienced, fewer than 500 OLL games for the 

mechanism to generate games of higher interest. 
 

Table II. Best average interest values achieved by applying 

on-line learning on Dogs trained off-line. The respective 

average performance values are also presented 

 Playing against – On-line learning 

 RM EA CB 

 E{P}    E{I} E{P} E{I} E{P} E{I} 

OLT/RM 86.73 0.758 36.45 0.762 43.09 0.721 

OLT/EA 95.64 0.707 84.18 0.701 20.91 0.617 

OLT/CB 97.09 0.685 53.64 0.745 60.92 0.610 

 

Fig. 3. Interest (averaging over 10 trials) evolution over the 

number of games played. . Initial behavior: OLT/RM (initial 

and best interest values are presented in the first row of Table 

I and Table II respectively. 

 

On the other hand (see Table I and Table II), in 

almost half cases, there is a decrease of the Dogs’ 

average performance values. In general, Dogs that 

achieve high-performance values do not generate 

interesting games. This illustrates the tradeoff 

between optimality and interest in any computer 

game. In Dead End, optimal killing behaviors 

cannot produce interesting games. 
 

CONCLUSIONS 
 

The Dead End predator/prey computer game is 

devised as an interesting test-bed for studying the 

emergence of multi-agent cooperative behaviors 

supported by partial implicit communication 

through evolutionary learning mechanisms. We 

introduced an off-line learning mechanism, from 

which effective cooperative predator behaviors 

have rapidly emerged. 

 

Predator strategies in predator/prey computer 

games are still nowadays based on simple rules 

which make the game quite predictable and, 

therefore, uninteresting --- by the time the player 
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gains more experience and playing skills. A 

computer game becomes interesting primarily 

when there is an on-line interaction between the 

player and his opponents who demonstrate 

interesting behaviors. 

 

Given some objective criteria for defining interest 

in predator/prey games presented by Yannakakis 

and Hallam (2004) we introduced a method for 

explicitly measuring interest in the Dead End 

game. We saw that by using the proposed on-line 

learning mechanism (see also (Yannakakis et al. 

2004)), maximization of the individual simple 

distance measure (see (3)) coincides with 

maximization of the game’s interest. Apart from 

being robust, the proposed mechanism 

demonstrates fast adaptability to new types of 

player (i.e. playing strategies). Therefore, we 

believe that such a mechanism will be able to 

produce interesting interactive opponents (i.e. 

games) against even the most complex human 

playing strategy. 

 

We believe that the methods used need to be tested 

on more complex Dead-End stages (i.e less Dogs) 

in order to provide more evidence for their 

generality, and the interest measure proposed 

needs to be cross-validated against human players. 

In addition, investigation of the heterogeneity’s 

contribution on these results constitutes an 

important step for future work. 
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ABSTRACT 
 
This paper presents a review of potential 
architectures and tools for the production of 
Virtual Environments with Integrated Intelligent 
Characters. Initial research was carried out into the 
production of a real-time system for the creation of 
graphically realistic scenes for crime scene 
reconstruction in Davies et al (2004). The system 
was capable of rendering scenes produced via a 
graphical interface, and characters with pre-
generated animation sequences could be placed 
and oriented in the scenes to act out crime events. 
It is proposed that these characters would be more 
beneficial if they were endowed with intelligent 
qualities so they could act in an autonomous 
manner when presented with a scenario. It is 
anticipated that this would produce a diverse set of 
actions and resulting scene disturbance which 
would be of benefit to forensic crime investigation 
students, who could theories about the events 
performed in the scene, and evaluate their 
responses against the actual events.  
 
KEY WORDS 
3D Scene Construction, Computer Graphics, 
Artificial Intelligence  
 
INTRODUCTION 

 
This paper builds on the work outlined in Davies 
et al (2004) which describes a graphical 
application for the efficient and cost effective 
creation of quasi-accurate three dimensional 
environments, which can be viewed from any 
position or angle in real time (Fig 1). A set of 
realistic objects including wall, floor and ceiling 
panels, and a set of common household objects 
including chairs and desks etc, and animated 
characters based on skinned mesh architectures 
were developed which can be placed and oriented 

within the scene. Crime scenes can then be 
constructed from forensic information, and 
animated characters can populate the 
environments to recreate the crimes. It was 
anticipated that the simulations could be used by 
crime investigators to test and eliminate 
hypotheses, training purposes, and also be used in 
court reconstructions. The system produced some 
very promising results, although some limitations 
were identified including the implementation of 
animated characters where behaviour was 
restricted to a small set of pre-created animation 
sequence. No attempt was made to implement any 
level of intelligence; however, initial ideas were 
outlined for potential future development 
including the use of Belief Desire Intention 
architectures (BDI) (Bratman 1987) architectures 
for character intelligence. This paper outlines 
these ideas in more depth, and addresses the issue 
of character intelligence in order to develop a 
system that can simulate human-like behaviour in 
animated characters. Rather than an extended set 
of animation sequences, agents will be given the 
ability to assess and react to a set of high level 
tasks, and be able to relate to other agents and 
humans by creating, regulating and expressing 
emotions, while conforming to social norms and 
constrains. This will create a more versatile system 
which will be applicable to a broader set of 
applications in addition to crimes scene 
reconstruction, including entertainment e.g. 
computer games, scenario training and education. 
 

  
Figure 1:  Crime Scene Creator 
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AGENT THEORY 
 
To facilitate the appearance of intelligence in a 
virtual environment an intelligent character (agent) 
is required exhibit a set of human like 
characteristics. This includes the capability to 
reason about the environment in which it is 
situated, combined with the ability to formulate 
and execute plans based on this knowledge to 
achieve a specified goal from a specified initial 
state, given definitions of the available actions. In 
the crime scene generator a typical scenario may 
as follows: 
 
An agent leaves its house with the intention of 
stealing something valuable to sell at some point 
in the future. It evaluates its current location and 
reasons that a nearby neighbourhood has a good 
potential of having a suitable property to burgle as 
it is a wealthy area, and sets out in the appropriate 
direction. On arriving at the neighbourhood the 
agent begins to look for a specific property which 
satisfies some criteria e.g. not overlooked, appears 
empty, no alarm system etc. and will note several 
potential targets. When it has accumulated a list it 
will evaluate each property and conclude the most 
suitable target and plan a route to the house. 
However, on arrival it notes that a car is now in 
the driveway which was not there before and 
reasons that the house may now be occupied. With 
this new information it will reformulate its plans 
for the second most suitable target.  
 
The above scenario suggests some of the primary 
capabilities required by an agent for this type of 
application. First: the ability to generate plans and 
the use of partial plans. The agent has an initial 
location i.e. home, and a specified goal i.e. raise 
money. Using these two factors it will generate a 
plan to make money, that is, steal something. Once 
this plan is conceived the agent will commit to it 
and will rule out other contradictory factors e.g. a 
friend may call asking the agent out for a drink 
which the agent will decline in favour of executing 
its plan. However, commitment may not be fixed. 
If a friend calls with new information such as a 
heavy police presence on that day the agent may 
drop the commitment to steal, and adopt a new 
commitment to go for a drink instead. The agent 
needs to reflect on the strength of its commitment 
to reason which is more appropriate in differing 
circumstances. The agent will also need to monitor 

is environment. In the scenario above the agent 
commits to the task of robbing the most 
appropriate building, but takes note of the 
presence of a new car in the target property. If the 
agent did not monitor this change in the 
environment it could find itself in a negative 
situation e.g. a confrontation or even jail. 
However, the changes occurring in the 
environment must be filtered to outline the most 
relevant changes. There may be many changes 
happening in the environment that will have no 
impact on the current goal, e.g. a traffic warden is 
giving out parking tickets. It would be inefficient 
to factor in this information as it will have no 
effect on the overall plan and goal. 
 
New alternative opportunities may appear that 
may need analysing. For instance, on the way to 
the burglary the agent may come across an 
unlocked car with an expensive stereo. The agent 
needs to realise that the initial goal of gaining 
money can be achieved much more simply by 
stealing the stereo, and could result in all house 
robbing plans to be dropped. Because the 
environment is dynamic, the agent will have to 
commit to, and begin executing, partial plans that 
do not contain all the information required. As the 
agent progresses through the plan, specific 
information can be elaborated upon. In the 
example, the agent will defer its decision about 
which house to burgle until it has gained enough 
information about the status of each property. This 
will not prevent the agent having an overall goal, 
or beginning the plan execution to reach the 
desired neighbourhood. The final area of interest 
for the crime scene application is the issue of 
multi-agent coordination and collaboration. For 
example, and agent may come across a house 
owner, guard dog, policeman etc. when burgling 
the house. This will have an impact on the 
characters behaviour. One agent’s actions will 
have a direct impact on the other agent. If a guard 
dog attacks, they will start running, if they are 
confronted by the house owner, they may become 
violent etc.   
 
ARCHITECTURES IMPLEMENTATION 
 
The above outlines the theoretical requirements an 
agent should be endowed with in order to act 
intelligently. However, to achieve these 
behavioural characteristics on a computational 
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system would require a mass of power which is 
unfeasible based on the processing power of a 
typical high spec computer available today. The 
theory needs to be formalised into a coherent 
architecture under which an agent can be designed, 
with consideration made for optimising the 
architectures for a resource bound system. 
Traditionally, researchers have used the BDI, 
where behaviours are triggered by conceptually 
modelled intentions rather than scripted behaviour 
or complete animation sets (Fig 2.). The principle 
of this type of architecture is based on studies into 
human cogitative reasoning. In his publication 
Bratman proposed that human behaviour can be 
decomposed into three distinct modules. An agent 
will have a set of Beliefs considered to be its 
World View, it will also have a set of Desires it 
wishes to fulfil. By relating one to the other it will 
be able to formulate a sequence of Intentions of 
partial plans which it commits itself to performing 
in order to achieve some goal in a particular 
environment. Goals which are unachievable or 
conflict with current commitments are stripped out 
unless they can be recognised as potentially 
important to the task. To demonstrate the theories 
Bratman developed Intelligent Resource-bound 
Machine Architecture (IRMA) which utilised a 
means end planner and an opportunity analyser to 
identify new choices available and filters these 
choices to decide whether they are significant 
enough to be deliberated upon. Unfortunately, 
IRMA was only tested in abstract environments, 
which were artificially constrained test 
complexity. Its feasibility for real world complex, 
dynamic environments remains unproved. 
 
The problems identified with this form of BDI are 
that the agent has to be omniscient; i.e. know all 
the relevant facts about its environment. This is 
unfeasible in real-world applications where factors 
may remain unknown. The actions the agent can 
performed have definite outcomes which again 
may not be the case in complex dynamic 
environment where there are many factors other 
than the agent. There is no notion of partial 
success. The goals are categorically either 
achieved or not. In real world scenarios there is a 
level of granularity to the definition of success. 
Finally, the actions performed are instantaneous 
state transformations. They have no temporal 
extent or fixed times of occurrence. 
 

Beliefs Desires Intentions

Reasoning/Interfencing/learning

Input

Output  
 

Figure 2:  Simple BDI Architecture 
 
 
The problems identified with this form of BDI are 
that the agent has to be omniscient; i.e. know all 
the relevant facts about its environment. This is 
unfeasible in real-world applications where factors 
may remain unknown. The actions the agent can 
performed have definite outcomes which again 
may not be the case in complex dynamic 
environment where there are many factors other 
than the agent. There is no notion of partial 
success. The goals are categorically either 
achieved or not. In real world scenarios there is a 
level of granularity to the definition of success. 
Finally, the actions performed are instantaneous 
state transformations. They have no temporal 
extent or fixed times of occurrence. 
 
Rao and Georgeff (1995) expanded on BDI 
especially in the area of intentions which they base 
on a ‘possible world’ formalism to address some 
of these problems, and to base the architecture 
within a strong mathematical framework. They use 
a time tree to map an agent through a temporal 
simulation, with a single path leading up to node 
representing the current situation, and a branching 
future representing potential actions an agent can 
perform at a particular point in time. However, the 
resulting actions (events) are not guaranteed to 
have a successful outcome. The agent makes the 
choice, but the environment determines the result 
via events which transform one situation into 
another. Non-primitive events map to non-adjacent 
situations to create partial plans which can be 
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decomposed into primitive events to model 
hierarchical plan development. It is possible that 
an agent may attempt to execute an event, but fail 
to do so due to it being either impossible or due to 
some other event changing the environment in 
such a way as to make the goal invalid. This needs 
to be noted on the tree so it will be possible for an 
agent to attempt to execute events which may be 
unsuccessful. Rao and Georgeff base their system 
on logic similar to Computational Tree Logic, 
CTL (Emerson and Srinivasan, 1989), with state 
formulas, which are evaluated at a particular point 
in time, and path formulas which operate over a 
complete plan. These are treated distinctly. In a 
path through a time tree, an outcome can either be 
inevitable e.g. the result of the action will produce 
the same result regardless of the options taken, or 
optional e.g. there may be several different 
outcomes dependant on the course of action taken.  
 
In the formalisation beliefs are modelled as a set 
of accessible worlds which the agent believes are 
possible to reach. This distinguishes between 
reachable desires, and desires that are 
unachievable by associating a narrow selection of 
applicable choices at a particular point in time. 
Intentions and are similarly modelled as accessible 
worlds which can be reachable by some course of 
action. This also prevents an agent committing to a 
goal which it unable to reach. However, it is not 
necessary for each state to have a corresponding 
intention. For example, a course of action may 
result in an unwanted negative side effect, 
however, the agent can still commit to that course 
of action without having to also adopt the side 
effect as an intention. D’Inverno (1998) tells us 
that Georgeff went on to develop the agent 
architecture Procedural Reasoning System (PRS) 
based on his version of BDI logic (Fig. 3), which 
in turn formed the foundation for distributed 
Multi-Agent Reasoning System (dMARS) that has 
to date proved to be the most successful agents 
application for real world applications, for 
example, problem solving on NASA’s Space 
Shuttle (Wired News 1997). In dMARS, BDI is 
modelled as a set operations performed on plans, 
and works on a cycle that first observes the world 
and the agents’ internal state for changes. Using 
this information it will update an event queue. 
New possible desires are generated by finding 
plans whose trigger event matches an event in the 
event queue, and a plan is selected from a set for 

execution. This plan is pushed on to an intention 
stack dependant on whether it is a sub-goal or new 
task. The next step of the plan in the intention 
stack is then either executed, or, if the next step is 
a sub goal, the sub goal is expanded and placed in 
the event queue.  
  

Beliefs Plan Library

Goals Intentions

InterpreterSensor
Input

Action
Output

 
 

Figure 3:  PRS BDI 
 
 
HYBRID AGENTS 
 
The BDI architecture has been demonstrated to be 
a feasible architecture for the development of 
intelligent agents as proved by its adoption and 
application. However, Roa and Georgeff (1995) 
claim that this type of architecture may already be 
dated and claim that the architecture is flawed for 
systems that learn and adjust their behaviour, and 
need to respond quickly to events in an 
environment. They state that better architectures 
such as InteRRAP (Müller and Pischel 1993) 
which is a layered BDI architecture that contains 
three hierarchical layers and a control mechanism 
would be better for real world applications where 
reaction times are paramount. In BDI systems, 
reactions are bounded by the reasoning and acting 
taking place in one execution cycle, which does 
not implicitly support functionality to deal with 
emergency situations. As an alternative they 
proposed a layered architecture incorporating the 
strong foundation of BDI logics for reasoning 
capabilities, and reactive layers to deal with 
specific situations such as obstacle avoidance. 
Reactions are triggered when a situation is 
recognised form the world model and acted on as a 
priority, however, longer term deliberation is 
carried out at a higher level based on the agents’ 
beliefs and goals. There is a final layer which 
introduces the concept of Multi Agent Systems 
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(MAS) where cooperation with other agents is 
achieved by the formulation of joint plans. As 
hybrid agent similar to InteRRAP has been 
implemented successfully by Yang and Chen 
(2003) for competing in a competition called 
RoboCup which has the ultimate aim of producing 
a team of intelligent robots capable of beating the 
World Football Champions by 2050. Actions such 
as kicking and dribbling are dealt with by a 
reactive layer, and individual and group tactics are 
implemented at higher levels. 
 
Schmidt (2000) also outlines an alternative system 
to BDI for the modelling of human behaviour. He 
argues that behaviour restricted to simply belief, 
desires and intention is not appropriate to complex 
social environments. Schmidt claims human 
behaviour can be split into Physical Conditions, 
Emotional States, Cognitive Capabilities and 
Social Status which are stored as a set of variables 
in his PECS system. These are used to generate 
two types of behaviour, Reactive, where behaviour 
follows fixed rules e.g. instinctive behaviour 
where agents become hungry and therefore seek 
food, and Deliberative behaviour where agents 
reflect on given tasks e.g. how to find food. The 
system has been applied to a number of sample 
applications where agents have the ability to 
explore an environment to build up a cognitive 
view. Once this model has been built, the agent 
can navigate around it. It also incorporates the 
ability to learn, and forget, and make decisions 
based on an emotional state. The system is based 
on a framework to include reinforcement learning 
where an agent can adapt its behaviour based on 
previous successes or failures.  
 
AI IMPLEMENTATION AND TOOLS 
 
While the above outlines potential architectures 
which act as a good reference point for the 
conceptual and formal modelling of intelligent 
agents, the implementation can be less 
straightforward, and may take a considerable 
effort to create. As an alternative, the inclusion of 
third party tools which exhibit the fundamentals of 
BDI may be a solution to rapid development of 
intelligence within the crime scene generator. 
Examples of this type of application are; SOAR 
(2004), which is a common development platform 
used for the developed for multiple platforms 
including JAVA. JACK (2004); a commercially 

available development environment which 
purports to be a fully agent-oriented. JADE 
(2004), which according to Braubach et al (2003) 
is a widely adopted multi-agent development 
platform working on top of the JAVA 
programming language which has an available 
add-on called Jadex which attempts to implement 
a BDI Infrastructure, and Sim_Agent (2004) 
which is capable of modelling individual and multi 
agent behaviour on multiple platforms.  
 
While the use of third party tools is a viable 
solution to agent modelling, other problems may 
arise from their usage. The crime scene generator 
needs to be as graphically accurate as possible, 
which was accomplished in the original version 
via a graphics engine written in C++ utilising 
Microsoft’s multimedia library DirectX 8.1. 
Methods will need to be investigated to examine 
how third party tools could be incorporated within 
this development environment, or whether 
alternatives can be found e.g. OpenGL or Java3D, 
and also to evaluate the various pros and cons of 
each system. 
 
OTHER CONSIDERATIONS 
 
The architectures identified so far have been used 
to model an environment, specify a list of actions 
that can be performed in that environment, 
deliberate about which actions to perform, and 
view the results those actions. However, there is a 
lot more to producing an agent that appears 
intelligent and acts in human like manner. For 
example, Burke and Blumberg (2001) are looking 
at reinforcement learning so entities can be taught 
what the right way to act is, and what is wrong, 
with the use of a feed back mechanism using 
praise and punishment techniques. Prendinger et 
a.l (2002) has developed systems for emotion 
modelling enforced by social constrains for 
language training. Takács and Kiss (2003) are 
focusing their research on producing highly 
accurate graphical entities that are capable of 
expressing a wide array of emotions based on the 
temporal transformation of facial displays between 
states to create smooth transitions. According to 
Schmidt (2000) modelling human behaviour is 
highly complex; there are many complementary 
elements that make up individuals. People have 
desires which are fulfilled by physically and 
verbally interacting with the world around them. 
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We have personalities, emotions and moods which 
are communicated via non-verbal means such as 
gestures and facial displays, and have evolved to 
live in social groups with an accompanying 
hierarchy of social status. All of these factors are 
governed by a set of social norms and rules which 
are used when interacting with other people for the 
benefit of the individual as well as survival of the 
species.  
 
EMOTIONS 
 
A feature that will be incorporated into the 
application will be the use of emotion to generate 
behaviour, and be used as a means for students to 
gain an understanding of the motivation of 
different personality types. Researchers are 
focussing on simulating these states, and develop 
of solid internal representations of emotion. 
According to Allbeck and Badler (2001) emotion 
can be modelled using the following criteria based 
using standard psychological models. An agent 
will have an overriding personality that will 
remain stable in a similar way to humans. Some 
people have a tendency to have a brighter outlook 
on life, and are slow to anger, while others of a 
more pessimistic attitude will be more likely to get 
depressed. It can be referred to as the characters 
temperament and can be split into five major 
areas: Openness: The ability to take on and accept 
new ideas, Conscientiousness: How dependable 
and organised a person is, Extraversion: Refers to 
sociability and friendliness, or reserved and 
shyness, Agreeableness: Whether a person is good 
natured and sympathetic, or rude and critical, 
Neuroticism: How nervous or secure a person 
feels. 
 
Prendinger et al. (2002) uses these basic 
personality types in conjunction with a temporary 
mood state which influences the external 
expression of the emotional state. People can feel 
different emotions about many different things 
simultaneously. For example, they could be happy 
at someone who has given them a gift, whilst also 
being angry at someone for forgetting their 
birthday. In this system the internal emotional 
state of synthetic entities is modelled, which it is 
hoped will make the characters appear more 
believable in the context of language training. 
They describe two tools they developed. 
‘SCREAM’ (SCRipting Emotion-based Agent 

Minds) which contains an emotional model, 
emotion generation, emotion regulation, and 
emotion expression and is used to give a character 
goals and attitudes. The second tool MPML 
(Multimodal Presentation Markup Language) is 
an XML style markup language that allows 
characters movements to be scripted using a set of 
tags. Combining the two systems allows content 
authors to design the internal emotions of artificial 
characters, and combine them with the actions to 
embody the emotional response. 
 
The agent mind generates and manages the 
emotional state via a maintenance module 
consisting of three sub-modules. The appraisal 
module reasons the emotional significance in set 
situations. Is angry at, is happy for etc and applies 
them to goals – would like to be happy, would like 
to cause discomfort. However, more than one 
emotion is triggered when interacting with 
multiple characters so the emotion resolution 
module makes sense of the many different 
emotional states a character is in and defines a 
dominate emotion e.g. the one with the highest 
intensity value. The agent can be happy for and 
angry at in different intensities. The emotions are 
logarithmically combined to produce a winning 
emotion. Finally, the emotion maintenance module 
handles the decaying process of different emotions 
with high intensity emotions dissipating more 
quickly than milder ones.  
 
While the modelling of these emotions should 
produce characters that appear to have more 
human like properties, it is also important, as Giles 
et al (2003) explain, to express the emotional state. 
Failure to do so can make complicated processes 
seem like a sequence of arbitrary actions which 
fails to produce a sense of empathy from the 
viewer. Prendinger et al acknowledge this to be a 
drawback in their system as they use a limited 
package called Microsoft Agent as the graphical 
front end which cannot express none-verbal cues. 
It can be argued that Takács and Kiss have made 
the greatest advancement in emotion expression 
with their Temporal Disc Controller which takes 
facial expressions generated from the dominant 
emotions (neutral, happy, sad, fearful, disgust, 
anger) and places them in a disc. To get from one 
emotion to another, several intermediary facial 
expressions are passed through providing a 
smother transition from one state to another. The 
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faces are made from high definition models and 
produce some very life-like results. However, the 
system does not rely on a ridged internal 
representation of emotions. Instead it is reactive. If 
a users emotional state is ‘Happy’ the system will 
change its facial expression to ‘Happy’ to reflect 
back emotion and appear sympathetic. Gilles et al 
propose a more accurate representation of emotion 
by using a similar modelling technique to 
Prendinger’s, but link it to an emotion expression 
system like Takács and Kiss. However, 
implementation is not complete. So far they have 
focussed on gaze production where the characters 
mover their eyes to look at areas of activity within 
the environment. In addition to facial animation, 
body language also plays an important function in 
portraying emotional states. According to Fromkin 
(1993) when humans communicate large amount 
of information is transmitted via none-verbal 
means such as gestures and facial displays. While 
a human can instinctively understand this none 
verbal information, it is a difficult problem to 
convert it into a meaningful algorithm in a 
computer program. This forms the basis for much 
ongoing research and will be further investigate in 
the future. 
 
PATH PLANNING 
 
An area that could be potentially incorporated into 
a reactive layer of hybrid agent architectures could 
be the ability to navigate an environment based on 
an agents’ belief of the environment in which it is 
situated. One way to achieve this could be through 
the use of common path planning algorithms used 
in today’s computer games. In these applications 
the environment needs to be split into a discreet 
set of regular sized cells in a grid formation, or 
way points. Using this conceptual space, path 
planning can be conducted via such algorithms as 
A*. Kuffner (1999) details methods regarding path 
planning for the natural and realistic movement of 
3D animated characters in interactive applications. 
The research stems from research into motion 
planning, control, and sensing for autonomous 
mobile robots. The first technique combines a 2D 
path planner based on A*, a path-following 
controller, and cyclic motion capture data to 
generate the underlying animation. The second 
technique automatically generates collision-free 
human arm motions to complete high-level object 
grasping and manipulation via a Kinematic 

approach. This uses a given target position and 
orientation in a workspace, and a goal 
configuration for the arm to feed an inverse 
kinematics algorithm that attempts to select a 
collision-free, natural posture. If successful, a 
randomized path planner is invoked to search the 
configuration space (C-space) of the arm, 
modelled as a kinematic chain with seven degrees 
of freedom (DOF). Another potential navigation 
method has been proposed by Suliman et al (2001) 
who use Spatial Cognitive Maps to generate a 
view of an environment from an agent’s point of 
view based on exploration data. To make the 
models held manageable in size, a memory 
degradation technique is used. An area recently 
visited will be recorded in memory in high detail – 
i.e. it will remember a chair is located in a certain 
room in a certain part of the house. If a user 
requests the agent to fetch the chair, the character 
will know exactly where it is and go directly there. 
As time progresses and other areas are explored, 
the memory space will be over-written with new 
information and the characters knowledge of 
where a chair is located will gradually deteriorate. 
After a certain amount of time the character may 
know a chair is located in a certain area of a house, 
but not exactly which room it is in, and so a degree 
of exploitation will be required. This type of 
system may be more applicable to computer game 
systems for the production of human like 
behaviour, although the technique may be 
applicable in this case due to the optimisation of 
machine resources. 
 
OBJECT INTERACTION 
 
Once a character has reached its desired location 
and object, methods are required to interact with 
it. It could be possible to model all interactions as 
a set of intentions in a BDI architecture, however, 
it is possible to abstract these actions using the 
Smart Object approach. This technique allows 
objects to encapsulate information about 
themselves such as what task can be performed 
with them, and how they are to be interacted with. 
Using these objects, characters will be able to 
sense what is available in the environment, and 
form plans to achieve goal at a comparatively high 
level, negating the need for a scenario to be over 
programmed. Goncalves (2001) outline an 
integrated framework approach in which local 
perception and close manipulation skills are used 
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in conjunction with a high-level behavioural 
interface based on the smart object approach as 
support for a virtual agent to perform autonomous 
tasks. In their model sub-tasks are defined by 
scripts that the agent can perform. Information 
provided by low-level sensing mechanisms is used 
to construct a set of local perceptual features at 
run-time to target potential objects. Once objects 
are activated, based on their interactivity 
information and on the current task script, the 
agent can change its behaviour according to its 
mission goal defined in a global plan script. This 
allows the abstraction of the mechanism to link 
individual perceptions to actions. As a practical 
result virtual agents are capable of acting with 
more autonomy, enhancing their performance. 
 
Each object contains information such as 
geometry, interactions that can be performed, 
parts, movements, grasp points, functionality etc. 
Interaction is defined by simple scripts which 
create interaction plans for each possible agent-
object interaction. Primitive actions required by 
both the object and the agent are defined in a 
synchronized way. Agents are given high level 
tasks and can perceive the environment around 
them, and can then decide if the objects are useful 
to achieve these tasks. Agents do not hold a world 
view. Object information is gathered when agent 
approaches an object. Information is abstracted so 
there is a lower computational cost which combats 
the problems that arise when trying to coordinate 
high level goals with low-level actions. 
 
CONCLUSIONS AND FUTURE WORK 
 
We have now identified the basic tools and 
architectures that are required to produce a system 
for the production of life-like behaviour. These 
need to be further evaluated so a decision can be 
reached as to the most appropriate for the crime 
scene reconstruction application. Work will then 
be initiated for the implementation of the proposed 
architecture. Work has already been completed on 
the implemented of a path planning algorithm to 
allow the discovery of optimal paths in known 
environments. The next stage will be to implement 
a method for an agent to build knowledge of 
unseen environments by exploration to create a 
cognitive map. We will then integrate these tools 
into a framework to allow for deliberative and 
reactive behaviour to be incorporated using 

emotion, reinforcement learning and memory 
degradation. Future work will include the 
investigation of the possibility of incorporating 
Natural Language Understanding techniques to 
allow for human computer interaction to build up 
crime events based on description. 
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ABSTRACT  We create an artificial game environment 
in which the signal from a human player can be sensed by 
an AI in one of 10 sensory channels. However the human 
can disguise his signal, effectively by splitting the signal 
between the 10 sensory channels and then corrupting it 
with high amplitude noise. We show that the technique of 
Fast Independent Component Analysis can overcome this 
signal and illustrate a small game in which the human can 
adapt his camouflage while the AI searches for the hidden 
signal. 
 
INTRODUCTION 
 

There has been increasing interest in using modern 
artificial intelligence techniques to make computer 
opponents (the AIs) truly intelligent. Modern artificial 
intelligence is based on distributed techniques which tend 
to be data driven such as artificial neural networks (ANNs) 
or genetic algorithms. These are often characterized as 
being adaptive: the parameters in the methods change 
often on-line in a manner dictated by the data. Most 
attempts to use ANNs have concentrated on supervised 
learning [Champandard, 2004]. However, true human 
intelligence is unsupervised or perhaps we should 
describe it as self-supervised: we self-organise our 
knowledge adaptively without the aid of an external 
prompt. The few attempts to use unsupervised artificial 
neural networks have tended to concentrate on varieties of 
competitive learning, particularly Kohonen’s Self-
organising Map (e.g. [Kohonen, 1995, McGlinchey, 
2003]). 

 
There is a second strand of unsupervised learning 

based on projections of data sets. Many of these are based 
on extensions of Principal Component Analysis [Fyfe, 
1995] such as Exploratory Projection Pursuit [Fyfe and 
Baddeley, 1995] and Factor Analysis [Charles and Fyfe, 
1998]. To the author’s knowledge, the current paper is the 
first attempt to apply a neural network projection 
technique to game playing by an AI. We set up a situation 
in which a human player can be sensed by the AI through 
one of 10 sensory channels. However the human player is 
allowed to camouflage his signal to attempt to beat the AI. 
The AI uses the new technique of Independent 
Component Analysis [Girolami and Fyfe, 1997] to 
overcome the camouflage. 

 
 

 
 
INDEPENDENT COMPONENT ANALYSIS 

 
Independent Component Analysis is often thought of 

as an extension of Principal Component Analysis: it is 
also a projective method which attempts to identify the 
independent components of a signal. A typical problem is 
the “blind separation of sources” such as in the “cocktail 
party problem” in which there are a number of 
simultaneous speakers each of whose conversations we 
wish to identify separately. The linear problem has been 
largely solved: let there be n different sources, s1,…,sn 
mixed with a square mixing matrix, A. Then the received 
signal is an n-dimensional vector x=(x1,…,xn) so that 
x=As. The ICA method finds solutions y1,…,yn so that the 
y’s are equal to the original sources, s1,…,sn in some order. 
There is a further ambiguity in that the magnitude of the 
original signals cannot be determined unless we know 
something about the mixing matrix A. 

In games in which speed is of the essence, we need a 
fast method for solving this and so we use Hyvarinen’s 
FastICA method to find a separating matrix B. This 
method is defined as [Hyvarinen et al, 2001, page 210] 

1. Center the data to make it zero mean. 
2. Choose an initial (e.g. random) sparating matrix 

B. Choose initial values of γi, i=1,…,n either 
randomly or using prior information. Choose the 
learning rates µ and µγ. 

3. Compute y=Bx 
4. If the nonlinearities are not fixed a priori: 

a. Update γi=(1-µγ)γi+µγE{-tanh(yi)yi +(1-
tanh(yi)2)} where E() is the expectation 
operator. 

b. If γi>0, gi=-2tanh(yi) else gi=tanh(yi)- yi 
5. Update the separating matrix by 

B← B + µ[I+g(y)yT]B where 
g(y)={g(y1),g(y2),…,g(yn)} 

     6. if not converged, go back to step 3. 
 

PROOF OF CONCEPT 
 

We may apply this method to identification of a signal 
in a very noisy environment. We have modelled the 
situation in which an attacker is approaching within an 
extremely noisy environment. The method of transport of 
the attacker is not known a priori and the signal which is 
received by the AI may be disguised by the attacker. The 
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AI must identify the approach of the attacker within this 
noisy environment. We create a system in which the AI 
has 10 sensors corresponding to 10 channels with which 
to identify the attacker but  

1. The environment is extremely noisy. We add noise 
from a zero mean, unit variance Gaussian 
distribution to each sensor independently at each 
time instant. 

2. The attacker can choose to disguise the channel 
which he is using by employing any linear mixing 
matrix to his signal.  So, for example if he is using 
channel 1, his signal should be (1,0,…,0) but in 
practice can appear to the AI as e.g. 
(0.37,0.41,0.21,-0.64,0.88,-0.13,0.55,-0.45,-
0.76,0.43). 

The AI must identify the signal quickly and accurately 
recovering the sensory inputs. 
The sensors and signals can be of any type, however for 
the purposes of this paper we have created a visual signal. 
Each sensor operates on a 10X10 grid; the signal should 
be seen on a single channel: Figure 1 is deemed to be the 
signal representing a spaceship. Figure 2 shows an 
example of one of the other nine channels; all are merely 
noise. However the opponent is allowed to disguise the 
signal. For the purposes of this demonstration, we 
randomly mixed the signal and the 9 noise inputs to get 
10 mixtures which are shown in Figure 3. It is difficult 
(we believe impossible) to identify the spaceship in any of 
these. 

 
Figure 1 The spaceship to be identified.  

 

 

.Figure 2. One of the noise signals which were mixed with 
the spaceship. 

 

 

 

 

 
Figure 3. The 10 mixtures containing the spaceship and 
the 9 noise mixtures          
. 
 

  
Figure 4. The recovered spaceship 
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Figure 5. The method has attempted to identify 4 
independent components (the top one is the spaceship) 
before acknowledging that there is no other signal in the 
mixture. 
 
In Figure 4 we show the recovered spaceship. i.e. the 
method has identified the correct demixing matrix which 
will reveal the spaceship exactly. We note that it actually 
appears as a negative. This is an innate ambiguity in the 
problem: if we multiply one signal by -1 and the 
corresponding column of the mixing matrix A by -1, we 
get exactly the same mixture: we cannot tell whether we 
are recovering si or –si.   
 
The method can be extended to deal with up to the same 
number of opponents as there are sensors; in the above 
scenario, we could have up to 10 opponents being 
identified at any one time. In Figure 5, we show the 
results of the same experiment (with a single signal) when 
we allow FastICA to search for 10 signals. The elements 
of the recovered y’s are now spread out as 100 
dimensional vector. The top vector corresponds to the 
signal. The next three are due to FastICA finding some 
structure in the data which exists purely because of the 
limited number of samples. We can see that the remaining 
6 attempts remain close to 0 and no structure of any type 
has been found. 
 
The method is best introduced in a game in which the 
opponent has the option of changing his camouflage 
dynamically while the AI (using FastICA) must track the 
changes. It is possible to seed the FastICA method to use 
the previous search results as the starting position for the 
new search, however this gives too much advantage to the 
AI with the FastICA method. A more entertaining 
alternative is to start from scratch each time so that the 
FastICA method has to work harder to find the signal: this 
results in occasional failures so that its opponent’s 
camouflage gains the upper hand for a short spell which 
means that the AI is blind for a spell. Occasionally too a 

less than 100% accurate demixing matrix B is found 
giving an estimate of the signal such as shown in Figure 6. 

 
Figure 6. The camouflage is overcome but the de-mixing 
is not done perfectly. 
 
THE GAME 
 
The game is essentially 10 dimensional hide and seek. 

 
Figure 7. A 3 dimensional illustration. 
 
Since 10 dimensions are rather difficult to visualise, we 
illustrate the basic idea in three dimensions in Figure 7. 
We split each dimension into 2 and label the halves 0 and 
1. Thus the box in the face closest to the viewer in the top 
right corner is labelled (across, up, in)=(1,1,0). We are 
going to allow only movement into adjacent boxes and so 
from (1,1,0) we can only move to (1,0,0), (1,1,1) or 
(0,1,0). In our 10 dimensional hide and seek, we may 
correspondingly move directly from any 10 dimensional 
box to only 10 of the possible 210=1024 boxes.  
 
Various treasures are hidden in 8 of the boxes in this 10 
dimensional space. This space is guarded by a fierce AI 
which searches the boxes continually for intruders. 
However the AI itself is limited by the movement 
restriction – it too can only move from the box it currently 
occupies into one of the 10 adjacent boxes. However if it 
gets to within a Hamming distance of 3 of the intruder, it 
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can smell the intruder and knows that an intruder is near. 
It will then search the nearby area getting positive and 
negative feedback as it gets closer or further away from 
the intruder. The human intruder also has an invisibility 
cloak – a linear mixing matrix as before – which he can 
use to try to escape detection but both this and the AI’s 
FastICA method come with costs. Since the FastICA is 
not perfect, there is a possibility that even if the AI gets to 
the human’s box, it will not be able to detect the human. 
The human is given information as to which box the AI is 
in and which he is in (both coded in 1s and 0s) at each 
instant in time. 
 
The game comes with various levels of difficulty – we 
can increase the dimensionality of the space or we can 
increase the granularity of the boxes e.g. divide each 
dimension into  three boxes but note that 310 = 59049 and 
that boxes may be adjacent to up to 20 others. This makes 
the game more interesting but much more difficult. 
 
 
 
CONCLUSION 
 
We began with the observation that true intelligence 
requires adaptation: it is impossible in life to determine 
each situation in advance and so living creatures have to 
be adaptable if they are to survive. Thus we wish to build 
this into our AIs with a view to making our computer 
games more enjoyable. We have illustrated how an 
unsupervised artificial neural network technique, 
Independent Component Analysis, can be used in a 
simple artificial game in which the human player is 
allowed to disguise his signal while the AI attempts to 
overcome the camouflage.  
 
We can also state that, with the FastICA method, the AI’s 
responses are real-time responses: the human is aware of 
very little pausing in the game itself. We note that this is 
not the case if we use neural network (e.g. [Girolami and 
Fyfe, 1997]) methods. 
 
 This paper is very much a proof-of-concept paper - we 
have shown how the technique can be used - but the next 
stage is more important: we now require to show that the 
technique can be incorporated into an existing computer 
game so that it may be used in the armoury of techniques 
which will be necessary to endow our AIs with true 
intelligence. 
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ABSTRACT 
 
In this paper we investigate different methods and 
algorithms from artificial intelligence that can be used 
for achieving efficient path finding within games and 
virtual environments. Path finding is a computationally 
expensive problem that is solved by searching. We 
investigate different optimization techniques and further 
develop techniques which can be incorporated within the 
existing algorithms to make path finding for 2D static 
environments faster, computationally less expensive and 
requiring minimum use of resources.  
 
INTRODUCTION 
 
Often games have characters that are controlled by 
players. Whenever a player issues a command, it is 
intended they behave intelligently in a manner consistent 
with their roles. This may include carrying a box, 
painting a wall, etc. But to do these tasks, they have to 
move from one place to another. This requires a realistic 
looking path between the two locations. As the number 
of characters increases, it may require multiple paths 
simultaneously. In general, human movement is an 
artificial intelligence (AI) or robotics problem for which 
there exists no general solution and therefore the aim of 
this study is to investigate different methods and 
algorithms from the artificial intelligence which can be 
used for efficient path finding and to develop a tool to 
find an optimal solution to the path finding problem. 
 
In modern games, most of the resources are used in the 
enhancement of graphics and physics and very few are 
available for AI. Therefore, it is assumed that very 
limited resources are available (with respect to memory 
and processing) for finding the paths in real time. 
Further, we assume a 2D environment so that much of 
the work can be focused on development of efficient 
algorithm rather than dealing with the complexities 
associated with the 3D environments.  
 
The efficiency of path finding within an environment 
mainly depends upon the complexity of the environment. 
By complexity, we mean how big the environment is, 
whether it is static or dynamic and how many and how 
large are the obstacles within the environment. Further, 
these obstacles can also be static or dynamic. Therefore 
to make things simple, we restrict our study to static 
environments that has large obstacles, small obstacles 

and no obstacles. Dynamic environments would be 
considered in future as an extension to this study. 
 
BACKGROUND 
 
Path finding is an AI robotics problem that cannot be 
solved without searching. The main problem in path 
finding is the obstacle avoidance. One of the ways to 
approach this problem is by ignoring the obstacles until 
one encounters it (Stout, 1996). This is a simple step-
taking algorithm that requires units’ current position and 
its destination position to evaluate a direction vector and 
information as to whether the units neighbouring region 
is clear or blocked. This algorithm finds the path along 
with the movement but the paths generated by this are 
not realistic, computationally expensive, requires lot of 
memory. Therefore it becomes necessary to have entire 
knowledge of path before the movement is applied. This 
is also necessary in the case where there are weighted 
regions and finding the cheapest path is important. 
 
Various algorithms exist from the conventional AI that 
can be used for path searching before its execution. 
These algorithms are presented in terms of changes in 
the state or traversal of nodes in a graph or a tree. Russell 
et at (1995) suggested these algorithms and broadly 
classified them in two genres. One genre is of 
uninformed search algorithms such as Breadth First 
Search (BFS), Bidirectional BFS, Depth First Search 
(DFS), Iterative Deepening DFS, etc. These algorithms 
have no additional information beyond the problem 
definition and they keep on generating neighbouring 
states or nodes blindly unless they find the goal. These 
algorithms do not consider weighted regions, are 
computationally expensive, requires more memory and 
may not yield paths in real time. However, they are 
simple to implement. 
 
The other genre of algorithms uses problem specific 
knowledge or heuristics to find efficient solution. These 
include algorithms such as Dijkstra's algorithm, Best 
First Search (BeFS), A-Star (A*). Both the Dijkstra's and 
the BeFS finds an efficient and optimal path when there 
are no obstacles within the environment but in an 
environment with obstacles, the former yields a shortest 
path but is computationally expensive whereas the later 
works less but generates non-optimal paths. The A* on 
the other hand, combines the best of both the algorithms 
and guarantees to yield efficient and shortest path. It is 
probably the best choice for path finding since it can be 
significantly faster, flexible and can be used in wide 
range of contexts. 
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Typically, the A* algorithm traverses within an 
environment by creating nodes that corresponds to 
various positions it explores. These nodes not only hold 
a location but also have three attributes associated, as 
suggested by Matthews (2002), which are as follows: 
 
1. Goal Value (g): This represents cost to get from 

starting node to this node. This is the exact cost that 
depends on the environment. 

2. Heuristic Value (h): This represents estimated cost 
from this node to the goal node. 

3. Fitness Value (f): This is the sum of g and h values. 
This represents the best guess for the cost of this path 
going through this node. The lower the value of f, the 
better is the path.  
 

The g value represents the path from start that is 
supposed to minimise any cost related factor such as 
distance travelled, time of traversal, fuel consumed, etc. 
Other factors can also be added such as penalties for 
passing through undesirable areas, bonuses for passing 
through desirable areas, aesthetic considerations such as 
diagonal moves are more expensive than orthogonal 
moves, etc. 
 
On the other hand, the h value gives an estimate of cost 
to the goal. It is the most important factor for efficiently 
working of the A*. A bad heuristic can slow down A* 
and/ or produce bad looking paths. Generally, a heuristic 
is an under-estimate of the actual cost to goal so that A* 
always generates shortest paths but under-estimating the 
heuristic too much is also not beneficial to A* as it will 
allow the A* to look for more and more better paths and 
would take longer time to return the path. 
 
The A* extracts the node which has minimum f value 
and uses two lists, namely an Open and a Closed, for 
unexamined and examined nodes respectively. These 
lists forms the basis for the A* and their associated data 
structures forms how efficient the A* works. 
 
The implementation of A* in games depends on the 
nature of the game, the representation of the world, 
information about the neighbours of each node, the cost 
functions (including heuristics) and speed and memory 
issues associated with path finding. No matter how the 
world looks like, its background has to be quantized so 
that A* gets the search space to search. Stout (2000) 
suggested various ways to quantize the world such as 
Rectangular Grids, Quad Trees, Convex Polygons, 
Navigation Meshes, etc. Most of these representations 
require great deal of interaction with artists and 
modellers of the world. For 2D environments, 
rectangular grids offer an easy way of representing the 
search space by partitioning into regular grid of squares. 
This also allows an efficient access of neighbouring 
nodes to speed up searching. For a typical node at 
location (x,y), a neighbour can simply be generated at 
location (x+1,y), (x,y+1), (x+1,y+1), (x-1,y), etc. For 
other techniques, a lookup table is created consisting of 
information about the neighbours for the fast access of 
the locations neighbour. 
 
So far it’s been discussed above that heuristics forms a 
major part in working of an A* but what kind of 
heuristic to be used is another issue. The type of 

heuristics used mostly depends on the search space 
representations and speed and accuracy issues associated 
with the path finding. Patel (2001) has suggested some 
heuristics such as Manhattan Distance, Diagonal 
Distance, Straight Line Distance as possible heuristic 
choices that can be used and tweaked on rectangular 
grids to the needs of ones game. So far, Manhattan 
Distance heuristic is the best underestimate of all. 
 
Although A* is the best search algorithm, it should be 
used wisely within a game as it may lead to wasting of 
resources. This is typically the case when there are large 
environments within a game that leads to generation of 
hundreds and thousands of nodes in Open and Closed 
lists. This not only requires excessive amount of memory 
but also requires too much of processing time which a 
game cannot afford. Apart from that, there could be a 
situation when no possible path exists, thus resulting the 
A* to be most inefficient as it examines every possible 
location from the start before determining that it is 
impossible to get to the goal. Moreover, paths generated 
by the A*, although shortest, may not be aesthetically 
good and would possibly need to be straightened up, 
even making them smoother and direct. Thus to 
overcome the weaknesses of A* and to have the optimal 
use of resources, it requires optimizations on the A* and 
the path finding. These are discussed in detail as they are 
dealt in this study. 
 
THE PATH FINDER TOOL 
 
The Initial Framework 
 
The above research has brought solid understanding of 
what is required to develop the tool. We first develop an 
application framework using Microsoft Foundation 
Classes (MFC) and OpenGL graphics library using C++. 
MFC is the obvious choice as it provides a good 
interface to build graphical user interfaces (GUI) under 
Windows environment while OpenGL provides a clean 
and user-friendly graphics application programmer 
interface (API). The development took place within 
Microsoft Visual Studio .net environment that provide 
ample tools for debugging and object-oriented 
programming. 
 
We base our initial design on a design pattern of Model-
View-Controller (MVC). The MVC has been proven to 
be most powerful architecture for GUI. It separates the 
modelling of the domain, the presentation, and the 
actions based on user input into three classes (Burbeck, 
1992). The figure 1 below represents the relationship 
between these three classes namely the model, the view 
and the controller. 

 
Figure 1: Model-View-Controller pattern 
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We decide to use MVC pattern as it will allow adding 
new functionality in the future without making any 
drastic changes. These additions may include creation of 
multiple views and controllers and maintaining 
synchronization of the views whenever a model changes, 
addition of models of different types with separate views 
and/ or controllers for these models, porting of existing 
work to another platform, etc. 
 
The A* Algorithm 
 
The A* forms the core of the study and is much like a 
custom building i.e. along with the algorithm, it needs 
information regarding memory (storage), environment 
(search space) and start and end locations. As discussed, 
we partitioned the space into rectangular grid with same 
height and width as the size of the environment. This 
partitioning is carried out in two levels of inheritance as 
suggested by Higgins (2002). This has two significant 
advantages. Firstly, a generic nature of path finding 
engine can be build to support different environments 
with same basic functionality. Secondly, this technique 
emphasise the use of templates instead of base classes 
and virtual functions, which significantly reduces the 
assembly overhead associated with the virtual functions.  
 
Further, A* requires some information from the grid that 
whether a particular grid square is passable or 
obstructed? In addition, it needs information as to 
whether a particular node is in Open or Closed list? This 
information needs to be passed to A* as quickly as 
possible and at the same time it should be stored 
efficiently. We approached this by using an unsigned 
char data structure that stores these different states as 
status flags. Figure 2 shows C/ C++ representation of the 
status flags. 
 

 
Figure 2: A* states as status flags 
 
By using single variable, it requires 1 byte per A* node 
to store its state information which can be retrieved by 
simple array as a lookup. The size of the array is made to 
the maximum size of the search space and storage and 
retrieval of information is made by efficient use of 
bitwise operators. With this, a node can be in more than 
one state at one time. This not only reduces memory 
requirements but also allows path-finding data to be 
made independent of the search space. This allows path 
finding for multiple characters to be done 
simultaneously. 
 

The A* uses this node information in order to keep track 
of nodes presence in either Open or Closed list. For this, 
efficient data structures are need for both the lists. With 
above status flags, no additional data structure is used for 
Closed list as its functionality is achieved by simply 
updating the status flags. However, main task of A* lies 
in the working of Open list. Typically, Open list 
operation is extraction from a sorted list, insertion into a 
sorted list, updating the cost of a node in the list and 
resorting the list, and determining whether it is empty or 
not. Patel (2001) suggested different data structures that 
can be used for Open list and recommended the use of 
priority queues as the efficient data structure. Although, 
priority queues can be implemented by standard template 
library (STL) as suggested by Nelson (1996), its STL 
implementation is limited and does not perform all Open 
list operations. Instead, we approached to implement 
priority queues as binary heaps and used STL heap 
operations on STL vector container. A binary heap is a 
sorted tree in which a parent always has a value lower 
than its children. However there is no ordering among 
the siblings and so it is not a completely ordered tree but 
is sufficient for A* to perform the insertions and 
extractions in only O(log n) (Lester, 2003). Figure 3 and 
4 shows a typical case of binary heap in a tree and array 
(STL vector) representation, respectively. 

 
Figure 3: Binary heaps tree representation 
 

igure 4: Array representation of binary heap of figure 3 

emory Management 

* requires memory for extraction of nodes and so it is 

or A*, it is a good way to manage nodes because A* 

 
F
 
M
 
A
important to have a memory manager which provides an 
efficient way of dynamic memory allocation for A* 
nodes. We implement this by using the buffering 
technique (Figure 5). In buffering, a piece of memory is 
kept aside by the system to be used for dedicated task. 
Here we reserve this for the storage of A* nodes. 
 
F
requires lot of nodes to progress its search. Initially, 
when a request is made, a piece of memory is dedicated 
before A* starts execution. During its course of 
execution, if all the memory gets exhausted, a new buffer 
is created to progress its search. The size of this buffer is 
allowed to change so that less memory is wasted. This 
size mainly depends on the complexity of the 
environment and therefore requires tuning before it is 
used in ones application. 
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This design has significant advantage even though 

igure 5: Buffering for memory management 

osts and Heuristics 

his forms the main part of research within this study. 

or rectangular grids, we assume movement in all 

igure 6: A* node with its neighbours and their 

itially the Manhattan Distance heuristic is used as it is 

 
igure 7: Manhattan distance heuristic 

he Manhattan distance heuristic generates optimal path 

igure 8: Overestimate heuristic cost. 

he value of 15 as a scale factor is determined by 

 Sample Test 

e checked the developed heuristic on predefined set of 

learly from figures 9 and 10, the paths generated are 

sometimes-extra memory is allocated which increases 
the memory requirement. Firstly, this results in better use 
of memory with respect to fragmentation. If smaller 
nodes are created and deleted on the fly, it leads to 
fragments in the memory that would make this piece of 
memory unsuitable for other purposes. Secondly, 
creation and deletion of new nodes at run time requires 
same time as creating one large chunk of memory. If 
smaller nodes were created at run time then this would 
hit the performance. 
 

 
F
 
C
 
T
A* requires two cost functions to proceed its search. 
These are the actual cost (g) and the heuristic cost (h), 
which depends on the environment and search space 
representation. 
 
F
possible directions and therefore each A* node has a 
maximum of eight neighbours (four diagonal and four 
orthogonal) (figure 6). For A* to generate straight paths, 
a penalty is added for a movement towards the diagonal 
neighbour as shown in figure 6. However, this cost is 
scaled by a factor of 10 in order to avoid any floating 
point calculations to speed up searching within the A*. 
 

 
F
respective costs of movement. 
 
In
supposedly the best underestimate heuristic for 
rectangular grids (Patel, 2001). The underestimated 
Manhattan distance simply adds the absolute values of 

the difference of their respective X and Y coordinates 
(figure 7). This is further scaled by factor of 10 in order 
to avoid floating point calculations and to make it 
consistent with the scale of actual cost. 

F
 
T
in real time. However, this is true in the case where there 
are no or very few static obstacles. As the size and the 
number of obstacles increases, A* not only spends more 
time on searching but also requires more memory for the 
nodes as it needs more nodes to find a path. Thus in 
order to reduce the time and memory requirements when 
finding paths with obstacles, Rabin (2000) suggested an 
overestimation in heuristics such that sub optimal 
realistic looking path are generated in a speed in 
consistent with a regular Manhattan distance heuristic 
function with no obstacles. This requires combining of 
an underestimated Manhattan distance heuristic along 
with an overestimated heuristic. However overestimation 
is a research issue and no general solution exists at 
present. We approached this problem by perceiving ideas 
from Patel (2001) diagonal movement cost along with lot 
of experimentation and have come up with an 
overestimate as shown in figure 8. 

 
F
 
T
constantly tuning the heuristic on a series of data set. 
Initially A* algorithm runs on the Manhattan distance 
heuristic till it encounters an obstacle and then it runs on 
the overestimated heuristic. This not only has significant 
performance improvement both in terms of memory and 
the speed of path finding but also results in realistic and 
optimal looking paths as generated with Manhattan 
distance heuristic only. A sample test of this is shown in 
the following section. 
 
A
 
W
start and end locations in an environment which has a 
large static obstacle. The following figures (9 and 10) 
show and compare the type of path generated by using 
different heuristic functions for same start and end 
location.  
 
C
nearly the same. The Manhattan distance heuristic makes 
A* to search more number of nodes in order to generate 
the shortest path. This is evident from figure 9 which 
shows the nodes searched in different colour from the 
original grid colour. Also, this requires 120 update 
cycles of the A* algorithm. 
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igure 9: Path finding example using Manhattan distance F
heuristic. (Optimal path) 
 

 
 

igure 10: Path finding example using Manhattan 

n the other hand, the overestimated heuristic generates 

ONCLUSION AND FUTURE WORK 

 this paper we presented a build up to an efficient tool 

e have worked with fixed cost environment at present 

e incorporated lot of optimisations while developing 

 summary, much remains to be done in the field of 
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ABSTRACT 
 
It is proposed that the dice game of Perudo is a more suitable test platform for the 
development of Artificial Intelligence techniques than traditional perfect information games 
such as chess. The game and the fundamental principles will be outlined and it is suggested 
that the unusually high importance of deception makes it impossible for a machine to play 
expertly without adopting a sophisticated opponent model. A web-based playing system and 
the development of artificial players with a DLL is described.  

 
 
 
INTRODUCTION 
 
Games have traditionally been used as a test bed 
for the principles of artificial intelligence (AI) 
because of the belief that lessons learnt from the 
exploration of a micro-world are then 
transferable to the real world.  Chess was the 
original choice of game platform when the 
discipline was at a foundational stage (Shannon 
1950, Turing 1953). However chess is a perfect 
information game and solving the game is 
essentially a formal task. Whilst the search 
space is large, the game may be played 
effectively by applying brute-force linear 
computing methods alone. In recent years the 
objective of game-playing programs has been to 
beat the best human player by whatever means 
possible and, largely because of the dramatic 
advances in computing power, was achieved in 
1997 by the program ‘Deep Blue’ beating the 
World Champion Gary Kasparov (Seirawan et 
al. 1997).  
 
The power of effective search methods coupled 
with immense hardware clout is evidenced by 
this success - little or no use was made of  AI 
techniques: in fact, seven years on, the current 
top program, Shredder 7.04 with an Elo rating 
of 2810 (comparable to that of Kasparov), still 
makes very limited use of AI.   

 
The legacy of the association between AI and 
chess, though not what was originally 
envisaged, is nonetheless significant. Highly 
sophisticated and effective search algorithms 
have been developed that are now universally 
applicable. There is also a valuable lesson to be 
gained from the entire exercise by AI 
practitioners: once economic factors become 
significant, AI will not be adopted for its own 
sake – it must confer a performance advantage. 
 
What went wrong with the notion of chess as a 
development platform? Do games now have any 
role to play in AI development?  We now 
understand that ‘Intelligence’ is a combination 
of many separate elements that have still to be 
fully understood, far less artificially reproduced 
and brought together to form coherent systems 
that can perform mundane tasks to a reliable 
level. It is this ability to perform mundane tasks 
that is the real measure of AI and the problem 
with chess is that it does not demand a 
simulation of mundane skills by the machine 
(although the human uses such concepts to 
constrain the search space as an alternative to a 
complete tree exploration). 
 
Figure 1 shows a problem that clearly illustrates 
the huge gulf between the human and the 
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machine in the context of intelligence in spite of 
the chess-playing success of the machine.  
 

 
 
Figure 1  White to play and checkmate in half a move (WB 
on e5, WN on f6, WK on h5 and BK on h8). 
 
The objective is for White to checkmate the 
black king in half a move. No existing program 
can solve this puzzle because the normal 
constraints are violated. However, the human is 
not put off and may reason as follows: A move 
consists of two parts, the lifting of a piece and 
then its placement on a new square; slightly 
lifting the Knight off its current square therefore 
constitutes half a move. The Knight still covers 
the squares g8 and h7 but now the Bishop can 
‘see’ through to the black King and deliver 
checkmate along the exposed diagonal. 
 
Games can still have an important role in the 
development of AI, but the game must be 
carefully selected. Nareyek  (2004a and 2004b)  
has suggested that Internet multiplayer games 
are suitable for AI development whilst 
questioning the benefits of some traditional 
game platforms.  The game of Go has also been 
proposed because the size of the search space is 
vastly greater than current computers can 
manage (Cant et al. 2001). 
 
Bridge and poker have been exploited with 
significant success because they are incomplete 
knowledge games that involve risk 
management, require multiple competing agents 
and use deception (unreliable information). 
However both bridge and poker have relatively 
complex rules and involve both mundane 
abilities and expert skills (Schaeffer and Japp 
van den Kerik 2002, Billings et al. 1998). 
Although many games are now being 
considered as test beds for AI, it is desirable to 
conduct a formal analysis of games to extract 
general and specific characteristics appropriate 

to AI research. One such analysis (Macleod 
2004a) presented a taxonomy based on the 
suitability of game types for the testing and 
development of artificial entities to perform 
mundane tasks. Games categories were readily 
identified where the benefits of deep search and 
the application of complex pre-defined rules are 
limited. 
 
The dice game of Perudo was identified as 
potentially suitable. The rules can be learnt by 
anyone after witnessing a single game but the 
game is notoriously difficult to play well 
because of the unusual importance of deception.  
Intellectual skills are not essential – normal 
‘human’ behaviour can ensure victory. We will 
consider how Perudo may be used to explore AI 
concepts both at a research and pedagogical 
level. The game structure is so simple that the 
user interface programming overhead is low, 
and an experimenter with limited programming 
time can quickly develop game-playing agents. 
 
 
RULES AND BASIC PLAY 
 
Perudo is a member of a family of related dice 
games with the generic name Bluff of which 
Liar’s Dice is best known. Each variant has its 
own nuances but we actually select a simplified 
rule set and make slight changes to the game 
nomenclature to make the concepts more 
familiar to the non-player. Game play using the 
formal rules is demonstrated with Flash 
animation at http://www.perudo-lejeu.com (in 
French). 
 
Perudo is a dice game for between 2 and 6 
players. Each player starts with a cup and 5 
dice. The dice are shaken in the cup then 
dropped onto the table and hidden from view 
under the now upturned cup. Each player may 
peek at his or her own dice, and then a bidding 
cycle begins. Players estimate or guess the total 
count of a particular dice value when the cups 
are eventually raised and all the dice are 
revealed, then bid accordingly. Each bid must 
exceed the previous, either by a higher count or 
a bigger dice value, or both. Instead of raising, a 
player may instead choose to call. All the dice 
are then revealed, player-by-player. If the 
number of the previous bid was not at least 
reached, the last bidder loses a die; otherwise 
the caller loses a die. The last person with a die 
or dice is the winner. 
 
There are some minor complications. 1’s are 
wild and will represent the value bid when the 
dice are revealed; when any player goes from 
two to one dice, a palifico round begins – the 
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starting dice value cannot be altered by 
subsequent bids, only the count. This gives the 
player with the single remaining die an 
important advantage for that round only. 
 
The game strategy is relatively straightforward. 
Probability is an important constraint. For 
example, with 6 players there are initially 30 
dice. The most likely distribution of any dice 
value is a binomial centred on 10. However, in 
most games there will be 13 of some particular 
number. Bids should give a clue about 
unbalanced distributions … but players can lie.  
Deception (bluff) and aggression turn out to be 
the most important elements in the game. Over-
reliance on probability will almost certainly 
result in loss. 
 
Players can form coalitions through friendly co-
operative bidding to ‘gang-up’ on a stronger 
player. Players often play intuitively and rarely 
perform a search that is greater than 3 ply. The 
tactics alter when player strategies become 
apparent as the rounds progress. It is important 
to respond to the other players’ strategy – in 
formal terms, accurate opponent modelling is 
essential. 
 
To illustrate the complexity of the game and its 
relevance to AI, we can consider the thought 
process as we go through a simulated game. 
 
Consider a scenario with six players 
(reconstructed from the post-mortem analysis of 
an actual game). David is to go first (Figure 2): 
 
 

 
 
 “I could go ten fours, but the bidding may come back 
round to me as twelve fours, which would be tricky. I 
really want to keep my fours as a saving bid in case 
the bid comes back round to me again. In any case, I 
want to squeeze James because he annoyed me last 
game. I could try ten sixes. That will force eleven 
something (he is unlikely to call me with less than a 
50% probability of success). Ann is cautious and may 
call 11 something. Yes, I bid ten sixes.” 
 

Figure 2   What David, to bid, can see and his thoughts. 
 

  

Figure 3 illustrates the James’s response to the 
first bid. 
 
 

 
 
“Ten sixes. Annoying. I have two sixes in my hand, 
but he’s probably bluffing – I cannot go eleven sixes 
because Ann will almost certainly call me. She is 
cautious and will be reluctant to go twelve anything. 
If I call, David will gloat if there really are ten sixes. 
However, I have three twos. If David is bluffing, he is 
more likely to have twos. Eleven twos is also 
reasonable because it does not force Ann up to 
twelve. OK, eleven twos.” 
 
Figure 3   James’s response to David’s opening bid of ten 

sixes. 
  
 
Ann’s response is shown in Figure 4.  
 
 

 
 
“Eleven twos. I think I see what’s going on.  David is 
annoyed and probably has no sixes. James doesn’t 
have sixes either. Although I have three sixes, a bid of 
eleven sixes is far too risky. James probably has four 
twos – he wouldn’t bluff me because I will find out 
when the round is called. I am then more likely to call 
him in future. I can’t really call eleven two’s or go 
eleven of anything else, but twelve two’s is probably 
safe. Carol thinks I am cautious and will reason that 
James and I have seven two’s between us and will 
probably raise the bid if she has any twos at all. 
Twelve twos.” 

 
Figure 4   Ann’s response to James’s eleven twos. 

  
 
The scenario clearly illustrates the mixture of 
accurate and faulty lines of thought that makes 
the game so difficult to play.  The game is 
certainly skilful (as initial tests with artificial 
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players has demonstrated), and would be 
enormously difficult for a machine to play well 
without a battery of AI features.  The overriding 
importance of player modelling suggests that 
the optimisation of deception cannot be 
achieved by the simple application of Game 
Theory with its assumption of rationality. For 
this reasons it is proposed that the game is 
worthy of detailed consideration for potential 
use in AI research. 
 
METHOD OF IMPLEMENTATION 
 
For research purposes, the primary requirement 
is a web-based mechanism that will permit a 
large number of simultaneous games to be 
played.  A development environment should be 
made available to students, hobbyists or even 
serious practitioners to enable them to build 
artificial players and automatically join them 
into games. The web site administration must 
utilise a good rating system so that the 
performance of a constructed agent can be 
accurately and reproducibly quantified for 
research and learning purposes. The main 
pedagogical benefit is the ability to learn about 
and experiment with AI methods. To help 
evaluate and understand existing and new 
concepts, the experimenter may typically tweak 
the machine algorithm, let the unit play 
continuously for a week (equivalent to about 
500 games) then note the rating level to which 
its performance converges. Further iterations 
may follow. 
 
It is however desirable that the majority of 
players in a game are human and for this reason 
it is important the site attracts as many people as 
possible for casual games.  The design and 
structure of the game engine is therefore of 
critical importance.   
 
The system has already undergone two years of 
development. The initial implementation was a 
socket level p2p system with a coordination 
server (built with C#.NET) with XML data 
packets and running on the University intranet. 
Though extremely effective, data security and 
the firewall meant the general public could not 
access the server.  An additional problem was 
that a program download and installation was 
required – this tends to discourage casual users.  
 
The second implementation was as an ASP 
website with the server managing all the game 
processing. This suffered from the known 
problems with all such systems: the server was 
quickly saturated by requests and failed to 
respond above a limit of one hundred 
simultaneous games;  a client-pull mechanism is 

needed to enable the client to check the progress 
whilst waiting for a bid - this resulted in a rather 
annoying flicker; cookies needed to be enabled 
– may users disable cookies. 
 
The current, and preferred implementation is a 
modification of the ASP system. The server 
maintains the global variables that represent 
active games. By calling one of a set of ASP 
pages (effectively functions) the client may 
modify the variables, for example by posting a 
bid, or reading the game status. Server 
processing is therefore much reduced. Data is 
conveyed back to the client as plain text in the 
variable pair format used by Flash e.g. 
“?Variable1=5?Variable2=3”. The client 
program is organised as a finite state machine, 
with progression through the states achieved by 
accessing the global array and the central player 
database using thirty-three ASP functions. Data 
is managed on the client side by a Flash 
program that interprets the data and displays the 
game in an attractive way. Most browsers 
include Flash, hence the game can be played 
simply by accessing the server URL. Cookies 
do not need to be enabled, and there is no 
flicker. To play a game, go to 
www.playperudo.com. The site will be active 
from 1st December 2004 – the site is currently 
undergoing a very time-consuming system test. 
 
The same functional effects could also have 
been achieved through a Java implementation, 
however the superior graphical capabilities of 
Flash make it preferable. 
 
Because access to the game functions requires a 
password to maintain game security and 
integrity, developers are encouraged to query 
the server through the protective layer of a DLL. 
The purpose is to protect the scoring system, not 
to hide the operation.  The DLL and sample 
programs can be requested once the site is 
operational. 
 
The development of a web-based game manager 
is a challenge even for a game of this simplicity 
and there are lessons of general educational 
value.  The system development history and the 
operation of the server are described in detail 
elsewhere (Macleod 2004b). The structure is 
applicable to the Internet implementation of a 
number of turn-based games.  
 
CURRECT ACTIVITIES AND FUTURE 
DEVELOPMENTS 
 
Using the DLL, a student will typically develop 
a user interface to play the game prior to 
creating artificial players. Figure 5 shows a 
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typical student interface created with Visual 
Basic 6. 
 

 
 
Figure 5   Typical client Perudo interface produced with the 

DLL. 
 
The importance of the rating system makes it 
subject to extensive investigation. Rating 
systems based on a modification of the chess 
Elo statistical rating system are being evaluated 
but the difficulty is that the playing order cannot 
be ignored. Self-play experiments were 
conducted using artificial players with fixed 
handicaps in each permutation of position. A 
complex empirical relation between player 
separation and influence was revealed, 
suggesting a distance weighting is appropriate.  
 
Experiments on artificial players with 
stereotypical characteristics (probability, 
caution, aggression, truthfulness, random and 
bluff) are continuing but have already 
demonstrated convergence with clear-cut 
performance distinctions. Significant rating 
noise is present and reflects the randomisation 
of the move selection process but has not yet 
revealed the advantage, if any, associated with 
the random dice configuration. It is believed 
that for good human players the dice 
distribution is not particularly significant (if 
players have the same number of dice).   
 
Several AI concepts are being tested using this 
platform: an evolutionary mechanism to 
optimise the probabilistic decision parameters is 
being developed; simple back-propagation 
neural networks are learning the game 
characteristic function; experiments with 
temporal-difference learning have begun; fuzzy 
algorithms are being considered; a game 
theoretic analysis of the game is under way; 
expert systems are being assembled; opponent 
models are being constructed. 
 
In general, the environment makes such 
developments very easy and quick.  Self-play 

experiments (which do not require the server) 
can complete a six-player game in 50 ms using a 
high-spec PC. Over 1,000,000 games a day can 
therefore be played, more than enough to test a 
learning algorithm. 
 
A major tool is being produced for AI 
development. Within a graphical environment, 
developers may drop and connect AI units (e.g. 
Expert System  Module, TD Learning Module, 
SOFM, Opponent Model etc), set properties, 
and connect the composite system to the DLL to 
rapidly build bespoke players.  
 
 
REFERENCES 
 
D.Billings, D. Papp, J. Schaeffer , D. Szafron, “Poker 
as a Testbed for Machine Intelligence Research”, 
Lecture Notes in Artificial Intelligence volume 1418, 
Springer Verlag, Robert Mercer and Eric Neufeld 
(editors), (Proc. 12th Biennial Conference of the 
Canadian Society for Computational Studies of 
Intelligence, AI'98), Vanocuver Canada (1998) 
R. Cant, J. Churchill, D. Al-Dabass, "Using Hard 
And Soft Artificial Intelligence Algorithms To 
Simulate Human Go Playing Techniques", Int. J. of 
Simulation, 2(1), 31-49 (2001) 
A. Macleod, “Games for AI research”, To be 
published (2004a) 
A. Macleod, “The development of a simple turn-
based internet server”, To be published (2004b) 
A. Nareyek, “Computer Games - Boon or Bane for 
AI Research?”, KI 18(1), 43 (2004) 
A. Nareyek, “AI in Computer Games”, ACM Queue 
1, 10 58-65 (2004) 
J. Schaeffer, K. Japp van den Kerik, “Games, 
computers, and artificial intelligence”, Artificial 
Intelligence 134, 1-7 (2002) 
Y. Seirawan,  H.A. Simon, T. Munakata, “The 
implications of Kasparov vs. Deep Blue”,  
Communications of the ACM, 40, Issue 8, 21-25 
(1997) 
C.E. Shannon. “Programming a computer for playing 
chess”, Philosophical Magazine, 41, 265-275 (1950) 
A. Turing, “Chess”, in “Digital Computers Applied to 
Games, of Faster than Thought”, Chapter 25,  ed. B. 
V. Bowden, Pitman, London (1953) 
 
 
ACKNOWLEDGEMENTS 
 
The theoretical aspect of this work was 
supported by the University of the Highlands 
and Islands Sabbatical Scheme and Lews Castle 
College. Western Isles Enterprise provided 
assistance with the practical development of the 
system. 
 

 

in4243
272



WHAT BELIEVABILITY TESTING CAN TELL US 
 
 

Daniel Livingstone and Stephen  J. McGlinchey  
School of Computing 
University of Paisley 

High Street 
Paisley 

PA1 2BE 
Email: {daniel.livingstone, stephen.mcglinchey }@paisley.ac.uk 

 
KEYWORDS 

Believability, AI Evaluation 

ABSTRACT 

A number of recent works on AI for computer 
games have promoted the idea of ‘believable’ 
AI as being desirable. That is, AI that fools 
observers or players into thinking that a 
human, not a machine, is playing the game or 
controlling the characters that a player 
interacts with. This process of testing whether 
or not game players and/or observers believe 
that they are interacting with (or watching 
interactions with) humans not machines we 
term believability testing.  We review this idea 
of believability and show that, despite some 
flaws, believability testing can be useful in 
evaluating and improving AI for computer 
games. 

INTRODUCTION 

In general, game AI is less interested than 
traditional academic AI with recreating 
intelligence, than with creating the appearance 
of intelligence (see, e.g., Rabin 2002). As 
such, when creating machine opponents for 
computer and video games it is not simply 
their ability to challenge players, but to leave 
players with the impression that they have 
been competing against an opponent that 
thinks and acts like another human opponent 
would – in its use of strategy and tactics, in its 
reactions and actions. 

In this regard, game AI is much like a limited 
version of a Turing Test, in that success is 
determined by the ability to deceive people 
into thinking that the machine is human. Or at 
least as a limited version of the conventional 
conception the Turing Test, if not of the 
Imitation Game as specifically posited by 
Turing (Hayes and Ford 1995; Harnad 2000; 
Turing 1950). 

If this is the case, then game AI is perhaps best 
tested by having players and observers 
somehow rate the AI in terms of humanness, 
or to distinguish AI and human players. We 
present a brief review of past work on testing 
and evaluating game AI using these 
approaches , and by conducting our own tests 
on a system developed to automatically create 
human like AI opponents (McGlinchey 2003) 
we report on the value of such approaches. In 
this we consider how such evaluation might 
best be conducted, how the results should be 
interpreted, and what potential the extended 
use of believability testing has for improving 
the field of game AI. In this work we 
concentrate on the use of AI for controlling 
opponents which might conceivably be under 
human control, and deliberately leave aside 
issues relating to non-player character AI and 
believability in games – although here too the 
ability to evaluate believability is important 
(Mac Namee 2004, p123). 

EVALUATING BELIEVABILITY 

The process of judging how believable the AI 
opponents and characters in computer games 
are is by nature a subjective process – being 
dependant on what observers think of the 
behaviours they perceive. With no objective 
measure to rely on, believability can only be 
determined by asking observers whether or not 
they think a character or opponent is under 
human or machine control – such as by using 
questionnaires. 

Such believability testing was carried out on 
the Soar Quakebot, an AI player for Quake II 
(Laird and van Lent 1999). Laird and Duchi 
(2000) recorded games in which a human 
played against either one of several other 
human players or against the Soar Quakebot in 
one of several parameter configurations. 
Judges were shown videos of games, and 
asked to rank the opponent player in each 
game for skill and degree of “humanness”. 
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Although the amount of testing conducted was 
small, some interesting results were apparent. 
For example, bots with human-like decision 
times were rated as more human than bots with 
significantly faster or slower decision times, 
and bots with more tactical reasoning were 
rated as being more human-like than less 
tactical ones. Super-human performance was a 
give away not only in decision times, but in 
aiming – some bots being too good at aiming 
to be considered human by the judges. From 
this preliminary work, three guidelines for AI 
for action game characters emerge: 

• Give the AI a human like reaction and 
decision time (one twentieth to one tenth 
of a second). 

• Avoid giving the AI superhuman abilities 
(e.g. overly precise aiming). 

• Implement some tactical or strategic 
reasoning, so that the AI is not a purely 
reactive agent. 

While questionnaires and large groups of test 
subjects can limit unwanted effects due to 
observer subjectivity, (Mac Namee 2004) 
notes that careful questionnaire construction 
can help further reduce the influence of 
subjective judgements. Rather than ask how 
believable an AI is, Mac Namee evaluates 
different AI’s by presenting observers with 
two at a time, and asking them to decide which 
is more believable. Additional questions ask 
judges to comment on any differences they 
notice between two versions of an AI 
implementation. 

Mac Namee shows that not only is 
believability a subjective measure, but one that 
may be subject to cultural effects. One test in 
particular, where subjects are shown two 
versions of a virtual bar populated by AI 
agents, demonstrates this. In one version agent 
behaviour is modelled according to rules 
where agents attempt to satisfy competing 
goals – buy beer from the bar, drink it while 
sitting with friends and go to the toilet as 
required. In the other version new short term 
goals were picked randomly every time agents 
completed an action. The one Italian test 
subject felt that having agents return to sit at 
the same table time after time was unrealistic, 
whereas the other (Irish) subjects mostly felt 
that this behaviour was more believable. 

While further tests to determine whether this, 
or other, results are indeed culturally 
significant differences have yet to be carried 

out, the possibility of such differences existing 
does appear quite real. 

An additional, important difference noted by 
Mac Namee is that game playing novices may 
find it difficult to notice any differences 
between different AI implementations. The 
experience of playing a game is so new to 
them that they may fail to notice the significant 
differences between two versions of an AI – 
even where these differences are readily 
apparent to individuals with greater game-
playing experience. 

Related work also exists in Software Agent 
research, where conversational agents are used 
to front a range of applications, and it is 
important to evaluate how users react to such 
agents. For example,  (Bickmore and Cassell 
2001) look at how users interact with a 
conversational estate agent. Again, 
questionnaires are the prime means of 
gathering data on user reactions and 
perceptions and statistical measures are 
presented to demonstrate how different types 
of users vary in their response to different 
versions of the software agent. 

Commercially, player perception of AI agents 
in games was tested during the development of 
Halo (Butcher and Griesemer 2002). Amongst 
the findings here, it was noted that AI 
behaviours needed highly exaggerated 
animations and visible effects in order to be 
noticeable to players. The counter-intuitive 
implication here is that unrealistically over-
emotive reactions and actions may appear to 
players to be more realistic than more subtle 
reactions. This might not be the case when 
observers rather than players rate the game, as 
observers may have more time to study the 
agents than players involved in the game 
would (Laird and Duchi 2000), but the aim of 
a game is to satisfy the player of a game – not 
an observer. 

From this work, it appears that conducting 
believability testing can be a useful exercise – 
from which general design guidelines, or very 
specific changes to improve believability of 
the AI in a specific game, may be derived. In 
the next section we report on our own 
believability tests, and demonstrate how in 
passing a believability test we might yet deem 
that an AI has failed to reproduce human 
behaviour. 
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TESTING AN AI TRAINED ON 
PLAYER DATA 

In (McGlinchy 2003) player data from games 
of Pong was captured and subsequently used to 
train Artificial Neural Network AI Pong 
players. In this implementation of “Pong”, 
Figure 1, when the ball collides with a bat, the 
ball’s velocity vector is reflected and then 
rotated, allowing the player to exert some 
control over the direction of rebound from 
their bat. 

 
Figure 1: The game of “Pong” 

 
It was observed that not only was the AI able 
to play a reasonably good game of pong, but 
that it actually imitated elements of the play 
style of the players it had been trained on. For 
example, one player in particular would ‘flick’ 
the bat upon hitting the ball (as if to put spin 
on the ball, although not actually possible in 
the implementation of Pong), and when trained 
on data gathered from this player the AI would 
do likewise. 

Although the AI imitated the distinct play style 
of whatever player it had been trained on, 
would it be able to fool judges in believability 
tests? To determine this, we needed to conduct 
our own believability tests. 

A number of games were recorded and played 
back to test subjects, who were asked to judge 
whether the controllers of each bat were 
human or machine. For each game 
demonstrated, judges were able to state 
whether they thought the left bat, right bat, 
both or neither were controlled by a human. 
An additional question asked judges to explain 
how they thought they were able to tell the 
difference between computer and human 
players. The games shown to the judges 
consisted of a mix of these possible 
alternatives. The game players consisted of 
three humans, three AI trained on player data 
and an AI player programmed using simple 
logic. In total, eight games were shown to each 
subject: one with two human players, two with 

two AI players and the remaining each with 
one human and one AI player. The 
programmed AI was only used in one of the 
games, and was played against a human 
player. 

The programmed AI works as follows: 
whenever the opposing player hits a shot 
towards the AI player, the AI projects the point 
where the ball will intersect the bat’s axis. 
After a short delay to simulate a human 
reaction time, the bat is moved gradually 
towards the point of intersection. In each 
iteration of the game’s main loop, the bat’s 
new position, 'p , is given by the equation 
below, where p  is the bat’s current position, d 
is the projected point of impact, and w  is a 
weight parameter that affects the speed at 
which the bat is moved to its target position.  

dwwpp )1(' −+=  
In our experiments, we used a value of 0.97 for 
w. To make the AI player fallible, the target 
position for the bat was moved by a random 
amount between -20 and +20 pixels from a 
uniform distribution. (the bat’s height was 64 
pixels). 

A Self-Organising Map (SOM) trained on 
player data was used to represent each of the 
other AI players. To find a target position to 
move the bat to, the ball’s speed and position 
are fed into the network, and the first and 
second placed winning SOM nodes are 
selected. Both winners suggest a position for 
the AI player’s bat to be moved to, and an 
interpolation of these values is used. In order 
to help give the bat a realistically smooth style 
of motion, the bat position is updated each 
frame, moving it towards the SOM’s targeted 
position. The winner search may be performed 
in every iteration of the main loop, although 
this can be wasteful of processing resources, 
and it is acceptable to do a winner search less 
often, e.g. every 300 milliseconds with little or 
no noticeable effect on the game. 

Once these adjustments were made, the SOMs, 
the programmed AI and the human players 
were recorded to build up the set of eight game 
recordings noted above. With this in place, a 
number of subjects were shown the recorded 
games and their completed questionnaires 
were reviewed. 
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WHAT DOES TESTING THE 
HUMAN-PLAYER TRAINED AI 
TELL US? 

The compiled results from initial tests seem 
quite promising. Overall the chance of an AI 
being correctly identified as such appears to be 
at roughly the level of chance. Slightly more 
responses indicate that judges have mistaken 
AI players for human than vice-versa, and the 
AI’s were mistaken for human players more 
often than they were correctly identified. 

Looking at individual returns gives a slightly 
different picture. While one respondent 
correctly judged 14 out of 16 players, another 
misclassified 14 out of 16. Many of the 
subjects varied from chance significantly – 
either getting most responses correct, or most 
responses incorrect. This indicates that some 
of the observers were in fact able to distinguish 
between human and machine controllers – 
even though they made incorrect inferences 
about which was which. 

By providing an additional free-text question 
that asked respondents to explain how they 
were able to distinguish the two types of 
player, we were able to check responses to see 
what aspect of the AI behaviour might have 
led to this result. The answers here showed 
that some of the judges – in particular the 
judges who got most identifications correct 
and the judges who got most wrong – noticed 
that some bats moved with more jerky and 
sudden movements than others. In most cases, 
these were the AI bats – although some 
observers thought this behaviour was a marker 
of human control. 

Believability testing has allowed us to test the 
current implementation of the player-trained 
SOM AI, and as changes are made will 
provide a means for testing and comparing 
successive versions of the AI. Aside from 
telling us what must be done to improve our 
current AI (additional smoothing and/or 
adding momentum to the AI bat being the most 
immediate changes), these results have also 
demonstrated the problem inherent in having 
observers score game AI in terms of its 
humanness – what appears human-like to one 
judge might not to another. 

BELIEVABILITY OF AI IN 
COMMERCIAL REAL-TIME 
STRATEGY GAMES 

We have also embarked on a study of 
believability in commercial Real-Time 

Strategy (RTS) games. The slower pace and 
extended duration of RTS games means that 
players have a good amount of time in which 
to observe the behaviour of their opponents. So 
rather than capture games and show them to 
observers, we are asking players to select a 
single game to play against an AI player in 
their own time. The players are then asked to 
complete a questionnaire on the behaviour of 
their AI opponent. Here, the respondents 
clearly know that they are facing machine 
opposition, but believability – the extent to 
which the AI acts like a human opponent 
might – remains both important to the player 
and testable. 

(Wetzel 2004) presents a review of persistent 
AI failures across genres of computer games, 
and suggests that the first step in fixing the 
problems is to find out what they are. By 
conducting believability testing developers can 
find failures before their customers do, 
potentially fixing them so that their customers 
never find the mistakes. 

Although our RTS survey is in very early 
stages, the returns do indicate that players are 
aware of failings that exist in some of the 
available games. We suspect not only that 
weaknesses exist in all games, but that classes 
of AI failure are common to large ranges of 
RTS games. As indicated by our preliminary 
finding, these are likely to allow players to 
adapt to and exploit the strategies employed by 
their AI opponents in a way that is not possible 
against other human opponents. 

CONCLUSIONS 

Believability testing has demonstrated its 
worth as a means for evaluating game AI. As 
well as indicating when a game AI succeeds in 
recreating human like behaviour, testing can 
highlight why game AI fails to do so – and this 
can allow developers to focus their efforts on 
the areas where their AI systems perform 
weakest. 

Some care must be taken in conducting such 
tests, however. Where results from a large set 
of tests might indicate that an AI performs 
admirably in fooling observers, close 
inspection of the results can show otherwise – 
as has been the case with the tests conducted 
on player-trained pong-playing SOMs. 
‘Humanness’ is clearly a highly subjective 
measure. In computer games where only a tiny 
aspect of human behaviour is actually 
observable, and where different observers can 
have quite different expectations, attempting to 
measure humanness may be fatally flawed. 
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Finally, a crucial question about believability 
remains. For any given computer game AI, 
what is it supposed to believably be? Should 
an AI act believably like another human 
playing the game – or like a characters in the 
game setting conceivably would act? Whether 
an AI soldier in some historical war setting 
should act like a modern player of the game, or 
like its historical model, will lead to quite 
different expectations about its behaviour. And 
accordingly, we have not presented criterion 
by which believability can be measured. In 
conducting believability tests it is most 
important to be clear about what we want 
believability to mean – and that remains a 
game designer’s choice. 
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ABSTRACT 
We investigate the use of three computational intelligence techniques for path planning in computer games. We show that 
while genetic algorithms and artificial immune systems are effective at finding short useful paths, ant colony methods are 
much less useful in this task. The Artificial Immune Systems were best in terms of speed and shortness of path found. 

PATH PLANNING 
 
Path planning is a common problem in the field of game AI 
because we desire our characters to be able to navigate around 
game worlds. Navigation is most often performed in computer 
games with symbolic AI algorithms such as A*. Such 
algorithms are now standard fare and somewhat distant from 
leading edge research in artificial intelligence. We investigate 
in this paper some of the more recent algorithms applied to 
this task. 

 
 In this paper, we assume a graph based navigation system and 
investigate the problem of static obstacle avoidance using the 
computational intelligence techniques: genetic algorithms 
(GAs), artificial immune systems (AIS) and ant colony 
optimisation (ACO). These techniques have individually been 
applied to path planning in the past but the time is now 
apposite for a comparative study of their performances. 

FORMULATING THE ENVIRONMENT 
 
For this experiment, we will set up the terrain / search space as 
follows: We set up an m by n grid with each possible location 
labelled as: 
 
n-1 2n-1 3n-1  . . . m*n-1 
 
n-2 2n -2 3n-2 . . . . 
 
.      . 
. 
.      . 
. 
0 n 2n . . . (m-1)n 
 
 
We use a grid where m = n =10, and place obstacles on the 
terrain at the following locations: 30 – 36, 39, 70 – 71, 74 – 79 

so that the terrain is as shown in Figure 1. Note that the game 
is played on a cylinder: we have wraparound so that e.g. 
location 29 is adjacent to location 30. 
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Figure 1: The artificial terrain: a path must be found from the 

start side to the finish side avoiding the two walls. 

 
We wish to find a path from the ‘START’ side of the grid to 
the ‘FINISH’ side. We restrict the movement of the path to 
forward (→), left (↑), and right (↓). However, we allow the 
path to wrap around the grid; i.e. moving left from location n -
1 will lead to location n, and moving right from location n will 
lead to location n-1. The paths may not traverse the obstacles. 
 

GENETIC ALGORITHMS 
Genetic algorithms were invented by Holland in the 1960s and 
is a method of moving one population of chromosomes to a 
new population by using a kind of “natural selection” together 
with genetics-inspired operators of crossover, mutation and 
inversion (Mitchell, 1996) 
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Figure 2: The procedure of a path planning genetic algorithm  

 
The procedure that the path planning GA follows is illustrated 
in Figure 2. 
 
Each chromosome in the population represents a path that 
starts from the START side of the grid and complies with the 
constraints defined above, and consists of an array of grid 
points which constitute the path.  Figure 3 illustrates the two 
paths: 
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Figure 3: Two examples of chromosomes representing 
possible paths through the terrain.  a)  shows a path which 
goes from START and stops at an obstacle whilst b) 
represents a path between START and FINISH 

 
1. Initialising the population 
The first element of the chromosome is initialised with a 
random square from the ‘START’ side of the grid. The next 
element of the chromosome is picked at random and can either 
be left, right or forward. We keep lengthening the 
chromosome in this manner until it reaches the other side of 

the grid or it encounters an obstacle.  Note that the algorithm 
does not have any knowledge about the ‘correct’ solution. 
 
The population is evolved for a number of generations by 
repeating 2-5 till convergence: 
 
2. Fitness evaluation 
The fitness of each chromosome is evaluated using an 
objective function.  Intuitively, the further a path defined by a 
chromosome reaches towards the goal, the fitter the 
chromosome is. 
 
3. Selection of paths for reproduction 
We select chromosomes for reproduction using the Roulette 
Wheel selection method: the higher the fitness of a 
chromosome, the greater the probability that it has of being 
selected. 
 
4. Crossover 
The next population is then generated by reproducing using 
the crossover operator: with probability equal to the crossover 
rate, two chromosomes are selected at random and single point 
crossover is performed. We define the crossover operator as 
follows:  
 
 

If the two chromosomes are not the same length then we crop 
the longer chromosome to the length of the shorter one. A 
crossover point is then randomly selected, and from this point 
for each chromosome, we change the genetic material so that 
it follows the same path shape as the other. If at any point, the 
path moves to a location that is disallowed, we discard the rest 
of the chromosome.  
 
5. Mutation 
Genetic variation is created by randomly varying the offspring 
via the mutation operator: with probability equal to some 
mutation rate, a point in the chromosome is randomly selected 
in the region [0, length-2]. The chromosome is then extended 
from this point (grid location) as in 1. 
 

ARTIFICIAL IMMUNE SYSTEMS 
 
We use the clonal selection theory as formalised by (Burnet, 
1959) as a method of path finding. The clonal selection theory 
is used to describe the basic properties of an adaptive immune 
response to an antigenic stimulus. Those cells that recognise 
an antigen are cloned, with random mutation being used to 
enhance affinity to the stimulus. (de Castro and Timmis, 
2002). We have previously used artificial immune systems to 
play competitive computer games (Leen and Fyfe, 2004). 
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Our path finding algorithm is as follows: 
 

 
Figure 4: AIS path planning algorithm 

1. Initialising the population 
We first generate a random population of paths as with the 
path planning GA. The antibodies represent paths in the same 
way that the chromosomes represent paths in the GA. 
 
2. Fitness evaluation 
We then evaluate the affinity of each path in the population 
using a fitness function. 
 
3. Cloning  
The paths with the highest affinity are then cloned with 
probability in proportion to their affinities, so that the number 
of clones made is proportional to the affinity. This is similar to 
the Roulette Wheel Selection used in the path planning GA. 
 
4. Mutation 
We then apply mutation to the population at a rate inversely 
proportional to the affinity such that the best adapted paths to 
the solution are mutated with a small probability and vice 
versa. This fitness dependent mutation is represented in the 
algorithm as: 
 

β+− )1(*_ fitnessratemutation  
 

We use a fitness function where the maximum fitness is 1, and 
β  < 1 is the probability that a solution with fitness 1 will be 
mutated with the mutation rate.  

ANT COLONY OPTIMISATION 
 
It is found that even though every single ant in an ant colony 
has its own agenda, the whole ant colony is organised. A 
global order emerges from processes and interaction at a local 
level, without any supervision; in effect, an ant colony can be 
seen as a decentralised problem solving system. This self 
organisation can be seen in the case of foraging in ants. 
Individual ants deposit a chemical substance called pheromone 

as they move from a food source to their nest, leaving a 
pheromone trail for other ants to follow.  
 
The method used relies on: 
 
Positive feedback through trail laying and trail following. 
Each ant follows pheromone trails to the food source which 
have the highest concentration of pheromone. Since it takes 
less time to traverse the shortest paths, there will be a greater 
amount of pheromone deposited on those trails. More ants will 
then be recruited to these trails, so the whole ant colony will 
eventually use shortest paths to the food source.  
 
Negative feedback through pheromone evaporation. This 
counterbalances the positive feedback. 
 
Randomness. We let the ants follow trails with some level of 
error so that it is possible to find undiscovered better paths – 
i.e. so that the system does not get trapped in sub-optima. 
    
Ant colony path planning  
 
Each ant is placed on a randomly chosen square at the START 
side of the grid and can act according to the following 
behaviours: 
Wandering: 
The ant tries to find the food source. It can move left, right, or 
forward with equal probability, providing that there is not an 
obstacle in its path. If it reaches the food source, it then starts 
to return to the nest (homing behaviour). 
 
Homing: 
The ant tries to get back to the nest. It can move left, right or 
back with equal probability, providing that there is not an 
obstacle in its path. It deposits a decreasing amount of 
pheromone along its path. If it reaches the nest, it then starts to 
return to the food source. 
 
Following: 
If the ant is on a square of the grid that contains a 
concentration of pheromone larger than some predefined 
amount PHERORATE then: 
If the square forward to it contains pheromone greater than 
PHERORATE, the ant moves to this square with probability 
0.5 
OR 
If the square to the left of it contains pheromone greater than 
PHERORATE, the ant moves to this square with probability 
0.5 
ELSE 
If possible, the ant moves to the square on its right 
 
If the ant reaches the food source, it then starts to return to the 
nest (homing behaviour) 
 
For each time step, the pheromone concentration on each 
square decreases by some factor. 
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EXPERIMENTS 

Finding any possible path (GA and AIS) 
We ran each simulation for 10000 generations/iterations, using 
a fitness function of  

1
1)(
+

=
d

df  

 
where is the distance of the end point of the path from the 
FINISH side. 

d

GA parameters:  Population size: 100, Crossover rate: 0.01, 
Mutation rate: 0.01 
    AIS parameters: Population size: 100, Mutation rate: 0.1, ß: 
0.01  
Table 1 shows average values and standard deviation of the 
time taken to find a path to the finish. Both algorithms find a 
possible path; the artificial immune system is somewhat faster. 
 

 Mean generation 
which first found 
path to finish 

σ 

GA 37.0 47.8 
AIS 19.2 8.2 

 
Table 1. Mean and standard deviation of time taken to find 
path to finish 
 
It was found that the both the GA and AIS converge to a 
solution that finds a path to the FINISH side. Figure 5 shows 
the typical evolution of the mean and best fitness with each 
generation / iteration, and shows that both path planning 
algorithms quickly converge to valid possible paths across the 
terrain (i.e. have fitness of 1).  
 
The crossover and mutation operators act as a way of 
exploring the search space for the GA. The exploration is done 
by the mutation operator in the AIS. The Roulette wheel 
selection enables exploitation of good solutions for the GA 
while the clone operator performs the same function in the 
AIS. 
 
The AIS outperformed the GA. However it may be possible 
that the GA solutions are in some way better than those found 
by the AIS. We thus, in the next section, penalise poor quality  
solutions i.e. longer meandering solutions.   
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Figure 5: The evolution of mean and best fitness of the 
population for the AIS (top) and GA (bottom) path planning 
algorithms with each iteration and generation respectively. 
Those solutions with fitness 1 represent possible valid paths 
that connect the START to the FINISH side of the terrain. 

 

Finding the shortest possible path(GA and AIS) 
 
To find the shortest possible path from the START side of the 
terrain to the FINISH side, we modified the fitness function 
used in the previous section to include a penalty for longer 
paths: 
 

l
d

ldf α−
+

=
1

1),(  

where is the distance of the end point of the path from the 
FINISH side, and is the length of the path. 

d
l
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Figure 6: Fitness function used to find the shortest possible 

path across the terrain 

GA parameters:  Population size: 100, Crossover rate: 0.01, 
Mutation rate 0.01 
    AIS parameters: Population size: 100, Mutation rate 0.1, ß: 
0.01  
 
 
We ran each simulation for 100 iterations, using α = 0.01 
giving a fitness function of  

⎟
⎠
⎞

⎜
⎝
⎛ −

+
+= l

d
ldf 01.0

1
115.0),(  

 
which has been scaled to give fitness values between 0 and 1, 
as shown in Figure 6. 

 
 

f algorithm Average length of best shortest path 
GA 23.5 
AIS 21.8 

Table 2. Both algorithms find similar lengths of paths with the 
AIS again somewhat better. 
 
Figure 7 shows the best paths found by the GA at generations 
500, 3000, 8000. Note that while we have shown the path as 
crossing the terrain from location 49 to location 50 in the top 
two diagrams, the actual route uses the wrap around effect due 
the map lying on a cylinder.  
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Figure 7 The best path found by the GA at generations 
500(top), 3000 (middle) and 8000 (bottom). 
 
Figure 8 shows the best paths found by the AIS at iterations 
10, 200, 600 and 800. Note that both the final best GA path 
and the final best AIS path both contain an irrelevant lateral 
movement. Such movements contribute nothing to the fitness 
of the chromosome or antibody (indeed are penalised under 
the new fitness function) but are difficult to mutate out of the 
path with the current definition of the operators. 
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Figure 8. The best paths found by the AIS at iterations 10, 
200, 600 and 800 respectively from top to bottom. 
 
Both algorithms do not find the optimal shortest path for the 
terrain. We also find that due to the way that the mutation 
operator is defined in both cases, that the algorithms cannot 
correct sub-optimal (i.e. not the shortest) sections of path near 
to the START side of the terrain.  
 

Using Ant colony optimisation 
 
The simulation was run for 1000 iterations with the following 
parameters: 

Number of ants: 100, pheromone threshold above which ants 
will begin following a trail =2, Initial amount of pheromone 
gained at food source = 1, 
Multiplicative decrease in pheromone when leaving trail = 
0.95,  Multiplicative pheromone evaporation rate = 0.9 
It was found that even though the ants managed to find paths 
between the food source and the nest, they did not recognise 
any optimal (shortest) path. This could be due to the high 
concentration of ants on the grid. 
 
 
Figure 9 shows amount of pheromone at each square of the 
grid (the zeroes here correspond to obstacles). Note the high 
concentrations of pheromone on the finish side of each 
obstacle. This is due to the returning ants hitting the wall and 
aimlessly marching across the surface of the wall until by 
chance they find the gap. This aimless wandering, though, 
does leave a trail of pheromone which subsequent ants prefer 
to follow, thus reinforcing the aimless wandering and so on. 
 

 

CONCLUSION 
 
We have examined three path planning algorithms for static 
obstacle avoidance based on genetic algorithms, artificial 
immune systems, and ant colony optimisation. It has been 
found that the ACO path planning algorithm that we used 
proved ineffective in finding a path through our simple terrain. 
This is a somewhat surprising finding since it would seem a 
priori that such algorithms were specifically designed for just 
such a task but the message to the Games programming 
community is clear: don’t use this method. 
 
The path planning algorithms based on genetic algorithms and 
the clonal selection theory from the artificial immune systems 
field had similar performance in our simulations in that they 
managed to plan the desired path, but this is not surprising 
since they are both population based searches, and the 
mutation and crossover operators of the GA that we defined 
play a similar role to the mutation operator of the AIS. It 
would be of interest to refine the crossover operator for our 
GA path planner so that it can combine ‘good’ sections of 
suboptimal paths to create a better path, since at present, our 
crossover operator acts in a similar way to the mutation 
operator – i.e. it explores rather than exploits the search space. 
Whether evaluation is carried out in terms of speed of 
convergence or length of path, the artificial immune system 
slightly outperformed the genetic algorithm. 
 
Future work will continue the comparison by employing 
Kohonen’s Self Organizing Map (Kohonen, 1995) on this task 
within the same environment. We will also create new 
artificial environments to investigate whether our findings are 
repeated irrespective of the terrain or if they are terrain-
dependent. 
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Figure 9. The pheromone deposited after the ant colony optimisation has found a route from start to finish. Note the concentrations 
of pheromone on the finish side of each wall. 
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ABSTRACT

Path planning plays an important role in many computer
games. Currently the motion of entities is often planned us-
ing a combination of scripting, grid-search methods, and re-
active approaches. In this paper we describe a new approach,
based on a technique from robotics, that computes a roadmap
of smooth, collision-free, high-quality paths. This roadmap
can be used to obtain instantly good paths for entities. We also
describe applications of the technique for planning the motion
of groups of entities and for creating smooth camera move-
ments through an environment.

INTRODUCTION

In many computer games, entities like enemies, non playing
characters (NPCs), and vehicles, must plan their motions be-
tween locations in the virtual world. Currently this is typically
achieved using a combination of scripting,A∗-like grid search,
and local reactive methods.

In scripting, the designer explicitly described the paths that
can/must be followed by the entities. This is normally part of
level design. Scripting is a time consuming process for the
designer. In addition, it can lead to repetitive behavior that
is easily observed by the player. Scripting gets increasingly
complicated when many entities move in the same space.

Grid based methods divide the world in a grid of cells and plan
motion using anA∗-like search on the free cells (see e.g. (De-
Loura 2000; Russell and Norvig 1994)). It is often used in
real-time strategy games where there is a natural division of
the world in cells. When the world becomes complicated and
large and many entities must move around, grid based meth-
ods take a large amount of computer time. Pruning the search
reduces the time but might lead to wrong paths. Also, motions
created by grid search tend to be unnatural, as can be observed
in many RTS games.

Reactive methods adapt a previously computed motion to ob-

Figure 1: An example of a smooth roadmap computed by our
technique.

stacles found near the path that were not taken into account
during initial planning; for example other entities or small,
movable objects (see e.g. (Lamiraux and D. Bonnafous 2004;
Stout 1996; Baert 2000; Pinter 2001)). Even though theoreti-
cally reactive methods can be used to compute full paths, this
normally leads to dead-lock situations in which the entities no
longer know where to move (e.g. they get stuck in a corner of
the room). Another problem with reactive methods is that it is
often difficult to adapt the internal animation of the character
to the motions produced.

In robotics, many other path planning approaches have been
developed that might be applicable to path planning in games.
In robotics though, the emphasis is often on the motion of a
complicated robotic system in a relatively simple environment.
In games the opposite is true. From a path planning perspec-
tive, the entity can often be modeled as a simple vertical cylin-
der, while the environment can be very complicated with tens
of thousands of obstacles.

One popular path planning technique in robotics is the Prob-
abilistic Roadmap Method (PRM). It has been studied by
many authors, see e.g. (Kavraki et al. 1996; Švestka and
Overmars 1998; Kavraki and Latombe 1994; Holleman and
Kavraki 2000). In a preprocessing phase this method builds
a roadmap of possible motions of the robot through the en-
vironment. When a particular path planning query must be
solved, a path is retrieved from this roadmap using a simple
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(a) A group of five characters should attack the site pointed to by the
arrow.

(b) The group inappropriately splits up, loosing some of its troops.

Figure 2: One of the problems with the current techniques for motion planning for multiple units is that the group splits up to reach
the goal. This scene was taken from Command and Conquer: Generals from EA Games.

and fast graph search. The PRM approach is suited for very
complicated environments. Unfortunately, the roadmap pro-
duced by the method can be rather wild, leading to ugly paths
that require a lot of time-consuming smoothing to be useful
for gaming applications.

In this paper we will describe a new path planning approach,
building on the PRM method, that can be effectively applied in
gaming applications. The approach also constructs a roadmap
of possible motions but guarantees that the paths are short,
have enough clearance from the obstacles, and areC1 con-
tinuous, leading to natural looking motions. See Figure1 for
an example of a roadmap computed with our approach. After
building the roadmap, which can be done as a preprocessing
phase, paths can be retrieved almost instantaneously, and do
not require any post processing.

Besides the standard application, in which the roadmap is
used for planning the paths for individual entities, we describe
two additional applications. First, we consider the motion of
groups of entities. In games, this problem is often solved using
a combination of grid-based planning and flocking (Reynolds
1987; Reynolds 1999). Unfortunately, this can lead to un-
wanted behavior where the group of entities splits up (see Fig-
ure2 for an example). We will use the smooth paths computed
by the new planning approach as a backbone path and then use
a social potential field approach to guide the flock through a
corridor around this path (extending our earlier work in (Kam-
phuis and Overmars 2004)). This results in a naturally looking
motion in which the group is guaranteed to stay together.

In games also the virtual camera, through which we observe
the world, moves through the environment. Currently the cam-
era is often under direct control of the user (in first person
games) or under indirect control of the user (in third person
games). Direct camera control is difficult, easily leads to mo-
tion sickness due to redundant motions, and is often not re-
quired. Building on our earlier work in (Nieuwenhuisen and
Overmars 2004a) we describe a method in which the user only

specifies positions of interest and the camera automatically
moves to such positions using a smooth, collision free motion.
For computing the camera path we will use the new planning
approach described. This is then combined with techniques
to control the view direction and the speed of the camera to
obtain a camera motion that is pleasant to watch.

ROADMAP GENERATION

In this section we will describe how, in a preprocessing phase,
a roadmap of possible motions for the entities can be com-
puted. A roadmap is normally represented as a graph in which
the nodes correspond to placements of the entity and the edges
represent collision-free paths between these placements. A
standard technique for automatic roadmap creation is the prob-
abilistic roadmap method (PRM).

Unfortunately, the PRM method leads to low quality roadmaps
that can take long detours. This is due to the random nature of
the PRM method. Techniques exist to improve paths in a post-
processing stage but this is time-consuming and can still lead
to long detours. Here we present a variant of the PRM method
that leads to short, smooth and high quality roadmaps. These
roadmaps can then during the game be used to solve path plan-
ning queries almost instantaneous using a simple shortest path
graph search algorithm (for example Dijkstra’s shortest path
algorithm).

In the preprocessing phase we create the roadmap graph, con-
sisting of vertices (V ) and edges (E). For the placement of
the entity we only take its position(x, y) into account since
these are the only parameters that are important for planning
the path. Later, the other parameters (such as orientation) can
be added depending on the application. The edges of the graph
will represent straight line and circular paths between the ver-
tices. Only vertices and edges that are collision free are al-
lowed in the graph.
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Figure 3: An example of a Voronoi diagram. We treat all four
boundaries of the workspace as separate obstacles.

In order to be able to use the graph for as many different
queries as possible, we need a good coverage of the space.
Many improvements for the PRM method have been proposed
in order to achieve this (see e.g. (Bohlin and Kavraki 2000;
Boor et al. 1999; Nissoux et al. 1999; Wilmarth et al. 1999;
Hsu et al. 2003; Branicky et al. 2001; Isto 2002)), but all are
based on the same underlying concept and lead to roadmaps
consisting of straight line segments only that result in low path
quality.

For a roadmap that is used to steer entities in games, we can
formulate the following criteria:

• The paths generated by the roadmap should always keep
some minimum amount of clearance from the obstacles
in the scene.

• The paths should be smooth i.e. it should beC1 continu-
ous.

• A path needs to be created very fast (not delaying the
motion) and should be short, not taking any detours.

Creating Samples on the Voronoi Diagram

The Voronoi diagram of a scene defines for every obstacle a
set of points in the free space that are closer to this obstacle
than to any other obstacle in the scene; together these points
form the Voronoi diagram (see Figure3 for an example). An
important property of the voronoi diagram is that it maximizes
the clearance with the obstacles and thus, given the criteria
of the previous section, it can very well be used to improve
roadmap quality.

Here, we propose a new variant of the PRM method that uses
the Voronoi diagram as a guide. The method works as follows.
In every iteration of the algorithm we randomly pick a sample
(placement) of the entity, we call itc. Then we check whether
c is collision free for the entity. If this is the case, we continue
by retracting it to the Voronoi diagram using the following pro-
cedure. We calculate the closest point on an obstacle fromc,
we call this pointcc (Figure4(a)). Next, another samplec′ is
moved fromc in the opposite direction ofcc using as a step
size the distance betweenc andcc (Figure4(b)). We proceed
until the closest obstacle toc′ changes. We now have two sam-
plesc andc′, both having another closest obstacle. The above
procedure guarantees that the Voronoi diagram passes through
a point betweenc andc′.

cc
c

(a) Creating a random samplec and
finding the closest point on an obsta-
clecc.

c

c′
c′

(b) Moving c′ away fromc until the
closest obstacle changes, in this ex-
ample we need two steps.

c

c′
cv

(c) Finding the samplecv that is on
the Voronoi diagram using binary in-
terpolation.

Figure 4: Retracting samples to the Voronoi diagram.

We continue by using binary search betweenc and c′, with
precisionε until we have found a sample that has two obsta-
cles at the same distance. This sample, calledcv, is at most a
distanceε away from the Voronoi diagram (Figure4(c)). Now,
we addcv to the list of verticesV in the roadmap graph.

After adding a sample as a vertex to the graph, we determine
its neighbor vertices. The set of neighbor vertices of vertexv,
calledNv is defined as all verticesV that are closer tov than
some chosen maximum neighbor distance. For each vertexvn

in Nv we test whether the straight line connection betweenv
andvn is collision free. If this is the case, then we add the con-
nection (v, vn) as an edge to the set of edgesE of the graph.
If two vertices are already connected in the graph (via other
vertices), then we only add the new edge if the path betweenv
andvn is shortened considerably by at least some constantK
(for more details see (Nieuwenhuisen and Overmars 2004b)).

Retracting Edges

We have retracted the nodes of the graph to the Voronoi di-
agram (within a certain boundaryε) but when connecting the
samples with edges, these edges are usually not on the Voronoi
diagram and can get very close to obstacles (Figure5(a)). In
order to solve this problem, edges are retracted to the Voronoi
diagram until every part of the edge is at least some pre-
specified distance away from the obstacles. We achieve this
by proceeding in the following manner: if (a part of) an edge
is too close to an obstacle, this edge is split in two equal length
parts and the middle point is retracted to the Voronoi diagram
using the same procedure as described in the previous section.
This procedure is recursively repeated for the two new edges
until every edge has enough clearance with the obstacles. An
example of this procedure is shown in Figure5. In some cases
(when the edge passes through a very narrow corridor), the
clearance threshold will never be reached and the edge will
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a

b

c

d

e

(a) Although the vertices are on the
(dotted) Voronoi diagram, the edges
can get very close to obstacles.

(b) Edgea will be retracted to the
Voronoi diagram.

(c) We retract the center point of the
edge to the Voronoi diagram, creating
two new edges.

(d) The process is repeated for one of
the new edges. Now all (new) edges
have enough clearance with the obsta-
cles.

Figure 5: Retracting an edge to the Voronoi diagram.

be split an infinite number of times. In order to prevent this,
we stop retracting the edge if its length is shorter than some
predefined value.

Retracting edges to the Voronoi diagram may result in some
edges overlapping each other. For example in Figure5(a) if
edgesc andd are already retracted, then retractinge will re-
sult in overlap. Fortunately, detecting overlapping edges is
easy. For every pair of edgesei andej , we check how far their
endpoints are away from the other edge. If this distance is
smaller than some predefined distance, then we try to project
the vertices ofei on ej and vice versa. If at least one of these
projections is successful, we call the two edges overlapping
and we can join them. We can distinguish four different kinds
of overlapping edges. In Figure6 these are shown together
with the situation after removing the overlap.

Improving the Roadmap

In the previous sections, we optimized the clearance in the
roadmap. It can be improved further though. In particular we
would like to make sure that a path runs through every corridor
between the obstacles. This can be achieved by applying some
of the known techniques for finding paths in narrow corridors
(see e.g. (Geraerts and Overmars 2004; Boor et al. 1999; Hsu
et al. 2003)). On the other hand, allowing cycles in the graph
in a controlled manner can lead to the same result (Nieuwen-
huisen and Overmars 2004b).

If a vertexv has only two neighbor vertices, it may be possi-
ble to directly connect those two neighbors, bypassingv. This
would lead to longer edges and, thus, less (unnecessary) rota-
tions. We remove these vertices if the merged edge is collision

e0 e1

(a)

e0

e1

(b)

e0

e1

(c)

e0
e1

(d)

(e) (f) (g) (h)

Figure 6: Merging two overlapping edgese0 and e1. Four
different cases can be distinguished (a..d). The results after
merging are shown in (e..h).

free and has enough clearance.

Circular Blends

After retracting the vertices of the graph to the Voronoi dia-
gram and after adding some minimal amount of clearance to
the edges we still end up with a graph that consists of straight
line segments. Following such a path will haveC1 discontinu-
ities at the vertices that cause sudden directional changes to an
object that follows the path. In order to solve this problem we
will replace parts of the straight line edges by circular blends.

The degree of a vertex is defined as the number of edges that
is connected to this vertex. If a vertex has degree 1, it is an
endpoint of a path segment, and no circular blend needs to be
added. If a vertex has degree 2, the addition of the circular
blend is straightforward. We find the centers of the two edges,
and use these to create a circle arc that touches both edges.
Now, we use this to replace a part of the path (see Figure7(a)).
If the degree of a vertexv is higher than 2, we find the centers
of all incoming edges. We now add a blend for every pair of
these centers (see Figure7(b) for an example of a vertex with
degree 3).

In the previous section, we retracted the edges of the graph to
the Voronoi until they had at least some predefined clearance.
Adding circular blends may decrease this clearance. Since we
do not want the clearance to be lower than some predefined
value, we check the minimum clearance of each circular blend.
If it is too low, then we replace the blend by another blend that
has a smaller radius. We repeat this until the blend has enough
clearance. This procedure is shown in Figure7(c).

Figure1 shows an example of a typical roadmap graph created
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(a) Creating a circular blend be-
tween two edges.

(b) Creating multiple circular
blends.

(c) Moving the circular
blend to increase clear-
ance.

Figure 7: Creating the circular blends.

with this method. Computing this roadmap took about 1 sec-
ond on a Pentium IV 2.4 GHz. Realize though that roadmaps
can be computed during the creation of the scene and can eas-
ily be stored with it.

Answering Path Queries

During the game, whenever an entity has to move to a new
location, it can search the graph to plan its route through the
environment. Because of the properties of the roadmap, paths
will be short, have enough clearance from the obstacles, and
are smooth. To obtain a path we first need to connect the cur-
rent position of the entity to the graph. This can easily be done
by finding the closest vertex in the graph and connecting the
current placement to this vertex using circular blends. We pro-
ceed in the same way for the goal placement of the entity. Now
we can use a shortest path algorithm in the graph to find the
path between the current and goal positions. See Figure8 for
an example of such a path.

Computing paths during game play is extremely fast. Even for
a large roadmap graph consisting of 1000 vertices and 3000
edges, the calculation of the shortest path takes less than 10ms
on a Pentium IV 2.4GHz.

PATH PLANNING FOR GROUPS

Games are often populated with a large number of moving en-
tities. The entities should often behave as a coherent group
rather than as individuals. For example, one needs to simulate
the behavior of whole army divisions. Current games solve the
problem of path finding on the entity level, i.e. they plan the
motion of individual entities, using techniques like flocking to
keep the entities together. However, in cluttered environments
this often leads to non-coherent groups. There is no guarantee

Figure 8: An example of a resulting path.

that the entities will stay together, albeit that ’staying together’
is not well defined. Even though the entities all have a similar
goal, they try to reach this goal without real coherence. This
results in groups splitting up and taking different paths to the
goal, for example as in Figure2.

We will briefly describe a novel technique in which groups do
stay together. More details can be found in (Kamphuis and
Overmars 2004). We are given a game level in which a group
of entities must move from a given start to a given goal posi-
tion. The entities must avoid collisions with the environment
and with each other, and should stay together as one group.
The entities are modeled as discs (or cylinders) and are as-
sumed to move on a plane or terrain. Later, the resulting paths
for the cylinders can be used to animate avatars, e.g. sprites or
motion captured human-like avatars.

The method works as follows: First, a so-calledbackbone path
for a single entity is computed. This path defines the homo-
topic class used by all entities. Two pathsP0 andP1 are said to
be in the same homotopic class only ifP0 can be continuously
deformed intoP1 without intersecting the obstacles. Next, a
corridor is defined around the backbone path in which all en-
tities must stay. Finally, the movement of the entities is gener-
ated using force fields with attraction points on the backbone
path. By limiting the distance between the attraction points for
the different entities, coherence of the group is guaranteed.

Backbone Path Planning and the Corridor

The first phase of the approach consists of finding the back-
bone path. Since every entity should be able to traverse the
path, the clearance on the path should be bounded by a mini-
mum value, namely the radius of the enclosing circle/cylinder
of the largest entity. The backbone path can thus be defined
as follows: A backbone path is a path in the 2D workspace,
where the clearance at every point on the path is at least the
radius of the enclosing circle/cylinder.

Although finding a path with a minimum clearance of the ra-
dius of the enclosing circle is required, we prefer a larger clear-
ance, since a larger clearance leads to behavior that is more
coherent. Also we prefer the paths to be smooth and short.
Hence, the paths in the roadmap created with the method de-
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(a) A backbone path and corri-
dor generated from a non-optimized
roadmap. The path is too close to the
obstacles, creating an artificial nar-
row passage.

(b) A backbone path and corridor
generated from a roadmap generated
on the medial axis. Clearly the path
is optimal in the sense of clearance.

U
a

c

(c) The attraction pointa of an entity
U when point a has a clearancec.

(d) A real corridor.

Figure 9: The corridor

scribed above are very well suited for this application.

From the backbone path, a corridor is created. For this we use
the clearance along the path. On every point along the path, the
clearance is defined as the radius of the largest circle around
the point that does not intersect with the environment. The
value of the clearance is upper bound by the maximum group
width, i.e. the clearance used can never exceed the maximum
group width. The union of all the upper-bounded clearance
circles forms a corridor around the backbone path. Figure9(a)
shows a path generated with a technique that produces paths
too close to obstacles, resulting in artificial narrow passages.
In contrast, the path in Figure9(b) was generated with the
roadmap approach described above, and lies far from obsta-
cles. The resulting corridor is much more natural.

Generating the Motion inside the Corridor

Once the corridor is created, we need to use it to generate the
motion of the individual entities. The approach used is an ar-
tificial force field technique. Forces are defined that act on
the entities and influence their movement. Every entity in the
group has a corresponding attraction point on the backbone
path. This attraction point is selected as the maximum ad-
vanced pointp along the backbone such that the entity is still
inside the circle centered at that pointp with radius equal to the
clearance atp (see Figure9(c)). The attraction points make the
entities move forward and keep the entities inside the corridor.
The entities also repulse each other to avoid collisions between
them. Additional forces could be incorporated, for example to
accomplish formations.

(a) The group with high longitudinal
dispersion and very low lateral dis-
persion.

(b) The group with medium longitu-
dinal dispersion and medium lateral
dispersion.

(c) The group with low longitudinal
dispersion and larger lateral disper-
sion.

(d) The group moves through a nar-
row passage, making the first wait
for the last ones (movement is from
the lower-left to the upper-right).

Figure 10: A group of 50 entities moving in a virtual world.
These paths and behaviors are created with the same approach,
only by varying the parameters.

Keeping Coherence in the Group

In order to keep the group coherent, the dispersion should be
upper bounded. Due to the manner in which the corridor is
constructed, the lateral dispersion (dispersion perpendicular
to the backbone path) is automatically upper bounded by the
group width. However, the longitudinal dispersion (in the di-
rection of the backbone path) is not yet bounded in this ap-
proach. To achieve this, the distance along the path from the
least advanced attraction point to the most advanced attraction
point is limited. This results in the entities in front waiting for
the entities at the back.

Results

The behavior of the group can be controlled by adjusting the
coherence parameters,lateral dispersionandlongitudinal dis-
persion. Figures10(a) to 10(c) show a group of 50 entities
moving through an environment. In these pictures the lat-
eral and longitudinal dispersion is varied, resulting in a longer,
more stretched group (10(a)) or more compact group (10(c)).

Figure10(d)shows the same group moving through the envi-
ronment from the left lower corner to the right upper corner.
The most advanced entities, i.e. the entities that passed the
narrow passage earliest, wait for the last entity to pass the pas-
sage.

We tested the performance of the approach to show that
the technique is usable in real-time applications as computer
games. For this, we developed a typical implementation. In
this implementation we created numerous paths. The proces-
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sor usage during the creation of the paths was minimal. For
groups of 50 to 100 entities the processor usage did not ex-
ceed 1 percent. More efficient implementations could further
decrease the processor usage.

PLANNING CAMERA MOTIONS

Every game has a camera through which the player views the
world. Usually this camera moves depending on user input and
place of action. A camera motion directs the camera from one
position to another while controlling camera speed and view
direction. There are many situations in which an automatic
camera motion in a game could be of great use. Think for
example about an RPG where the user has almost completed
a level, but wants to get back to the start of that level to pick
something up she forgot. Without automatic camera motions,
the attention of the user is needed to walk the whole way back
just to get one item. Also in many adventures it would be nice
to be able to specify a location in the interface and have the
game create a fast and efficient motion to that location without
warping directly to it (causing the user to get disoriented).

The roadmap from the previous section can easily be used to
steer a camera. Using this roadmap, the camera is guaranteed
to keep a certain amount of clearance from the obstacles and
the circular arcs make sure that the camera motion is gentle.
The roadmap alone however is not enough to create a smooth
camera motion. Camera theory (Millerson 1973; Wayne 1997)
shows that we need to take care of two more variables. First,
the speed of the camera should be adapted according to the
curvature of the path. Otherwise, objects will move too fast
through the view. Second, the user should get cues about
where the camera is going. In particular the viewer should
be able to anticipate a camera rotation. We will resolve these
issues in the next two sections.

Adapting the Camera Speed

Smoothness of the path is not enough for a smooth camera mo-
tion. The speed of the camera along the path should be adapted
according to the curvature of the path. Also there should be a
maximum acceleration and deceleration for the camera in or-
der to prevent too abrupt speed changes.

Since our path consists of straight lines and circle arcs, we can
adapt the speed of our camera by making use of the radius of
the arcs. The smaller the radius, the lower the camera speed.
When the camera leaves an arc with a small radius, we accel-
erate until we have reached the maximum speed of the current
arc or straight line. If, on the other hand, the next arc requires
a lower speed than the current camera speed, we must start de-
celerating on time, such that when we reach the next arc, our
speed is sufficiently low. A speed diagram can be computed
efficiently that satisfies both the constraints on the maximal
speed for each arc and the bounds on acceleration and deceler-
ation. See Figure11 for an example of such a speed diagram
for a simple path.

Figure 11: A speed diagram. The left image shows the path,
the middle image shows the maximal speed allowed at each
position. The right image shows the actual speed, taking ac-
celeration and deceleration bounds into account.

Figure 12: An implementation of the techniques. The user can
click on a location in the map at the left top and the program
creates a smooth camera motion to that location.

Smoothing the Viewing Direction

Intuitively one might think that the viewing direction should
be equal to the direction of the camera motion. As stated be-
fore however, the user should be given cues about where the
camera is heading. We can achieve this by always looking at
the position the camera will be in a short time. Experiments
show that about 1 second is the right amount. Note that, as
we fix the time we look ahead, the distance we look ahead
changes depending on the speed of the camera. This is exactly
what we want to achieve as in sharp turns we want to look at
a nearer point than in wide turns. Looking ahead has another
important effect. If we would look in the direction of motion
and the camera reaches a circular arc, then it suddenly starts
rotating at the start of the arc. Stated more formally, the rota-
tion of the camera is onlyC0 continuous. It can be proved that
looking ahead solves this issue by making the camera rotation
C1 continuous.

Results

We implemented this approach in a walk-through system for
virtual worlds. See Figure12 for a screenshot. Rather than
letting the user steer the camera directly, we display a map in
the top left corner. By clicking on the map the user indicates
the position she wants to move to. A smooth camera motion
is then calculated in the way described above. The processor
time required for this is minimal. Experiments indicate that
this is a pleasant way to inspect the environment.
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CONCLUSIONS

In this paper we have described a new technique for automatic
construction of high-quality roadmaps in virtual environments
and we have shown how these can be used the plan the mo-
tion for individual entities, groups of entities, and the camera
through which we observe the world.

We described our method as a 2-dimensional approach in
which entities move on a ground plane. It is though easy to
extend it to e.g. terrains and even movement in buildings in
which the roadmap would automatically follow the corridors
and stairs.

Roadmap construction is best seen as being part of the con-
struction of the virtual world. It is easy to incorporate special
requirements from the level designer. For example, the de-
signer can add fake obstacles to force the path to e.g. stay
on the sidewalks of a road. Also the designer can easily ma-
nipulate the roadmap graph by manually adding, changing, or
removing nodes. Moreover, weights can be added to the graph
to e.g. indicate preferred routes.
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ABSTRACT 
 
Solving sequential decision problems in computer games, 
such as non-player character (NPC) navigation, can be quite 
a complex task. Current games tend to rely on scripts and 
finite state machines (FSM) to control AI opponents. These 
approaches however have shortcomings; as a result academic 
AI techniques may be a more desirable solution to solve 
these types of problems. This paper describes the process of 
applying the value iteration algorithm to an AI engine, which 
can be applied to a computer game. We also introduce a new 
stopping criterion called game value iteration, which has 
been designed for use in 2D real time computer games and 
we discuss results from experiments conducted on the AI 
engine. We also outline our conclusions which state that the 
value iteration and the newly introduced game value iteration 
algorithms can be successfully applied to intelligent NPC 
behaviour in computer games; however there are certain 
problems, such as execution speed, which need to be 
addressed when dealing with real time games. 
 
INTRODUCTION 
 
Whilst playing computer games online against human 
opponents, it became apparent that it was a more interesting 
playing experience, than that of playing against non-player 
characters (NPCs). The human opponents were more 
difficult to anticipate and were more challenging, in 
comparison to their NPC counterparts. As a result, we tend 
only to play the single player aspect of a computer game a 
handful of times before we feel the game’s gameplay 
becomes predictable and easy to beat.  
 
This is backed up by Jonathan Schaeffer (2001 in Spronck et 
al., 2003) who states that the general dissatisfaction of game 
players with the current levels of AI for computer controlled 
opponents makes them prefer human controlled opponents. 
Currently commercial computer game AI is almost 
exclusively controlled by complex “manually-designed 
scripts” (Spronck et al., 2002). This can result in poor AI or 
“Artificial Stupidity” (Schaeffer, 2001 in Spronck et al., 
2002).  
 
The predictability and any “holes” within a scripted 
computer game can then be exploited by the human player 
(Spronck et al., 2002). The game industry is however 
constantly involved in employing more sophisticated 
techniques for NPCs (Kellis, 2002), especially in light of the 
increase in personal PC power, which enables more time to 
be spent processing AI. Recent games, such as Black & 

White (Lionhead, 2001) use learning techniques to create 
unpredictable and unscripted actions. However most games 
still do rely on scripts and would benefit from an 
improvement in their AI. 
 
These observations formed the basis of a research project 
into the field of AI and computer game AI. The aims of this 
project were to research computer games in order to shed 
light on where computer game AI can be poor and to 
research AI techniques to see if they might be able to be used 
to improve a computer game’s AI. The objectives of the 
project were the delivery of a computer game AI tool that 
demonstrated how an AI technique could be implemented as 
an AI engine and a computer game that demonstrated the 
engine. This paper demonstrates how Markov decision 
processes can be applied to a computer game AI engine, with 
the intention of showing that this technique will be a useful 
alternative to scripted approaches. This paper covers the 
implementation of the AI engine; the implementation of the 
computer game will be covered in our next paper. 
 
MARKOV DECISION PROCESSES 
 
Markov decision processes (MDPs) are a mathematical 
framework for modelling sequential decision tasks / 
problems (Bonet, 2002) under uncertainty. According to 
Russell and Norvig, (1995), Kristensen (1996) and 
Pashenkova and Rish (1996) early work conducted on the 
subject was by R. Bellman (1957) and R. A. Howard (1960).  
 
The technique works by splitting an environment into a set 
of states. An NPC moves from one state to another until a 
terminal state is reached. All information about each state in 
the environment is fully accessible to the NPC. Each state 
transition is independent of the previous environment states 
or agent actions (Kaelbling and Littman, 1996). An NPC 
observes the current state of the environment and chooses an 
action. Nondeterministic effects of actions are described by 
the set of transition probabilities (Pashenkova and Rish, 
1996). These transition probabilities or a transition model 
(Russell and Norvig, 1995) are a set of probabilities 
associated with the possible transitions between states after 
any given action (Russell and Norvig, 1995). For example 
the probability of moving in one direction could be 0.8, but 
there is a chance of moving right or left, each at a probability 
of 0.1. There is a reward value for each state (or cell) in the 
environment. This value gives an immediate reward for 
being in a specific state.  
 
A policy is a complete mapping from states to actions 
(Russell and Norvig, 1995). A policy is like a plan, because 
it is generated ahead of time, but unlike a plan it’s not a 
sequence of actions the NPC must take, it is an action that an 
NPC can take in all states (Yousof, 2002). The goal of MDPs 
is to find an optimal policy, which maximises the expected 
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utility of each state (Pashenkova and Rish, 1996). The utility 
is the value or usefulness of each state. Movement between 
states can be made by moving to the state with the maximum 
expected utility (MEU). 
 
In order to determine an optimal policy, algorithms for 
learning to behave in MDP environments have to be used 
(Kaelbling and Littman, 1996). There are two algorithms that 
are most commonly used to determine an optimal policy, 
however other algorithms have been developed, such as the 
Modified Policy Iteration (MPI) algorithm (Puterman and 
Shin, 1978) and the Combined Value-Policy Iteration 
(CVPI) algorithm (Pashenkova and Rish, 1996). 
 
The two most commonly used algorithms for determining an 
optimal policy have a foundation and take inspiration from 
Dynamic Programming (Kaelbling and Littman, 1996) 
which is also a technique for solving sequential decision 
problems. In addition problems with delayed reinforcement 
are well modelled as MDPs (Kaelbling and Littman, 1996). 
There are many algorithms in the area of reinforcement 
learning (For example: Q learning) that address MDP 
problems (Mitchell, 1997), in fact understanding Finite 
MDPs are all you need to understand 90% of modern 
reinforcement learning (Sutton and Barto, 2000). 
 
The two most commonly used algorithms are value iteration 
(Bellman, 1957) and policy iteration (Howard, 1960). The 
value iteration (VI) algorithm is an iterative process, which 
calculates the utility of each state, which is then used to 
select an optimal action (Russell and Norvig, 1995). The 
iteration process stops when the utility values converge. 
Convergence occurs when utilities in two successive 
iterations are close enough (Pashenkova and Rish, 1996). 
The degree of closeness can be defined by a threshold value. 
This process was however, observed to be inefficient, 
because the policy often becomes optimal long before the 
utility estimates reach convergence (Russell and Norvig, 
1995). Because of this another way of finding an optimal 
policy was suggested. It is called policy iteration. 
 
The policy iteration (PI) algorithm generates an initial 
policy, which usually involves taking the rewards of states as 
their utilities (Pashenkova and Rish, 1996). It then calculates 
the utilities of each state, given that policy (Russell and 
Norvig, 1995). This is called value determination 
(Pashenkova and Rish, 1996; Russell and Norvig, 1995). It 
then updates the policy at each state using the new utilities. 
This is called policy improvement (Pashenkova and Rish, 
1996). This process is repeated until the policy stabilises. 
The process of value determination in policy iteration is 
achieved by a system of linear equations (Pashenkova and 
Rish, 1996).  
 
This works well in small state spaces, but in larger state 
spaces this system is not efficient. However arguments have 
been made that promote each approach as being better for 
large problems (Kaelbling and Littman, 1996). This is where 
other algorithms such as modified policy iteration (MPI) can 
be used to improve the process. Modified policy iteration 
was introduced by Puterman and Shin (1978). In modified 
policy iteration, value determination is similar to value 
iteration, with the difference being that utilities are 

determined for a fixed policy, not for all possible actions in 
each state (Pashenkova and Rish, 1996). The problem with 
this process is that the number of iterations of the value 
determination process is not determined. Pashenkova and 
Rish (1996) state that Puterman (1994) proposed the 
following options that could be used to solve this problem. 
Firstly, simply use a fixed number of iterations, secondly 
choose the number of iterations according to a predefined 
pattern and thirdly use the same process as value iteration. 
 
COMPUTER GAMES & APPLICATIONS 
 
There are many different types of commercial computer 
games available today; these include Real Time Strategy 
(RTS) games, sims games, God games and First person 
shooters (FPS) (Tozour, 2002). The AI in these and other 
type of games could possibly benefit from MDPs. 
 
The most obvious computer game application for MDPs is a 
grid world navigation example, where the game world is 
split into a grid, which an NPC uses to navigate from one 
location to another. This example can be found in most 
literature on the subject including Russell and Norvig (1995) 
and Mitchell (1997). The task of moving NPCs in these 
types of game is in essence a sequential decision problem. 
This is exactly what the MDPs framework solves. This use 
of MDPs could be applied to RTS, FPS or 2D platform 
games. Other applications of MDPs include decision-making 
and planning. For this work we propose to apply MDPs to 
NPC movement in a 2D style game, such as Pac-man 
(Namco, 1980). We have chosen this type of game because it 
operates in real time and offers plenty of scope to explore the 
different features of MDPs. 
 
DEVELOPMENT 
 
In this section we present the development of the VI 
algorithm as an AI engine for use in real time 2D style 
computer games. The VI algorithm was implemented with a 
convergence threshold as the stopping criterion. However we 
also looked into creating our own stopping criterion, which 
was based around VI and designed for speed and use in real 
time computer games.  
 
Value iteration using convergence as a stopping criterion is 
designed to find the optimal policy. However a less than 
optimal policy is acceptable in computer games if it speeds 
up processing time and still allows the NPC to reach its goal 
in an appropriate and acceptable manner. We have 
developed a new stopping criterion, which is as simple and 
quick as possible, but which still should achieve a workable 
policy. We call the new stopping criterion “Game Value 
Iteration” (GVI) and it works as follows: we simply wait for 
each state to have been affected by the home state at least 
once. This is achieved by checking if the number of states, 
with utilities that are equal to or less than 0 (zero) are the 
same after 2 successive iterations. All non-goal states have a 
reward (cost), which is slightly negative depending on their 
environment property (i.e. land, water etc.). Since utilities 
initially equal rewards, a state’s utility will be negative until 
it has been affected by the positive influence of the home 
state.  
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As a result the number of cells with negative utilities will 
decrease after each iteration. However some states may 
always retain a negative utility, because they have larger 
negative rewards due to their environment property and they 
may be surrounded by states with similar environment 
properties. Consequently when the number of states with 
negative utilities stays the same for 2 successive iterations 
we can say that the states are not optimal, but they should be 
good enough for a workable policy to exist, which the NPC 
can use to navigate the map. Before this point it is likely that 
no workable policy for the entire environment would exist. 
This stopping criterion assumes rewards can only be 
negative and there is a positive terminal state which is equal 
to 1. Also note that, checking if a state’s utility is greater 
than 0 is not required for the terminal states, because their 
utilities never change. When each state has been affected by 
the home state at least once we can say that the states are not 
optimal, but they should be good enough for a workable 
policy to exist, which the NPC can use to navigate the map. 
 
An AI engine program was developed in Microsoft Visual 
Basic in conjunction with the AI engine. This program 
contained the AI engine itself and an environment to test the 
engine. The environment consisted of a top down view, just 
like a 2D style game and was made up of a 10x10 grid of 
cells, each cell in the grid having different properties 
associated with it. For example a cell could have a land, wall 
or water property. Figure 2 shows an example of how the 
grid based environment would look. Figure 2 is based on an 
example of this type of environment found in Russell and 
Norvig (1995). 
 
 
 
 
 
 
The properties of an environment are used by the NPC (i.e. 
AI engine) to affect the reward value for each cell. For 
example water could mean slower movement for the NPC, 
so by giving cells with the water property an additional 
negative reward value (i.e. –0.02) it will mean that the 
reward for being in that cell is slightly less than cells with no 
water property. When the utility value of each cell is created 
the utility values of cells with the water property will be less 
than those with no water property. So when an NPC makes a 
choice of which cell to move to it will be less likely to move 
to the cell that has the water property. 
 
The NPC will be able to move in one of four directions 
North, East, South, or West, which will supposedly move the 
NPC one cell in the intended direction, but only with a 
certain amount of probability (Pashenkova and Rish, 1996), 
such as 0.8.  However this will depend on the obstacles in 
the grid such as a wall or the edge of the grid. 
 
The NPC will begin in a start state, which can be any cell in 
the grid, except the enemy cell or home cell. The terminal 
states, where the simulation ends, are the home and the 
enemy states. In 2D style game the home state for the NPCs 
will be the human player. The home terminal state is the 
positive terminal state for the NPC and the enemy terminal 

state is the negative terminal state, which the NPC will 
avoid. 
 
IMPLEMENTATION 
 
This section covers how MDPs were implemented as an AI 
engine. As stated above the utility value of each cell in the 
grid (game environment) was determined by using the value 
iteration algorithm. We used two different stopping criteria: 
utility convergence and our new stopping criterion, called 
game value iteration, to ensure that each cell in the grid 
creates a usable policy for the NPC. 
 
When the utility values for each cell are initialised they are 
initialised to the reward value of each cell. Each non-goal 
state always has a slightly negative reward on top of any cell 
property rewards. The cell(s) containing the enemy will have 
a reward value of –1 and the cell containing the home (or 
goal) will have a reward value of +1, regardless of the cell’s 
other properties.  
 
A schematic description of the GVI algorithm is given 
below. The value iteration algorithm is implemented exactly 
as it is in Russell and Norvig (1995). The GVI algorithm is 
based on this algorithm. 
 
 
 
 
 
 
 

   Home 
 Wall   
Start   Enemy 

N 

Figure 1: Example of the grid based environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The step in the schematic description above, where the utility 
values are determined is the first for loop just after the repeat 
statement. The equation in that loop can also be seen below. 

][max][][1 jUMiRiU
j

a
ija ∑+←  

Where U1[i] is the new utility value estimate for a cell in the 
grid and R[i] is the reward value. maxa is select the utility 
that returns the maximum value. i is the index of all cells in 
the grid and j is the index of the number of cells surrounding 
i (i.e. possible moves, north, south, east, west). M is the 
transition model (the probability of moving in a certain 
direction) and U is the current utilities. 
 
Given the value iteration equation above, the utilities for 
each state can be determined, and given the fixed policy of 
maximising expected utilities, an NPC will be able to make a 
move in any state. No matter what the outcome of any action 
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is, the NPC will always know where to move next, by 
selecting the cell that has the highest expected utility. Next 
we are going to show an example of how the equation will 
work in practice. It demonstrates for one iteration how the 
utility value for one cell in the grid will be determined. 
 
 
 
 
 
 
 
 
 
 

PA = 0.8. 
PB = 0.1. 
PC = 0.1. 
PD = 0.0. 

 
To work out the utility of cell 2,2 the following will be conducted: 

 
Action N =  PA * U1  +  PB * U2  +  PC * U4 + PD * U3. 
 
Action E =  PA * U2  +  PB * U3  +  PC * U1 + PD * U4. 

 
Action S =  PA * U3  +  PB * U4  +  PC * U2 + PD * U1. 

 
Action W =  PA * U4  +  PB * U1  +  PC * U3 +  PD * U2. 

 
U  = Reward  +  The action that returns the maximum value. 

 
This process is repeated for every cell in the grid, except for 
the enemy’s cell(s), the home cell and any wall cells. If the 
utility is being calculated for the cell next to a wall or a cell 
on the edge of the grid, there will be no possible move in 
those directions. If this occurs, then the utility value of the 
cell whose utility is being calculated will be used. One 
iteration is complete when every cell has been visited once. 
The process is repeated until the stopping criterion is met. 
 
EXPERIMENTAL RESULTS 
 
Many different experiments were conducted on the AI 
engine through the AI engine program. The results of these 
experiments were used to help implement a computer game 
and to validate our work. The parameters that were varied in 
the experiments included the configuration of the maps (i.e. 
locations of obstacles and goal states) and the reward values 
associated with cell properties.  
 
However the results discussed here mainly look at 
determining the appropriate threshold value for VI, 
determining whether the GVI algorithm works in practice 
and comparing each algorithm’s performance. In our 
experiments an NPC was setup to learn what action to take 
in each cell by using the VI algorithm. Tables 1 and 2 show 
some of the results of this work and screenshots of the test 
maps used to produce the results in those tables. 
 
For all experiments the following things were kept the same: 
there were two goal states, +1 (home) and –1 (enemy), and 
there was a cost of -0.0000001 for all non-goal states. The 
probability of moving in the intended direction was 0.8 and 
the size of the game world was 10x10. 
 
The HD column in tables 1 and 2 stands for hamming 
distance between the generated policy and the optimal 

policy. The optimal policy is the policy obtained by running 
the algorithm with the same initial data and maximum 
precision (Pashenkova and Rish, 1996). The use of hamming 
to determine the difference between a policy and an optimal 
policy is based on that used in Pashenkova and Rish (1996). 
 

Key 
U = Utility.  
P = Probability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: The environment map and the results produced from experiments 
conducted on the map. 

Table 1: The environment map and the results produced from experiments 
conducted on the map. 

The maps used for the experiments above attempt to 
represent a maze like world that you would expect to see in 
2D style games. However we also experimented with 
simpler and more complex maps. Tables 1 and 2 show that 
the largest threshold, which produces an optimal policy, is 
0.031250 (Table 1). However this threshold does not 
produce an optimal policy in Table 2. This shows that the 
utility thresholds, which produce an optimal policy, vary 
from map to map. In general we observed that as map 
complexity increased, they required more iterations and 
smaller thresholds to achieve workable and optimal policies. 
This could cause problems in computer games because maps 
are constantly changing and vary from level to level. As a 
result it’s reasonable to say that a conservative threshold 
would have to be used to ensure that a map always 
converged to an optimal or near optimal policy. Tables 1 and 
2 also show that the utility values for the VI algorithm 
converge after the policy has converged. This result is 
consistent with previous work in the area, such as 
Pashenkova and Rish (1996) and Russell and Norvig, (1995) 
and is a recognised issue with this algorithm. 
 
From tables 1 and 2 we can see that the GVI algorithm 
produces a workable policy that is less than optimal, but 
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converges at a low number of iterations. This means the 
algorithm should on average be quicker to run than VI 
because larger numbers of iterations require more processing 
time. Also a benefit of this algorithm is that it automatically 
adapts to the complexity of the game world, so it should 
always produce the best policy it can, without running any 
unnecessary iterations. The algorithm should always produce 
a workable policy, but it will not necessarily be the optimal 
policy. In our experiments above this seems to matter very 
little, because the hamming distance is very small, but on a 
large map (E.g. 20x20 or 40x40) this difference might 
become significant.  
 
We also conducted experiments on the reward values of cells 
to see how they affect an agent’s movement. These 
experiments showed that the affect a negative reward would 
have on an NPC depended on how optimal the policy was. If 
a zero threshold was used with VI, a small negative value 
(i.e. -0.02) for the cell property water would be enough to 
affect the NPCs behaviour so it would be likely to avoid 
water until it was necessary so go through it. However for 
less optimal policies this value would need to be slightly 
bigger to have a similar affect (i.e. -0.06). This affect is just 
like the one discussed in the paragraph above. Because the 
policy is not optimal the water (or enemy’s) effect on the 
game environment is lessened. Also it is worth noting that if 
the negative rewards are increased by too much this can also 
cause problems, because they can have too great an affect on 
the cell’s utility which can prevent the GVI algorithm from 
converging to a workable set of utilities. 
 
DISCUSSION 
 
The experiments conducted on the AI engine program have 
shown that MDPs using both VI and the newly introduced 
GVI algorithms can be used to create intelligent NPC 
behaviour. The movement produced by the AI engine 
appeared to the authors to be less scripted and deterministic 
than that in researched 2D style computer games. The AI 
engine also offers interesting environment features through 
creative use of reward values. This could make the MDPs AI 
engine interesting to computer game players and the 
computer game industry, because it offers a different 
approach to solving the problem of AI in 2D style games. 
 
The MDP AI engine with VI and GVI as an AI tool for NPC 
navigation offers game developers a different approach to 
applying AI to 2D style games. However from the results of 
this work and our observations we can see that there are 
limitations with this technique that need to be researched 
further. Firstly, even though the VI algorithm works in our 
AI engine (which has just 1 NPC), it is very processor 
intensive. The GVI algorithm does overcome this problem; 
however this algorithm would need to be tested further to 
prove its usefulness. Secondly, the experiments conducted 
here were only on 10x10 grids. This size grid is quite small 
for a game environment, so experiments would need to be 
conducted on larger grids to determine if the VI and GVI 
algorithms can execute quickly enough and the less than 
optimal policy for GVI is still viable. The hamming distance 
between the GVI algorithm policies and the optimal polices 
was quite small in our experiments; however it could be a lot 
larger in bigger game environments. 

CONCLUSIONS AND FUTURE WORK 
 
This paper has shown that Markov decision processes using 
Value iteration and the newly introduced GVI algorithm can 
be successfully applied to an AI computer game engine. The 
development of the AI engine and the experiments 
conducted on the AI engine allowed a greater understanding 
of this approach and the problems involved, in relation to 
computer games. 
 
There is plenty of scope for further work in this area. Firstly 
we intend to apply the AI engine to a 2D real time computer 
game to determine if the technique can operate successfully 
in this domain. Secondly we plan to extend the size of the 
game environments and confirm that the use of a less than 
optimal policy still produces a viable solution in larger 
environments. 
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1 Introduction
We present a simple real time strategy game and five algo-
rithms that play this game. The algorithms are compared with
head to head confrontations. The best one performs Monte-
Carlo simulations associated to some goals of the game.

Monte carlo simulations have been used to select moves
in strategic games such as Go [Bruegmann, 1993; Bouzy and
Helmstetter, 2003].

2 A Simple Real Time Strategy Game
We have designed a simple real time strategy game for our
experiments. It is played on a 50 by 20 map. The two op-
ponents, Blue and Red, start each with a 5 by 3 base in the
upper and lower middle part of the map. They also own 10
units each, aligned below the upper base for Blue, and aligned
above the lower base for Red. The bases have a health of 100,
and each unit has a health of 30 at the beginning of the game.
Each unit occupies a one by one square on the map, and it can
move in any of the eight directions provided the goal neigh-
bor square is empty. Units can also shoot ennemies that are
located in the eight neighboring squares.

3 Move Selection Algorithms
The random move algorithm picks randomly one move out
of the nine possible moves (the eight directions and the stay
in the same place move). This strategy mostly serves as an
etalon for the other strategies. All strategies should perform
better than the random move strategy.

The nearest enemy unit strategy consists in moving toward
the nearest enemy unit and shooting at it as soon as it is in its
neighborhood.

The evaluation function adds the health of the friend base
and of all the friend units, and substracts the health of the
enemy base and of all the enemy units.

The Monte-Carlo moves strategy consists in performing a
given number of simulations, and to choose moves according
to the statistics collected on the final results of the simula-
tions. In each simulation, the first move of each unit is played
randomly. The subsequent moves are played with the nearest
enemy unit strategy for both sides.

The Monte-Carlo double moves strategy starts each simu-
lation as the Monte-Carlo moves strategy by playing random
moves for the units, and also continues the simulation using

Table 1: Sum of results for each algorithm.
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the nearest enemy unit strategy. But instead of recording the
scores of each individual move, it records the scores of pairs
of moves for pairs of units. A score is maintained for each
possible pair of moves of each possible pair of units.

The Monte-Carlo goals strategy does for the goals of the
game what the Monte-Carlo moves strategy does for the
moves. The only kind of goal we have currently tested is to
attack an enemy unit or base. At the beginning of each simu-
lation, a target enemy unit is set for each friend unit. During
the simulation, the friend units will hunt for their target en-
emy unit. Once the target enemy unit is dead, the friend unit
reverts to a nearest enemy unit strategy. The enemy units use
the nearest enemy unit strategy during all the simulation.

A score is maintained for each possible goal of each pos-
sible unit. After a fixed number of simulations, the goal with
the highest score is chosen for each unit.

Table 1 is created summing for each move selection algo-
rithm its score against all the other algorithms. They have
been tested with 100 simulations before each move, enabling
a very fast move decision process.

One promising area for future work is to add higher level
tactical goals such as protecting the base, protecting an area or
helping another unit. Testing the strategies in a more complex
real time strategy game is also appealing.
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ABSTRACT 
 
Electronic games have moved to the 
mainstream. With this change has come a 
new set of challenges for engineers, 
developers, and funding entities. Third-
generation game warfare goes beyond the 
reflex-reaction of the first and second-
generation games, particularly with regard 
to warfare. The task today is to blend a 
data rich environment, near real time 
updates, and cognitive change within a 
context. Funding agencies, particularly for 
government-sponsored projects, require 
two different approaches to engineering 
design. The first is the need for 
architecting so that one or more elements 
can be easily repurposed. Repurposing 
means that the cost of developing a 
function or feature can be spread across 
multiple event delivery platforms. The 
second is the need for cost reduction and 
even cost recovery. The outcome of these 
two different engineering boundaries is a 
change in the way second-generation 
games and third-generation games are 
planned, constructed, implemented, and 
repurposed. The outlook for games is more 
robust than for some other types of 
applications but the opportunities come 
with greater costs. Changes include the 
need for online support, use of game-like 

functions outside of a game environment 
on analysts’ desktops, and an increased 
discipline with regard to code, team 
composition, and engineering tactics. 

 

INTRODUCTION 
 
The challenges of modern game 
development were encountered in a recent 
project in which Intellas Modeling and 
Simulation worked with a noted board 
game designer, Vance von Borries, to 
create a concept for a third-generation 
training and battle simulation for the 
United States Air Force. Until the present, 
war games and simulations have been 
primarily attrition based and are centered 
on the concept of “force on force,” and 
have been designated as “second-
generation” war games. So-called “first 
generation” war games were focused on 
strategy with the primary concept of 
“mind on mind.” This effort views “third 
generation” war games and battle 
simulations as concentrating on effects 
based operations with the primary focus 
being “system on system.”  
 
The new system will take into account all 
the factors of the previous generations 
such as strategy, tactics, and attrition, but 
will also include logistics, cascading 
effects, doctrine (both military and social), 
command and control, and differentiation 
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ENGINEERING ISSUES between allied, enemy and coalition 
forces. (Pew et al. 1998) The revised 
system will be designed to be flexible and 
scalable with the capability of modeling a 
variety of scenario types that will include 
peacekeeping operations, homeland 
security and police actions in addition to 
the typical military combat scenarios. 
Details of the framework for the project 
can be found in Jacobi et al (2003).  A 
macro view of a possible framework is 
illustrated in Figure 1. 

 
The primary engineering issues for a 
project of this scope and magnitude can be 
categorized in three main areas: 
Scalability, modularity, and system 
intelligence. 
 
Scalability has generally been absent in 
the development of most game and  
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simulation software. There is a vast gap 
between systems designed to run on 
standard  personal computers (PCs) and 
those designed to run on large scale and 
super computers. The middle ground is 
barely touched at present. The on-line 
gaming paradigm has gone a long way 
towards making users aware of the need 
for a system that can scale to many users, 
but in government applications in 
particular, this creates security issues. For 
training purposes the scalability problem 
can be addressed by creating a distributed 
system (Anderson et al. 2002) that can run 
in a closed loop network or across secure 
lines between installations. Also a 
properly designed scalable system should 
lend itself to the ability to run on a single 
PC, multiple PCs or other suitable 
platforms, and also the ability to have 
higher level features that can be 
implemented and connected to on larger 
scale systems, clusters, and/or 
supercomputers. 
 
 Modularity, typically in the use of object-
oriented design, has become the standard 
in the software industry as a whole. 
Developers have in general moved from 
the older methods of top down 
programming to the use of objects and 
modules of code. However the challenge is 
to take this concept to the next level 
through the creation of distributed systems 
in which the objects or modules can reside 
on a variety of PCs, platforms and other 
devices. Also the use of agents (Weiss 
2000; Chen and Wragg 2000, Mehdi 2002) 
as well as newer methodologies such as 
particle swarm technology are needed to 
move to the next level of development and 
deployment of these systems to bridge the 
gap between games, training tools and 
higher level analytical simulations. 
 

This new paradigm also requires new 
methods of system intelligence to be 
devised. Most games and simulations have 
used scripted intelligence, which is only as 
good as the scripts that are referenced. 
This need is the most difficult challenge in 
this arena, to develop systems that are 
capable of learning, and beyond that to be 
able to mimic the imperfect decision 
making of human intelligence to add 
reality to the game or simulation.  
 
 
PROGRAMMING COSTS 

The cost of software development has not 
benefited from Moore’s Law. For 
example, the cost of developing a game 
for the Sony PS1 was in the mid-six 
figures. The cost for developing a game 
for Sony’s PS2 rose to about $3 million 
per title. The cost of an original game for 
the Sony PS3 is likely to hit $10 million. 
The Xbox game cost parallels the costs of 
developing for the PlayStation platform. 
The likely savings for the Xbox2 will 
come from Microsoft’s use of a modified 
PowerPC chip, also used by Nintendo, and 
development tools that use the DirectX 
technology. The benefit for developers is 
that costs of developing for the Xbox2 
versus the Sony PS3 is that overall 
development costs are likely to be 
somewhat lower. Sony has invented a new 
chip, a new graphics subsystem, and, 
therefore, new software development 
tools.  

The same situation exists in virtually every 
sector of the commercial or enterprise 
software arena. Costs for license fees are 
flat or drifting downwards. The costs for 
programming, maintenance, and support 
are rising faster than any other cost 
associated with modern systems.  
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faster and easier, programming costs 
are comparatively lower than 
approaches that don’t use the most 
modern tools. 

There are notable exceptions, and these 
warrant mentioning: 

1. An individual not charging his time 
to a project with the requisite 
technical skills can program a 
winner. Whether one points to the 
success of Tetris or the handiwork of 
Shawn Fanning, it is possible to 
make millions at very low cost. 

4. Modular structure, the use of ANSI 
standard C, and Extensible Markup 
Language can shave time from a 
programming project, thus reducing 
costs. 

 2. Open source programming provides 
a viable alternative to branded 
network operating systems. The open 
source revolution is likely to persist; 
however, for certain enterprise 
applications the fear of rogue code or 
security vulnerabilities effectively 
keeps certain open source software 
out of some organizations. 

Nevertheless, overall game development 
costs are rising and there is little evidence 
that development costs will trend down in 
a significant way in the near to mid term. 

The market has driven a change in 
development methodologies as illustrated 
in Figure 2.  Efficiency and modularity are 
required to reduce development costs and 
provide a platform for future efforts. The 
organization of the project has become as 
important as the product to be developed. 
Since time has become increasingly an 
important factor, parallel development is 
essential to expedite the testing and release 
of the product both for the government and 
private sector markets. Investors are 
looking to see a quick return on their 
investments. 

 3. Recycling “old code” with today’s 
programming tools can reduce the 
cost of migrating certain applications 
from one platform to another. 
Microsoft’s new approach to Xbox 
development is that the SDK allows 
the programmer to compile for 
specific devices, including wireless 
platforms. By making repurposing  

  

Old Development Methodology New Development Methodology 
1 Unstructured code  Structured and modular code 
2 Assembler C, C++ 
3 1 to 3 developers 2 to 4 teams, each with two to four developers 
4 Graphics done ad hoc Graphics specialists working in a way similar to 

the design team on a motion picture 
5 No antecedent Based on antecedents or a motion picture parallel 

shoot 
6 Serial development Parallelized development; teams may be dispersed 
7 No documentation Automatic documentation plus special notations 

for proprietary elements 
8 No or casual source code control Configuration management 
9 Ad hoc compiles and tests Engineering best practices 

Figure 2: Comparison of Old and New Development Methodologies 
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CONCLUSIONS 
 
For government game development 
projects, the goal is to create a code base 
that can meet the needs of the government 
client and cross over to generate 
commercial revenue. America’s Army has 
become the model for that type of 
development. There are, then, some 
general guidelines that game developers 
will want to keep in mind. 

 

OUTLOOK 
 
What’s ahead for government-funded 
game development? 

1. Increasing pressure for 
commercializing certain games 
or components in order to 
generate cost recovery 

2. Games will be engineered in 
the same way that other high 
performance government 
systems are designed and built 

3. Reuse of graphics and code 
will expand beyond the “game 
application”; for example, 
recruiting commercials 

4. Online is no longer an option. 
Games must run locally and 
support Web services. 

5. Costs will continue to increase. 
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ABSTRACT  

The authors present an architecture of an agent capable of 
playing Diplomacy, the Caeneus Architecture. The 
architecture is built up as a three layer, one pass, vertical 
layered agent. Diplomacy is a strategic board game with 
great focus on diplomatic negotiations between the players. 
They argue that in social games the participants relates to 
two kinds of input; the game system (rules and resources) 
and the social system (communication among the actors). 
The lower layers of the Caeneus Architecture deal with the 
former of these two, while the top layer uses the refined 
information about the game system to carry out diplomatic 
negotiations with fellow players. The authors outline their 
prototype implementation of Caeneus, with particular 
emphasis on the modules in the three layers. 

INTRODUCTION 

According to Polanyi (1966), knowledge can be divided into 
explicit and tacit knowledge. Polanyi (1962) argues that a 
large part of human knowledge is tacit. This is particularly 
true of operational skills and know-how acquired through 
practical experience. Knowledge of this type is action-
oriented and has a personal quality that makes it difficult to 
formalize or communicate. Explicit knowledge is codified 
knowledge that can be transmitted in a formal, systematic 
language, and can be found in books, newspapers, maps, and 
other written resources.  

Games like Chess, Go and Checkers have been widely used 
in early AI-research. According to Luger “most games are 
played using a well-defined set of rules[…] The board 
configurations used in playing these games is easily 
represented on a computer, requiring none of the complex 
formalisms needed to capture the semantics subtleties of 
more complex problem domains” (Luger, 2002, p. 18). In 
other words, these games can easily be represented and 
formalized. It is possible to argue that tacit knowledge is not 
needed to play such games; one can simply rely on the 
explicit knowledge about the concepts of the game. We are 
not arguing that a human player does not use any tacit 

knowledge, we are arguing that this knowledge is not 
needed. 

Not all games are purely based on the ability to calculate the 
next movement of a single piece. Board games like 
Monopoly, Settlers, Diplomacy and modern computer games 
like Half-Life, Sims and Thief require more than just brute 
force algorithms to be played like a human. The social aspect 
in such games is more important than in Chess. The ability to 
communicate through different kinds of deals between the 
participants is crucial.  

Games like the ones described above, are what we would 
argue to be social games.  The players have to interact with 
the social system in addition to the game system - as 
illustrated in Figure 1. In non-social games, like chess, there 
is no social interaction of importance to the outcome of the 
game. By game system we mean the game elements Klabbers 
(1999) refer to as rules and resources, while the social system 
is comprised of the actors and the interaction between them. 

 
Figure 1: Interaction in social games 

Laird stresses that if we seek to build human-level AI 
system, we must focus on games such as this. “They can 
provide the environments for research on the right kinds of 
problem that lead to the type of incremental and integrative 
research needed to achieve human-level AI” (Laird, 2001). 
Wooldridge points out that; “classical AI has largely ignored 
the social aspects of agency. […] part of what makes us 
unique as species on Earth is not simply our undoubted 
ability to learn and solve problem, but our ability to 
communicate, cooperate, and reach agreements with our 
peers” (Wooldridge, 2002, p. 10). 

The social aspect is assertive in Diplomacy - it is all about 
negotiation and persuasion. Alliances shift and change 
throughout the game, often every turn, and it is sometimes 
impossible to know who is truthful. Each player's social and 
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interpersonal skills are as important to the game as their 
strategic abilities. When designing the game mechanics, 
reference was made to the Napoleonic principle “Unite to 
fight - separate to live” (Calhamer, 1971). Diplomacy is in all 
respects a highly social game, and our multiagent system is 
designed to operate within the boundaries of this game.  

In the remainder of this paper we will outline the Caeneus 
Architecture and describe a prototype implementation. First 
we want to give the reader a brief introduction to Diplomacy. 

A SHORT EXPLANATION OF DIPLOMACY 

Diplomacy was created by Allan B. Calhamer in 1954 and 
released commercially in 1959. It has later been published by 
Games Research, Avalon Hill and Hasbro. 

The game is simulating the First World War. Seven nations 
fight for domination over Europe. The board is a map of 
Europe (showing political boundaries as they existed in 
1914) divided into 75 regions - 34 of the land regions contain 
supply centres. For each supply centre they control, a player 
can build and maintain an army or fleet on the board. Victory 
is achieved by controlling 18 supply centres. 

 

 
Figure 2: The Diplomacy Board in its initial state 

The game mechanics are relatively simple. Only one unit 
may occupy a region at any time. The greatest concentration 
of force is always victorious. There is no chance involved. If 
the forces are equal in strength, standoff results and the units 
remain in their original positions. 

Initially each country is roughly equal in strength, thus it is 
very difficult to gain territory - except by attacking as part of 
an alliance. Negotiations for forming alliances are an 
important part of the game, because numerical superiority is 
crucial. Secret negotiations and secret agreements are 

explicitly encouraged, but no agreements of any kind are 
enforced. 

Each game turn begins with a negotiation period, and after 
this period players secretly write orders for each unit they 
control. The orders are then revealed simultaneously, 
possible conflicts are resolved and the next turn can 
commence.  

AN OUTLINE OF THE CAENEUS ARCHITECTURE  

It has become widely accepted that purely reactive control 
techniques are not capable of handling dynamic, 
unpredictable, multiagent worlds (Jennings, 1998, p.13). We 
therefore conclude that a totally reactive approach would not 
be successful in a social game like Diplomacy. Thus the 
system must be able to perform some proactive behaviour 
and to communicate and plan further action with its 
opponents.  

An agent represents a player in the game. Even with 
potentially seven agents playing, the system is not a multi 
agent system, at least not according to Sycara (1998, p.2). 
One key aspect of this environment is that the agents 
compete in the longer term but must cooperate temporarily. 
The architecture is similar for every agent, they are clones, 
but they do not use this fact to accurately predict the actions 
of opposing agents. 

 
Figure 3: The Caeneus Architecture for Diplomacy 

The operational layer focuses on the actions single units can 
perform, while the tactical layer combines these actions into 
complete tactics for all of these player’s units. The strategic 
layer interacts with other players and is responsible for the 
social part of the game.  

The reason for choosing three layers is twofold. Firstly, we 
have observed that in games like Diplomacy the participant 
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engage in three separate activities when playing: Observing 
the game state; considering the next move; and engaging in 
negotiation with fellow players. This action triplet is directly 
related to the three layers of our model, operational, tactical 
and strategic layer, respectively. Secondly the three-layered 
approach is well known in agent architecture research. For 
example Jennings et al. 1998, Sycara 1998, Ferguson 1992 
all present agent architectures that use this approach. Our 
initial idea about the Caeneus Architecture falls naturally into 
this tradition. 

When a new game state is presented to the agent, the lowest 
layer reports the possible orders. This triggers the next layer 
to compute a list of aggregate orders for many possible 
scenarios. These lists, also referred to as tactics, form the 
basis for the evaluations done in the strategic layer. This 
implies that appearance of new information from the layer 
below triggers each layer. Thus the flow of control is 
inherent in the architecture itself in an elegant manner. 

A CAENEUS PROTOTYPE 

It was apparent that a prototype implementation of the 
Caeneus Architecture was needed in order to establish if it is 
usable in its intended context. The prototype development 
focused on three separate parts: The game system, the agent 
prototype and a test environment. What follows is an outline 
of the considerations, algorithms and data structures used in 
the agent prototype.  

The prototype is developed in Java using the Eclipse IDE. 
We will now describe the prototype layer by layer, beginning 
at the bottom with the operational layer. 

Operational Layer 

This level concerns itself with the possible orders an 
individual unit can be given. In Diplomacy, close 
cooperation with other players are a key to success, and 
therefore all units on the board are taken into account. 

Orders Module 

This module is responsible for creating a collection of all the 
orders that all the units in a game state can be given. This is 
done by iterating through all the units and running separate 
algorithms for each of the order-types, traversing the map 
graph in various ways: 

Hold: Every unit can hold 

Move: Iterate through all adjacent provinces and create a 
move order for each if a path for the unit exists, in addition 
coastal armies may move by convoy to other coastal 
provinces if a chain of fleets exist between them. 

Support: Create a support order for all holds and all 
movements into all provinces the unit can move to (without 
convoys). 

Convoy: Create a list of the fleets connected to the fleet in 
question. Create a convoy order for each army residing in 

coastal provinces on the fringes of the fleet group to all other 
coastal provinces bordering the group. 

Tactical Layer 

According to the architecture, this level knows nothing of the 
diplomatic relations of the strategic layer, hence all other 
countries are considered enemies. It is also important to note 
that this level is completely recalculated after each update in 
the game state. It does not keep any records of results of 
previous tactics, and as a consequence it always calculates all 
possible tactics. This solution needs more computation time 
than one only delivering tactics to solve specific game 
scenarios, but given the turn based context, there is no real 
need for optimization. More importantly, this level of the 
architecture is supposed to supply the topmost layer with all 
possible scenarios by design. 

Conflict Areas 

The purpose of the conflict areas module is to identify the 
provinces where a given player can risk facing opposition in 
the current round. This information is important as it enables 
the agent to focus on only those areas that may spawn 
conflict, and ignore areas that won’t. 

The end product of this module is henceforth a list of 
ConflictArea objects that in turn consists of one or more 
Province objects. These ConflictAreas later form the basis 
for the construction of Front objects. 

The four-step algorithm for constructing these Conflict Area 
objects can be described as follows: 

Step 1: For each unit; add all neighbours that are either 
occupied by an enemy unit, or border such a province, to a 
list. 

Step 2: Split this list up if it consists of several isolated 
groups of provinces. 

Step 3: Split the new list up if there are gaps in the enemy 
lines. 

Step 4: Merge lists where one list is a subset of another list. 

 
Figure 4: A visualization of the Conflict Area algorithm from 
the perspective of Germany in the game’s opening phase. As 
the figure shows, Germany has three conflict areas: Pru and 
Sil; Boh and Tyr; and Bur. 

Valuator 

The task of this module is to give a value to each province on 
the map, either on a general basis (with little influence from 
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the game state) or from the perspective of a given country. It 
considers these four conditions: 

• The number of adjacent provinces 
• The number of adjacent supply centres 
• Existence of a supply centre 
• The level of hostile defence present 

Front 

The end product of this module is a list of Front objects 
detailing the areas where the agent might face opposition in 
the current round.  

Algorithm for creating a Front object 

Step 1: Use a ConflictArea object to tell what provinces the 
Front includes 

Step 2: Identify units involved in the ConflictArea as primary 
(directly involved) or secondary (indirectly involved). 

Step 3: Based on three different algorithms, offensive, 
defensive and withdrawal orders are created for all the 
involved units, and each set of orders is stored as an 
Operation object 

Step 4: All the Operations are evaluated and given a 
maximum and minimum utility value based on adjudication 
of these orders versus a wide range of probable hostile orders 

After the completion of the above algorithm the current game 
state has been refined into a set of Fronts for the agent’s 
country. Each Front includes a sorted list of Operations 
which together constitutes the entire scope of orders the 
strategic layer needs to acknowledge. 

Strategic Layer 

The Caeneus Architecture is based on the principle that the 
two lowest layers refine the new game state to complex data 
structures that forms the basis for the decisions of the 
strategic layer. They are not invoked again until a new game 
state is received from the game engine. This implies that the 
remaining time is solely utilized by the strategic layer for 
social communication and internal computation. 

This layer can contain many more modules than we have 
suggested in the design, and in our prototype we have only 
implemented three modules; selector, diplomat and planner. 
We believe that the implementation of these three modules 
will enable us to see trends during evaluation that say 
something about how well suited the Caeneus Architecture is 
for social games.  

In addition to these three modules, three data structures are 
also included in this layer; Front list, relational variables and 
communication history. We consider these as part of the I/O 
for the three implemented modules. 

Relational Variables 

If the Caeneus Agent is to manage the social aspect of 
playing Diplomacy it is important to have sustaining social 

relations to the other players. For instance if someone have 
deceived the agent before it must remember and consider this 
treachery at later communication with that player. Otherwise 
the agent would be totally inept at social interaction as it 
could be tricked over and over again. We have four different 
relationship variables; trust, debt, power balance and 
friendship - ranging from -100 (bad) to 100 (good). 

It is also important to have a representation of the 
characteristics of each opponent. This is an aggregation of 
what the agent sees the other players doing. If one player 
appears overly aggressive and attacks at any opportunity, it is 
important for the agent to remember this and take it into 
consideration. We use four different characteristic variables; 
aggressiveness, independence, loyalty and closeness to 
winning – also ranging from -100 to 100. 

Modules 

The modules are structured in a way inspired by Brooks’ 
Subsumption Architecture (Brooks, 1985). The reason for 
this is primarily that new diplomatic messages may arrive at 
any given moment, and they may entirely change the 
premises for the outcome of this round. Secondly the 
addition of more complex modules can be done without 
changing existing ones significantly. The following aspects 
of Subsumption are retained: 

• The lower modules operate without the knowledge of 
the existence of higher layers.  

• The higher modules subsumes the input or output from 
lower modules 

Selector 

As the Selector module is the lowest layer in our 
subsumption inspired structure, this module had to be 
implemented, but in our prototype its implementation is quite 
mundane. When it is time to post orders to the server, this 
module simply selects the Operations that has the highest 
total value and posts the orders they consist of.  

Diplomat 

In a game like Diplomacy it is evident that the Diplomat 
module does crucial work. We have stressed that the game is 
all about negotiation and making favourable deals. The 
module is responsible for communicating with both human 
and agent players. 

To enable communication, human and computer players 
alike must use a set of standard messages with well defined 
meanings. The main categories of messages are: 

• Intelligence (rumours, relations, warnings) 
• Suggestions (specific orders) 
• Cooperation (short-term) 
• Alliances (long-term) 

The impact of a received message depends on the senders 
relation variables. For instance rumours from a sender with a 

in4243
309



  
trust value below a certain threshold, will not have any 
impact on the Diplomat. 

The Diplomat surveys the Fronts and selects the players, with 
whom cooperation should be sought. This selection is also 
dependant upon the relationship variables. 

Planner 

This module has a quite pretentious name compared to what 
the implementation actually does. Since the player with 18 
supply centres wins the game, this module simply increase 
the value of the 18 centres that at any given time are easiest 
for the agent to conquer. In this way there is an increased 
probability that tactics concerning those centres are chosen, 
and thereby decreasing the effort of winning. 

This is what our algorithm considers as easy centres: 

• Neutral centres 
• Undefended centres 
• Centres owned by weak players 
• Peripheral centres 

In addition to this, centres close to the player's power base 
have their value increased even further, while centres too far 
away have their values decreased. More complex behaviours 
could be imagined implemented into this module, for 
instance to make the agent capable of selecting appropriate 
short term goals. 

PROBLEMS WITH THE PROTOTYPE 

During development, test cases for the different algorithms 
were predominately taken from scenarios happening early in 
a game of Diplomacy. At most the algorithms were tested on 
four consecutive game states, but often we found one to be 
enough. This leads us to believe that the algorithms we have 
implemented may not be optimal for every game situation 
the agent can face. This is especially the case with the 
modules on the tactical level. 

We do not, however, feel this is a serious shortcoming of the 
prototype as we are confident that results of later evaluation 
still will give us significant information regarding the 
prototype's performance in the social aspects of the game. 

Only rigorous testing of the prototype throughout many 
complete Diplomacy games can tell us if the algorithms are 
appropriate for all the phases of a Diplomacy session, but the 
development of tactically good game AI is not the main 
focus of this project. It would, however, be a bonus if the 
tactical decisions made by the agent were 

CONCLUDING REMARKS AND FUTURE WORK 

In this paper we have introduced the social board game 
Diplomacy, outlined an architecture for a computer agent 
playing this game and we have described a prototype 
implementation of this architecture.  

During the implementation of the prototype, which is just 
recently completed, we discovered that the Caeneus 

Architecture was suitable for the socially challenging 
Diplomacy environment. Our challenge now is to gather and 
analyze data to say for certain if this feeling has any 
scientific ground. 

To conclude the project we are now evaluating the 
performance of the prototype. The result of this evaluation is 
twofold. Firstly it says something about how well the 
architecture suits the Diplomacy game. Secondly it may also 
say something about the fruitfulness of the Caeneus 
Architecture regarding social games in general. However we 
do not expect the results to give any definite indication with 
respect to the latter. 
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ABSTRACT

In this paper, we propose an online-game player repu-
tation system that is based on incoming chat messages
to each player. The key concepts for implementation
of the proposed system are that good players are those
who received many chat messages and that good players
are those who received chat messages from other good
players. The proposed system is tested using computer
simulations, in which issues on balance, reliability, and
characteristics of different implementation recipes are
examined.

INTRODUCTION

The online game industry is one of the fastest grow-
ing industries. Among various types of online games,
MMOGs (Massively Multiplayer Online Games) have
the most important role. According to The Themis
Group (Alexander et al. 2004), estimated worldwide
revenues of MMOGs will rise from 1.30 Billion USD in
2004 to 4.10 Billion USD in 2008, and to 9 Billion USD
in 2014.

In MMOGs, social connections among players are nat-
urally formed. Being in a good community usually
makes a player addicted to the game. For game com-
panies, this means more revenues. To maintain a good
community, many types of social systems have been de-
veloped. Typical existing social systems are as follows
(Pizer 2003):

Chat systems for conveying messages among players,

Guild systems for letting players form their own com-
munities,

Reputation systems for helping players determine
whom they can trust.

Among these social systems, reputation systems
are arguably most sophisticated, and are gain-
ing a lot of interests among developers and re-
searchers on online communities (see for example
http://depts.washington.edu/ccce/digitalMedia/
reps.html). For MMOGs, existing reputation systems
(Brockington 2003), such as those in Ultima Online, Ev-
erQuest, Neverwinter Nights, can automatically detect
nasty players by checking, for example, whether or not a
player kills other player characters. The reputation sys-
tems then reduce the reputation values of those nasty
players accordingly. Detection of good players is tech-
nically more challenging. For this task, some MMOGs,
such as Lineage II (http://www.lineage2.com/), have a
reputation system based directly on user feedback. User
feedback, unfortunately, is not always reliable.

In this paper, we propose a new reputation sys-
tem that evaluates the reputation of each player based
on incoming chat messages. Our system is partly in-
spired by PageRank (Brin and Page 1998) used in
Google (http://www.google.com) as wells as Activity
Rating proposed by Kobayashi in his M.Eng. Thesis
(Kobayashi 2002). In PageRank, the importance of a
page relies on whether or not that page is cited by many
other pages and/or by important pages. The basic con-
cepts of the proposed system, their implementations,
and experimental results are given in the following sec-
tions.

PLAYER REPUTATION

As in Activity Rating, four basic concepts that we em-
ploy for evaluating the reputation of each player in the
game are as follows:

Concept I Players who receive many chat messages
are good.
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Concept II Players who receive chat messages from
good players are good.

Concept III Players who receive chat messages from
many different players are good.

Concept IV Players who have recently received chat
messages are good.

Concepts I and II are similar with the key concepts of
PageRank. Following the recipe of PageRank, the rep-
utation of the sender of a chat message is evenly dis-
tributed to that of the receivers. However, PageRank
iteratively computes the importance of a given page by
summing the evenly distributed importance of the cit-
ing pages until the resulting value converges. It thus
requires high computational costs. In our reputation
system, upon receiving a chat message, the evenly dis-
tributed reputation from the sender is added to the cur-
rent reputation of the receiver of the chat message.

Concept III indicates that a player who received, say,
one hundred chat messages, each from a different sender,
has higher reputation than a player who received one
hundred chat messages from the same sender. For im-
plementing this concept, we introduce a sender list of
player i that keeps track of the senders of the chat mes-
sages received by player i in FIFO (first-in, first-out)
discipline. Our use of the sender list is straightforward.
Namely, a chat message from a sender who is not in the
sender list of player i has the highest weight in calcula-
tion of the reputation of player i. For a chat message
from a sender who is in the sender list, the nearer to the
front of the list the sender is, the higher weight has the
chat message in calculation of the reputation of player
i.

Concept IV is for better reflecting the current repu-
tation of a player. Here, it is simply implemented by
regularly decreasing the reputation of each player. This
kind of implementation increases the gap between the
reputation of the players who have recently received chat
messages and that of the players who have not.

Now we are ready to give an implementation recipe
of the proposed reputation system. Let rep(x) denote
the reputation of player x. We assume player S sends
a message to M other players, R1, R2, . . . , RM . Upon
receiving the message, the reputation of Ri, where i ∈
{1, 2, . . .M}, is given as follows:

rep(Ri) = min(rep(Ri)+α
rep(S)

M
+β(Ri, S), repMAX ).

(1)
In (1), the maximum reputation of each player is lim-

ited to the parameter repMAX . The term α rep(S)
M

im-
plements Concepts I and II and uses α, a small positive
constant, for controlling the evenly distributed (among

M receivers of the message) reputation from player S.
The term β(Ri, S) implements Concept III and its value
is evaluated before S is added into the sender list of Ri;
this term is defined as follows:

β(Ri, S) =
{

γ0, if send(Ri, S) = 0
γ1

2send(Ri,S)−1 , otherwise,
(2)

where γ0 and γ1 are small positive constants, γ0 ≥ γ1,
and send(x, y) is the function that returns the position
of player y from the front of the sender list of player
x. For the sender list of size L, if player y is present in
the list, send(x, y) ∈ {1, 2, . . ., L}, where the value of 1
indicates the front and L the back of the list; otherwise,
send(x, y) = 0.

A typical implementation of Concept IV is given as
follows: for every N chat messages sent by player i,

rep(i) = max((1 − τ )rep(i), repMIN ), (3)

where τ is a small positive constant, and repMIN is
the parameter defining the minimum reputation of each
player.

EXPERIMENTS

To examine the characteristics of the proposed
reputation system, we conducted computer
simulations in which, unless stated otherwise,
α, γ0, γ1, L, τ, repMAX , repMIN , and N were set to
0.0001, 0.002, 0.0016, 5, 0.035, 1.0, 0.1, and 20, respec-
tively. For each player, their initial reputation was set
to 0.1.

Balance of Reputation

Here, we report our results where there are two types of
players in the game, i.e., socializers and standard play-
ers. Following the definition in (Bartle 2004), socializ-
ers are players whose main emphasis is to interact with
other players. In addition, socializers tend to give useful
information to other players. In this respect, they are
good players.

In our simulations, 50 players out of 500 players are
socializers who send/and receive chat messages twice
more than the other 450 players, simply called stan-
dard players. In particular, the following experimental
procedure was performed.

Step 1 Randomly divide 500 players into 100 groups,
each having at most 10 players.

Step 2 Have all players in each group randomly send
chat messages to other players in the same group.
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Figure 2: Average Reputation Values over Accumulated Numbers of Sent Chat Messages for the Standard Players
and the Socializers

Step 3 Repeat Step 2 until the average number of mes-
sages sent by each player reaches 20.

Step 4 Have all 50 socializers randomly send chat mes-
sages to other socializers.

Step 5 Repeat Step 4 until the average number of chat
messages sent by each socializer reaches 20.

Step 6 Repeat the procedure from Step 1 until the to-
tal number of sent chat messages reaches one mil-
lion.

Figure 1 shows the histograms of the player reputa-
tion at different accumulated numbers of sent chat mes-
sages. At 0.2 million messages, almost all reputation
values are clustered around the middle. These values
are shifted rightward as the number of sent messages in-
creases. At 1.0 million messages, the reputation values
form two clusters, the bigger one around the range [0.6,
0.7] and the smaller one around [0.9, 1.0]. From Fig. 2
discussed below, the former represents the cluster of the
standard players, and the latter that of the socializers.

Figure 2 shows the average reputation values of the
standard players and those of the socializers over differ-
ent accumulated numbers of sent chat messages. As can
be seen, both series sharply rise in the beginning and
then saturate, to 0.63 for the standard players and 0.94
for the socializers.

From the above results, reputation is well balanced for
each player type. In addition, the socializers eventually
have higher reputation than the standard players, as we
expect they should.

System Reliability

Here we want to know whether or not our reputation
system can cope with cheating by players. For example,

a situation may arise where some players intentionally
continue sending chat messages to particular friends just
for the only purpose of increasing their friends’ reputa-
tion. We tested the reliability of the proposed system
by simulating the following two scenarios.

Scenario 1 Player A continues receiving chat messages
from a friend whose reputation value is 0.1.

Scenario 2 Player B continues receiving chat messages
from a friend whose reputation value is 0.9.

Figure 3 shows the reputation values of player A and
those of player B over different accumulated numbers
of received chat messages. From this figure, though the
reputation values of both players increase as the accu-
mulated number of received chat messages increases, a
relatively high number of chat messages are needed to
double the reputation value of players A and B, i.e,
more than 1,000 chat messages and 600 chat messages,
respectively.

Comparisons among Different Recipes

Here, we compare three different recipes for implement-
ing Concepts I-IV. Each recipe consists of two parts, one
for Concepts I-III and the other for Concept IV. By as-
suming that player S sends a message to M other players,
R1, R2, . . . , RM , each recipe is given in the following.

Recipe 1 This is the one we have discussed so far, i.e.,
(1) for Concepts I-III and (3) for Concept IV.

Recipe 2 For Concepts I-III, the reputation of Ri is
given as follows:

rep(Ri) = min(rep(Ri)+β(Ri, S)
rep(S)

M
, repMAX),

(4)
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Figure 3: Average Reputation Values over Accumulated Numbers of Received Chat Messages for Player A and Player
B

where γ0 and γ1 were set to 0.004 and 0.003 in the
experiments, respectively. For Concept IV, (3) is
used.

Recipe 3 For Concepts I-III, the reputation of Ri is
given as follows:

rep(Ri) = min(rep(Ri) + β(Ri, S), repMAX ), (5)

where γ0 and γ1 were set to 0.004 and 0.003 in
the experiments, respectively. Concept IV is imple-
mented as follows: for every N chat messages sent
by player i,

rep(i) = max(rep(i) − δ, repMIN ), (6)

where δ is a small positive constant; in the experi-
ments, it was set to 0.035.

Figure 4 shows for each recipe the average reputation
values of the standard players and those of the social-
izers over different accumulated numbers of sent chat
messages. As it is clear from this figure, each recipe has
its own characteristic curve. In practice, they should
be properly selected by game designers. For example,
Recipe 1 seems to be a good candidate if the game de-
signer wants the player reputation to rise more easily in
the beginning and then gradually make it more difficult.

DISSCUSION ON PRACTICAL ISSUES

In most MMOGs the concept of a reputation system is
informed in advance to all players. So, for successful
use in practice, the proposed reputation system defi-
nitely should be operated together with other related

systems such as a system that detects cheating by a
guild of dedicated players or bots. Such cheating can be
easily noticed by, for example, an unnatural rise in the
reputation value. Players involved in detected cheating
(of course this has to be confirmed manually by Game
Masters) might be penalized by increasing the length of
their sender lists or decreasing the values of α, γ0, and
γ1. This would make such players more difficult to raise
their reputation values.

We also expect that once a player is aware of the pro-
posed reputation system, they would refrain from send-
ing negative comments to bad players, such as killers as
defined in (Bartle 2004). They don’t want to unneces-
sarily raise the reputation of those bad players. Instead,
players would send such complaints to Game Masters.

CONCLUSIONS AND FUTURE WORK

In this paper we have presented how a reputation sys-
tem for online-game players can be constructed based
on incoming chat messages to each player. The sys-
tem has a good balance for players of the same type
and well reflects players’ chatting characteristics. It can
also gracefully tolerate cheating by players. We have
discussed three different recipes for implementation of
the proposed system, each having its own characteristics
that should fit different online-game design concepts.

As our future work, we plan to study how to take
into account also the content of chat messages in calcu-
lation of the player reputation. We also plan to test the
reputation system in an edutainment multiplayer online
game called The ICE (Thawonmas and Yagome 2004),
under development at our research laboratory.
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(a) Standard Players

(b) Socializers

Figure 4: Average Reputation Values over Accumulated Numbers of Sent Chat Messages for Recipes 1, 2, and 3
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ABSTRACT 
 
Objectives: To describe the phenomena as they 
exist by observing the physiological and 
psychological impact on subjects of playing a 
networked competition 3 dimensional first 
person combat computer video game. To 
develop, trial and refine research methods and 
measurement techniques. In particular, a client 
server model for delivering online tests, 
questionnaires and collecting results. To take 
raw data and summarize it in a useable form 
by exploiting 3-dimensional (3D) statistical 
surfaces. 
Design & Setting: A 2 day, two session, 
participant observation study in the post-
graduate computer laboratory at The 
University of Hull. Volunteers were invited to 
play a networked competition of the successful 
first person 3 dimensional combat game 
“Unreal Tournament”. Prior to playing, 
subjects completed a personality questionnaire, 
a test of cognitive function and a questionnaire 
to measure moment affect. Immediately post 
game play subjects completed a questionnaire 
to measure moment affect and a test of 
cognitive function. 
Conclusion: Playing a 3-dimensional 1st 
person combat game as part of networked 
competition has a measurable effect on 
cognitive function and mood, and that changes 
in mood may correlate with personality. A 
robust client-server model for delivering 
psychometric tests has been developed and is 
ready for larger scale trials. Immersive 
visualization of data is a very useful aid to 
interpretation. 
 
INTRODUCTION 
 
The purpose of this is article is to describe the 
results of a novel approach to measuring and 

describing the physiological and psychological 
effects of playing computer video games. 
In its annual report “Entertainment and Media 
Outlook” (June 2003) PricewaterhouseCoopers 
forecast double digit compound annual growth 
rate for videogames between 2003 - 2007. It 
goes on to predict that spending on the 
entertainment and media industry around the 
globe will surpass $1.1 trillion in 2003, rising 
by 3.7 percent from its 2002 level. 
PricewaterhouseCoopers also singled out the 
Computer and Console Video Game 
(C&CVG) industry as the fastest growing 
entertainment/media segment. 
Along with complexity, the sheer variety of 
games has also multiplied. Everything from 
war to love, from history to career planning, 
has been turned into some form of game. And 
you can play them by yourself or with 
thousands of like-minded gamers over the 
Internet. Clearly videogames are becoming a 
mega-business, with industry forecasts 
predicting that the interactive entertainment 
will hit $21.4 billion annually by 2005. 
 
But the C&CVG industry is in trouble. The 
transition to 3rd generation game consoles and 
increasing home personal computing power 
will lead to a vast increase in development 
costs, anticipated at $20 million. The computer 
games market is increasingly hits driven with 
the top 100 games generating more than 65% 
of the sales in 2002. Many publishers have 
adopted a portfolio approach, funding the 
initial development of 20 games with only one 
or two expected to be completed and make a 
profit. Such an increasingly difficult 
environment makes it hard for developers to 
survive. “Testing should empower designers.” 
- Shamus Blackley (Game Developer’s 
Conference Europe 2003). However, at an 
industry level the perception is that “current 
testing systems are broken”. Either they are 
just no longer up to the task or offer poor 
feedback into core design. Consequently, the 
gap is widening between the developers and 
game designers, with job of creating and 
designing games, on one hand and the 
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publishers who take the burden of financial 
risk. On the other, developers and designers 
want to produce new and exciting games that 
stimulate emotions and responses in people 
that encompass the joy of play and publishers 
have to assess the game in terms of its ability 
to recoup investment and generate profit. 
Current testing serves neither purpose. It 
appears late in the development process and 
serves only to highlight bugs or offer feedback 
on potential playability problems or user 
interface issues. It neither informs core design 
issues nor measures the likely success. 
 
There is a large body of psychological and 
psycho-social research into the effects of 
playing video games. Most of the research 
focuses on the effects of C&CVG playing on 
violence and aggression, particularly in 
children, and its potential effects on society. 
Much less work can be found on the 
physiological impact of C&CVG playing other 
than on simple changes in heart rate and blood 
pressure. A notable exception being some 
early work by Dr. Paul Lynch (University of 
Oklahoma) in 1999 measuring epinephrine, 
norepinephrine, cortisol and testosterone in 
subjects. Although Bill Fulton of Microsoft is 
pioneering an intensive approach to game 
testing, what seems to be missing completely 
is any attempt to characterize games, 
particularly successful, genre defining ones in 
terms of their effects on the cognitive function, 
mood, cardio-vascular system and hormone 
profile of players.  
  
METHOD 
 
Study Design and Subjects 
 
This study was a pilot, quantitative, description 
of 20 male subjects’ moment affect and 
cognitive function before and after playing a 
networked ‘last man standing’ 3-dimensional 
first-person combat computer game, including  
a during-game observation of heart rate in a 
subset of 4 subjects.  
Subjects were recruited via e-mail flyer and 
web based registration site. Although not 
exclusively recruited, only male subjects were 
chosen for the study in order to increase the 
homogeneity of the study population, bearing 
in mind the small sample size, to increase the 
likelihood of finding significant results. 
Demographic and biometric data were self 
reported by the study subjects using web based 
forms at the start of each session. No ethnicity 
data was requested in the pilot study. 
 

Two groups of subjects were studied in 
separate sessions. The subjects were tested at 
the same time of day on both occasions. All 
participants were exposed to the study game as 
part of a networked competition between 
midday and 3 pm. On arrival at the game 
testing laboratory subjects were given the 
opportunity to discuss the protocol and ask any 
questions. At the start of each session the 
subjects completed the online questionnaires 
for demographics and game play, 16PF 
Personality Profile and Annett’s Handedness 
score. Short-term changes in moment affect 
were measured with the Positive and Negative 
Affect Schedule - Extended (PANAS-X 
copyright, 1994, D. Watson & L. A.  
Clark, reprinted with permission). To gauge 
any changes in cognitive performance, subjects 
were asked to complete a computerized 
version of the Stroop Test. These same tasks 
were then repeated immediately after the game 
playing session. 
 
In addition a small subset of the study 
population underwent heart rate monitoring & 
recording during the game playing session 
using a chest strap transmitter and remote 
watch receiver. 
 
Game Choice 
 
The most potent game pattern for a successful 
computer or game-console game seems to be 
almost Pavlovian in its simplicity, stimulus 
and response is the essence. The Stimulus-
Response type of game is very popular and 
generally found to be of a combative model 
and almost always contains the following 
features: highly competitive scenario and high 
level of stimulus response activity; high level 
of perceived violence and high level of 
excitement. Within the games industry and its 
press the term coined for this type of game and 
its subsequent genre is a “first person shoot-
em-up”. At the time of the study one of the 
most popular examples was a game by Epic 
called ‘Unreal Tournament’. 
 
One of the particular concerns when selecting 
a game for the study was comparing results 
from subjects that had played the game 
previously with results from those that had not. 
Anecdotal evidence suggests that there is an 
introductory or learning stage when a player 
becomes familiar with the game mechanics 
and its idioms. This stage seems to be 
characterized by a certain effort of will to 
overcome the initial low level of reward from 
the game in order to achieve some future, 
implicitly promised, yet nebulous greater 
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reward. Although it was clear that learning and 
skill development within the game was 
ongoing, it was also clear that in order to 
improve the quality of any results subjects 
should have played the study game at least 
once previously. 

• Warmth  
• Reasoning 
• Emotional 

Stability  
• Dominance 
• Liveliness 
• Rule-

Conscious
ness  

• Social Boldness  
• Sensitivity  
• Vigilance  
• Abstractedness  
• Privateness  
• Apprehensiveness 

 • Openness to 
Change  

• Self-Reliance 
• Perfectionism 
• Tension   

 The choice of ‘Unreal Tournament’ (URT) 
was finally made following a high positive 
response rate from the recruited population 
when questioned as to whether they had 
played URT previously. Thus, based on 
availability, the study population was 
selected from male respondents who had 
previously played URT. 
 
Measures 
 
Self Completed Demographics 
Along with basic demographic details an 
attempt was also made to collect data on self 
reported game playing activity. No validated 
tools are available in the public domain for 
assessing the frequency of subject game 
playing and the costs of using the services 
offered by market research companies were 
prohibitive. 
 
16PF5 Personality Profile Questionnaire 
In 1949, Raymond Cattell published the first 
edition of the 16PF Questionnaire (Maraist 
2002; Russell 1994, 1995) the 16 Personality 
Factor Questionnaire. It was a revolutionary 
concept: measuring the whole of human 
personality using structure discovered through 
factor analysis. The 16PF Fifth Edition 
Questionnaire used in this study is stated as 
representing ‘a controlled, natural evolution of 
the 16PF Questionnaire, enhanced and 
updated to reflect the changes in today's 
society.’ 

The 16PF Questionnaire is a self-report 
assessment instrument that measures the 
sixteen normal adult personality dimensions. 
From client responses to the questionnaire, 
standardized scores (stens) are derived for each 
of the sixteen personality factors and scores for 
five Global Factors (the original Five-Factor 
Model) are computed. These scores enable the 
formulation of personality models/hypotheses 
useful in research for predicting human 
behavior associated with C&CVG playing. 

Using dimensions discovered through factor 
analysis, the 16PF Questionnaire assesses the 
whole domain of human personality. It 
measures levels of: 
 

 

 
The 16PF model is hierarchical. When the 
sixteen primary traits were themselves factor-
analyzed, they revealed five Global Factors 
which describe personality at a broader level.  

 These Global Factors are: 

These five Global Factors help to show the 
degree of relationships among the sixteen 
primary scales. Validity studies presented in 
the 16PF Fifth Edition Technical Manual 
provide considerable evidence of the construct 
validity of the primary and global scales. 

• Self-Control 
• Extraversion  
• Anxiety  
• Tough-Mindedness  
• Independence  

Annett’s Handedness Scale 
Handedness is a vague term, and can mean 
many things to many people. This problem 
extends into science and researchers define 
handedness based on different theoretical 
assumptions. Handedness can be considered as 
that which performs faster or more precisely 
on testing or the hand that one prefers to use 
(regardless of performance). Alternatively 
categories can be used containing either 2, 3 or 
5 criteria. Because hand preference is 
considered a marker for cerebral hemispheric 
dominance for speech and language 
considering handedness as a continuum and 
using tools to measure it as such probably 
reflects the degree of brain lateralization of a 
subject. (Annett 1970; Broca 1865; Carlstedt 
2001, Cerf 1998) 
 
PANAS-X Mood Scale 
To assess the emotional states of game players 
at the point in the time (moment affect) before 

in4243
319



and after game play the validated and reliable 
60 item Positive and Negative Affect Scale –
Expanded (PANAS-X) was used. (Watson and 
Clark 1994) This easy to administer test can be 
completed by most subjects in 10 minutes or 
less giving scores for fear, sadness, guilt, 
hostility, shyness, fatigue, surprise, joviality, 
self assurance, attentiveness and serenity. With 
kind permission from Professor Lee Anna 
Clark and Professor David Watson. 
 
Stroop Test 
Discovered in the 1930’s by J. Ridley Stroop 

(Stroop 1935) the clashing or cognitive 
dissonance effect of a colour word such as 
‘blue’ appearing in another colour such as red 
requires a cognitive mechanism called 
inhibition to stop one response in order to 
perform the correct one. Most humans are so 
proficient at reading printed words that they 
cannot easily ignore their meaning, in fact it 
requires considerable effort to do so. Thus the 
Stroop Test uses this phenomenon as a 
measure of mental vitality and flexibility. This 
test was delivered using The Genov Modified 
Stroop test software (with kind permission) 
measuring speed of completion as well as 
accuracy. 
 
Heart Rate Monitoring 
Heart rate variability (HRV) refers to the beat-
to-beat alterations in heart rate. Under resting 
conditions, the ECG of healthy individuals 
exhibits periodic variation in the spikes of 
electrical activity associated with the 
contraction of the main chambers of the heart. 
These spikes are termed R waves and the gaps 
between them the R-R intervals. This rhythmic 
phenomenon, known as respiratory sinus 
arrhythmia (RSA), fluctuates with the phase of 
respiration, being accelerated during 
inspiration revealing cardio-acceleration and 
decreasing during expiration, revealing cardio-
acceleration. This phenomenon is mediated by 
the amount of activation the heart receives 
from the autonomic nervous of the body, being 
reduced in expiration.   
 
CLIENT-SERVER MODEL OF 
DELIVERY 
 
Remote testing was one of the key design aims 
to be piloted. A scenario of delivering the 
questionnaires and tests online with real-time 
remote data gathering and interpretation was 
envisaged. In the pilot study this was 
progressed as far as the questionnaires. The 
PHP5 server side object orientated scripting 
language provided the intelligence behind the 
secure web delivered questionnaires feeding a 

MySQL database that could be scored and 
interrogated remotely by the testers. The ever 
reliable, Apache Server software served the 
pages to the high specification networked 
game machines. 
 
RESULTS 
 
Subject Disposition and Baseline 
Characteristics 
 
Subjects were aged 17 – 40 years (mean 21.7, 
95% CI +/- 0.1) and all males, n = 20 -
appendix 1. Subject height and weight (self 
reported) were used to calculate the body mass 
index (BMI) in order to have a crude measure 
of the study population’s degree of body fat 
and hence fitness. BMI being calculated as: 
weight (kg) / height (m)2 giving a population 
mean BMI of 23.4 (95% CI +/- 0.1). As per 
table 1. a body mass index between 20.7 and 
26.4 is in the ‘normal’ range for men, 
according to a recent definition (NHANES II 
1980) This definition is used by the World 
Health Organization (WHO) as its 
international standard. 
 
Adults BMI: Women  Men 
Underweight < 19.1  < 20.7 
In normal range 19.1 – 25.8 20.7 –  26.4 
Margin overweight 25.8 – 27.3 26.4 – 27.8 
Overweight 27.3 –  32.3 27.8 – 31.1 
Very overweight > 32.3  > 31.1 
 
Table 1. Body Mass Index Definitions 
 
Subjects self reported the number of hours 
spent playing computer or console video 
games during an ‘average week’ giving a mean 
of 18.26 hrs/wk (95% CI +/- 0.2). Comparing 
BMI with the time spent playing video games 
produced a product-moment correlation 
coefficient very close to zero, indicating no 
relationship between these 2 factors in the 
study population (r = 0.06). 
 

Body Mass Index vs. Hours Playing Video Games per Week (r = 0.06)
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Graph 1 – BMI Correlation with Hours of Game Play  
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Observations 
 
From the point of view of the observer there is 
very little activity taking place. As to the 
sensory activity of the game player, the only 
senses involved are sight and hearing, and they 
are only marginally active. The marginal 
activity is due to the minimal use of most of 
the eye functions: the lens is not activated 
(constant distance to the object), nor is the 
pupil (constant light levels) and the muscles 
which produce eye movements (fixed object). 
The sound coming from the loudspeaker only 
punctuates the visual activity of the game. 
Although the visual quality and imagery has 
advanced to a startling degree since the early 
‘space-invaders’ type of C &CVG, there is still 
little requirement for discriminating vision or 
hearing sensory effort. C&CVG play, in the 
subjects observed seemed to be characterized 
by automatic and rapid motor movements 
punctuated by groans, grimaces and expletives, 
elimination of conscious thinking and self-
consciousness, and feelings of challenge 
stimulated by exact objectives. There seemed 
to be no effort of will required to engage in 
game play but rather the opposite – forcible 
physical contact and loud verbal instruction 
were required to interrupt play. Similarly the 
urge to initiate play was so strong that clear 
written and verbal instructions were ignored by 
some subjects such that they began to play 
prematurely! 
 
Handedness 
 
The study group was strongly skewed towards 
right handedness. However a continuum is 
present within the study group and when 
compared with the difference in errors on the 
pre and post game Stroop tests the product-
moment correlation co-efficient hints at a 
connection between right handedness and 
increased tendency to be error prone (r = 0.33). 
The relationship between right handedness and 
increase in speed of completion of the Stroop 
test in the study group was stronger (r = 0.4). 
Surprisingly the change in the moment affect 
modality of ‘sadness’ showed some correlation 
with handedness (r = 0.52). Within the study 
group the more right handed the subject the 
more inclined to show an increase in ‘sadness’ 
following exposure to game play. 
 

Handedness vs. Change in Sadness (r = 0.52)
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Graph 2 – Handedness Correlation with Change in 
Sadness 
 
Cognitive Function 
 
A method of assessing significance in a 
clinical setting is the percent improvement. 
The convention is that a 25% change 
represents a significant difference. This 
technique has transferred well into this domain 
of research. For cognitive function 90.9% (n = 
10) of the subjects showed an increase in speed 
of completion of the Stroop Test (Mean = 0.1s 
+/- 0.8s). With a population percent 
improvement of 10.02%; of which 33.3% 
showed an increase in error rate, 33.3% a 
decrease and 33.3% no change. The Product-
Moment Correlation Coefficient (r = 0.17) 
showed no significant correlation between 
change in speed of completion and change in 
error rate. 
 
Moment Affect 
 
Percent improvement in the 8 moment affect 
modalities were: positive affect (-3.26%), 
hostility (+8.87%), fear (-5.26%), sadness 
(+6.76%), guilt (+8.90%), fatigue (-16.88%), 
surprise (+53.25%) and shyness (-10.48%). 
The variances and standard deviation (SD) 
were generally large: positive affect (SD = 
7.76), hostility (SD = 5.43), fear (SD = 1.98), 
sadness (SD = 2.31), guilt (SD = 4.29), fatigue 
(SD = 1.89), surprise (SD = 3.19) and shyness 
(SD = 2.06). Thus, the counter-intuitive result 
is that the most significant change in the study 
population’s mood was the increase in the 
surprise modality. Subjects scoring the words 
amazed, surprised  and astonished much more 
highly after playing the game. The other key 
changes were reduction in fatigue, shyness and 
increase in hostility suggesting that the game 
play experience is an alerting and activating 
one. However, the fall in positive affect and 
increase in sadness and guilt imply that the 
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game play experience is not, nor need be 
necessarily a pleasurable one. 
 
Personality and Affect 
 
Correlating the 11 modalities of personality 
measured by the 16PF Questionnaire with the 
8 of moment affect measured by the PANAS-
X results in 120 scatter plots, line of best fit 
and calculation of the Product Moment 
Correlation Coefficient (PMCC) similar to the 
graphs presented above for body mass index 
and handedness. In order to aid the 
interpretation of such a large number of graphs 
software was developed with our visualisation 
colleague James Osbourne to produce a 
coloured 3D statistical surface which could be 
back projected and viewed with 3D flicker 
glasses in order to immerse the researchers in 
their data. 
 

 
Figure 1 – Prototyping the Visualization 
 

 
Figure 2 – A Collaborative Discussion 
 
Comparing personality modalities with the 
change in moment affect modalities revealed 
weak positive correlations between: liveliness 
and change in shyness (r = 0.503); rule-
consciousness and change in fear (r = 0.537) 
and weak negative correlations between: 
social-boldness and change in sadness (r = -
0.526); abstractedness and change in fatigue (r 
= -0.59). 
 
 
 

 
 
 
DISCUSSION 
 
Body Mass Index 
 
Attempts to assess the degree to which 
subjects fit the stereotype that video game 
players are overweight, unfit and at greater risk 
of suffering ill health produced no evidence to 
support this stereotype. The hypothesis that the 
more hours spent playing C&CVG the more 
unfit the person did not hold in the study 
population and rather with a product-moment 
correlation coefficient close to zero (r = 0.06)  
the null hypothesis is validated. However, 
larger sample sizes would be required to give 
enough power to conclusions and before being 
able to expose the stereotype as a shibboleth. 
Further, body mass index is a reliable indicator 
of total body fat, which is related to the risk of 
disease and death (National Heart, Lung and 
Blood Institute 1998). The score is valid for 
both men and women but it does have some 
limits. It may overestimate body fat in athletes 
and others who have a muscular build. It may 
also underestimate body fat in older persons 
and others who have lost muscle mass. 
According to the National Heart, Lung and 
Blood Institute guidelines 
(www.nhlbi.nih.gov), assessment of risk from 
being overweight involves using three key 
measures. Namely, body mass index (BMI) 
waist circumference, and risk factors for 
diseases and conditions associated with 
obesity. (WHO 1997) Future work ought to 
collect this data explicitly with a view to 
looking for correlations between health and 
time spent playing computer video games.   
 
Handedness 
 
Using a continuum model of handedness to 
reflect brain lateralization seems valid (Briggs 
& Nebes 1975), but does brain lateralization 
play any role in the gaming experience? The 
human brain is a paired organ; it is composed 
of two halves (cerebral hemispheres) that look 
pretty much alike. The term brain lateralization 
refers to the fact that the two halves of the 
human brain are not exactly alike. Each 
hemisphere has functional specializations 
whose neural mechanisms are localized 
primarily in one half of the brain or the other. 
In this manner the brain avoids duplication of 
function. The hemispheres always work 
together so that we will experience a 
combination of right and left hemisphere in 
everything we do. However, there is a 
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tendency for one hemisphere to be dominant. 
This dominance affects how we respond to 
new experiences and situations and may well 
play a role in the gaming experience. Although 
the study population was small and the 
statistical conclusions consequently weak there 
was enough evidence to question the null 
hypothesis. 
 
Game Play Affects Cognitive Function 
 
The study population showed a definite 
increase in cognitive activation characterised 
by the marked increase in speed of completion. 
The impact on error rates was not resolvable in 
the pilot study due to the small number of 
subjects. A reasonable hypothesis would be 
that any C&CVG game hoping for success 
must generate these kinds of changes in 
cognitive function in samples from the target 
population. 
 
Personality Affects Mood Changes 
 
Although only a small scale pilot many 
nuggets of information present themselves. 
The positive correlation suggested between 
lively personality types and reduction in the 
moment affect modality of shyness. Subjects 
of a more rule-conscious nature may show a 
positive correlation with change in fear 
following playing Unreal Tournament. The 
negative correlation with sadness and socially-
bold personalities and the observation that 
those of a more abstract nature show a 
negative correlation with change in fatigue 
could inform decisions about game design. 
However, the >.5 correlations show a lack 
consistency in terms of any pattern. Therefore, 
as would be expected for a population size of 
only 20, the correlation profile fails to disprove 
the null hypothesis and speculation about 
which correlations happened to come out 
highest should be avoided. 
 
“Personality is that which permits a prediction 
of what a person will do in a given situation.” 
Raymond B. Cattell. The potential to predict 
how certain personality types will react to in 
certain game play situations has potential for 
informing design and marketing decisions. 
However such nuggets could turn out to be 
Fool’s Gold without larger scale studies to add 
power to such conclusions. 
 
Physiological Measurement 
 
Despite very noisy data from the in game 
recording of heart rate the results suggested 
heart rates in an exercise region equivalent to 

running for the majority of the experiment. 
This phenomenon is in keeping with the 
general emotional and cognitive activation 
shown so far. Future work such as the spectral 
analysis of the RR interval during game play 
would be valuable to visualize for direct 
examination of the information encoded in the 
frequency, phase and amplitude about the 
impact of game play on the sympathetic-
parasympathetic nervous system axis. 
 
CONCLUSION AND APPLICATIONS 
 
Is it because the players stop thinking about 
their problems or is it the excitement of the 
competition that fastens the player to the 
situation created by the game? What profile of 
psychological and physiological impact does a 
successful game have? Are the effects of 
different genres different? What role does age, 
sex or ethnicity have upon the result? Does the 
release of adrenalin or natural euphoriant 
chemicals give the player a feeling of 
wellbeing related to the stimulus received by 
the game playing? 
 
We believe that exploring, measuring and 
profiling the effects of playing C&CVG on 
representative samples of subjects will inform 
hypotheses on their design and marketing. 
Empowering design with effective feedback is 
the key to continuing success and reliable 
investment. 
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ABSTRACT

As peer-to-peer file sharing is a widespread and user
friendly technique ideally suited to distribute illegally
produced copies of computer games, the users attitudes
towards acquiring games through this medium is of great
interest. 

To obtain information on the extent to which peer-to-peer
file sharing is associated with computer games distribution,
and the nature of these associations, an empirical study was
conducted. Children from age 10 to age 15 were interviewed
about their computer based communication habits and
attitudes. To ensure unbiased results, games and games
related issues were never brought up by the interviewer.

Results show that the distribution of computer games were
spontaneously pinpointed by 15.58% of the interview
subjects being asked about their peer-to-peer file sharing
habits. Younger students showed a significantly more
positive attitude towards this activity, while a majority of the
older students pointed out negative aspects of acquiring
computer games this way. Through the negative quotes
given, the concept of empathy with game designers is
identified as having potential as a possible counterfactor.

BACKGROUND

The computer games phenomenon is a highly diversified
one, showing a wide variety of genres and functionality.
While it may not be possible to select one single feature that
with certainty has influenced the games developement more
than all others, it does seem clear that the area of
communication is at least a strong candidate. With it has
come popular genres like multiplayer versions of first-
person action games and massively multiplayer online role-
playing games. Such communication features enbedded in
computer games have both introduced new dimensions to
the player experience, as well as taken over part of the
responsibility for narration and game plots. This shift can be
quite notable, as Klastrup puts it: ”Did anyone notice when
the story left?” (Klastrup 2001). Multiplayer games has, at
least to a degree, replaced predefined story with the
distributed efforts and interactions of all those participating
in the game. Used this way, player-to-player interction is

enhancing the player experience through in-game communi-
cation.

In-game player-to-player communication can be divided into
in-character and out-of-character communication, referring
to the way the players carry out the communication. Using
in-character communi-cation, performed during gameplay
and mediated through the players avatar, players can add to
the games atmosphere while preserving the style of the
game. Such in-character communication can be a very
important aspect of the game, and players may rely on it
heavily. As shown in a survey by Heide Smith, a majority of
the participants either mostly agrees or totally agrees to the
statement “Communication/chat with other players is an
appealing part of online gaming”, and 81.4% of the
participants (those replying “Sometimes” excluded) stated
that they often or all the time judged other players on the
basis of dialogue (Heide Smith 2003). 

The in-game intraplayer communication can leave a very
strong impression on the player, possibly the strongest. As
Klastrup describes her impressions after a study involving
active participation in the multiplayer online role-playing
game EverQuest: “I also take with me the experience of
becoming part of a social network which goes beyond the
individual character and also includes sharing a communal
experience of EverQuest as a prop and tool…” (Klastrup
2003). Also in multiplayer action games with a modest
number of players and a high degree of fast combat
situations, player-to-player communication may be a key
feature, as observed by Wright   et al.: “The meaning of
playing Counter-Strike is not merely embodied in the
graphics or even the violent game play, but in the social
mediations that go on between players through their talk
with each other and by their performance within the game.
Participants then, actively create the meaning of the game
through their virtual talk and behavior borrowing heavily
from popular and youth culture representations.” (Wright et
al. 2002).

Apart from in-character communication, also out-of-
character communication may be appropriate, although it
may be discouraged in games that rely heavily on
atmosphere. This is noted by Pajares Tosca in her study of
the online version of the role-playing game Vampire: The
Masquerade – Redemption: “In my experience, players will
only go OOC” [Out-Of-Character] “when they experience
some technical problem (or for example wants to tell the
others that they are going to be AFK, Away From Keyboard,
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for a couple of minutes.” (Pajares Tosca 2001). Keeping the
communication within the boundaries of game atmosphere
may be even more important if it is implemented in such a
way that allows not only text based messages but also sound.
In such a case, crucial parts of the “Rich Interaction”
outlined by Manninen can be implemented in multiplayer
games (Manninen 2001, 383-398). Such interaction can
(apart from visual keys) include paralanguage, defined as the
non-verbal audio part of speech (Manninen and Kujanpää
2002, 383-401), and informative spatial sound effects that
might add significantly to realism. As Furness points out:
“Humans like parallel input. People make use of a
combination of sensory stimuli to help reduce ambiguity.
The sound of a letter dropping into a mailbox tells us a lot
about how full the mail box is. The echoes in a room tell us
about the material in the fixtures and floor of a room.”
(Furness 2001, 80-98).

The observation that in-game communication is a powerful
tool that can add significantly to gameplay experience is also
supported by the extent to which communication-intensive
games are played. A survey conducted by Egenfelt-Nielsen
in 2002 showed that 70.91% of the participating players
played online games 6 hours or more per week, and 46.94%
played 12 hours or more per week. As many as 17.24%
played 24 hours or more per week (Egenfelt-Nielsen 2002).
A study by Castronova on the online massively multiplayer
role-playing game EverQuest shows that 31.5% of the
players over 18 years of age devoted more time in a typical
week to playing EverQuest than they did to working
(Castronova 2001). Regarding the number of players
involved in multiplayer online gaming, Sony Online
Entertainment Inc. reports having sold over 2 million copies
of EverQuest, experiencing over 118,000 simultaneous
players during peak hours. Sony Online Entertainment Inc.
reported having more than 750,000 active player accounts
(including other game titles from the same company) in May
2004 (Sony 2004).

The Other Side of The Communication Coin

Apart from the in-game player communication outlined
above, also out-of-game communication between players
may occur. Undoubtely, this too can be of great value to
gameplay, but in this case there are aspects of the
communication that game designers might disapprove of.
Such downsides of computer based communication (from
the game developers point of view, and possibly also by
quite a few players), includes the buying and selling of game
world artefacts and game characters. As described by
Castronova, game entities are sometimes being traded for
real money in web based auction houses: “Records at one
web site show that on an ordinary weekday (Thursday,
September 6, 2001), the total volume of successfully
completed auctions (N-112) was about $9,200.”
(Castronova 2001). In a later paper Castronova notes some
countermeasures emerging in the design of games: “Two
games (Ultima Online and Dark Ages of Camelot) now offer
methods to effectively start out ahead” … ”These strategies
help companies discourage the buying and selling of avatars
outside the game, perhaps at a cost to the atmosphere within
the world.” (Castronova 2003).

A special case of out-of-game communication that may have
severe effects for game developers is the distribution of
illegally produced copies of the computer games themselves,
often referred to as software piracy. It is estimated by the
commercial software industry’s interest organisation
Business Software Alliance that 36% of all commercial

software units installed world-wide in 2003 were illegally
obtained, with peer-to-peer file sharing being pointed out as
a factor increasing this software piracy (Business Software
Alliance 2004). The functionality provided by peer-to-peer
file sharing technology is ideal for distributing and aquireing
illegally copied games, while retaining a high degree of
anonymity. As peer-to-peer file sharing technology is
widespread, the extent to which it is being used to distribute
illegally created copies of computer games is a key issue. Of
special interest in this context, from the perspective of
stopping software piracy of games, are the users attitudes
towards games being copied and distributed illegally, and
the possible association of this activity with peer-to-peer file
sharing systems.

A survey performed on-line by Harris Interactive in 2004
has compared young computer users attitudes towards
obtaining various types of material through the internet.
Results show that 83% of the 8-18 year old participants were
aware that computer games are copyrighted, slightly fewer
than the 88% of them that were aware of movies and music
being copyrighted. Although not specific about the internet
technology being used (peer-to-peer file sharing, or other),
the survey also shows that 32% of the respondents had
actually downloaded computer games from the internet
without paying for them (Harris Interactive 2004). The scale
of the problem is increased by technological advances such
as increasing transmission speeds, since faster internet
connections enable users to download large files, such as
computer games, more quickly. By the end of 2003, there
were 70 million households with broadband internet
connections, a figure that is estimated to reach 170 million
broadband connections by the end of 2007 (Business
Software Alliance 2004).

RESEARCH QUESTION

As peer-to-peer file sharing can be perceived as more or less
closely associated with the illegal distribution of computer
games, there is a possibility that some individuals see peer-
to-peer file sharing as a natural way to acquire computer
games. Since a high degree of user friendliness in
combination with easily achieved anonymity may increase
the likelihood that illegal activities are carried out, the users
attitudes towards such activities are crucial. In the absence
of other types of barriers, the users attidudes are all that
stand between them and active software piracy of games.
The question arises: Is the illegal nature of copying (most)
games this way hidden, or perceived as less serious,
obscured by the availability and ease of use provided by
peer-to-peer systems? And if so, is there something in the
users view of the situation that might serve as a barrier
preventing such illegal copying of games?

The research issue addressed in this paper is to find out if
peer-to-peer file sharing is primarily associated with illegal
distribution of computer games by some individuals, and, if
so, the nature of these associations. An attempt is made to
identify user attitudes with a potential to serve as
counterfactors against the illegal copying of computer
games.

METHODOLOGY

The empirical contribution of this paper consists of a study
that was conducted using in-depth interviews with students
of various ages. The study was conducted in the two cities of
Stockholm and Umeå, Sweden, where students in their 4:th
to 9:th grades (normally corresponding to the years in which
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the students reach the ages of 10 to 15, respectively) were
interviewed about a wide range of activities related to
communication through computers and mobile phones. In
this paper the findings regarding copying of computer games
in general, and through peer-to-peer file sharing technology
in particular, are described and analysed.

In each class, all the students in the class were interviewed,
to ensure that not just students interested in computer related
issues participated, but rather the full variety of students
present. The classes were selected at random, with the
option for the teacher to decline if he/she felt the need to do
so. However, all teachers welcomed their students to
participate in the study. Students not present in school on the
day when their classes were interviewed were excluded from
the study.

A key aspect of the interviews was not letting the interview
subjects know that computer games were of specific interest.
To achieve unbiased results, the interviewer never
mentioned computer games or game related issues in the
questions. This method was chosen specifically, so that the
interviewer did not influence the students to focus on game
related issues more than they would otherwise have done
spontaneously. Only in follow-up questions when the
student already had brought up game related subjects on his
or her own initiative, did the interviewer explicitly refer to
game related issues.

The interviews were conducted individually in a separate
room, away from the class room, with no possibilities of
anyone else overhearing the conversations. The students
retained full anonymity, only being identified by a
sequential number untraceable to the specific individual.
Each student was informed of this anonymity, and that his or
her answers would not be disclosed to anyone else. By
taking these measures, the risk of students not daring to
reveal their computer based communication habits were
eliminated as much as possible.

During the interviews, the interviewer followed a fixed form
with questions to ensure equal coverage of topics with all
students. Only follow-up questions may differ somewhat
among the students, depending on the answers given. All
interviews were recorded in their entirety on a portable tape
recorder. Later, the information from the tapes were
extracted and entered into a database for processing. Key
quotes were translated to English for the purpose of
appearing in this paper.

RESULTS

131 students were interviewed, out of which 84 reported
using peer-to-peer file sharing. When questioned about their
peer-to-peer file sharing habits, 15.58% of the peer-to-peer
file sharers gave answers relating directly to computer
games distribution. When asked the question “What is good
about peer-to-peer file sharing?”, 9.52% of the peer-to-peer
file sharers pointed out aspects of computer games
distribution. When asked the question “What is bad about
peer-to-peer file sharing?”, 5.95% of the peer-to-peer file
sharers pointed out aspects of computer games distribution.

By Age, Grades 4-6

Dividing the interview subjects into age groups, 25.00% of
the 32 peer-to-peer file sharers in grades   4-6 (normally
corresponding to the year in which the students reach the
ages 10, 11, and 12, respectively) gave answers relating

directly to computer games distribution. When asked the
question “What is good about peer-to-peer file sharing?”,
18.75% of the grade 4-6 peer-to-peer file sharers pointed out
aspects of computer games distribution. When asked the
question “What is bad about peer-to-peer file sharing?”,
6.25% of the grade 4-6 peer-to-peer file sharers pointed out
aspects of computer games distribution.

By Age, Grades 7-9

Dividing the interview subjects into age groups, 9.61% of
the 52 peer-to-peer file sharers in grades 7-9 (normally
corresponding to the year in which the students reach the
ages 13, 14, and 15, respectively) gave answers relating
directly to computer games distribution. When asked the
question “What is good about peer-to-peer file sharing?”,
3.85% of the grade 7-9 computer chatters pointed out
aspects of computer games distribution. When asked the
question “What is bad about peer-to-peer file sharing?”,
5.77% of the grade 7-9 computer chatters pointed out
aspects of computer games distribution.

Quotes pinpointing distribution of games

“What is good about peer-to-peer file sharing?”

“All the games are there” Boy, grade 4

“The games that are there” Boy, grade 4

“The games you get” Boy, grade 4

“That all the games are free” Boy, grade 7

“If you can’t afford to buy a game” Boy, grade 5

“The games!” Boy, grade 5

“Its good for us that get the games” Boy, grade 6

“You don’t have to pay for the games
there”

Girl, grade 8

Table 1. Positive quotes about peer-to-peer file sharing,
mentioning games distribution.

“What is bad about peer-to-peer file sharing?”

“When it says it's a game but it isn’t” Girl, grade 8

“When the game doesn’t work” Boy, grade 7

“There can be viruses in the games” Boy, grade 6

“Its bad for them that made the games” Boy, grade 6

“Its bad that there are viruses in some of
the games”

Girl, grade 8

Table 2. Negative quotes about peer-to-peer file sharing,
mentioning games distribution.

DISCUSSION AND CONCLUSIONS

It can be concluded from the results described in this paper
that peer-to-peer file sharing is being spontaneously
associated with computer games distribution by 15.58% of
all the interviewed peer-to-peer file sharers. While this
figure might seem small at first sight, its still a significant
indication that peer-to-peer file sharing is perceived by
many as a natural method of distribution of computer games.
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The interviewed students are not just those playing computer
games, but all the students in the classes in question, thus
including those who never play games at all. In the light of
this fact, the 15.58% figure is quite impressive, and even
more so since the subject of computer games were never
mentioned by the interviewer, but associated to
spontaneously by the students themselves.

Age Issues

The spontaneous association of peer-to-peer file sharing in
general with the distribution of computer games is
conciderably more common in the younger age group in the
study, 25.00% in the grades 4-6 group versus 9.61% in the
grades 7-9 group. 

It is interesting to note that the ratio of positive versus
negative quotes about peer-to-peer file sharing mentioning
distribution of games is very different in the two age groups:
Among the younger grades 4-6 peer-to-peer file sharers,
75% of the quotes mentioning computer games distribution
were given when discussing positive aspects of peer-to-peer
file sharing, while only 25% of the quotes mentioning
computer games distribution were given when discussing
negative peer-to-peer file sharing aspects. In the group of
older peer-to-peer file sharers, the situation is reversed: 40%
of the quotes involving games distribution were given when
discussing positive peer-to-peer file sharing aspects, while
60% of the quotes involving games distribution were given
when discussing negative peer-to-peer file sharing aspects. 

The underlying reasons behind the older students being
more negative to the peer-to-peer game copying
phenomenon, while the younger students are being more
positive, may possibly be linked to increased insights about
various downsides of peer-to-peer file sharing of illegally
copied games, that comes with age and experience. This is
not the only possible explanation though, and other factors
not linked to age or experience may also contribute, as
discussed  in the section Quotes From individual Answers
below.

Quotes From Individual Answers

The individual answers from the students during the
interviews reveal various situations in which peer-to-peer
file sharing is perceived as either having positive or negative
sides in the context of distributing copied computer games.
This is the result of the students being asked the questions
“What is good about peer-to-peer file sharing?” and “What
is bad about peer-to-peer file sharing?”. With the
frequencies shown above, the replies to these questions
contained references to computer games distribution.

Some of the positive quotes are not explicit about any cost
or price factors being involved, although this seems
implicitely likely. Instead, these quotes merely refer to the
accessibility as such, as in: “All the games are there” (boy,
grade 4) or “The games you get” (boy, grade 4). In othere
cases, though, the cost is explicitely referred to in the quotes,
such as in: “If you can’t afford to buy a game” (boy, grade
5). Interestingly, some quotes have an air of naivity about
them, possibly hinting that the illegal nature of the activities
are sometimes not even fully understood by the students:
“You don’t have to pay for the games there” (girl, grade 8)
and “That all the games are free”  (boy, grade 5) are
examples of this.

The majority of the negative quotes are directly related to
practical issues, such as the downloaded games not working,
or being infected by computer viruses. “When the game
doesn’t work” (boy, grade 7) and “Its bad that there are
viruses in some of the games” (girl, grade 8) are typical
examples of this. One quote may relate to either
countermeasures to reduce illegal distribution, or possibly
practical joking: “When it says it's a game but it isn’t” (girl,
grade 8).

The observed practical nature of the negative concerns
expressed in the quotes is concistent with findings from an
on-line survey performed by Harris Interactive in 2004: To
the question ”Which of the following things have worried
you about downloading software, music, or games on the
internet in the past without paying for it?”, the most
common answer was ”Accidentally downloading a virus
onto the computer”, given by 60% of the respondents. The
more ethically based answer ”Feeling that this is just not
something that is right to do” was just the 5:th most
common anwer, given by 39% of the respondents (Harris
Interactive 2004).

One of the quotes that are being negative to illegal
distribution of computer games through peer-to-peer file
sharing stands out from the rest conceptually as it displays
empathy with game developers loosing money through
software piracy: “Its bad for them that made the games”
(boy, grade 6). Different feelings seem to fight each other
within this particular student, though, as this same individual
also remarks “Its good for us that get the games”. 

Not everyone is even aware of the fact that game developers
suffer from losses through software piracy of games, though.
The 2004 on-line study by Harris Interactive shows that 26%
of the respondents agreed to the statement "It doesn't hurt
anybody when I do this", referring to the downloading of
commercial games without paying for them (Harris
Interactive 2004). Among those that are aware of the game
developers losses, it may still be unknown how much hard
work is actually involved in creating a computer game.

It is interesting to note that, although ambivalent, the
concept of empathy with game developers made the above
mentioned individual perceive peer-to-peer file sharing of
copied games as an at least partly negative activity. None of
the quotes expressed any worries of getting caught or being
made liable for damages, suggesting that empathy with
game developers might be a more effective preventive
factor. Thus, making the effort and hard work involved in
developing computer games visible, and publicly known,
may prove to be a more important step than legislation,
towards reducing the illegal distribution of computer games.

FUTURE RESEARCH

In this paper, a possible counterfactor against illegal
distribution of computer games has been identified: empathy
with game developers due to the hard work involved in
creating games. To further investigate the potential of this
possible counterfactor, it needs to be established if there is a
correlation between the degree of perceived empathy with
game developers, in relation to the degree with which
individuals actually download illegally distributed computer
games. If such a study confirms (an inverse) correlation
between the two, it may be fruitful to evaluate various
methods to increase this empathy, as a means to reduce
software piracy of games.
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ABSTRACT 

In 1986 I made an experiment that consisted in the development of 
the Anti-Mind and Master Mind with Feedback programs written in 
the Basic language (Barahona da Fonseca, 1989). The Anti-Mind 
program simulates a good player of the Master Mind game, 
discovering the secret code defined by the human operator (a 
sequence of numbers in a pre-defined interval) very quickly. Then 
I used the algorithm of Anti-Mind to help and correct a human 
operator trying to discover the secret code defined by the computer 
resulting in the Master Mind with Feedback. 
 
Let’s take an example to show that in some cases it seems that the 
computer thinks better than the human, and has a higher IQ: 
 
Anti-Mind Program 
CPC=Number of Correct Digits in Correct Position 
CPI=Number of Correct Digits in Incorrect Position 
3 Digits 
Interval [0,3] 
 

1. 103  CPC,CPI=1,1 
2. 132  CPC,CPI=1,1 
3. 120  CPC,CPI=0,2 
**Enough Information!** 
Secret code=? 

 
The computer knows that the information is enough and the 
secret code. And you? 
 
In this paper I will also present a recent development, the 
algorithm of Anti-Mind with an unlimited number of lies 
which detects and identifies all the moves that are lies or 
errors, which is based on the Anti-Mind algorithm (Barahona 
da Fonseca, 1989, 2003), and I will present an example with 6 
lies and a secret code with 4 digits varying between 0 and 9. I 
will discuss, at the light of Cognitive Science, why no human 
is capable of doing this. Finally I will propose a neural 
network architecture and a learning algorithm based on a 
hybrid reinforcement algorithm to model the learning process 
of a human interacting with Mastermind with Feedback. The 
Anti-Mind with Lies algorithm seems to be a good departure 
point to the modeling of human justice and the development 
of computational aids to help in the process of finding the 
truth from lots of noisy data and data with lies and training 
software for lawyers and criminal investigators. 
 
Keywords: Mastermind Game, AI, Cognitive Science, 
Simulation of Human Behaviour, Human Cognitive 
Limitations 

INTRODUCTION 
We all have the idea that the Brain is a very powerful logic 
processor. My results point to the contrary: it seems the 
Brain is not so that a powerful logic processor, and most of 
us have a great difficulty to combine (equivalent to logical 
conjunction AND) various incomplete informations like in 
the Mastermind game. The problem is that, if we don’t 
repeat the digits in the first moves, the logical expressions 
that represent the possible hypotheses coherent with each 
move are more complex and much more their conjunction. 
For example, if the first move is 1333 cpc=1 cpe=0, the 
logical expression of the possible hypotheses coherent with 
this information is 
(1,1)&(3,de) ⊕ (1,de) & [ (3,2)⊕(3,3)⊕(3,4) ] & (3 doesn’t 
exist in position 1) 
where ⊕ represents the exclusive or (XOR) logical 
operation and (i,j) means digit i exists in position j and (i,de) 
means digit i doesn’t exist. 
    But if the first move is 
0254 cpc=1 cpe=2, the logical expression of the possible 
hypotheses coherent with this information is much more 
complex (assuming a maximum digit of 6): 
(0,1)&   { (2,3)&(5,2)&(4,de)&[(3,4) ⊕(1,4) ⊕(2,4) ⊕(5,4) 
⊕(6,4)] ⊕(2,3)&(5,4)&(4,de) &[(3,2) ⊕(1,2) ⊕(5,4) ⊕(6,4)] 
⊕ (2,4)&(5,2)&(4,de)&[(3,3) ⊕(1,3) ⊕(5,3) ⊕(6,3)]  ⊕ 
(2,3)&(4,2)&(5,de)&[(1,4) ⊕(3,4) ⊕(4,4) ⊕(6,4)] ⊕ 
(2,4)&(4,2)&(5,de)&[(1,3)⊕(2,3)⊕(4,3)⊕(6,3)]⊕(2,4)&(4,3
)&(5,de)&[(1,2)⊕(2,2)⊕(3,2)⊕(4,2)⊕(6,2)]⊕(5,2)&(4,3)&(
2,de)&[(1,4) ⊕(3,4) ⊕(4,4) ⊕(5,4) ⊕(6,4)] 
⊕(5,4)&(4,2)&(2,de)&[(1,3) ⊕(3,3) ⊕(4,3) ⊕(5,3) ⊕(6,3)] 
⊕(5,4)&(4,3)&(2,de)&[(1,2) ⊕ (3,2) ⊕ (4,2) ⊕(5,2) ⊕(6,2) 
}  ⊕ (2,2)& {…} ⊕ (5,3)& {…} ⊕ (4,4)& {…} 
 
note that A⊕B=A&not(B) + not(A)&B, where + means 
logical OR. 

Now imagine the conjunction of various expressions like 
this…only a very powerful logic processor would be 
capable to make the conjunction (logical AND) of various 
expressions so complex without getting lost…as it happens 
with us when we try to understand how the anti-mind 
algorithm reaches the conclusion that the information is 
enough and finds the secret code.  

I have rewritten the Anti-Mind and Mastermind with 
feedback in Matlab with some minor modifications in the 
algorithm and some more profound modifications in the 
implementation.  I made some simulations that point to a 
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worst-case performance of 7 moves for the classic 
Mastermind game (4 digits varying between 1 and 6) and 
Donald E Knuth (1976) claims, without proof, that his 
strategy guarantees a maximum of 5 moves! He showed that 
the best first guess is 1122. Knuth only solved the classic 
Mastermind game with 4 digits varying between 1 and 6 and 
didn’t try to generalize or solve the same problem for a 
greater number of digits and/or maximum digit. It seems 
(Knuth, 1976) was the first serious published work about the 
solution of the classic Mastermind game. Since then many 
proposals were published (Chvátal, 1983; Flood, 1985, 
1988a,b; Irving, 1978; Koyoma, and Lai, 1993; Neuwirth, 
1982; Rada, 1984; Rao, Kazin, and O’Brien, 1986; Shapiro, 
1983), but no one did beat the worst case performance of 
Knuth’s strategy.  

Inspired in the work of Andrzej Pelc (2002), I developed 
the Anti-Mind with lies that solves the generalized 
Mastermind game with an unlimited number of lies or 
errors. I did an exhaustive bibliographic research and I did 
not find any published work similar to Anti-Mind with Lies 
neither to Mastermind with Feedback (Barahona da 
Fonseca, 1989, 2003). 

 

THE ANTI-MIND ALGORITHM 
There are three main ideas behind my very simple anti-mind 
algorithm. The first one is to translate each move and its cpc 
and cpe not in a complex logical expression but in a set of 
good moves, that is, coherent with this information. The 
second one is that to select the subset from the actual good 
moves can be done simply considering the last move as the 
secret code and comparing it with the other good moves: the 
selected good moves must have cpc_i=cpc and cpe_i=cpe; 
this later condition guarantees that the selected good moves 
have cpc digits coincident with the last move and cpe digits 
that exist in the last move in different positions, that is, are 
coherent with the new information. The third one is that 
applying successively this rule of selection is equivalent to 
the conjunction (logical AND) of the logical expressions 
that define the good moves associated with each trial. 
 
Before enunciating the algorithm in formal terms let’s see 
an example, in order to acquire the intuition of what is going 
on. 
 
My anti_mind.m has the syntax 
anti_mind(n_digits,max_digit, flag_trace, flag_n_h) 
When we make flag_trace=1, the algorithm asks after each 
move if we want to see all the actual good moves, and if we 
make flag_n_h=1, the algorithm will display the number of 
actual good moves before each trial. So let’s consider 4 
digits varying between 0 and 5, the secret code being 0535: 
 
>> anti_mind(4,5, 1, 1) 
Number of Hypothesis=1296 
Move 1 
Move=4  2  0  4 

cpc=0 
cpe=1 
Number of Good Hypothesis=276 
>>trace?0 
Move 2 
Move=2  1  5  3 
cpc=0 
cpe=2 
Number of Good Hypothesis=52 
>>trace?0 
Move 3 
Move=3  3  4  5 
cpc=1 
cpe=1 
Number of Good Hypothesis=11 
Move 4 
Move=5  0  3  5 
cpc=2 
cpe=2 
Number of Good Hypothesis=1 
>>trace?0 
**ENOUGH INFORMATION**, Secret Code: 

0535 
 

If you compare the selected 11 good moves with move 3, 
you see that each good move has only one digit coincident 
with move 3, since cpc=1, and only one digit that exists in 
move 3 but in a different position, since cpe=1; the 
remaining two digits don’t contribute to cpc and cpe. I 
regrouped the referred 11 good moves  to make more clear 
how the algorithm translates the logic condition in a set of 
moves: 
 
Move 3 
Move=3  3  4  5 
cpc=1 
cpe=1 
[considering (3,1)->cpc=1 &(3,3)->cpe=1 &(the remaining 
positions 2,4 occupied by 0,1∉{3345})&(4,de)&(5,de)]: 
3  0  3  1 
[considering (3,1)->cpc=1 &(4,2)->cpe=1 &(the remaining 
positions 3,4 occupied by 1∉{3345})&(5,de)]: 
3  4  1  1 
[considering (3,2)->cpc=1 &(3,3)->cpe=1 &(the remaining 
positions 1,4 occupied by 0,1∉{3345})&(4,de)&(5,de)]: 
0  3  3  1 
[considering (3,2)->cpc=1 &(3,3)->cpe=1 &(the remaining 
positions 1,4 occupied by 0,1∉{3345})&(5,de)]: 
1  3  3  0 
[considering (4,3)->cpc=1 &(5,2)->cpe=1 &(the remaining 
positions 1,4 occupied by 5 and 1∉{3345}) & (3,de)]: 
5  5  4  1 
[considering (4,3)->cpc=1 &(5,2)->cpe=1 &(the remaining 
positions 1,4 occupied by 1∉{3345}) & (3,de)]: 
1  5  4  1 
[considering (5,4)->cpc=1 &(3,3)->cpe=1 &(the remaining 
positions 1,2 occupied by 0∉{3345}) & (4,de)]: 
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0  0  3  5 
[considering (5,4)->cpc=1 &(3,3)->cpe=1 &(the remaining 
positions 1,2 occupied by 5 and 0∉{3345})& (4,de)]: 
0  5  3  5 
[considering (5,4)->cpc=1 &(4,2)->cpe=1 &(the remaining 
positions 1,3 occupied by  1∉{3345}&(3,de)]: 
1  4  1  5 
[considering (5,4)->cpc=1 & (3,3)->cpe=1 &(the remaining 
positions 1,2 occupied by  5 and 0 ∉{3345}) & (4,de)]: 
5  0  3  5 
[considering (5,4)->cpc=1 & (4,2)->cpe=1 &(the remaining 
positions 1,3 occupied by  5 and 1 ∉{3345}) & (3,de)]: 
5  4  1  5 
 
Although the number of good moves varies depending on 
the selection (which is random) of each trial, we can say that 
for this code we have about 
N_possible_games=1296*276*52*11=204.02.112 manners 
to find this code. Due to the limitations of the PCs to which 
I had access, I did use only 200 enough information games 
for each possible secret code in the referred simulations with 
anti_mind_auto.m and anti_mind_auto2.m, which must be 
very small compared with the possible enough information 
games, that are certainly less than N_possible_games but 
surely much greater than 200. It is in this sense that the 
results of my simulations are not reliable. 
 
After this digression I think you are just guessing my Anti-
Mind algorithm which I will present in pseudo-code: 
 

1. input(n_digits,max_digit) 
2. n_good_moves=(max_digit+1)n_digits 
3. move_order=1 
4. good_moves(1,1 to n_digits)=zeros(1,1 to n_digits) 
5. while n_good_moves > 1 
           if  move_order = 1 
                move=round(random(‘uniform’,0,max_digit, 
1 to n_digits)) 
           else 
                 move= 
         
good_moves(index(round(random(‘uniform’,1,n_good_
moves)),1 to n_digits) 
     display([‘Move ‘, move_order, ‘ ‘, move]) 
     input(cpc,cpe) 
     if cpc = n_digits 
        display(‘ I got it!’) 
        break 
     if move_order=1 
       [good_moves, 
index]=generate_good_moves(n_digits,max_digit,move
,cpc,cpe) 
    else 
        [index,n_good_moves]= 
            
select_good_moves(n_good_moves,good_moves,index,
move,cpc,cpe) 

6. if n_good_moves=1 
display([‘**Enough Information**  
                 Secret Code=’, good_moves(index(1),1 to 
n_digits)])  
7. if n_good_moves=0 

display(‘**You Didn’t Respect the Rules!**’) 

MASTERMIND WITH LIES 
Before presenting my Anti-Mind with lies algorithm, which 
finds any secret code with an unlimited number of lies, let’s 
see an example with 6 lies, 4 digits varying  between 0 and 
9 and secret code 1559: 
>> anti_mind_w_n_lies(4,9,0,1) 
Number of Hypothesis=10000 
Move 1=9  2  5  4, cpc=0, cpe=3, Number of 
Hypothesis=312 
Move 2=5  9  8  2, cpc=0, cpe=2, Number of Good 
Hypothesis=93 
Move 3=4  5  6  9, cpc=3, cpe=0, Number of Good 
Hypothesis=6 
Move 4=4  5  3  9, cpc=3, cpe=0, Number of Good 
Hypothesis=5 
Move 5=4  5  0  9, cpc=3, cpe=0, Number of Good 
Hypothesis=4 
Move 6=4  5  7  9, cpc=2, cpe=0, Number of Good 
Hypothesis=0 
**You Said one or more Lies...and Later On I will Tell you 
Where!!** 
Number of Hypothesis=4 
Move 7=4  5  4  9, cpc=2, cpe=0, Number of Good 
Hypothesis=0 
**You Said More than 1 Lies...But I will Find Them!!** 
Number of Hypothesis=4 
Move 8=4  5  7  9, cpc=3, cpe=0, Number of Good 
Hypothesis=3 
Move 9=4  5  7  9, cpc=2, cpe=0, Number of Good 
Hypothesis=0 
**You Said More than 2 Lies...But I will Find Them!!** 
Number of Hypothesis=3 
Move 10=4  5  9  9, cpc=3, cpe=0, Number of Hypothesis=2 
Move 11=4  5  4  9, cpc=2, cpe=0, Number of Good 
Hypothesis=0 
**You Said More than 3 Lies...But I will Find Them!!** 
Number of Hypothesis=2 
Move 12=4  5  1  9, cpc=2, cpe=1, Number of Good 
Hypothesis=0 
**You Said More than 4 Lies...But I will Find Them!!** 
Number of Hypothesis=1 
Move 13=1  5  9  9, cpc=3, cpe=0, Number of Good 
Hypothesis=0 
Number of Hypothesis=1 
Move 14=1  5  0  9, cpc=3, cpe=0, Number of Good 
Hypothesis=0 
Number of Hypothesis=1 
Move 15=1  5  3  9, cpc=3, cpe=0, Number of Good 
Hypothesis=0 
Number of Hypothesis=1 
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Move 16=1  5  6  9, cpc=3, cpe=0, Number of Good 
Hypothesis=0 
**You Said More than 5 Lies...But I will Find Them!!** 
Number of Hypothesis=1 
Move 17=1  5  5  9, cpc=4, cpe=0 
** You Lied 6 Times in Moves:  1  3  4  5  8 10 ** 
 
   After this digression you must be guessing the algorithm 
of Anti-Mind with lies, which I present next in pseudo-code, 
first at a high level of abstraction and then at a more detailed 
level of description: 
 

1. [flag_lies,p_moves]=anti_mind(n_digits, dig_max) 
2. n_lies=1 
3. while flag_lies 
4.  [lies,f_end]=generate_combination_of_lies(n_lies) 
5.   if f_end  n_lies=n_lies+1 
6.   else moves=disregard(p_moves,lies) 
7.           [flag_lies,p_moves]= 
            anti_mind2(n_digits, dig_max,p_moves,moves) 
8. endif 
9. endwhile 
10. display(‘You Lied in Moves’: lies) 
 

 
function anti_mind_w_n_lies(n_digits,dig_max) 
anterior_moves=zeros(1, n_digits +2) 
% anterior_moves(1,1)=number of previous guesses 
% anterior_moves(1,2)=flag_lies 
% anterior_moves(i+1,1:n_digits)=guess_i 
% anterior_moves(i+1, n_digits + 1)=cpc_i 
% anterior_moves(i+1, n_digits + 2)=cpe_i 
 
anterior_moves= anti_mind6(n_digits, dig_max, 
anterior_moves) 
 
flag_lies=anterior_moves(1,2) 
 
if flag_lies 
  disp('**You Said one or more Lies...and Later On I  
           will Tell you Where!!**') 
else    
   return % go back to Matlab line of command… 
end % of ‘if flag_lies’ 
 
n_lies=0  % total number of lies  
n1=anterior_moves(1,1) 
cf=(dig_max+1)^n_digits % number of possible secret 
                                         % codes 
 
while flag_lies % main outer cycle 
 
    n2=anterior_moves(1,1)+1 
     
    n_lies=n_lies+1 
 
    if n_lies < (n1+1) 

 
       n_lies_n1_l=n_lies 
 
    else  
       
        n_lies_n1_l=n1 
 
    end % of ‘if n_lies < (n1+1)’ 
 
   % varying the number of lies in n1 
    for n_lies_n1=n_lies_n1_l: -1 :1 
 
     % Initialising lies(i) 
    for i=1:n_lies_n1 
        lies(i)=i+1; 
    end 
 
    for i=n_lies_n1+1:n_lies 
        lies(i)=n1+ i-n_lies_n1+1; 
    end 
 
   flag_limite=1; % this flag means that we didn’t 
                          % exhaust all the possible ways of  
                          % ‘making’  n_lies 
                          
while flag_limite*flag_lies 
 
% first regenerate good_moves neglecting moves lie-1 % 
assumed as lies that are coherent with this new  
% subset of anterior moves 
 
 new_combination=zeros(1,n_digits);  
 cardinal_g_m=0 % cardinal of good moves 
 
        for c=1:cf % generate all the possible  
                         % combinations and see which of them 
                          % are coherent with 
                          % anterior_moves\lies 
        flag_coher=1; % coherence flag 
 
% let’s see if new_combination is coherent with all the 
% previous guesses and cpc_i and cpe_i 
 
        for j_a=2:anterior_moves(1,1)+1 
        j_a=see_if_j_a_is_in_lies(j_a,lies,n_lies) 
         
  if j_a > anterior_moves(1,1)+1 
  break % if this condition is true that means that  
            % don’t make sense to search for more  
           % anterior guesses since we reached the last one 
 end 
 
% second calculating cpc_i and cpe_i  resulting from  % the 
comparison between  new_combination and  
% anterior_moves(j_a,1:n_digits) 
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[cpc_i cpe_i] 
=calculate_cpc_cpe(new_combination,anterior_moves(j_a,1
:n_digits)) 
 
flag_coher=(cpc_i==anterior_moves(j_a,n_digits+1)) 
 
if flag_coher 
flag_coher=(cpe_i==anterior_moves(j_a,n_digits+2)) 
 
else 
 
break 
 
end  % of ‘if flag_coher’ 
 
if (1-flag_coher) 
break % since we are making the logical AND, if  
          % flag_coher=0, it don’t makes sense to continue 
end 
 
 end % of for j_a=.. 
 
if flag_coher 
cardinal_g_m=cardinal_g_m + 1 
good_moves(cardinal_g_m,1:n_digits)= 
new_combination(1: n_digits) 
end 
 
new_combination= 
generate_new_hypotesis(new_combination, dig_max) 
 
end % of the for c=... 
 
flag_lies=(cardinal_g_m==0) 
    
 if (1-flag_lies) % flag_lies=0 means we need more  
                        % information to reach a conclusion! 
anterior_moves=anti_mind6(good_moves, 
                                       cardinal_g_m,anterior_moves) 
flag_lies=anterior_moves(1,2) 
 
end % of ‘if (1-flag_lies)’ 
 
% generating new combination of possible lies 
 
if flag_lies  
lies=generate_new_lies(n_lies,n_lies_n1,lies,n1,n2) 
flag_limite=act_flag_limite(lies,n_lies_n1,n_lies,n1,n2) 
end 
 
end % of the ‘while flag_limite*flag_lies’ 
 
if (1-flag_lies) 
    break % if flag_lies=0 that means we have found the  
              % secret code and ‘lies’ is the set of guesses 
              % where the human user lied: so we must go 
              % out of the ‘for n_lies_n1=… ‘ cycle 

end 
 
end % of the ‘for n_lies_n1=...’ 
 
if flag_lies 
   disp([ '**You Said More than '  integer2string(n_lies)  
             ' Lies...But I will Find Them!!**' ]); 
end % of ‘if flag_lies’ 
 
end % of  the outer cycle ‘while flag_lies’ 
 
disp(['**You Lied ' integer2string(n_lies) ' Times in 
Moves:']); 
 
disp(['** ' integer2string(lies-1) ' **']); 
 
% in Matlab, making an array-1, results in the  
% subtraction of 1 in all elements of the array 
 
return 

 
To help you to understand this tricky algorithm I will 

present the following results, without demonstration: 
Anti-Mind Theorem: If the codemaker, the human user, 

never makes errors neither say lies, then the Anti-Mind 
algorithm (Barahona da Fonseca, 1989, 2003) always finds 
the secret code in a finite and bounded number of moves. 

Anti-Mind with Lies Theorem: If the codemaker, the 
human user, makes at lest one error or say at least one lie, 
then the Anti-Mind algorithm will always reach a situation 
where the set of good moves (or good hypothesis) is an 
empty one. 

Minimum Information to Identify One Lie Theorem: 
After reaching the conclusion that exist at least one Lie in 
the first N1 moves, that is #(good_moves)=0, if I discard one 
of these N1 moves, to find that this new set of moves 
contains at least one lie, it will be necessary to generate at 
least one more guess, for any N1 first moves that contain at 
least one lie. 

Minimum Information to Identify N_Lies+1 Theorem: 
Generalizing this last result, after testing all the possible 
manners of making N_Lies without having found the secret 
code, to test the first way of making N_lies + 1 it will be 
necessary to generate at least one more guess, calling the 
anti_mind6 function, a variation of my original anti_mind 
algorithm (Barahona da Fonseca, 1989, 2003) that puts in 
memory the guesses it generates and don’t assumes that 
when #(good_moves)=1 it has found the secret code, as does 
my anti_mind algorithm (enough information situation), 
because this latter  one assumes that there are no lies in the 
previous answers. 

As a corollary of this theorem we have that N1+N_Lies 
is a lower bound of the number of guesses necessary to find 
the secret code and identify the lies. In the above example 
we have N1=6, N_Lies=6 and we have 17 guesses. 

Uniqueness of Lies Set Theorem: When Anti-Mind with 
Lies finds the secret code discarding the set of previous 
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guesses lies, there will be no doubt that lies are the guesses 
where the human user lied and there will not exist any other 
guesses where the user lied. 

So, the main idea is that after being detected one or more 
lies, begin to make hypothesis about which of the previous 
moves were lies, neglect these moves and regenerate the set 
of good hypothesis and select one randomly until cpc is not 
equal to the number of digits of the secret code, that is until 
it don’t find the secret code.  

We begin to make the hypothesis of one lie, then test all 
possibilities of occurrence of one lie, if we didn’t find the 
secret code then we make the hypothesis of two lies and so 
on, till we find the secret code. 

 

CONCLUSIONS AND FUTURE WORK 
Although a very simple game, Mastermind puts in 

evidence human cognitive limitations (Stillings et al., 1995). 
My Anti-Mind algorithm seems to show a performance 
better than the performance of most human Mastermind 
players (Barahona da Fonseca, 2003).  

To clarify this question I’m planning to make 
experiments with a sample of very good human Mastermind 
players with Mastermind with Feedback. 

Since nobody till today did beat the worst case 
performance of Knuth’s strategy, that is five guesses, it 
seems that it may be very near an optimal strategy as 
defined by Viaud(1979).  

This is the context where I will obtain all the possible 
optimal strategies for the standard Mastermind game and for 
some variations with a greater maximum digit and/or greater 
number of digits. 

I will also explore the Anti-Mind with Lies and 
Mastermind with Feedback as a training programs for 
criminal investigators and lawyers since they work with 
noisy data and data with lies, and they must detect and 
identify incongruences in factual and acquired data of a 
criminal or juridical process and must do good guesses 
coherent with all factual and acquired data. I’m now 
working on the Offline Anti-Mind with Lies where I consider 
a set of moves already defined and I consider that may exist 
various solutions, that is various secret codes; this is 
equivalent to some complex criminal processes where a 
subset of the data points to a homicide, another subset to a 
suicide, another subset to a natural death and another subset 
to the falsification of the autopsy. 

It seems that Intelligence and Creativity result from not 
‘soft’ and complex neural processes but, by the contrary, 
emerge from very simple brute force search algorithms that 
may run in parallel.  

A more intelligent or creative person would be someone 
with better and more efficient search and hypothesis 
generation algorithms, which would not discard any 
hypothesis of problem solution and does a better hypothesis 
test scheduling and makes better hierarchies of them. 
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ABSTRACT
This  paper articulates some of the challenges
for  computer  game  development  courses  at
university level. A typical course development
of this type is described. The need to include
creative  methods  alongside  more  formal
software  development  methodologies  as  core
elements  of  computer  game  education  is
proposed and placed within the context of an
industry specific framework. The evolutionary
nature of the computer game industry requires
that computer game development programmes
at  university  should  be  equally  evolutionary
and adaptable to change. 

INTRODUCTION
The  computer  games  industry  has  risen  in
global prominence and size during the last ten
years  (DFC  Intelligence,  2004;  SSC  2002).
The  contemporary  appeal  of  interactive
entertainment  software  has  resulted  in
computer  games  being  played  by  a  much
broader cross-section of society. This apparent
‘legitimization’  of  gaming  as  an  accepted
leisure  pastime  has  also  resulted  in  the
software  development  education  sector
responding.  A  wide  variety  of  games
development  related  degree awards  have
emerged into the university sector since 1997.
Current  UCAS  (Universities  and  Colleges
Admissions  service)  statistics  list  25
universities  or  institutes  offering  59  degree
programmes (UCAS, 2004). The academic and
skill  focus  of  these  awards  varies  with  each
institution. Programmes range from being arts
and design based, to being purely focused on
computer  game  programming  and  software
development.

CREATIVITY  AND  SOFTWARE
ENGINEERING  IN  THE  GAME
DEVELOPMENT INDUSTRY
These  two  seemingly  opposing  concepts  are
both essential components for the success of a
computer  game product.  Creative design  and
innovation  are  requirements  for  compelling
gameplay  and  longevity  of  game  products.
Yet,  while  these  are  critical  to  a  games
success,  if  the  development  process  is  over

budget or deadlines are missed, the benefits of
successful  design  are  lost.  Rucker  proposes
two  criteria  for  a  successful  game:  is  it
beautiful?  and does it  make money? (Rucker,
2003).  These  criteria  sum  up  the  competing
needs  for  computer  game  software;  games
need  to  be  compelling  and  offer  a  fun  and
entertaining experience, and they need to also
be a success in the business sense. 

Educating  potential  game  developers  to
embrace  and  recognize  both  of  these
competing  criteria  requires  a  curriculum
balanced  with  creative  opportunity  and
software  engineering  methodology.  While
conventional  thought may see these concepts
as  being  difficult  to  coexist  within  a
curriculum,  it  is  proposed  that  not  only  can
they  coexist  within  a  games  computing
curriculum,  but  that  they  are  both  necessary
components. 

The  curriculum  developed  by  many  of  the
institutions listed in the UCAS statistics give
students exposure and opportunity to develop
skills in all main areas of game development.
Students are encouraged to develop their own
creativity  and essential  computing  skills,  and
to  recognize  that  software  engineering
methods are as important as creative design in
the success of a computer game product. 

CASE  STUDY:  A  TYPICAL  COURSE
DEVELOPMENT
During  the  mid  nineties,  the  Faculty  of
Applied Computing Sciences at the University
of  Lincoln  looked to  consolidate  its  existing
portfolio  of  computing  degrees  and  also  to
expand  into  new  and  emerging  computing
disciplines  such  as  computer  game
development,  system  security  and  media
technologies.  These  developments  were
designed to bring the computing curriculum up
to date,  and  also  to  respond to  the changing
demands  of  the  undergraduate  market.  The
first  award,  BSc(Hons)  Computing  (Games,
Simulation  & Virtual  Reality),  was  validated
for  delivery  in  1997.  Refinements  and
refocusing  of  this  undergraduate  programme
into BSc(Hons) Games Computing occurred in
2001.
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The motivations for the development of games
computing curricula at undergraduate level are
numerous.  The  leisure  software  sector  has
experienced rapid growth, both globally and in
the  UK.  Games  software  represents  the
majority  of  this  market  (SSC,  2002).  The
demand  for  undergraduate  computing
programmes in this field has increased in line
with  this  increase  in  popularity  of  computer
games  as  a  leisure  pastime.  In  developing  a
programme of study which addresses industry
and  student demand,  a  number  of  challenges
need  to  be  addressed.  The  challenges  of
acceptance  of  what  is  often  seen  as  a  'non-
academic'  or  'rigor-less'  subject  are  faced  at
both public and university management level.
Students,  and increasingly their parents,  need
to  see  that  the  course  will  deliver  value  for
money  and  value  in  the  job  market,  while
university  management  need  to  ensure  that
standards  and  benchmarks  are  reached  to
ensure an effective educational experience for
the student, as well as maintaining university
quality  responsibilities  (THES,  2003).  The
games computing programme at Lincoln offers
the  basis  for  a  career  as  a  computing
professional.  It  has  undergone  rigorous
validation and approval to ensure that it meets
the  standards  set  by  the  Higher  Education
Funding Council for England (HEFCE).

Another  critical  challenge  is  the  effective
integration  of  creativity  and  free-form
development, considered by many to be at the
heart  of  innovative  computer  game
development,  with  the  structured  and  more
formal  nature  of  software  engineering
principles and practice. 

The  computer  games  industry  thrives  on
creativity  and  innovation.  New  ideas,
groundbreaking  gameplay  and  interaction
mechanisms  drive  the  popularity  –  and
ultimately sales  - of computer game units. The
responsibility  of  university  games computing
curricula  is  to encourage student activity and
achievement in creation and innovation, while
ensuring  that  more  structured  and  formal
software engineering principles are upheld as
requisites for efficient and economic software
development.

The  rationale  behind  the  development  and
operation of the BSc(Hons) Games Computing
award is to produce graduates with critical and
intellectual  abilities  within  the  games
computing  field,  along  with  domain  specific
skills  and  experiences such  as  creative game
design  and  game  software  development.  In
order to satisfy the demands of this rationale,
the programme seeks to achieve a number of
broad goals (University of Lincoln, 2001):

• To  provide  students  with  an
education  and  learning
experience  that  will  equip  them
to  operate  on  graduation  as
autonomous  computing
professionals;

• To  develop  professional  and
transferable skills in a wide range
of  methods,  techniques  and
practices appropriate for the task
domain  of  a  professional
computer game developer; and

• To develop a rich and up-to-date
set  of  practices  and  techniques
which  students  can  deploy  in
state-of-the-art  computer  game
software design and development
contexts.

Curriculum  design  within  the  Faculty  of
Applied  Computing  Sciences  follows  a
'thematic'  approach  (Reeve,  2003).  An
undergraduate  award  is  defined  by  a
combination  of  two  'subject  themes'  and  a
single  skills  theme.  A  'subject  theme'  is
programme of study that addresses a particular
cognate area or field of interest. (see Figure 1).

Subject of
Computing

Subject of
Informatics

Subject of Media
Technology

 Computing theme
 Games Computing

theme
 Software

Development theme 
 Internet Systems

theme 

 Informatics theme 
 Applied Informatics

theme 

 Media Technology
theme 

 Digital Media theme
 

Figure  1:  Curriculum  themes  within  the
Faculty  of  Applied  Computing  Sciences,
University of Lincoln.

The  BSc(Hons)  Games  Computing
undergraduate award is comprised of the two
themes  of  Games  Computing  and  Software
Development. This combination is one, which
reflects  the  recommendations  of  the
International  Game  Developers  Association
(IGDA)  for  game  related  educational
programmes.  The  IGDA  Curriculum
Framework (IGDA, 2003) acts as a guideline
for  university  awards  in  the  computer  game
development area. It describes the knowledge
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areas and practical skills required to make and
study games in a flexible format, which allows
it  to  be  adapted  by  individual  institutions.
Some  issues  faced  when  developing  a
programme of study within this framework are
explored in the next section.

The  recruitment  history  for  the  BSc(Hons)
Games Computing at Lincoln shows a steady
development  and strengthening of the student
base during  the last  six  years of  recruitment.
This steady rise in recruitment figures could be
seen  as  a  consequence  of  the  contemporary
popularity of computer gaming, and reflects an
increasing interest by potential undergraduates
in  the  games  computing  field.  It  has  also
provided  positive  feedback  to  the  staff
evolving the degree.

THE  CHALLENGES  OF  MAPPING
PROVISION  TO  INDUSTRIAL
REQUIREMENTS
One of  the  aims  of  a  provider  of  university
undergraduate awards in any field, is to deliver
relevant  programmes  of  study  which  are
responsive and  reflective of  the needs  of  the
industries  into  which  the graduates  progress.
The games computing industry is no different
in this respect. It does, however, pose its own
unique  challenges  to  the  developers  and
deliverers  of  undergraduate  awards  in  this
area. 

Among  the  defining  characteristics  of  a
computer game product is the recognition that
it  is  a  synergistic  combination  of  creative
design  effort  and  software  development
processes. This characteristic is reflected in the
definition of the IGDA Curriculum Framework
‘core topics’ (see Figure 2).  Practitioners and
academics have defined these topic areas as a
list of general areas relevant to the construction
of  a  game-related  curriculum.  As
acknowledged in the Framework document, no
single curriculum can apply to all institutions
delivering  courses  in  this  field;  rather,  each
institution  will  interpret  and  apply  its  own
resources  to  their  course  development  within
the guidance of the Framework. 

Critical game studies
Games and society
Game design
Game programming
Visual design
Audio design
Interactive storytelling
Game production
Business of gaming

Figure 2: IGDA Curriculum Framework core
topics

The  faculty  or  department  that  develops  an

undergraduate  programme  in  this  field  will
naturally utilize the talent and expertise, which
are  contained  within  its  academic  body.
Faculties of art and design, for example, may
interpret  and  implement  an  undergraduate
games development programme in a different
way to  more technology-oriented faculties  of
computing or computer science.   

The application of a guiding framework to an
undergraduate  degree  programme  can  be
enabling in  that  it  can provide an amount of
legitimacy and focus to the content. It can give
students clear and transparent direction to their
studies  and  their  approaches  to  potential
employers upon graduation. When developing
or  revising  a  programme  of  study,  multiple
frameworks may be referred to in the process.
Guidelines  such  as  the  accreditation
framework  of  the  British  Computer  Society
(BCS, 2004) can be equally applied to games
development  related  programmes,  and  can
indeed be complementary to an industry sector
specific  set  of  guidelines,  such  as  the IGDA
Curriculum  Framework.  Recent  work
commissioned  by  the  Entertainment  and
Leisure  Software  Publishers  Association
(Steele  et  al,  2004)  seeks  to  further  the
development of  curriculum guidelines  and to
introduce  the  possibility  of  industry  led
accreditation for programmes of study.

Inspection  of  the  IGDA  Curriculum
Frameworks core topics reveals that not only
are  the  creative  and  aesthetic  topic  areas  of
computer game development ideally addressed
by a programme of  study,  but  that  the more
disciplined and structured elements of software
development  and  software  engineering
principles  should  also  be  considered.  It  is
evident  from  the  IGDA  Curriculum
Framework  that  the  games  industry  requires
effective software engineering principles to be
a core skill of any games related graduate. The
use  of  software  engineering  processes  in  the
game  development  cycle  often  ensures  that
games  developers  are  able  to  learn  from
mistakes  in  previous  developments  (Rollings
and Morris, 2000). Rollings and Morris go on
to  offer  a  detailed  argument  and  case  study
material to support this statement. 

The  evolution  of  Games  Computing
programme  at  Lincoln  has  been  one  that
reflects  this  need  for  software  engineering
practice. With these factors in mind curriculum
development  is  ongoing,  and  seeking  to
identify  and  apply  effective  pedagogic
principles  that  incorporate  creative  practice
along  with  traditional  software  engineering
principles.  This has led to new developments
in interdisciplinary research by staff  from the
Faculty  of  Applied  Computing  Sciences  and
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the School of Architecture at the University of
Lincoln (O'Coill and Doughty, 2004; Rank et
al.,  2004).  This  research  is  continuing  to
explore and take advantage of the application
of  computer  game  technologies  to
participatory  design  within  community based
architecture projects.

CONCLUSION 
The  key  requisite  of  any  university  based
computer  game  development  programme  is
that it  has  relevance and responsiveness.  The
game industry has evolved rapidly during the
last twelve years, and as a result demands for
graduates with specialist knowledge and skills
in the games computing field has raised. The
development  of  university-based  courses
delivered by computing, media and technology
based faculties has taken place in line with this
industry expansion. Rather than relying purely
on  graduates  from generic  disciplines  of,  for
example,  computer  science,  physics  and
mathematics, the industry can now select from
specialist  graduates  from  games  related
programmes.

One key aspect  of  the games industry  which
needs to  be  reflected  in  the university  based
educational programmes is the combination of
creative and innovative thinking along with the
application of structured software development
practices. This aspect is one, which is reflected
by  the  IGDA  Curriculum  Framework
guidelines,  and  one  that  is  central  to  the
development  of  the  computer  games
programme at the University of Lincoln. 
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ABSTRACT 

The use of BASIC to teach programming has long been 
controversial, and remains so. Modern versions of 
BASIC allow students to develop skills in structured and 
even object-oriented programming. DarkBASIC is one 
such version, which includes procedures and very easy 
access to DirectX. As such, it can allow students the 
opportunity to create video game projects with a very 
low entry barrier. We review DarkBASIC, highlighting a 
number of particular strengths and weaknesses of the 
language, and examine whether we can justify its 
inclusion in a university syllabus. 

INTRODUCTION 

The programming language BASIC was originally 
developed for student use, with one of its original design 
principles being that it should “Be easy for beginners to 
use” (Wikipedia 2004). Although easy to use, BASIC has 
always had a problem gaining acceptance within 
computer science. The ‘go to’ statement, commonly used 
to jump between different sections of code in BASIC 
(although not unique to the language) was famously 
criticised by (Dijkstra 1968), who in a later article made 
a far more damning claim: 

“It is practically impossible to teach good 
programming to students that have had a prior 
exposure to BASIC: as potential programmers they 
are mentally mutilated beyond hope of regeneration.” 

(Dijkstra 1975) 

It should be said that this latter article makes a number of 
unsupported, and quite opinionated claims. FORTRAN is 
called “the infantile disorder” and a claim is made that 
COBOL cripples the mind. 

Despite Dijkstra’s condemnation, BASIC has remained 
popular and forms the basis of Microsoft’s highly 
successful Visual Basic programming language and IDE 
– taught to many thousands of students at universities 
across the world. With Visual Basic .NET, BASIC has 
now evolved into a language possessing a full range of 
object-oriented programming features (McMonnies 
2004). We have used, over the last three years, a recent 
version of BASIC to introduce first year undergraduate 

students to games programming. The language used, 
DarkBASIC*, incorporates functions, does away with 
line numbering and allows easy access to many of the 
powerful features of DirectX. This makes it a strong 
training ground for games programming. 

As part of the Computer Games Technology BSc (Hon) 
degree an introductory module was developed to give 
students on overview of games development. One of the 
goals of this module was to give students the opportunity 
to create simple graphical computer games in their first 
semester at university. The environment used would have 
to be simple to learn – some students enter with no 
previous programming experience – yet flexible enough 
to allow students to create a range of games according to 
their own designs. Teaching programming itself was not 
one of the aims of the module – students take another 
programming module (currently C++ based) in the same 
semester that has this aim. 

Accordingly, the environment or language chosen would 
have to satisfy a few goals: 

1. Easy to learn – even for programming neophytes 
2. Allow integration of graphics and sound with little 

programming effort 
3. Be flexible 
4. Give students a good introductory experience in 

games creation – with understanding of 
code/graphics and sound separation and integration 

5. Support structured  and modular programming – to 
try to avoid ‘spaghetti code’ and the introduction of 
too many bad habits 

A few competing games development languages and 
environments were compared. Some were rejected out of 
hand for quite obviously failing to meet the goals – either 
being too limited and inflexible (‘no-programming 
required’ games creation toolkits) or by being seemingly 
too complex for complete beginners. The final shortlist 
consisted of DarkBASIC and BlitzBasic (now known as 
BlitzPlus), and the former was selected for its apparent 
shallower learning curve and greater immediacy. Over 
time problems with DarkBASIC have become apparent, 
and it is now required to evaluate its use and misuse – 
and decide whether we can justify its continued use, even 
in the very limited role it has in the degree programme. 

                                                                 
* Two versions of DarkBASIC are available from 
http://www.thegamecreators.com/. Both versions possess 
the many quirks described in this paper. 
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BOOTSTRAPPING AND BEYOND 

The bootstrapping problem when learning to program is 
an important one to consider, and it is here that 
DarkBASIC performs particularly well compared to the 
likes of C++ and Java. Roughly put, in order to learn 
programming, students have to write programs. And to 
write even simple programs they need to learn something 
about the programming language they are using. 
Consider the following “Hello World” programs: 

#include <iostream> 
main() 
{ 
    std::cout << “Hello World”; 
} 

 
class HelloWorld { 
  public static void main( 
                    String args[]) { 
    System.out.print(“Hello World”); 
  } 
} 
Figure 1. The C++ (top) and Java Hello World programs 

In order to teach even this, we either have to explain a 
range of language features – likely to confuse and 
perplex the neophyte– or tell them not to worry about it, 
as it will all become clear later. Either way, the students’ 
first program is likely to leave them with the feeling that 
they don’t really understand what they have just done. 
Like other versions of BASIC, the single-line 
DarkBASIC version (PRINT “Hello World”) leaves 
nothing that requires further explanation. The downside 
of this ease of understanding is that student may gain 
unrealistic expectations about the ease of programming 
as an activity – and be given a false sense of security. 

Introducing students to interactive graphics programming 
introduces far greater levels of complexity in both Java 
and C++. For both, there are feature rich libraries and 
APIs to be learned, and programs to perform very simple 
tasks, such as show a box move around the screen, may 
require many dozens of lines of code. Figure 2 shows 
how simple it is draw a picture (loaded from file), and 
have it move around according to user input  in 
DarkBASIC. The program also uses double-buffering to 
eliminate flicker. 

SYNC ON 
LOAD IMAGE "tank.bmp", 1 
x = 250 
y = 200 
DO 
  CLS 
  IF upkey() THEN y = y - 1 
  IF downkey() THEN y = y + 1 
  IF leftkey() THEN x = x - 1 
  IF rightkey() THEN x = x + 1 
  PASTE IMAGE 1, x, y 
  SYNC 
LOOP 

Figure 2. Loading an image and drawing it on screen 
under user control. 

STRUCTURED PROGRAMMING WITH 
DARKBASIC 

DarkBASIC is certainly easy to learn, but what of its 
support for structured programming? Like most versions 
of BASIC, DarkBASIC features both the GOTO and 
GOSUB commands – which facilitate jumping around 
code, while keeping all variables globally visible. 
DarkBASIC also includes a range of other commands for 
more structured programming – allowing GOTO and 
GOSUB to be avoided altogether. Before we review 
those, we begin our look at the language by considering 
some issues regarding variables. 

Variables and Scope 

The three common BASIC variable types are all well 
supported – integer, real number and string. Arrays are 
declared as usual with the DIM statement, although 
unusually for BASIC these are zero indexed but are of 
declaration length+1 to maintain compatibility with other 
BASIC languages. However, other variables do not need 
to be declared before use. This can be problematic for 
learners, as spelling mistakes in variable names lead to 
programs which execute – sometimes with hard to trace 
errors. Unlike Visual Basic there is no option to force the 
declaration of all variables before their first use. 

DarkBASIC also maintains a number of system vectors 
for storing sound and graphics data – the use of these 
global lists is quite non-standard and has been the source 
of confusion for some students. 

The scope model in DarkBASIC is also quite limiting. 
Essentially, all variables are local – except for arrays 
declared in the main body of the program which are 
automatically global. The only way to create a global 
variable is to declare it as a single element array. 

Further, as with most versions of BASIC, there is no 
support for “struct”s or user-defined abstract data types. 
Accordingly, there is no natural way of grouping the data 
elements for game objects other than by using sets of 
variables and/or arrays. 

Loops 

The example shown in Figure 3 demonstrates a repeating 
and never-ending DO...LOOP (DarkBASIC programs are 
escapable by hitting the ESCAPE key, however). 
DarkBASIC also supports FOR loops, as well as 
REPEAT... UNTIL and WHILE... ENDWHILE  loops.  

Procedures 

DarkBASIC introduces FUNCTION, ENDFUNCTION 
and EXITFUNCTION keywords, which provide some 
support for procedural programming – although with 
some important limitations. Arguments passed into a 
function are passed by value – DarkBASIC does not 
support call by reference or pointer. As all parameters are 
passed by value the only ways to alter the value of 
variables within a function, and have the variables retain 
the altered values after the function terminates, are to 
either return the new value – obviously limiting functions 
to altering the value of a single variable only – or to 
make widespread use of variables with global scope. 
Neither solution is particularly satisfactory – especially 
when trying to instil good programming practice in 
young programmers. 
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Keyword Problems 

For working with DirectX, DarkBASIC introduces a 
large number of new reserved words. Many of these are 
based quite closely on the API function names used in 
DirectX, thus exposing students to the API earlier than 
would otherwise be the case. What is very unusual, 
however, is that many of the reserved words are in fact 
multi-word commands. For example, instead of the 
expected PASTE_IMAGE reserved word to allow an 
image to be drawn on screen (or to a bitmap in memory), 
the reserved ‘word’ is in fact “PASTE IMAGE”. Further, 
“IMAGE” itself is NOT a reserved word, and can be 
used as a variable name. 

The use of multi-word keywords, of which the 
component parts are not necessarily reserved words, can 
result in confusing code – and makes confusing code 
very easily written. 

DOCUMENTATION 

A simple user manual ships with DarkBASIC, which 
also includes a number of inbuilt tutorial lessons. There 
is also a third-party book on learning to program with 
DarkBASIC (Harbour and Smith 2003).  The user 
manual covers all of the DarkBASIC commands, and 
while it does include a small section on programming 
principles, it does not teach programming as a traditional 
textbook would, and has no coverage at all of algorithms 
or problem solving. ‘Fast Track Learning’ lessons jump 
from a three line ‘Hello World’ type program, with no 
variables, to a much more complex 3D graphical game of 
around a hundred lines. A further ten tutorial exercises 
are paced much better, but the examples do include the 
use of the part ial keyword “image” as a variable name! 

(Harbour and Smith 2003) is better suited for learning to 
program, but is priced such that it is hard to recommend 
to students who will only be working with DarkBASIC 
for three months of their academic career. 

LEARNING ABOUT GAMES 
DEVELOPMENT 

It is clear that there are some problems with DarkBASIC, 
but by using it in teaching it is possible to teach students 
at an early stage a range of basic and advanced issues 
and concepts relating to the development of interactive 
graphical applications. 

Basic concepts such as screen resolutions, coordinates, 
colour depth and RGB values can all be covered simply 
in class and reinforced by practical work. Double 
buffering is supported, and easy to use, in  
DarkBASIC  – and examples can be easily put together 
to demonstrate the difference between buffered and un-
buffered graphical applications. 

Support for sprites demonstrates the difference between 
game objects and images – a single object having 
multiple images, one for each possible pose. And the 
overall process of creating games in DarkBASIC 
demonstrates very clearly the separation between 
development of code, art and sound resources in games – 
experience has shown that many students don’t clearly 
understand the distinction that exists between games 
programmers and artists when they start the course. 

STUDENT PROJECTS 

The main practical deliverable for students in the module 
is a 2D game project of their own design. Many, but by 
no means all, of these games are of very high standard 
given the limited time available, and the limited 
experience of their authors (see Figure 3 for a screenshot 
from one such game). These projects show that by using 
DarkBASIC we have been able to achieve the first four 
of our five goals. It should be noted that not all students 
manage complete games, though this is often due to the 
delayed start of projects.  

Figure 3. Quickdraw, a two player game developed by a 
student with no previous programming experience.  

The fifth goal – of encouraging structured and modular 
programming has not been so clearly achieved, however. 
Inspecting the code of student projects is a variable 
experience. A few projects manage to keep to structured 
programming principles. A very few use principles of 
modular programming. But in many cases the principles 
of good structured and modular programming are most 
marked by their absence in student projects. 

HAS ANY HARM BEEN DONE? 

The question in the title of this paper asks whether we 
should consider DarkBASIC to be harmful. Does using 
DarkBASIC in a first year module irretrievably harm all 
the students who use it? The answer to this question 
would have to be no, it does not. Many students who 
have taken this module progress well in other 
programming modules, with no evidence of long term 
damage. 

Looking at results from the most recent first year, we can 
compare the results gained in two C++ programming 
modules (Introduction to Programming and 2D Graphics 
Programming) for students who have taken the 
Introduction to Game Development module (which uses 
DarkBASIC) against the results for students who have 
not been exposed to DarkBASIC. These results (Figure 
4) appear to show that exposure to DarkBASIC does not 
impair the learning of C++ programming. 

There are three possible explanations for these results 

1. Learning DarkBASIC has no negative impact on 
learning other (structured, modular and/or object-
oriented) programming languages/approaches 

2. As the second semester module uses DirectX, 
exposure to elements of DirectX in DarkBASIC 
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may offset any negative impact from exposure to 
DarkBASIC’s imperfections 

3. As the second semester module uses 2D graphics 
programming as a basis for teaching C++, non-
games students may perform relatively poorly as 
they are less interested in graphics programming. 

Results Comparison: with/without Intro to Games
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Figure 4. Student performance in the first semester C++ 
module is a good predictor of performance in the second 
semester C++ module, whether or not students have been 

exposed to DarkBASIC.  

It is quite possible that all three explanations are true to 
some extent – although not necessarily for all students. 
Feedback from students indicates that (3) is true for some 
non-games students. (2) also seems quite likely to be 
true, and it is clear that for many students (1) is also true. 
However, student feedback over the years the module 
has been taught also shows that for some students the 
effort involved in having to learn two programming 
languages at the one time is great – and indeed, we know 
that for many students learning the one programming 
language is a challenge of significant difficulty. 

A small number of students do also drop out of the 
degree programme – many of these transferring to a 
sister programme with less computer programming 
content (some of these students do not complete the 
second semester programming module, and accordingly 
their results do not appear on Figure 5). These students 
commonly cite difficulties with, or dislike of, computer 
programming as being a factor in their decision. It is hard 
to estimate the impact that learning two programming 
languages at the one time has had on such decisions, but 
the fear is that such exposure is a contributory factor 
leading to the loss of students from the programme. 

From this study, clear evidence of harm from the use of 
DarkBASIC has not been found. However, there remain 
clues that there is most likely a negative impact on some 
students, particularly in their gaining a comfortable 
familiarity with control structures and the idea of 
modularity. We feel that we can improve on 
DarkBASIC, perhaps not as a raw games programming 
engine, but certainly by providing an environment that 
will have less likelihood of promoting poor programming 
habits, or of putting students off programming altogether. 

ALTERNATIVES TO DARKBASIC 

The most obvious alternative would be to use BlitzPlus, 
another version of BASIC written to give hobby 
programmers easy access to DirectX. BlitzPlus has a 
number of apparent advantages – for example, the 
unusual treatment of keywords and reserved words of 
DarkBASIC is avoided and structs are supported 
(although with an unusual notation). However, arrays 
still automatically have global visibility and functions do 
not support call by reference or pointer. 

Using BlitzPlus students would still be required to learn 
two different programming languages simultaneously. 
Perhaps a better alternative would be to use a custom 

void gameMain() 
{ 
  db_image background; // A double-buffered image object 
  // Establish a backdrop for the game on the client area... 
  background = new db_image(“gameboard.bmp”); 
  // Make this the form’s background... 
  this->backgroundimage = background; 
 
  // Create an object to move across the game board... 
  sprite tank1 = new sprite(“tank.bmp”); 
  int x = 250; 
  int y = 200; 
 
  do { 
    input = controller.getMove() 
    if (input == UP) y = y – 1; 
    if (input == DOWN) y = y + 1; 
    if (input == LEFT) x = x – 1; 
    if (input == RIGHT) x = x + 1; 
    if (input == ESCAPE) break; 
    background.beginDraw();  // This starts a draw sequence to the  
       // ‘background’ bitmap 
    background.drawSprite(tank1,x,y); 
    background.endDraw(); // This swaps back- with foreground. 
  } while (true); 
} 

Figure 5. In development: A framework to allow students to develop 2D games in C++ as simply as is possible in 
DarkBASIC. 
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games creation framework to allow beginning students to 
use C/C++ in creating their first games. A framework to 
simplify the development of DirectX applications was 
previously presented by (Slater 2003). While this 
removed the need for students to develop DirectX 
applications from scratch, by giving them an initial 
‘empty’ project, it still required that they deal with many 
of the complexities of DirectX and C++. 

We propose instead the creation of a framework which 
allows students to write simple 2D games in C/C++, 
using commands similar to those found in DarkBASIC 
and BlitzPlus. The program shown in Figure 2 could be 
re-written using this framework as shown in Figure 5. 
The code fragment, which reflects our current thinking 
on the framework, is notable for a number of reasons: 

• Although the framework will be a windows .NET 
form-based application, it will provide access to user-
input (from a ‘controller’ class object) that avoids the 
use of event-handlers, which are standard mechanisms 
for catching user input in this arena.  We aim to 
simplify the handling of input by presenting the 
framework as a fully modal environment. 

• Typically graphics are drawn in the paint event in a 
Windows application. This approach has many 
advantages, but can be confusing to new programmers 
since the graphical state must be made accessible to a 
number of event handlers.  The simple ‘draw-now’ 
command structure gets over an initial hurdle when 
considering the control structure of the application. 

• A number of additional operations are involved 
compared to the DarkBASIC version.  Each additional 
statement has a purpose that is clear and easy to 
explain in a games programming context (establishing 
a background, creating a foreground character, 
initiating and completing a screen update), and the 
additions are likely to lead to a better understanding of 
the processes. 

• gameMain() will be an entry point that encompasses 
the entire game processing – it will be entered after 
initialisation and clean-up will be performed after exit. 

• Since gameMain() is built around a simple loop, this 
could provide opportunity to demonstrate (and give 
easy access to) the notion of threads in processing – 
although working with threads is unlikely to be 
required of students in their first semester. 

Thus we hope to introduce a library designed to promote 
educational objectives to replace a language that works 
in spite of its educational failings. 

CONCLUSIONS 

Our experience shows that DarkBASIC can be used 
successfully to introduce many concepts related to the 
development of interactive graphical applications to first 
year undergraduate students, while allowing them the 
opportunity to design and create their own games – even 
for students with no prior experience of programming. 
For student s to complete their first playable games within 
three months of starting university is something of an 
achievement. 

Despite this, and without clear and unambiguous 
evidence, there remains some belief that using 

DarkBASIC in the first semester is having a negative 
effect on progress for some students. Accordingly, a 
replacement is sought, although it is felt that existing 
alternative packages (such as BlitzPlus) are unlikely to 
resolve all of the problematic issues.  

Accordingly, we propose to develop a C++ .NET library 
giving students DarkBASIC-like access to basic 2D 
graphics operations. The key advantage is that students 
will be learning fundamentally the same programming 
language as is used in other first year modules (and by 
most of the games industry) – C++. With only the one 
programming language syntax to be learned, all students 
will need to learn for this module will be the framework 
specific features. Follow on modules will abandon the 
framework, but the experience in programming in C++ 
(and core knowledge gained in interactive graphical 
programming) should be transferable. 
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ABSTRACT 

This paper reviews the teaching of computer games as 
an academic subject for students at university level. 
The benefits, challenges and problems of teaching 
game design and game programming are investigated 
and discussed. We present an overview of experiences 
with two different approaches to game programming, 
one in Magdeburg, Germany, and one in Dunedin, New 
Zealand. A comparison and a list of practical advices 
for lecturers of similar courses concludes the paper.  
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1 INTRODUCTION 

Computer games are on their way becoming estab-
lished in academic research and teaching (Squire 
2003). In past years games research was strongly con-
cerned with possible negative effects of computer 
games on social behaviour of young gamers – as it has 
been discussed before for many other new media like 
theatre, movies, television, video and likewise. Re-
cently, the academic focus shifted towards a broader 
and more balanced argument on games and education, 
taking also the positive effects of gaming into account. 

Simultaneous to this discourse the number of art 
schools and multimedia colleges offering game design 
courses increased. These schools, however, concentrate 
more on practical issues, e.g. teaching primarily the use 
of tools for game development (Yu 2002). Recently 
universities have turned their attention to games and 
quite a number of researchers have focused on game 
related technologies. Teaching game development is 
becoming an increasingly popular subject at universi-
ties (Masuch and Freudenberg 2003, McCallum et al. 
2004). Students and teaching staff are highly motivated 
to study a subject which many of them cultivate as a 
hobby anyway. Also casual games and even non-
gamers find computer games fascinating as games re-
ceive increasing attention and reputation in public.  

We present our experiences with two fundamentally 
different approaches to computer game education and 
discuss what worked out well and what did not. This 
text elucidates the benefits and challenges this subject 
offers for academia. 

2 TEACHING GAMES 

Teaching the skills necessary for the development of 
games is interesting and difficult at the same time. We 
found out that, somehow, games are difficult to ap-
proach from an academic point of view. 

On the one hand this is due to the youth of this research 
area. Even with the large number of publications that 
address games very recently, there are  no long re-
search and teaching experiences to call on for 
reference. On the other hand, games research has not 
yet established itself as an accepted academic discipline 
among other sciences. Often officials and representa-
tives of more traditional Universities and computer 
science departments look at this field with reservation 
and worry about their reputation since games arise di-
rectly from the entertainment industry. Furthermore, 
the deep immersion in games makes it hard to reflect 
on them at an academic level as most students will be 
gamers themselves (either casual or hardcore). Never-
theless, universities that teach and research on 
electronic games, are starting to get a benefit out of it.  

Thus, the interest in methods and techniques that inves-
tigate game development as a teaching subject has 
grown, especially at computer science faculties. How-
ever, sometimes the term “computer games” is 
generalised when only talking about specific aspects of 
programming (e.g. a number of books on DirectX give 
the impression that they just added a game topic as 
sales pitch). Somehow similar, for many computer sci-
ence courses games – as field of application –  can 
provide a very good motivational source. However, in 
our approach to teaching computer games we aim at 
teaching the whole process, not just one specialized 
part or topic separate from the others. We claim that 
courses on game development should cover more than 
just real-time 3D-Graphics. This misuse of terms harms 
the reputation of computer game development as an 
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academic subject and makes it difficult to establish an 
academic critique, as there are no agreed terms yet. 

2.1 Motivation 
Game programming and game development are inter-
disciplinary fields that require educators to go beyond 
standard topics of computer science. Although  we fo-
cus on teaching game development at computer science 
faculties, we think it is rewarding to reflect on a hu-
manistic level what your software is capable of doing. 
Here, games give an excellent bridge for engineers to-
wards reflections on the impacts of their software. 
Many game developers state that prior to the point of 
programming a game, relevant factors like game play, 
player reward and popular culture have to be consid-
ered to develop a software product that has some 
chance to compete on the mass market. 

The integration of literally speaking “multimedia” 
makes games also a very interesting subject because 
you have to consider compression and media pro-
gramming issues as you try to deliver the best looking 
results in the smallest package possible.  

Before steeping further into the discussion it seems 
necessary to clarify the difference between game de-
sign and game programming. As these terms are often 
misused and mixed-up, even by people who implicitly 
know the very difference, there is some confusion 
about these two concepts.  

2.2 Game Design vs. Game Programming 
We understand Game Design as a creative process of 
developing a game concept, its core elements and struc-
ture. This includes art work and story as well as  
considerations of playability and game balance. The  
actual realization of the game, however, can be re-
stricted to a paper document. Strictly speaking 
computer game design does not require any game pro-
gramming. 
The term Game Programming refers to the process of 
actually coding a game. It consists of making a project 
plan for the realization of a game idea and actually 
programming the game elements. This might include 
the programming of a game engine or “only” imple-
menting the game assets and interaction in an existing 
game engine. 
We use the term Game Development to cover Game 
Design, Game Programming and all other production 
related topics. 

2.3 General Approach to Teaching Game Devel-
opment 

When teaching game development at an university 
level there are different approaches at different institu-
tions around the world, depending on their curriculum. 

Some are going for a very narrow approach in topics, 
while others are trying to cover all aspects relevant to 
game programming in one module instead of a degree 
program. Of course, many educational facilities that 
offer a degree in “Game Design” just respond to the 
demand of their customers – the students. However, 
from the point of view of the games industry a too gen-
eral “Game Design” degree programs remain 
questionable, as those breed all-round-talents instead of 
specialized team players with deep expertise in their 
specific domain. 

Often it is necessary to make a trade-off between a 
more technical or more artistic (if not humanistic) side 
of teaching. This depends on the type of curriculum of 
the university. Obviously, the main focus of a game 
course depends on the main teaching direction i.e. pro-
gramming or design. A good way to address this 
disjunction is to built interdisciplinary teams. In gen-
eral, game design does not necessarily require 
programming skills and can be taught at a beginner 
level (1st to 2nd year) and game programming as spe-
cialization later at an advanced level. 

The IGDA suggested a helpful curriculum for game 
development  education (IGDA 2003). It is broad 
enough for every educational facility to shape their in-
dividual “Games”-curriculum – may it be a liberal arts 
college or a computer science department of a technical 
university. In the next section we introduce our experi-
ences with teaching games as course modules at two 
universities.  

3 EXPERIENCES IN TEACHING GAMES  

We will introduce two different approaches to game 
development for computer science students at  two uni-
versities (University of Magdeburg, Germany, and 
University of Otago, New Zealand) in different coun-
tries and social contexts. 

3.1 Otto-von-Guericke University of Magdeburg 
At the Otto-von-Guericke University of Magdeburg the 
first game programming course was established in 1999 
(Masuch 2004). Almost six years of teaching experi-
ence later it is interesting to take a look at the 
development from then to now. 

The first try at teaching computer games was to give a 
very broad and “all inclusive” overview of topics that 
are used in the world of electronic gaming. So the start 
was one broad scope course on computer games that 
featured a programming assignment in parallel with the 
lectures. Of course most of the students were very ea-
ger to create complex games. Most of them took on a 
task that was far too large for them to finish within one 
semester given that they also had other courses running 
parallel to this one. Some of the projects were never 
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finished – lecturers and students came out of this with 
lots of experience but also some frustration. 

The second run had a new concept. We split the com-
puter games course into two courses Computer Games I 
and Computer Games II. The first course  pursued a 
broader approach with the techniques on the one side 
and social/humanistic topics on the other. The second 
course had its focus on algorithms and tools. Parallel to 
this second course the students would do group-based 
project work on a game. We had a large team working 
on a single project. The most capable and motivated 
students finally drove it to a successful end. The pro-
jects were much more successful and the outcome 
motivated students as well as lecturers. 

The third year included a third course besides CGI and 
CGII that concentrated solely on game design. Prior to 
the course, we conducted an informal evaluation of 
several game design tools and finally used an open 
source 3D scripting environment. Unfortunately, the 
team collaboration that worked fine in the evaluation 
turned out as a catastrophe in real project work. While 
in the evaluation we managed to integrate our test-
scenes into one game-world, the system became unpre-
dictable and unstable dealing with more complex 
scenes and interactions. It was hardly possible to inte-
grate the work of team members in a single project file 
and students were more occupied (and frustrated) fight-
ing the tool then to get on with their game. No team 
managed to conclude their work in a playable proto-
type. Now, in our sixth year we can look back on 
developing successful and working curriculum on 
computer games for computer science and computa-
tional visualistics students. 

The process of breaking “computer games” down into 
its subtopics went very well, so it was used again to 
subdivide topics a little more and focus on specific as-
pects of computer games in different courses. The 
several parts of computer game development covered 
in separate lectures were: “Techniques and Reflec-
tions”, “Algorithms and Tools”, “Modelling and 
Animation”, “Game Design” and other game related 
lectures, respectively seminars like “educational gam-
ing”, “games and simulation”, etc. 

So instead of trying to put all game-relevant topics into 
one course, we now provide a range of diverse courses 
that cover many of the topics that are part of game de-
velopment. 

3.2 University of Otago, Dunedin 
A different approach for a computer game course was 
co-developed at the University of Otago, New Zealand 
(McCallum 2004). The primary approach of this course 
was to introduce students to the concepts of game de-
sign in the format of an “all-day” summer school. This 
is an intense course block format running for six weeks 

during the summer holidays (four days a week with 
lectures, labs and tutorials and one day just with guest 
lectures), the course – a completely different approach 
from the one in Magdeburg – is not mandatory, which 
assured beforehand that only interested and motivated 
students would participate. 

Since this was the first and only course of this kind at 
the University of Otago, the intention of the lecturers 
was to give a broad overview of the topics covered in 
the game development process. Thus the course used 
the IGDA curriculum framework (IGDA 2003) as an 
outline of topics that were suitable for students at an 
university level of education. Although the framework 
is meant as a guideline for an entire degree program on 
game design, the ambitious plan was to cover all of the 
topics (on a very shallow basis). The course was co-
created by the design and the computer science de-
partment. 

As the staff at the university had never taught computer 
game design before it was difficult to evaluate the 
IGDA framework and tailoring it to the intended audi-
ence and timeframe (six weeks). Like the first course at 
the Otto-von-Guericke University this was an “all in-
clusive” approach, which tried to cover everything: 
broad and shallow. Nevertheless the course also in-
cluded project-based group work within a small time-
frame towards a predefined goal – a finished game. 
One of the unfortunate decisions in the planning was to 
let the students choose which tools to use for achieving 
this goal. Thus, the teaching staff had to consider dif-
ferent problems with different tools and even different 
languages since the students employed techniques from 
DirectX programming to 3D Game Studio with its em-
bedded C-Script language. 

The overall focus on a final product maintained high 
levels of motivation throughout the course for the stu-
dents. Unfortunately the time that they needed for 
programming their game prototypes left little time to 
reflect enough on social issues and non-programming 
topics involved in the process of computer game de-
sign. 

One of the outstanding things in this course was that 
the students had to give feedback at least every week 
but were encouraged to keep staff informed every day. 
Since most of the staff worked in the labs together with 
the students this concept worked out well at the price of 
the workload of the staff exceeding even that of the 
students and spare time shrunk to zero. 

A bit surprising (but also rewarding) was the fact that 
all students finally managed to present some kind of 
game prototype at the end of the course. Not all of 
them were of equal quality but most of them were at 
least somewhat playable. 
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The range of topics were another problem that required 
expertise from different departments. Thus, even 
though the focus was on graphics and programming for 
games, a large number of lecturers from other depart-
ments were engaged to add value from their research 
areas, which among others included game business, 
media studies, character animation. 

In the end, this overview format was a good way of 
showing to the computer science faculty how broad the 
scope of computer games is and how many areas of 
research can be involved. After the course was fin-
ished, the University of Otago also agreed to host New 
Zealand’s first Game Developers Conference. This 
event has attracted more attention to game development 
in this small country and lead to the establishment of 
many interdisciplinary projects.  

4 POWER AND PERIL 

Based on our experiences we conclude that the teach-
ing of game development can offer a wide variety of 
benefits. However, it also contains some inherent prob-
lems that have to be addressed. In the following 
sections 4.1 and 4.2 we summarize the common  ex-
periences from both approaches. Arguably, taking 
discussions with lecturers of similar game courses into 
respect, we think that – to a certain extend – these can 
be generalized. As the benefits of teaching game design 
and programming are more obvious than the draw-
backs, we will discuss the perils in more detail. 

4.1 Potential and Benefits 
The use of games as an academic topic can have tre-
mendous benefits. Among others, we discovered the 
following favourable aspects: 

Motivation – Students motivation to learn is the key to 
successful teaching. Games turned out to be a motiva-
tional source second to none. 

Versality and interdisciplinarity – Games are com-
plex multimedia projects and thus ideally suited to 
drawing together various aspects of computer science. 
Further, game development inherently requires input 
from many disciplines: programming, design, sound, 
business, and many more. The ability of students to 
talk to and work with people from other disciplines is 
an important one in the game production process, both 
inside and outside of University. 

Self-contained projects – The outcome of a course can 
be a finished product (if the student project is com-
pleted). Knowing that they are working towards a 
product is intensely motivating for students as they can 
possibly include it in their portfolio and use it for fu-
ture job applications. 

Practical experience – practical experience is given to 
the students by using industry-like tools and atmos-
phere, which makes the educational training highly 
relevant for industry training. After finishing the pro-
ject work at university this experience can also be used 
by entrepreneurial students to start their own spin-off 
company (which has actually happened). 

Teamwork – students learn how to work in teams by a 
group-project based teaching curriculum. In general 
teamwork is one of the best things to go along with 
classic teaching, not only because it is a necessary soft 
skill required by the market but also because it brings 
social aspects in an otherwise theoretic environment. 
Having students work together in groups and assigning 
them to different areas of computer game development 
allows a high level of social interaction and personal 
development. On the other hand, this demands, that the 
educator faces the challenge of grading students indi-
vidually rather than as a team. This does not need to 
become a problem as meetings with students can be 
arranged on a weekly basis, or a feedback system can 
be established so that it is completely transparent who 
does which kind of work in the group. 

4.2 Challenges And Problems 
Teaching game courses also comprises some draw-
backs that need to be considered: 

Claim vs. capability – Students are influenced by ex-
isting media. For most students a game is simply a 
larger software project; while trying to compete with 
popular game titles they underestimate the amount of 
work and the capabilities needed for completion by an 
order of several magnitudes. 

Interdisciplinary teamwork – Since games cover a 
broad range of topics, the audience attracted to a com-
puter games course will eventually attract people from 
different subjects. This leads to students with very di-
verse interests and capabilities, which makes it difficult 
to form homogeneous teams. Therefore it is important 
that every member identifies himself with the task as-
signed and the team. Teams should choose a project 
lead and organize team events.  

Missing focus and complexity of projects – In a sin-
gle course  the lecturer has to focus on either game 
design, game programming or reflections on games not 
both – or worse – all three. Trying to cover more than 
one of these topics in a single course, can lead to a wa-
tering down of the content of any one topic. Regarding 
practical exercises, it is futile trying to implement all 
aspects of a game (or even a game engine). Again, fo-
cus should be set on specific  aspects of a game.   

No experience and use of wrong tools – In compari-
son to other Computer Science subjects there is little 
experience in teaching and programming games to 
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build upon. Many course topics come from other areas 
of expertise (e.g. psychology, pedagogy, drama theory, 
law, design, fine arts etc.) so that lecturers have to get 
assistance from other departments (good for interdisci-
plinary cooperation, bad for the time table) or have to 
research all relevant information on their own. The 
workload for this is much higher than in classical sci-
ences. Further, it is futile to build a game and a game 
engine from scratch. Finding  adequate tools that are 
suitable for teaching the specific course aspects (even 
focusing on game design or game programming) can be 
difficult. Our recommendation is to begin software 
evaluation at least one semester early, preferably with a 
well documented prototype. 

5 CONCLUSION 

Summing all up, we think that computer games have an 
enormous potential in teaching and research. Our ex-
periences in the last years with teaching game 
programming to computer science students showed to 
us that games are exceptionally well in  

• motivating students,  
• teach them interdisciplinary teamwork and 
• give them hands-on experience in multimedia in-

tegration. 

After having analysed these two different approaches to 
the teaching of computer games and the difficulties that 
they were facing, some final conclusions can be drawn. 
The approach of the University of Otago to teach a 
complex subject like this in summer school requires 
full-time availability of students and lecturers. It is a 
suitable course format to emulate the “crunch period” 
similar to the game industry. The amount of work nec-
essary for preparing the lectures and the course was 
underestimated. More time would have been helpful. In 
addition, the University of Otago did only have limited 
resources to provide such a course. 

The prerequisites in Magdeburg now are much better, 
but it all started very similar to the approach made at 
the University of Otago. The games research group is 
now an established part of the faculty and therefore can 
allocate more resources on teaching and research. A 
number of lectures have been developed, each with a 
focus on a different aspects of computer games. Both 
directions are unwearyingly supported by students 
while undergoing a practical software lab or a lab in-
ternship. Our start-up phase is over now, but there is 
still much room for improvement.  

Finally, we would like to share some practical hands-on 
advice for people who are planning similar courses: 

• Focus on either game programming or game de-
sign, not both. 

• Ensure equal levels of programming experience 
and capabilities. 

• Students should no start to learn tools whilst in 
production – use crash courses in advance of the 
lecture for preparation. 

• Do not allow different platforms, engines, lan-
guages or tools – students should help each other. 

And finally – if you only take one advice from this pa-
per – then the most important one: Have fun!  
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ABSTRACT 
 
The study of database systems is typically core in 
undergraduate and postgraduate programmes related to 
computer science and information systems. However, one part 
of this curriculum that many learners have difficulty with is 
database analysis and design, an area that is critical to the 
development of modern information systems. This paper 
reflects on these difficulties and explores a range of 
pedagogical issues surrounding the development of a 
problem-based learning environment based on interactive 
visualisation and computer games to help overcome these 
difficulties and help the learner develop the skills necessary to 
understand and perform database analysis and design 
effectively. The paper proposes a set of guiding principles 
upon which the proposed learning environment is being 
developed. 
 

INTRODUCTION 
 
The database is now the underlying framework of the 
information system and has fundamentally changed the way 
many organisations and individuals work. This is reflected 
within tertiary education where databases form a core area of 
study in undergraduate and postgraduate programmes related 
to computer science and information systems, and typically at 
least an elective on other data-intensive programmes 
(ACM/IEEE 2001; EUCIP 2003). The core studies are 
commonly based on the relational data model, SQL (the de 
facto language for relational DBMSs), data modelling and 
relational database design. This curriculum supports industry 
needs where the relational DBMS is the dominant data-
processing software currently in use, with estimated new 
licence sales of between US$6 billion and US$10 billion per 
year (Connolly and Begg 2004).  

The core relational theory is a mature and established area 
in relation to other parts of the computing curriculum. 
However, one part of this curriculum that many learners have 
difficulty with is database analysis and design. For the 
purposes of this paper we use the term ‘database analysis and 
design’ to encompass requirements analysis, conceptual 
database design (including ER modelling), logical database 
design (including mapping to the relational model and 
validating the model using normalisation) and physical 
database design. 

In this paper, we explore a range of teaching techniques 
that supplement traditional teaching methods with more non-
traditional methods based on interactive visualisation and 
computer games to help overcome these difficulties and help 
the learner develop the skills necessary to understand and 
perform database analysis and design effectively. 
 

Problems with Teaching Database Analysis 
and Design 
 
Mohtashami and Scher (2000) note that pedagogical strategies 
for teaching database analysis and design traditionally follow 
a similar modality to that of other technical programmes in 
computing science or information systems. A significant 
amount of technical knowledge must be imparted with the 
lecturer becoming a ‘sage on stage’ and the students passive 
listeners. While students tend to cope well with basic concepts 
and practical components of the core database curriculum, for 
example, understanding the properties of the relational data 
model, the basics of SQL and using a relational DBMS such 
as Microsoft Office Access or Oracle, one area that many 
students find difficult is the abstract and complex domain of 
database analysis and design. A comparable problem has been 
identified with object-oriented analysis and design, which is 
also highly abstract (for example, Yazici et al. 2001). This is 
borne out by a recent European survey that found that the 
primary skill that organisations considered to be lacking in 
both new IT graduate recruits and current IT staff was 
database design (database tuning and database administration 
were second and third, respectively) (Connolly and Laiho 
2004).  

While databases have become so essential to 
organisations, Kroenke (2003) states “unfortunately, 
increased popularity has not meant increased competency. 
Many students (as well as professionals) have been deceived 
by the simplicity of creating small databases using products 
such as Microsoft Access. With this background, they believe 
they know sufficient database technology to create databases 
that have more complicated structure and greater processing 
complexity. The result is often a mess: databases are hard to 
use, barely meet system requirements, and are difficult to 
redesign.” To undertake database analysis and design 
effectively for an even moderately complex system, a student 
requires (among others) the skills to: 

• work in a project team and apply appropriate fact-finding 
techniques to elicit requirements from the client (both 
‘soft’, people-oriented skills); 

• conceptualise a design from a set of requirements (‘soft’, 
analytical skills),  

• map a conceptual design to a logical/physical design 
(‘hard’, technical skills); 
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• reflect and review intermediate designs, particularly 
where information complexity is present (a combination 
of ‘soft’ and ‘hard’ skills).  

Students often have considerable difficulty comprehending 
implementation-independent issues and analysing problems 
where there is no single, simple, well-known or correct 
solution. They have difficulty handling the ambiguity and 
vagueness that can arise during database analysis. Students 
can also display an inability to translate classroom examples 
to other domains with analogous scenarios, betraying a lack 
of analytical problem-solving skills. For the students these 
problems can lead to confusion, a lack of self-confidence and 
a lack of motivation to continue. In teaching database 
methods we are trying, as Postman and Weingartner (1971) 
state, “to help students to become more efficient problem 
solvers”, to avoid “the right answer that only serves to 
terminate further thought” and to reach a position where the 
student “must learn to depend on himself as a thinker”. 
However, as noted by Eaglestone and Baptista Nunes (2004) 
there are a number of other factors that have impacted 
database teaching that are outwith the students’ control, such 
as increasing student numbers and the development of online 
delivery with students who are geographical dispersed and 
have diverse backgrounds.  

In this paper we explore the use of interactive 
visualisation and computer games to provide a learning 
environment to supplement traditional methods of teaching 
database analysis and design. We have chosen to examine 
such an environment for several reasons. First, the younger 
generation have grown up in a technologically sophisticated 
environment, which has led to changes in their experiences, 
attitudes and expectations. It therefore makes sense to 
investigate and exploit those aspects of the technologies the 
modern learner has been exposed to, such as computer games, 
with a view to identifying those aspects that might be 
transferable in pedagogical terms, into teaching. Second, 
there is empirical evidence that games can be an effective tool 
for enhancing learning and understanding of complex subject 
matter (Ricci et al. 1996; Cordova and Lepper 1996). Third, 
educationalists are interested in the intensity of involvement 
between instructional strategies, motivational processes and 
learning outcomes. It would be highly desirable to harness the 
appropriate properties of computer games that enhance 
learning and improve student performance. 

This paper is structured into four further sections. The 
next section discusses the pedagogical basis for developing a 
problem-based learning environment based on visualisation 
and computer games to teach database analysis and design, 
leading in the section thereafter to a set of principles for the 
design of the proposed learning environment. The penultimate 
section discusses the on-going design of this environment. 
The final section provides some concluding remarks and 
directions for future research. 

 

PREVIOUS RESEARCH 
 
In this section we examine previous research related to the use 
of computer games in education, specifically the research 
suggesting that current learners (the ‘digital natives’) have 
different experiences, attitudes and expectations and therefore 
require a more appropriate pedagogical model of teaching; the 
importance of motivation and flow to learning; the use of 
simulation and games in education; constructivism as a 
pedagogical approach to learning and the appropriateness of 
problem-based learning for our purposes.  

 

Are Current Learners Different? 
 
Prensky (2001) advocates that learning should be engaging 
although usually it is not for the current younger generation 
going through Higher Education (whom he describes as 
digital natives). He argues that learning today is unengaging 
compared to all the alternatives like television, computer 
games and even work. Digital natives have grown up in a 
technologically sophisticated environment; an environment 
populated by home computers, the Internet, graphic-rich 
movies, multi-player Internet gaming, Nintendo 
GameBoysTM, XBoxesTM, DVD players, mobile phones, 
interactive television and iPodsTM, which has led to a change 
in their experiences, attitudes and expectations. Contrast this 
with the pre-digital generation (today’s teachers) who grew 
up largely with the passive technologies of books, television 
and radio and who were “educated in the styles of the past” 
(op cit). Papert, quoted in Prensky (op cit) states that “The 
reason most kids don’t like school is not that the work is too 
hard, but that it is utterly boring.” Schank (1997) also believes 
that education has not changed and that teacher-centred 
models are still dominant in adult learning, despite research 
clearly demonstrating that “these methods no longer seem to 
be working” (Biggs 1999). Schank supports the use of 
simulations and games and presents the premise that “when 
learning isn’t fun, it’s not learning” (additionally suggesting 
that real learning does not occur until the learner fails). 

It is important that educational techniques keep step with 
social developments such as widespread technology adoption, 
especially as it is now understood that the human brain 
exhibits neuroplasticity (Kolb et al. 2001; Whishaw et al. 
2003). That is, it dynamically reorganises itself to adapt to 
novel experiences (neuroplasticity is also the mechanism that 
allows the brain to compensate for injury by enabling existing 
neural pathways to take over functions that were previously 
managed by the affected area(s)). It is likely that the exposure 
of today’s learners to novel stimuli such as computer games 
early on in life has led to their developing different neural 
pathways to those of the children of thirty years ago. 
Connelly (2004) has observed that “physiological capacity, 
learning styles, and neuroplasticity all combine to provide a 
foundation on which educators can build more powerful 
teaching techniques”. The development of more powerful, yet 
cost effective, teaching techniques represents one potential 
solution to the progression and retention challenges facing 
educational institutions. This problem is especially prevalent 
in respect of first and second year undergraduate students.  

With respect to education, two particular types of 
physiological change take place in the brain during learning 
(Drubach 2000), namely changes in the behaviour of synaptic 
gaps between neurons and an increase in the number of 
synapses available for communication between neurons. 
Simply said, the brain of the modern learner is configured 
significantly differently to that of its 1970’s counterpart. It 
therefore makes sense to investigate and exploit those aspects 
of the technologies the modern learner has been exposed to, 
such as computer games, with a view to identifying those 
aspects that might be transferable in pedagogical terms, into 
teaching applications. 
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Motivation 
 
Motivation is a key concept in many theories of learning. 
Katzeff (2000) stresses motivation is a critical factor for 
instructional design and for learning to occur the learner must 
be motivated to learn. In self-determination theory, Deci and 
Ryan (1985) distinguish between different types of motivation 
based on the various reasons or goals that give rise to an 
action. The most basic distinction is between intrinsic and 
extrinsic motivation. Intrinsic motivation refers to doing 
something because it is inherently interesting or enjoyable 
while extrinsic motivation refers to doing something because 
it leads to a separable outcome (such as a verbal reward like 
praise or a tangible reward like money). 

Malone and Lepper (1987) present a theoretical 
framework of intrinsic motivation in the design of educational 
computer games. They postulate that intrinsic motivation is 
created by four individual factors: challenge, fantasy, 
curiosity and control and three interpersonal factors: 
cooperation, competition and recognition: 

• Challenge: A player must be able to vary the difficulty 
of the game, and there should be multiple goals for 
winning the game. There should also be sufficient 
randomness in the action and constant feedback about 
performance.  

• Fantasy: The player should feel involved with the 
characters in the game and the gaming environment.  

• Curiosity: The activity should offer sensory stimulation 
and enough novelty to want to continue playing the 
game. Senge (1990) believes that people are inherently 
curious, creative and seek challenges that relate to what 
they value. 

• Control: The player should feel in control over the 
activity in the game, be able to make choices and to 
witness the effects of such choices. When the choices are 
genuinely unclear, the learner should be able to gather 
information to make an informed choice. 

• Cooperation: The player should feel satisfaction by 
helping others achieve their goals.  

• Competition: The player should feel satisfaction by 
comparing their performance favourably to that of 
others. 

• Recognition: The player should feel satisfaction when 
others recognize and appreciate their accomplishments.  

Interestingly these factors also describe what makes a good 
game, irrespective of its educational qualities. While intrinsic 
motivation is highly desirable, many of the activities in which 
learners engage in is directly influenced by extrinsic rather 
than intrinsic motivation (Csikszentmihalyi and Nakamura 
1989). Unfortunately evidence suggests that extrinsic 
motivators may lead to merely short-range activity while 
actually reducing long-range interest in a topic while with 
intrinsic motivators learners tend to persist longer, work 
harder, actively apply strategies and retain key information 
more consistently (Guthrie et al. 1996). Thus, extrinsic 
motivators must be supported by intrinsic motivators, 
otherwise the result is likely to be a reduction in the very 
behaviour we want to promote. One of the most serious 
problems that research has pointed out during the past two 
decades is that extrinsic motivation when used alone is likely 
to have precisely the opposite impact that we want it to have 
on learner achievement (Lepper and Hodell 1989). 

In determining what makes a particular situation or 
activity intrinsically motivating to an individual, the concept 

of flow is often mentioned. Csikszentmihalyi (1990) used the 
term ‘optimal experience’ or ‘flow’ to refer to feelings that his 
subjects reported to have experienced while involved in 
leisure and work activities. He suggested that individuals 
achieve a sense of flow when the challenge level matches 
their skill level and to reach this state of optimal experience: 
“there must be a goal in a symbolic domain; there have to be 
rules, a goal, and a way of obtaining feedback. One must be 
able to concentrate and interact with the opportunities at a 
level commensurate with one’s skills” (Csikszentmihalyi op 
cit). Tasks that are too difficult raise anxiety and tasks that are 
too easy contribute to boredom; both situations decrease 
motivation toward learning. Flow is characterized by a feeling 
of being in control, by highly focused attention, and by an 
adequate match between challenge and skill, resulting in an 
intense state of joy and emotional involvement in an activity 
for its own sake.  

The conditions likely to induce the flow state are (adapted 
from Malone (1981)): 

1. Challenge: The activity should be structured so that 
learners can increase or decrease the level of challenges 
being faced in order to match exactly their skills with the 
requirements for action. Additionally, the activity should 
have a broad range of challenges, and possibly several 
qualitatively different ranges of challenge, so that 
learners may obtain increasingly complex information 
about different aspects of themselves. 

2. Control: It should be easy to isolate the activity, at least 
at the perceptual level, from other stimuli (external or 
internal) that might interfere with involvement in it. 

3. Performance criteria: There should be clear performance 
criteria; learners should be able to evaluate how well or 
how poorly they are doing at any time. 

4. Feedback: The activity should provide concrete feedback 
so that learners can tell how well they are meeting the 
performance criteria. 

 

Simulation and Games 
 
Crookall and Saunders (1989) view a simulation as a 
representation of some real-world system that can also take on 
some aspects of reality for participants and users. According 
to Garris et al. (2002) the key features of simulations are that 
they represent real-world systems, contain rules and strategies 
that allow flexible and variable simulation activity to evolve, 
and the cost of error for participants is low, protecting them 
from the more severe consequences of mistakes. 

In contrast, Caillois (1961) defines a game as an activity 
that is voluntary and enjoyable, separate from the real world, 
uncertain, unproductive (in that the activity does not produce 
any goods of external value) and governed by rules. Crookall 
et al. (1987) believe that a game is not intended to represent 
any real-world system, rather it is a ‘real’ system in its own 
right. Like simulations, games also contain rules and 
strategies but the costs of losing are generally only 
consequential within the game world. Finally, Kriz (2003) 
defines a simulation game as: “the simulation of the effects of 
decisions made by actors assuming roles that are interrelated 
with a system of rules and with explicit references to 
resources that realistically symbolize the existing 
infrastructure and available resources”. 

Prensky (op cit) defines the key characteristics of 
(simulation) games as: rules, goals and objectives, outcomes 
and feedback, conflict (and/or competition, challenge, 
opposition), interaction, and representation of story.  
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Simulation games in education are a research area that 
may be conceptualised as the intersection of learning 
concepts, information technology and user interfaces (Chiou 
1993). In this conceptualization, learning concepts serve as 
the foundation for simulation games to ensure that technology 
does not become the dominant factor. However, Squires et al. 
(2003) note that a key problem in the development of 
educational games is balancing how much of the game is a 
game and how much of the game is learning. If there is 
insufficient enticing game play included or if there is 
insufficient appropriate academic content the result will be a 
failure. This raises an important issue and one that we have 
addressed by involving many participants in the design, 
including previous database students, teachers and gamers. 
 

Constructivism and Learning 
Environments 
 

Constructivist and sociocultural theory 
While traditional education has been guided by the paradigm 
of didactic instruction, which views the learner as passively 
receiving information, there is now an emphasis on 
constructivism as a philosophical, epistemological and 
pedagogical approach. Constructivism focuses on knowledge 
construction, not knowledge reproduction. Collins linked 
constructivism and technology suggesting that the new 
technology required adopting this approach to pedagogy 
(1991). Vygotsky’s sociocultural theory of learning 
emphasises that human intelligence originates in our culture. 
Individual cognitive gain occurs first in interaction with other 
people and in the next phase within the individual (Forman 
and McPhail 1993). Thus, constructivism stresses active 
engagement for effective learning to take place while 
socioculturalism stresses the importance of interpersonal 
communication. These two models are not mutually exclusive 
but merely focus upon different aspects of the learning 
process. For most educationalists constructivism provides 
more scope for realising possible learning benefits of using 
computer technology. 

According to Gance (2002) the main pedagogical 
components commonly associated with these models are: 

• A cognitively engaged learner who actively seeks to 
explore her environment for new information. 

• A pedagogy that often includes a hands-on, dialogic 
interaction with the learning environment. For example, 
actually designing a database is preferred to simply 
being told how to design a database. 

• A pedagogy that often requires a learning context that 
creates a problem-solving situation that is realistic.  

• An environment that typically includes a social 
component often interpreted as actual interaction with 
other learners and with mentors in the actual context of 
learning.  

 

Constructivist learning environments and 
problem-based learning 
Many researchers have expressed their hope that 
constructivism will lead to better educational software and 
better learning (for example, Brown et al. 1989; Jonassen 
1994). They emphasise the need for open-ended exploratory 
authentic learning environments in which learners can 
develop personally meaningful and transferable knowledge 
and understanding. This has led to the development of 

guidelines and criteria for the development of a constructivist 
learning environment (CLE) - “a place where learners may 
work together and support each other as they use a variety of 
tools and information resources in their guided pursuit of 
learning goals and problem-solving activities” (Wilson 1996). 
See, for example, Cunningham et al. 1993;  Grabinger and 
Dunlap 1995; Savery and Duffy 1995;  Ben-Ari 2001; Gance 
2002. The principles proposed by Cunningham et al. (1993) 
and Savery and Duffy (1995) are frequently cited within the 
literature and are summarised in Table 1. defines a 
constructivist learning environment as. Simulation games are 
constructivist learning environments in which learners are 
invited to actively solve problems (Leemkuil et al. 2003).  

 
Cunningham el al. (1993) Savery and Duffy (1995) 

Provide experience of the 
knowledge construction process. 

 

a) Provide experience in and 
appreciation for multiple 
perspectives.  
b) Encourage the use of multiple 
modes of representation. 

Encourage testing ideas against 
alternative views and alternate 
contexts. 

Embed learning in realistic and 
relevant contexts.  

a) Anchor all learning activities 
in a larger task. 
b) Design an authentic task. 
c) Design the task and the 
learning environment to reflect 
the complexity of the 
environment they should be 
able to function in at the end of 
learning. 

Encourage ownership and voice 
in the learning process.  

a) Give the learner ownership 
of the process used to develop 
the solution. 
b) Support the learner in 
developing ownership for the 
overall problem or task. 

Embed learning in social 
experience.  

 

Encourage self-awareness of the 
knowledge construction process.  

Provide opportunity for and 
support the reflection on both 
the content learned and the 
learning process. 

 Design the learning 
environment to support and 
challenge the learner’s 
thinking. 

Table 1 Comparison of principles of Cunninghan et al. 
(1993) and Savery and Duffy (1995). 

 
The problem-based learning (PBL) model encompasses 

these principles. PBL started out in the 1960s in medical 
education in the USA and Canada where groups of students 
were presented with a problem in the form of a patient with 
particular symptoms (Biggs op cit). The students’ task is to 
diagnose the patient’s condition and be able to justify the 
diagnosis and recommend treatment. In diagnosing the 
condition, the students have to discuss the symptoms, 
generate hypotheses based on whatever knowledge and 
experience they have and identify learning issues. At the end 
of each session, the students reflect verbally on their current 
hypotheses and each student assumes responsibility for 
investigating one of more of the identified learning issues 
through self-directed learning.  
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The teacher (facilitator) is available for consultation and 
plays a significant role in modelling the metacognitive 
thinking associated with the problem-solving process. This 
reflects a cognitive apprenticeship environment (Collins et al. 
1990) with coaching and scaffolding (e.g. offering hints, 
reminders and feedback) provided to support the learner in 
developing metacognitive skills. As these skills develop, the 
scaffolding is gradually removed. The intention is to force 
learners to assume as much of the task on their own, as soon 
as possible. The cognitive apprenticeship model also 
advocates: 

• modelling, which involves an expert (the teacher) 
performing a task so that the learner can observe and 
build a conceptual model of the processes required to 
accomplish it; 

• articulation (either verbal as mentioned above or 
written); 

• reflection, to enable learners “to compare their own 
problem-solving processes with those of an expert, 
another learner, and ultimately, an internal cognitive 
model of expertise” (Collins et al. op cit); 

• exploration, to push learners into a mode of problem-
solving on their own. 

Savery and Duffy (op cit) comment that PBL should 
stimulate, and therefore engage the learner in, the problem-
solving behaviour that the practicing professional would 
employ. The PBL approach is now used across a range of 
subject disciplines. 

A similar concept to articulation that has been cited as an 
important element of simulation games is debriefing 
(Crookall 1995; Lederman and Kato 1995). Games and 
simulations differ in that simulations include elements of the 
real world whereas games are “separate from the real world”. 
Debriefing is an essential element of any simulation game 
because it links what has been experienced during the 
simulation with learning. Debriefing provides the opportunity 
for learners to consolidate their experience and assess the 
value of the knowledge they have obtained in terms of its 
theoretical and practical application to situations that exist in 
reality (Kriz op cit). 
 

GUIDING PRINCIPLES FOR THE 
LEARNING ENVIRONMENT 
 
We illustrate the influences for the problem-based learning 
environment that we are developing to teach database analysis 
and design based on the above research in Figure 1, depicting 
the relationships between the game, the teacher, learners and 
the environment. In addition, we put forward our own 
principles for the learning environment as follows: 

1. Start with an authentic problem grounded in professional 
practice. This problem should be both realistic and 
sufficiently complex to develop analytical and problem-
solving skills. 

2. Encourage learners to take responsibility (ownership) for 
learning and to be aware of the knowledge construction 
process. 

3. Allow learners to develop their own process to reach a 
solution. 

4. Provide learners with the opportunity to experience and 
appreciate other perspectives (this may come about as 
part of the next principle). 

5. Provide opportunities for interaction and collaboration, 
either learner-learner, learner-teacher or learner-system. 

6. Ensure that the learning environment motivates, engages 
and challenges the learner. 

7. Provide feedback mechanisms to enable learners to be 
fully aware of their progress. 

8. Provide support mechanisms for learners using coaching 
and scaffolding. 

9. Be flexible to support different learning styles. 
10. Provide opportunities for reflection, self-evaluation, 

articulation and debriefing. 
11. Provide an integrated assessment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Influences for the problem-based  learning 
environment. 

 

DESIGNING THE LEARNING 
ENVIRONMENT 
 
Video case studies have been used for several years within 
computing-related undergraduate and postgraduate modules 
in the School of Computing at the University of Paisley. The 
videos were developed by the University to provide students 
with real-world organisational problem scenarios such as 
organisational change within a library, a marina and a 
veterinary practice through which they could develop and 
apply a range of different skills and concepts. Although the 
use of the videos was found to be engaging, their main 
drawback was that students could not interact with the 
characters and scenarios presented to them, they could only 
view them in a sequential, linear and passive fashion. In 
addition, for several years the School has been developing 
online learning materials for various undergraduate and 
postgraduate modules/programmes as well as interactive 
visualisations that enhance these materials. In particular, 
material has been developed for the undergraduate 
‘Introduction to Database Systems’ and the postgraduate  
‘Fundamentals of Database Systems’ modules. 

To develop the students’ learning experience further in 
these two modules, it was decided to develop an educational 
simulation game around the video case studies and use the 
interactive visualisations and online learning materials as a 
form of digital scaffolding in an attempt to increase student 
interactivity and engagement with the problem scenarios 
being presented. For example, students would be able to 
interact with the characters by asking different types of preset 
questions, which would influence the outcome of the problem 
situation. The simulation game provides the opportunity for 
students to learn and apply a range of relevant skills and 

 

challenge (games, motivation, flow) 
fantasy (motivation) 
curiosity (motivation) 
control (motivation, flow) 
opposition (games) 
 

conflict (games) 
interaction (games; CLE) 
cooperation (games, motivation, CLE) 
competition (games , motivation) 

rules (games) 
goals and objectives (games) 
story (games) 
performance criteria (flow) 
feedback (motivation, flow) 

recognition (motivation) 

authentic 
realistic 
sufficiently complex 

Teacher 

Game 

Learner Learner 

Coaching & Scaffolding 
Reflection 
Articulation/Debriefing 

Problem-based learning environment 
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techniques relating to database analysis and design within a 
more interactive, engaging and stimulating environment more 
akin to the real-world setting that students may find 
themselves in industry.  

The simulation game is part of a wider learning 
environment as shown in Figure 2. The following three main 
components form the learning environment: 

• The online learning units/topics (entry level 1) introduce 
the concepts to be explored; these units are structured in 
a hierarchical manner allowing students to ‘drill down’ 
to obtain further details. Topics are hyperlinked to allow 
non-sequential browsing. 

• The visualisations (entry level 2) enhance learning by 
providing animated walkthroughs of specific examples 
(e.g. construction of an ER diagram or the process of 
normalisation). 

• The simulation game (entry level 3) provides a real-
world simulated environment within which to apply 
skills and techniques.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 The learning environment. 
 

Participatory design has been adopted for all three entry 
levels in which academics, students and practitioners have all 
been involved at various stages of the project. The simulation 
game is part of a natural evolution of the learning 
environment in which all three elements work together. This 
means that students working through the simulation game can 
pause at appropriate points and ‘drill down’ via the Digital 
Assistant to the interactive visualisations or to individual 
topics.  

Using the theoretical framework offered by Malone and 
Lepper, the simulation game is based on the following 
principles: 
 

Challenge 
The students are provided with a real-world organisational 
problem scenario comprising a mixture of challenging 
soft/people-oriented issues as well as more 
structured/technical related issues. Conceptually the game is 
divided into a number of different levels each comprising a 
set of tasks. At each level, the students are given feedback on 
their performance. There is an element of time in the game so 
it is important that the students manage their tasks carefully in 
terms of how much time they can devote to each one. Once 
the time limit has been reached, students will not be able to 
continue on the task unless they allocate time away from 
other tasks yet to be completed. Spending too much time on 
one task might seriously hinder them in completing another 
task later on. The system provides feedback at various points 
as well as progress and life indicators. 

 
Fantasy 
Within the game, the organisational setting is viewed from the 
perspective of the different stakeholders within the situation 
(e.g. senior management, middle management, administrative 
staff etc.). This form of role-play helps the students imagine 
themselves in the real-world setting since they need to interact 
with all stakeholders in order to learn about all aspects of the 
problem situation. The students are constrained on how much 
time they can spend interviewing a certain character. To add 
realism, unexpected events may arise such as the character 
being unexpectedly called away or not turning up to the 
interview. This helps the students experience some of the 
frustration that often happens when working within a real-
world organizational problem situation. 
 

Curiosity 
Being a real-world simulation means that the situation could 
change with events affecting the behaviour and views of the 
stakeholders within the problem situation, therefore, the 
simulation can stimulate the sensory curiosity of the students. 
In addition, it is only through the application of fact-finding 
techniques that students learn about the problem situation 
from the perspective of the stakeholders and gain the 
necessary data to develop the database. As shown in Figure 2 
(entry level 3), this element of curiosity is shown by the use 
of relevant icons and representations in the simulation game 
that mirror real-world objects and situations. During the 
knowledge elicitation phase, students can click on various 
objects to find out more about the situation. For example, by 
clicking on a person the students see a video clip of that 
person giving their views on a certain matter or observe the 
person undertaking a relevant task. Clicking on a report yields 
part of its contents, which could be relevant to the problem 
situation. In the same way a chart might show important 
trends and figures. This gets the students into the habit of 
having to search for relevant information in the same way as 
they might if they were conducting the task in the real-world. 
Certain sources might prove fruitless or provide conflicting 
information, so the students have to be very careful and 
thorough in their knowledge elicitation. 

 
Control 
There is a clear cause-and-effect relationship between the 
students’ actions and the outcome of the simulation game. 
The success and soundness of the database design is based on 
how well the students have completed the previous levels, in 
particular areas such as knowledge elicitation. Therefore, it is 

Debriefing 

Entry level 2 

Entry level 3 

Entry level 1 

Drill down 

Drill down 

Simulation game 

Topic 1 Topic 2 Topic n 

 

Digital 
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vital that students ensure that their analysis and design is 
robust. As shown in Figure 2, the students can pause the 
simulation game at certain points to ‘drill down’ to lower 
entry levels to access materials that might help them complete 
a task. 
 

Cooperation 
Typically the simulation game is played by students working 
in groups of between 2 and 4. Therefore, in order to 
adequately complete all of the tasks it is important that each 
group work effectively together. Each group must decide how 
the various tasks and levels are to be tackled, with different 
group members having responsibility for different tasks. As a 
result effective cooperation within the group is vital to 
complete the work to a satisfactory standard. Effective 
cooperation within a group is a vital real-world skill that the 
students will have to demonstrate when they graduate and 
seek employment in the field. 
 

Competition 
There is a strong element of competition between groups in 
undertaking the simulation game. Competition provides 
impetus for the groups to complete the tasks and levels to a 
high standard and within the time limits. In addition, since the 
simulation game forms part of a formal assessment, there is 
pressure on the students to perform well both within each 
group and between groups to achieve a good mark that 
contributes to their overall module grade. This element of 
competition and pressure on the students does add an element 
of realism, reflecting the industrial environment where there 
is a high degree of pressure to undertake tasks within time, 
cost and quality targets. 

To add more competitive play, various activities will be 
scored using both qualitative and quantitative criteria. For 
example, attempting to validate a conceptual model without 
having identified all appropriate data will result in marks 
being deducted. 
 

Recognition 
Recognition is achieved through the scoring system, which 
maintains a highest running score, and the feedback 
mechanism, which allows students to compare their 
performance against others.  
 

SUMMARY AND FUTURE DIRECTIONS 
 
This paper has discussed some of the pedagogical issues 
underpinning the development of a constructivist learning 
environment using problem-based learning and a simulation 
game and interactive visualisations to help teach database 
analysis and design. Levels 1 and 2 of the environment have 
been developed and initial findings are very positive with 
performance improvements over traditional teaching methods 
of between 10%-12% (Connolly et al. 2003). Levels 3, the 
simulation game, is in the development stage but we hope to 
have this ready for initial use in semester 2 of session 2004/5. 
Future work will include evaluation of the appropriateness of 
the environment for different groups of students 
(undergraduate and postgraduate, full-time and part-time). 
Additional work will be necessary to consider the 
applicability of this environment to online students, 
particularly the collaboration element of the activities.  
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ABSTRACT 
 
In this paper we wish to add further to the growing body of 
evidence that games provide a good platform for teaching 
advanced computing concepts. We describe our experiences 
of teaching a group of 45 final year undergraduate students 
at the University of Bradford in the module “Artificial 
Intelligence for Games”. The students were required to 
create artificial intelligence for a turn-based board game 
called Virus, and for a real time artificial life environment, 
Terrarium Academic. Easy-to-use APIs and sophisticated 
graphical clients were developed for each game and a server 
application allowed student AI to compete in a round-the-
clock tournament. We describe our experiences in 
developing and using the Virus game and Terrarium 
Academic, focussing particularly on what lessons we have 
learned that could usefully be applied in other teaching that 
employs games as a medium of instruction. Student 
feedback, and the quality of student work, suggests that the 
module was highly successful in its aims, especially in 
teaching advanced artificial intelligence and programming 
ideas to students, some of whom were rather nervous about 
their ability in both of these areas before starting the module.  
 
INTRODUCTION 
 
A significant number of students pursue a course of study in 
computing motivated in part by their interest in computer 
games. In spite of a financial structure that keeps rewards for 
game developers lower than for other computer industries, 
and a distinct lack of job security, many students desire to 
join the computer games industry on graduation. Even where 
students do not wish to become games developers, they are 
often keen computer (and non-computer) game players. 
Teachers can tap into this enthusiasm for games in order to 
motivate students to learn related topics. Since computer 
games are often at the “bleeding edge” of computer software, 
using a wide variety of techniques, a very broad range of 
advanced software topics can be motivated by considering 
computer games. Moreover, games are starting to be 
perceived by the research community as a useful test bed for 
investigating novel AI approaches (Schaeffer 2001) (Laird 
and van Lent 2001). 

 Here we will discuss our observations and 
experience of using games to motivate students in the design 
and implementation of artificial intelligence techniques. A 
cohort of 45 students studied for the final year undergraduate 
“Artificial Intelligence for Games” module at the University 
of Bradford. This is a fairly large cohort for an entirely 
optional module, which lends some evidence to the idea that 
students were interested in the games content of the module. 
Within the first couple of weeks of the module there was a 
small increase in the number of students, with students 
drifting from other options. Content was delivered using 
only a small number of traditional slides and a lot of 
discussion of real AI, using the Virus and Terrarium 
academic platforms to write examples, often in real time 
within a lecture. The modest size of the cohort allowed for 
significant and useful question and answer sessions in 
lectures and this was used extensively. A large number of 
links and documents were placed in a module web page 
which was very regularly updated. The module was assessed 
entirely by two pieces of coursework, described in detail in 
the following sections. It is arguable that students are also 
motivated to study courses which do not involve written 
examinations. However, it was made clear to all students 
prior to signing up for the option, that the coursework would 
involve writing two significant pieces of software, and 
learning a new language, C# (pronounced C-sharp), and 
development platform, Visual Studio.NET (VS.NET) in 
order to do this. It was also made clear that all coursework 
would be marked by a single person, and that all cases of 
plagiarism would be detected and severely punished. While 
it is clearly impossible to catch all cases of plagiarism, we 
have not detected any instances. Student feedback suggests 
that this up-front attitude to describing the skills required and 
the ground rules was appreciated by students. Some students 
were concerned that they did not have the requisite 
programming and AI skills. These students were simply 
given further information on the course content and 
coursework deliverables. Several of the students whose 
previous marks showed weakness in programming and AI 
opted to take the module, with most of them doing 
reasonably well and some achieving excellent results. 
 The paper is structured as follows. In the next two 
sections we will discuss the Virus and Terrarium Academic 
games and the APIs that were developed together with the 
server which allowed each student’s AI to compete against 
the other student’s AI and AI written by the instructors. 
These sections consider students’ feedback and lessons 
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learned which may be of use to other instructors using games 
as a teaching medium. Finally we give conclusions which 
highlight the effectiveness and drawbacks of using games to 
teach AI and programming topics. 
 
THE VIRUS GAME 
 
Rules 
 
The Virus game is a two player game of perfect information, 
played on an 8x8 board (as in chess, draughts or Othello). 
There are two players, black and white, who play alternately, 
starting with black. Initially the board is set up as in Fig. 1. 
 

        
        
        
        
        
        
        
        

Fig.1. The Virus game starting position. 
 
Two types of moves are available at each turn. The first type 
of play involves growing a new piece adjacent to an existing 
piece of the same colour (Fig. 2). The second type of play 
involves moving a piece to another square a distance exactly 
2 squares away (via an empty square) (Fig. 3). Note that 
squares are considered adjacent if they adjoin or if they share 
a corner. In either case all opposing pieces next to the moved 
piece change colour.  
 

 
 
 
 
 

Fig. 2. The white piece grows. 
 

 
 
 
 
 

Fig. 3. The white piece moves 
 
Play continues until neither player can move, or until one 
player has no pieces left, when the player with the most 
pieces wins the game. 
 
Teaching Using the Virus Game 
 
The Virus game was chosen as a game with very simple 
rules, but having complex game play. Whilst it is hard to 
quantify that complexity, at least in terms of branching 
factor the Virus game appears to have similar (although 

arguable higher) complexity than draughts (Schaeffer et al. 
1992) and Othello (Buro 2002). The advantage of using the 
Virus game over better known games is that the opportunity 
for plagiarism by finding software on the web is eliminated. 
Indeed checking that the web resources available for the 
Virus game were limited was an important preparatory step. 
It also meant that module web pages were able to actively 
link to selected sources of information on Othello, draughts, 
chess and other games. 
 Students were required to write a board evaluation 
function for use in a search of the move tree. Software for 
searching the move tree (minimax with alphabeta pruning 
(Knuth and Moore 1975)) was written, and students had to 
write a function which returns a value for each position 
which represents the probability of the black player winning 
in the given position. Since one requirement was that games 
between student AI had to run very quickly, the tree was 
searched to three moves ahead, requiring evaluation of 
around thirty thousand positions per move in the middle 
game. Initial concerns from the academics in the team over 
the speed of C# proved unfounded, and very fast tree 
searches of a speed approaching that of native C++ code 
were observed. It proved effective to present this situation to 
students as “the software looks forward three moves, your 
evaluation function looks forward the rest of the game”. 
However, it became apparent after a couple of weeks that 
there was confusion amongst the weaker students as to 
whether the evaluation function itself makes a move. A 
clearer explanation that the evaluation function is but a part 
of the AI player was needed sooner and more repeatedly. 
However, all students overcame this misunderstanding 
within a couple of weeks. To allow a reasonable amount of 
time per board evaluation and at the same time ensure that 
games ran quickly on the server, a total of 10 seconds was 
allowed for each AI player to complete all its moves in a 
game. Any AI player that used more time than this 
automatically lost. The aim was to teach students techniques 
of minimax tree search, positional analysis, pattern 
matching and evolutionary board tuning by using binary 
board representations and binary operators such as AND, 
OR and NOT. 
 Students implemented their board evaluation 
function by writing a class MyPlayer which inherited from 
our VirusPlayer class, and overriding the 
GetEstimatedScore() function of that class. Although 
students had little or no familiarity with Visual Studio .NET 
or C#, since they had previously used the Java programing 
language, they were all able to handle this and understand 
the very basic debugging features of VS.NET following a 
couple of hours of instruction in labs with Black Marble and 
Prof Cowling. Although several students reported some 
concern that they would have to learn a new computer 
language and environment as well as the AI techniques on 
this module, at the end of the module the students expressed 
that they had found it useful to familiarise themselves with 
C# and VS.NET during their degree course, and that it had 
not slowed them too considerably. 
 Sponsorship from Microsoft and development by 
Black Marble made it possible to write a sophisticated client 
for the Virus game (Fig. 4), which allowed students to learn 
strategies by playing against each other and against simple 
AI players. It also allowed students’ AI players to play 
against each other. There were some issues of trust here, 
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which were presented early on to students, due to the 
possibility of decompilation for C#. However, once students 
were made aware of this possibility, they only traded AI 
players with other trusted colleagues and this does not 
appear to have caused instances of plagiarism. 
 Black Marble also wrote a server application for the 
Virus game, which allowed a competition to run 
continuously between student AI players, maintaining a 
league table that permitted students to continuously monitor 
the relative performance of their AI player against those of 
the other students. This proved to be a huge motivator for 
the majority of students, especially since the algorithm for 
determining which two AI players should play next was 
designed so that any AI uploaded to the server would get a 
game almost immediately. This resulted in many students 
working very hard into the early hours to improve their AI 
players. Student feedback was very positive on this aspect 
of the module. AI players were uploaded by FTP. The 
students could complete a “nickname” field for each AI 
player, which proved very useful in further raising the 
interest level of students. The competition for the silliest 
nickname was almost as fierce as that for the best AI! In 
addition to student players, the two instructors on the 
module wrote AI players of varying strengths (some 
designed to be at the bottom, middle and top of the league). 
After the first couple of weeks of familiarisation with the 
module and the environment a benchmark player was 
added, which simply counted (number of black pieces) – 
(number of white pieces) and reported the piece advantage 
of the black player as the position evaluation. Students were 
given plenty of notice that beating this player would be a 
requirement for a “pass” in terms of AI performance. 
 Assessment was 30% for performance on the server 
and 70% for a short written design document and a printout 

of source code. A one page document was prepared which 
described precisely what was required, without giving a 
restrictive marking scheme. The emphasis of that document 
was on originality first, league performance second and 
good software engineering and documentation third.  

Over 600,000 games of the Virus game were played 
on the server over a period of four weeks. It was very 
satisfying to see the benchmark player start high in the 
league, descend to mid table after a couple of weeks, and 
finish rock bottom at the time of coursework submission.  

Since software development took place in parallel 
with teaching, students had to tolerate some uncertainty as 
development encountered snags. Giving students a complete 
picture of what was going in when snags occurred arguably 
increased the enthusiasm and involvement of the student 
body, as they felt involved in a real development process to 
create a complex piece of software.  

Student coursework demonstrated a lot of 
originality and coding ideas. One of the pleasant surprises 
was the emergence of a student “add-on” community, with 
students creating a test server for local testing of AI players, 
optimising code for low level bit counting functions, 
developing a GUI for generating board shapes using the 
binary representation of the client software, and recreating 
functions which were in parts of the code not made 
available to students. Student approaches demonstrated a 
good deal of originality and insight and included: using very 
fast bit operators and low level code optimisation for speed, 
notions of safety, mobility, limited look-ahead, pattern-
matching, flood-fill, degrees of ownership, positional 
scores, parameter weighting of features, opening book 
analysis, biological ideas such as surface are over volume, 
enclosure, game stage analysis, randomness and terminal 
node checking. This list cannot do full justice to the 
effectiveness and originality of student approaches, but 
should give a flavour. All students submitted a coursework 
on time and weaker as well as strong students were 
motivated to do well.  
 
TERRARIUM ACADEMIC 
 
Artificial Life has been an interesting area for the 
investigation of Artificial Intelligence for some time now, 
inspired by the work of Conway (Berlekamp et al. 1982), 
Reynolds (Reynolds 1987) and others. Terrarium is an 
artificial life environment created by Microsoft developers 
(http://www.gotdotnet.com/Terrarium), where the aim is to 
give software agents (which represent bugs and plants) 
intelligence and effective real time behaviour to survive and 
multiply in the environment created by other bugs and 
plants. The software has an interface that renders the 
Terrarium world observable using rather beautiful animated 
graphics. Initially it was a spare time project for the 
developers, but more recently it has been embraced by 
Microsoft as a .NET sample application, and indeed 
Microsoft ran a highly successful international Terrarium 
competition. Terrarium is itself an interesting tool to use 
directly as a tool for teaching AI in real time environments, 
but since the Terrarium environment is extremely rich and 
complex, and significant levels of software engineering skill 
are needed to understand the API and create effective and 
original Terrarium bugs, it was considered too difficult for 

Fig.4. The Virus game client 
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one half of a module given to final year undergraduates in 
Computing. Moreover, the source code for significant 
numbers of Terrarium bugs is available on the Internet. 

Simplification was needed to the API, and also the 
measure of success for a bug needed to be simpler, so that 
observing a bug would more readily give information as to 
how that bug could be enhanced. To that end, Terrarium 
Academic was created, by extending the existing Terrarium 
beta source code (Fig. 5). Terrarium Academic replaced 
reproduction and the notion of survival of the fittest with a 
points system that rewarded collection of points from fixed 
goals (which the creatures had to find) and used rocks to 

define a variety of maze-like environments for the bugs so 
that path finding would be an essential activity for a 
successful bug (Mika and Charla 2002). Terrain building 
and loading were added as functions. The dual energy and 
injury system of Terrarium was replaced by a single system 
for injury. Finally, plants were regarded as a way to cure 
injury and were made into indestructible, fixed objects 
(again to encourage mapping and pathfinding). Each bug in 
Terrarium Academic is called once per “tick” so that each 
student bug was required simply to override the DoAction() 
function of a basic bug object. Students did not have to 
handle other events. The aim was to teach multi-level 
planning, rule-based and state-based system ideas, 
pathfinding, opponent modelling and real-time software 
agent ideas. 

Again, a server application was developed by Black 
Marble, which functioned in much the same way as for the 
Virus game, as a Terrarium environment without a graphical 
representation, that recorded the results of each Terrarium 
run in an SQL database. An important difference is that 
each Terrarium game can take several minutes to run, so 
that students were unable to immediately see the 
effectiveness of a submitted bug. While students were 
certainly happy with this setup, many wished for the 
immediacy of the Virus game server, and this is an issue 
which it would be desirable to address by allowing bugs to 
be directly added to the Terrarium environment as they are 
uploaded to the server.  

The course instructors wrote a variety of bugs for 
students to test against, since observation of their own bugs 
interacting with other bugs using the graphical Terrarium 

Academic client proved to be the most effective way of 
refining bugs.  

Students found the Terrarium API much harder to 
get to grips with than the corresponding API for the Virus 
game, in spite of our simplifications and instruction. Several 
approaches were used to aid their understanding, by far the 
most effective of which was providing students with full 
source code for four bugs (including one very highly 
functional bug with mapping and pathfinding capabilities). 
It was made clear to students that no credit would be given 
for reproducing the functionality in these bugs, and that they 
would have to write the action planning code in order to use 
the tools provided in the bugs given. All of the students used 
state based and rule based approaches to do this, with most 
agents having a sensible fixed plan, such as attack any 
adjacent bug, otherwise go to or search for a goal. Some of 
the more advanced bugs had more sophisticated strategies 
based upon a correct supposition that most of the other bugs 
would have a relatively simple fixed behaviour, using 
methods designed to beat common behaviour, such as 
hiding until most bug combat had finished, or searching the 
map for a secluded spot with a goal in it. All students again 
submitted coursework, which varied from reasonable to 
excellent. Student feedback suggested that although all 
students found this coursework harder than the Virus 
coursework, they also found it more rewarding due to the 
obvious link with AI in use in the video game industry. 
 
CONCLUSION 
 
Student feedback for the Virus game and Terrarium, and the 
quality of coursework submitted, strongly support the idea 
of games as a tool to teach advanced AI and programming 
concepts. Of course, some things could have been done 
better. Since the application was being written as teaching 
progressed, refinement of the API was limited, however 
students obtained excellent knowledge of the process of 
working with beta code, which changed over time, written 
by other developers. The time and effort required for this 
detracted to an extent from the time available for 
implementing AI. This balance will shift back with recent 
refinement to the APIs of both the Virus game and 
Terrarium Academic. Developing support software 
alongside lectures was time consuming and difficult, but it 
meant that instructors and developers were very well aware 
of student problems and issues. Two of the lectures were 
given over to unscripted question and answer sessions 
which were a great success given the common issues being 
faced by students and teachers. 

Overall, students appreciated being asked to think 
creatively “outside the box” and rewarded for creativity, 
originality and effort in a well-structured coursework. All of 
the students’ feedback, with one notable exception, was 
very positive with many comments to the effect that some 
students found this the most interesting and rewarding 
experience of their University career. The one exceptional 
student who vocally protested about the non-traditional 
methods of the module in a question and answer session 
found that all of the other students argued very vigorously 
against this. 

We would like to see games used as a medium for 
teaching AI and software engineering (and other topics) 

Fig.5. The Terrarium Academic graphical client 
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more widely. To this end we aim to make available, free of 
charge, the clients and servers for the Virus game and 
Terrarium for teaching use in other Universities and 
teaching institutions. Please contact Professor Cowling 
(P.I.Cowling@bradford.ac.uk) for more information. There 
is the potential for inter-University competition or 
competition at national and international levels using 
refinements of the tools described in this paper. We are 
currently investigating effective ways to set up such 
competitions. 
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ABSTRACT

In May 2002, Sony Computers Entertainment
Europe released the PlayStation2 Linux
Development Kit providing educational
establishments with a means for teaching native
code development on this current generation of
console. Games console programming is
fundamentally different from programming games
on PC based platforms and is a valuable skill to be
mastered by any graduate seeking employment as a
programmer in the Computer Games Industry. In
order to obtain optimal performance from a
console, detailed knowledge and understanding of
the system hardware is required. The PlayStation2
contains several processors which operate in
parallel, and both the programming and
synchronisation of these processors is essential.
Program code is developed for the PlayStation2
Linux Kit using a range of generic and proprietary
tools. The GNU C++ compiler is used to create
high level game code, an assembler and/or inline
assembly is used to create custom high-speed
routines, a Vector Command Line preprocessor is
used to develop low level code for the Vector Unit
processors and the Graphics Synthesizer is
configured to render to a television or monitor.
These techniques and tools are introduced to
students to provide them with a realistic insight
into modern console game development.

INTRODUCTION

The PlayStation2 Linux kit (Linuxplay Web Site,
2004) is added to a standard PlayStation2 (PS2)

transforming it into a Linux workstation which can
be used for many purposes including the
development of native console game code. The kit
consists of a hard disk drive, a keyboard and
mouse, an Ethernet network adapter, cables, Linux
operating system and development software.

The kit was originally released with two main
methods of code development for graphics/games
applications: an implementation of OpenGL called
PS2GL, and a low level development library called
libps2dev (Playstation2-linux Web Site, 2004).
PS2GL did not utilise any of the advanced
hardware within the PS2 and provided a
development experience very similar to using
OpenGL on a standard PC. Using PS2GL did not
reflect the development methods being used by
professional PS2 developers and this method was
not pursued by the author.

Development under libps2dev provided some
access to the console hardware including the vector
units (VUs). However, the major disadvantage of
libps2dev is that it did not provide access to the
Direct Memory Access Controller (DMAC) which
is a key component, central to providing high
performance from the PS2. Under libps2dev, the
function of the DMAC was emulated, leading to
non-optimal performance from the console.

In November 2002, shortly after the release of the
kit, the SPS2 Direct Access Development
Environment (Osman, 2002) was released. SPS2 is
a low level development library providing direct
access to the PS2 hardware and unlike the other
development libraries, it has been updated several
times since its initial release. A significant feature
of SPS2 is that it provides direct access to the
DMAC, thus allowing the programmer to utilise
the full power and performance of the PS2. SPS2
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also provides a development infrastructure similar
to that of the professional development kit, with
code being developed under SPS2 only requiring
minor modification to run under the professional
development kit. It was for the reasons of similarity
of experience with the professional development
kit, and superior performance, that SPS2 was
adopted as the development environment/library
for games development courses at the University of
Abertay Dundee.

PS2 ARCHITECTURE

Figure 1 shows the main internal components and
data pathways that exist within the PS2. The main

“Emotion Engine”(EE) core is a MIPS IV custom
processor operating at 300MHz. A 32-bit floating-
point unit (FPU) is connected to the EE Core and
acts as a coprocessor. Two 128-bit vector
processing units are present, VU0 and VU1. VU1
contains 16k of program memory and 16k of data
memory and operates in Micro-mode,
independently from the main CPU core. VU1 is
connected directly to the graphics interface (GIF)
which is used to unpack data and send it directly to
the graphics synthesiser for rendering. VU1 is
mainly used for vertex transformation, lighting and
clipping. VU0 contains 4k of program memory and

4k of data memory and can be used in either
Micro- or Macro-mode. In Macro-mode, VU0 acts
as a second co-processor for the main CPU. In
micro-mode VU0 executes its own micro-program
independently from the main CPU and can be used
in this mode for physics and other intensive in-
game calculations. The vector units are connected
to the data bus via their associated vector unit
interface (VIF). The VIFs are intelligent
microcontrollers which interpret the data sent to
them using special instructions embedded in the
data called VIFCodes.

The Direct Memory Access Controller (DMAC) is
responsible for transferring data between main
memory and the various processors and scratchpad

memory. Correct utilisation of the DMAC is
fundamental to obtaining high performance from
the PS2. Data transfer is over a 128-bit bus which
operates at a maximum transfer speed of 2.4
Gbytes per second.

Three paths exist through the GIF to the graphics
synthesiser. Path 1 is from VU1 micro-memory,
Path 2 is from VIF1 and Path 3 is from the main
data bus. Although there is flexibility in the use of
each data path, the recommended function of the
data paths is as follows (Sony Computer
Entertainment Europe, 2001a). Path 3 is for

EE Core
VU0
(4k)

VU1
(16k)

I$
16k

D$
8k

SP
16k VIF0 VIF1

128-bit Data Bus

GIF GS

Path 1

Path 3

Path 2

DMAC
Main

Memory

FPU

Timer

32 128

64

Vsync/
Hsync

2.4Gb/sec

Figure 1
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loading image data into texture memory within the
GS. Path 2 can also be used to upload texture data
and for the setting of configuration registers within
the GS. Path 2 transfers are convenient, in that they
provide inherent synchronisation between texture
data and vertex data. Path 1 is the main geometry
path for transferring transformed vertex data to the
GS for rendering.

A typical rendering process involves uploading
texture data from main memory to the GS via path
2/3 and untransformed vertex data to VU1 micro
memory via VIF1. A VU1 micro program
transforms, lights and clips the vertex data then
sends it over Path 1 to the GS for rendering. Many
of these operations are carried out in parallel and
are synchronized with the use of appropriate
VIFCodes embedded within the vertex and texture
data.

DEVELOPMENT PROCESS AND TOOLS

Several methods for games application
development are possible with the PS2 Linux kit,
with the arrangements adopted by the author being
illustrated in figure 2

The development station consists of a PlayStation2

Linux kit, Windows PC, two PS2 controllers, dual
input LCD monitor, keyboard, mouse, television
and peripheral connection box. The dual input
LCD monitor is used to display the video output
from either the PC or the PlayStation2. The single
keyboard and mouse are switchable between the
PC and the PS2 using an interconnection box and
suitable leads. Both the PC and the PS2 are
connected to the University Ethernet network and
communicate with each other via the TCP/IP and
Server Message Block protocols. Graphics output
from the PlayStation2 can be directed to the
television for prototyping games applications at the
correct resolution and size. This arrangement
significantly reduces the amount of equipment

University Ethernet Network

Windows PC Television

LCDMonitor Keyboard
Mouse

Connection
Box

Control Pads

PlayStation2

Figure 2
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needed per development station and maximises the
utilisation of the student laboratory.

Students are free to select a development method
that is comfortable to them, but an arrangement
found to be successful is as follows. The Linux file
system is made available to the PC via a Samba
server running on the PS2. Files on the PS2 can be
created and edited using a suitable text editor (such
as UltraEdit or Visual Studio) running on the PC.
From either a Telnet or SSH session from the PC
to the PS2, programs can be compiled and
executed on the PS2, with graphics output being
directed to either the LCD monitor or television.
Debug output from the program is sent via the
Telnet/SSH session to a console window on the
PC. Students store their project code on the main
University file servers making this arrangement a
robust, effective and secure development
environment.

Several tools are used in order to develop games
applications under PS2 Linux. Core game code is
written in either C or C++ and GNU C and C++
compilers are shipped with the kit. The vector units
are proprietary chips (Sony Computer
Entertainment Europe, 2001b) which are
programmed at assembly level. Both vector units
have two execution units (upper and lower) which
operate in parallel, leading to assembly code which
is written in two parallel streams. This assembly
code is compiled to native VU object code with a
VU assembler (ee-dvp-as) shipped with the kit.
The pairing and scheduling of VU assembly code is
relatively complex for students with limited
experience of assembly language, but a Vector
Command Line (VCL) preprocessor which is
shipped with the kit is available to help generate
VU code. VCL takes a more traditional single
stream of assembly language instructions and from
that generates the dual stream of VU assembly
code with correct scheduling, pairing and
optimisation of instructions. The output from VCL
is then compiled with ee-dvp-as to produce the
vector unit object code.

The operation of the VUs can be remotely
monitored and debugged using a visual debugger
(Osman, 2003) running on either a Windows or
Linux PC. A server program runs on the PS2 kit
monitoring the execution of the VU micro program

under control of the debugger client running on the
PC. Full control of the execution of the micro
program is obtained together with access to both
program and data memory. Using the debugger it is
possible to single step the execution of the VU
code and observe output on the television/monitor
on a frame-by-frame basis.

TEACHING METHODS

Students studying on the BSc Computer Games
Technology course gain access to the PlayStation2
Linux kits for the first time in their second year
where they study a full module in Console Game
Programming. The module introduces topics such
as the internal structure and organisation of a
games console, the structure and organisation of a
games program, and the tools necessary to create
and import media content for games. By the end of
this module students will understand how consoles
are structured and organised and the methods and
techniques that are necessary in order to program
consoles effectively

Students entering the third year have a solid
grounding in console architecture and
programming and it is from this background that
the PlayStation2 Linux kit is used to introduce the
design and construction of console based 3D
games engines. Students develop and use the
mathematical routines that are necessary for
implementing a 3D engine and generate code that
interacts directly with the 3D console hardware
such as the vector units. By the end of this module
students will have created a small prototype 3D
game engine and understand the structure,
organisation, development and use of modern 3D
games engines.

Students undertake a Group project in their third
year and an individual honours project in their
fourth and final year of study. The PlayStation2
Linux kit is available as a platform to undertake
these projects. It provides access to a modern
console for testing and evaluating algorithms,
techniques and ideas.

A further theme that the PlayStation2 Linux kit is
well suited to exposing is that of network
programming and gaming. The Playstation2 Linux
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kit is supplied with a 10/100 Base-T Ethernet
interface network adaptor and a Linux operating
system with full network support. Under Linux, the
Berkeley Sockets API provides access to the
TCP/IP protocol suite that is the backbone of the
Internet. The PlayStation2 Linux kit can therefore
be used in the teaching of network theory and
practice and more specifically in the design and
implementation of network computer games. Using
the kit it is possible for students to design and
create network enabled computer games which
have global access through the Internet

CONCLUSIONS

This article has reviewed the internal structure and
organisation of the PlayStation2 Linux
development kit and has demonstrated how the kit
can be applied to teaching and learning on a wide
range of topics within Computer Games
Technology courses. In practice, the kit has been
found to be highly motivational for students and is
an invaluable tool for the in-context teaching of
Computer Games Technology.
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ABSTRACT 
 
The paper investigates games strategies on the basis of  
experiments with Prisoner’s Dilemma problem. The 
objective is to determine which strategies have the best 
chance of winning. Although some strategies, such as tit-for-
tat, emerge as better than others in some cases, it appears 
that there is no overall winning strategy, but that success or 
failure of individual strategies depends on strategies adopted 
by a population of opponents. The winning strategy will 
therefore change dynamically, and will need to be 
determined while the game in progress. Based on the results 
of this work, a strategy engine for games development is 
proposed, and  a future development of strategy middleware 
is discussed. 
 
INTRODUCTION 
 
Finding a winning strategy may not be a trivial task even in a 
two player game, but it can be extremely hard in a multi-
player game. Developers are particularly interested in the 
quality of games, which will be directly proportional to the 
quality of gameplay and associated strategies. In this paper 
we use Prisoner’s Dilemma problem to investigate success 
of different strategies in games, in order to learn how to 
design games which can be played and won at various 
proficiency levels by a range of players. 
 
After in-depth analysis of theoretical work in the field, we 
will adopt experimental approach to evaluating different 
strategies. Using Cellular Automata as suitable mechanism 
for emergent modeling and simulation, we will conduct 
experiments, analyse results, and draw conclusions on 
whether or not there are winning strategies and how to 
design them into a game. 
 
Prisoner’s Dilemma 
 
The story of the Prisoner’s Dilemma begins with two 
prisoners who are arrested for committing a crime and are  
being interrogated. Due to insufficient evidence for a 
conviction, the two prisoners have been isolated and offered 
a deal. Under such arrangement, should both prisoners 
refuse to confess and choose to remain silent, both would 
receive a small punishment. On the other hand, should any 
one of the prisoners choose to confess and accuse the other, 

while the other prisoner remains silent, the prisoner who 
confesses would be freed and full punishment would be 
given to the prisoner who remains silent and was accused by 
the other. Under the circumstance whereby both prisoners 
confess and accuse the other, both would receive a heavy 
punishment but slightly less severe than the full punishment. 
It is necessary to note that throughout the decision making 
process of both prisoners, they are neither allowed to 
communicate with one another nor given to know the 
decision of the other. 
 
The game becomes more interesting when prison sentences 
are added as payoffs. For instance, if both the prisoners 
remain silent (cooperate) without confession, they will be 
each sentenced for a year in prison. If one confesses 
(defects) and accuses the other one, the accused one will be 
sentenced for five years in prison whereas the confessed one 
will go free. Symmetrical result applies under the reverse 
scenario. However, if both accuse one another, both will go 
to prison for three years instead of five years in full. The 
whole scenario is summarised in Table 1 below using game 
theoretic notation, where (0, 5) means the first prisoner gets 
zero years in jail and the second one gets five years.  

 Prisoner 2 
 Cooperate 

(silent) 
Defect 

(confess) 
 

Cooperate 
(silent) 

(1, 1) (5, 0)  

Pr
is

on
er

 1
 

Defect 
(confess) 

(0, 5) (3, 3)  

 
Table 1 The payoff matrix 

The game of Prisoner’s Dilemma becomes more 
complicated when it is played more than once, which 
Axelrod (1984) called the Iterated Prisoner’s Dilemma. 
Instead of using rationality, the prisoners are allowed to 
form strategies based on the other person’s previous moves 
in an Iterated Prisoner’s Dilemma. Therefore, competing 
strategies emerge in order for prisoners to find a winning 
way. There are several common strategies such as the 
vicious strategy of universal defection called All-Defect 
(All-D), naive strategy of unconditional cooperation called 
All-Cooperate (All-C), or a strategy of come-on initial 
cooperation followed thereafter by vicious defection (C-
then-All-D). However, one of the most well known 
strategies is the strategy called Tit-for-Tat (TFT). TFT 
cooperates on the first move and thereafter simply repeats its 
opponent’s move on the previous round. It has established a 
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reputation on both experimental and theoretical grounds as 
particularly robust (Axelrod 1980a, 1980b, 1984; Axelrod & 
Hamilton 1981). The implication behind this Iterated 
Prisoner’s Dilemma is that we often face certain situations 
or dilemmas in our daily life over and over again. Many a 
time, we must make fresh decision of what we are going to 
do each time and make use of the correct strategy at the right 
time. 
 
ANALYSIS OF STRATEGIES 
 
In this section we will explore a little further different kinds 
of strategies in Prisoner’s Dilemma. This is necessary since 
one of the main objectives of our study is to investigate the 
winning strategies for games. 

 
In the early days, the only rational and best strategy for the 
classic Prisoner’s Dilemma was simply to defect all the 
time, as it was the safest to defect regardless of what action 
the opponent took. As mentioned in the previous section, 
various kinds of strategies only started to emerge since the 
tournament organised by Axelrod in the 1980s with an aim 
to study strategies that would encourage behaviour of 
cooperation in Iterated Prisoner’s Dilemma. When Axelrod 
initiated his first Iterated Prisoner’s Dilemma tournament, 
only around fourteen strategies had been proposed. Today, 
there are numerous strategies used in the Iterated Prisoner’s 
Dilemma. Among the most common are All-C, All-D, TFT, 
Spiteful, Pavlov, TF2T and Random. There are also some 
strategies which are less common, but have been used in 
several prominent experiments of the Iterated Prisoner’s 
Dilemma in the past, such as soft_majo, per_ddc, per_ccd, 
mistrust, per_cd, hard_tft, slow_tft and hard_majo. Table 2 
summarises the major strategies that have been mentioned. 
 

TFT, a very simple strategy and overall winner of all 
Axelrod’s Prisoner’s Dilemma tournament, has established 
its reputation among all other strategies as the most robust 
strategy available in Prisoner’s Dilemma game on both 
experimental and theoretical grounds (Axelrod 1980a, 
1980b, 1984; Axelrod and Hamilton 1981). TFT is simple in 
the sense that it cooperates on its first move and follows 
opponent’s moves subsequently. According to Axelrod, it 
has three characteristics that account for its impressive 
performance: 

1. It is nice (cooperates on the first move). 
2. Retaliatory (punishes defection in the prior move 

with defection). 
3. Forgiving (immediate return to cooperation after 

one C of the adversary). 
Although TFT has been claimed as the best strategy in 
Prisoner’s Dilemma for the past twenty years since 
Axelrod’s tournaments, a lot of game theorists in this field 
have never ceased to depose its status with endless research 
to investigate more winning strategies. Someone even 
protested that logically speaking TFT can only come to a 
draw scenario, and it can never win or score more points 
than its opponent in a single game since its first move was 
always to cooperate (Sober & Wilson, 1998). 

Strategies Description 
All-C Always cooperates. 
All-D Always defects. 
TFT Cooperates on the first move and then plays what its 

opponent played on the previous move. 
Spiteful Cooperates until the opponent defects, then defects all 

the time. 
Pavlov Cooperates on the first move and then cooperates only 

if the two players made the same move. 
TF2T Cooperates except if opponent has defected twice 

consecutively. 
Random Randomly plays, cooperates with probability 1/2. 
soft_majo Plays the opponent’s most used move and cooperates in 

case of equality (first move considered as equality). 
per_ddc Plays periodically [defect, defect, cooperate]. 
per_ccd Plays periodically [cooperate, cooperate, defect]. 
mistrust Defects, then plays opponent’s move. 
per_cd Plays periodically [cooperate, defect]. 
hard_tft Cooperates except if opponent has defected at least one 

time in the two previous move. 
Slow_tft Plays [cooperate, cooperate], then if opponent plays 

two consecutive time the same move plays its move. 
hard_majo Plays opponent’s majority move and defects in case of 

equality (first move is considered to be equality). 
prober Begins by playing [cooperate, defect, defect], then if 

the opponent cooperates on the second and the third 
move continues to defect, else plays tit-for-tat. 

Table 2  Major strategies in Iterated Prisoner’s Dilemma 

 
In the late 1980s, Boyd and Lorberbaum (1987) showed that 
no deterministic strategy is evolutionarily stable in the 
Iterated Prisoner’s Dilemma. Lorberbaum (1994) extended 
the instability proof to mixed strategies as well. In mixed 
strategies, the strategies generate moves probabilistically 
depending on the opponent’s previous move. 
 
In early 1990s, Nowak and Sigmund (1993b) reported that 
Pavlov had outperformed TFT in evolutionary Iterated 
Prisoner’s Dilemma games embedded with certain random 
disturbances such as ‘noise’. According to Nowak and 
Sigmund, Pavlov was better than TFT because it can correct 
occasional mistakes and prevents invasion of strict 
cooperators by exploiting them. However, they did not claim 
Pavlov to be the best because in their experiments, Pavlov 
lost to All-D. 
 
Later in mid 1990s, Beaufils, Delahaye and Mathieu (1997) 
proposed Gradual as a better strategy than TFT given its 
three important qualities, namely its kindness (it does not 
begin with defect), reactivity (it defects when the opponent 
has defected) and forgiveness (it goes back to cooperate after 
punishment). They further derived four simple principles of 
doing well in an Iterated Prisoner’s Dilemma game based on 
their experimental results: 

1. Don’t be envious. 
2. Don’t be the first to defect. 
3. Reciprocate both cooperation and defection. 
4. Don’t be too clever. 
 

It is necessary to note that there is strategy like All-C, which 
cooperates on every move no matter what the partner does. 
This kind of strategy will eventually be defeated since the 
opponent would have no incentive to cooperate, but to defect 
in order to earn the greater payoff on every move it makes. 
In our opinion, the reason All-C exists perhaps is to show its 
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simplicity to the opponent and hopeful that its opponent will 
appreciate it and in turn to cooperate as well. 
 
In conclusion, the various strategies in Prisoner’s Dilemma 
have formed a simple yet profound inspiration to our every 
walk of life and all humankind experience. In the next 
section, we will discuss the characteristics of the cellular 
model we use in our current research study, which was based 
on the experimental simulations by Grim (1997). 
 
METHODOLOGY 
 
As last section has introduced the subject area and outlined 
the literature on the Prisoner’s Dilemma, this section aims to 
provide an understanding on the research approach we 
adopted in our study and the methodology we used in our 
experiments. Generally speaking, the research approach we 
will adopt is a cellular automata model. There are several 
examples from the previous work done with the use of 
cellular automata in Spatial Prisoner’s Dilemma, such as 
Axelrod (1984); Nowak and May (1992, 1993); Mar and St 
Denis (1994); and Grim (1996, 1997). We have largely 
followed the guidelines and ways of encoding different 
strategies in Prisoner’s Dilemma game based on the 
implementation of Grim (1996, 1997) to ensure the validity 
of our study.  
 
Cellular Automata in Spatial Prisoner’s Dilemma 
 
Recently, cellular automata have been used very often as a 
modeling tool in various researches, including the research 
in the field of Prisoner’s Dilemma. The introduction of 
spatial dimensions in Prisoner’s Dilemma have greatly 
linked cellular automata together with Spatial Prisoner’s 
Dilemma, in which the interactions between cells among 
their neighbourhood could be simulated and the dynamics of 
their behaviour could be observed in various ways. The 
cellular automata model for Prisoner’s Dilemma was 
presented first by Axelrod (1984), and thereafter an 
investigation into the dynamics of such model was done in 
Nowak and May (1992, 1993). Grim (1997); and Mar and St 
Denis (1994)  also reported on a cellular automata model in 
their study of undecidability in Spatial Prisoner’s Dilemma.  
 
In 1984, Axelrod laid the foundation of the use of cellular 
automata in Prisoner’s Dilemma with an analysis into a 
cellular automaton in which all cells are occupied with 
players of different strategies. In Axelrod’s model, players 
get their points based on the payoffs against their 
neighbouring cells respectively, and copy more successful 
strategies from their neighbors.  
 
While Axelrod studied a large number of possible strategies 
in his tournaments, Nowak and May (1992) focused on 
players that behaved only either cooperatively or defectively. 
They investigated various configurations in Spatial 
Prisoner’s Dilemma at the initial stage and then studied the 
dynamics of behaviour that evolve among the interactions 
between cells. In their model, the state of a cell is determined 
by a set of four rules: 

1. Strategies which are cooperators and were 
cooperators in the previous generation. 

2. Strategies which are defectors and were defectors 
in the previous generation. 

3. Strategies which are cooperators but were 
defectors in the previous generation. 

4. Strategies which are defectors but were 
cooperators in the previous generation. 

 
In this paper, we report on a model where different strategies 
are represented as cellular automata based on the paper of 
Grim (1997). As Grim studied the undecidability in Spatial 
Prisoner’s Dilemma, our emphasis will be on the 
establishing winning strategies in multi-agent interaction 
through the results produced by the model. The next section 
will describe the model we built for experimental purposes. 
 
Cellular Automata Model 
 
Our model is a simple Java program implemented in the 
form of cellular automata to simulate agents of different 
strategies in Spatial Prisoner’s Dilemma. In this program, 
agents representing different strategies are distributed on 
two-dimensional grid. The grid has overlapping edges, 
which means that every cell on the grid has eight immediate 
neighbouring cells including those at the edges of the grid.  
 
Each agent will occupy one cell on the grid. Different 
colours are used for the cells to represent each individual 
strategy, which occupies that particular territory. Each cell is 
designed to compete against its immediate neighbours with 
its own strategy. Scores are calculated as each cell 
progressively competes with its immediate eight 
neighbouring cells (see Figure 1), and the winning cell will 
inhabit the territory of the losing cell by replacing its colour 
during the process.  
 

 

 
 
 

Figure 1  Spatial interactions among neighbouring cells 
 

The grid simulates a society of prisoners interacting in a 
spatial game with different strategies adopted. Every 
prisoner is due to play with the eight neighbouring prisoners, 
and the payoffs they get represent their fitness. The 
following two sections will discuss the two major 
implementation issues in our model. 
 
Strategy Encoding 
 
In our Java program, the cellular automata that represent 
different strategies are encoded as binary strings. For 
instance, all the strategies are represented in the program as 
3-bit binary numbers with 0 and 1 corresponding to 
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defection and cooperation. We selected eight most common 
strategies for our experiments based on the implementation 
by Robert Rothenburg for Grim’s paper (1997). The eight 
strategies mentioned have been represented from 000 to 111, 
or 0 to 7, as shown in Table 3. 
 

As for the output of the program, we use eight different 
colours to represent eight different strategies we have 
particularly selected for this study. Table 3 also shows the 
representation of colours for different strategies. 
 
Fitness Function 
 
In our program, we determine the fitness of each cell or 
agent by assuming that the agent with highest payoff score is 
the fittest. On the other hand, the agent with lowest payoff 
score naturally will be the weakest. This means that the 
fitness scores that each cell accumulated will determine 
which agent will inhabit other’s cell and which agent will 
‘die off’. Generally, our model aims to simulate the 
Prisoner’s Dilemma game in spatialised form for a specified 
number of rounds among the agents. By keeping track the 
fitness score of each agent, we will be able to evaluate the 
eventual winner evolves from these given rounds of play.  
 
EXPERIMENTS AND RESULTS 
 
Iterated Prisoner’s Dilemma Simulation 
 
In our first experiment, we conducted a simulation for TFT 
and 10 other strategies selected from the Iterated Prisoner’s 
Dilemma. It was a simple round-robin simulation where each 
strategy met with all other strategies. This experiment was 
designed for each strategy to play with one another 
iteratively for 50 rounds with the payoffs as shown in Table 
4. A total final score will be calculated for each strategy 
from the sum of scores achieved based on the payoffs after 
each round of play. 
 
At the end of this experiment, we measured the strength of 
each strategy according to its overall performance during the 
simulation as reflected in the total score it has accumulated 
from the payoffs. This experiment followed closely the ways 
Axelrod (1984) conducted his tournaments for Iterated 
Prisoner’s Dilemma in the early 1980s. The simulation 
program used for this experiment was acquired from 

http://www.iterated-prisoners-dilemma.net based on Richard 
Dawkins’s book (1989). 
 

 Strategy 2 
 Cooperate Defect 

Cooperate 3, 3 0, 5 Strategy 1 
Defect 5, 0 1, 1 

Table 4  The payoffs table for the first experiment 

Strategies Binary 
representation 

Colour 
representation 

All-D 000 Red 
Random 001 Yellow 
Pavlov 010 Gray 
Prober 011 Orange 

Gradual 100 Magenta 
Mistrust 101 Blue 

TFT 110 Cyan 
All-C 111 Green 

Table 3  Representation of strategies in binary 
numbers and colours 

 

 
Table 5 summarises the results of our first experiment. The 
results were produced on the basis of a round-robin 
simulation, after each strategy had played against all other 
strategies including itself. Each row of the table represents 
the score of each strategy after playing against its opponent 
appeared on top of the column. The score was based on 50 
rounds of iterative play. The eventual winner was 
determined on the basis of total score that each strategy had 
acquired after a complete round-robin. 
 
From Table 5 we can observe that TFT was the eventual 
winner of this simulation experiment, in which it scored the 
highest. However when we look closer at each individual 
encounter between TFT and other strategies, TFT in actual 
fact had never won a single encounter throughout the 
simulation; It drew eight times and lost two times. It is 
necessary to note that it actually lost to All-D and Prober. 
However, TFT eventually won the overall game by having 
accumulated the higher payoffs. If we had allowed the 
experiment to be conducted in a league form which each 
strategy ranked according to the number of wins and loses, 
TFT would have turned out to be at the bottom of the league. 
 
All-D, on the other hand, had won eight of its individual 
encounters and drawn twice – to itself and mistrust. It is 
worth mentioning that All-D had indeed beaten TFT by 104 
over 99 in their individual encounter. Based on this 
performance, All-D could be said to be a relatively strong 
strategy, if not the best. However, the final total result 
sprung a surprise as it ranked second from the bottom and 
only performed slightly better than Random. This proved 
that mutual defection, although could win over the opponent 
in short-term, does not bring success in the long run due to 
its low payoff (one point). 
 
We noticed that the ‘nice’ strategies such as All-C and TF2T 
came out second and third based on their final total score. It 
is necessary to note that All-C cooperates unconditionally 
regardless of opponent’s moves and TF2T cooperates at the 
first two moves before following the opponent’s previous 
moves subsequently.  
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All-C 150 0 150 150 150 150 87 150 147 138 1272
 

All-D 250 50 104 54 150 58 162 110 50 54 1042
 

TFT 150 99 150 150 150 150 110 148 125 123 1355
 

Spiteful 150 49 150 150 147 150 159 49 53 51 1108
 

Pavlov 150 25 150 32 150 150 117 150 101 128 1153
 

TF2T 150 48 150 150 150 150 109 150 147 54 1258
 

Random 192 22 110 29 102 109 110 103 125 110 1012
 

Gradual 150 35 148 54 150 150 118 150 146 132 1233
 

mistrust 152 50 125 53 101 152 130 151 50 110 1074
 

Prober 158 49 128 56 128 59 120 147 110 141 1096
 

Table 5  The results of round-robin simulation of Iterated 
Prisoner’s Dilemma 

This result could prove that rationality does not count for all 
in real-life, but cooperative nature and forgiveness towards 
others may bring positive consequences. Pavlov, as 
commented by Nowak and Sigmund (1992, 1993a) to be 
better than TFT, did not do particularly well in our 
simulation. Gradual, which Beaufils, Delahaye and Mathieu 
(1997) claimed to have outperformed TFT, ranked in the 
middle of the chart.  
 
Spatial Prisoner’s Dilemma Simulation 
 
We conducted our second experiment with a simulation of 
Spatial Prisoner’s Dilemma. We used a simple Java program 
to simulate various strategies as cellular automata, with each 
strategy occupying the same quantity of cells in the 
beginning of the simulation. This simulation was designed to 
allow individual strategy to play against its eight immediate 
neighbouring cells, with winning strategy evolved and 
inhabited the cell of the losing strategy.  
 
As mentioned before, each strategy is represented by a 
different colour. The process of a winning strategy 
inhabiting a losing strategy was represented with the change 
of colours among the cells. The simulation was repeated 
until the evolution of strategies was stabilised. This would 
differ according to the size of the grid that holds the cells.  
 
As for our simulation, we noticed that the evolving strategies 
became stable after 15 to 20 rounds of play. Figure 2 shows 
the distribution of the population before the game, namely 
the round zero. As depicted by Figure 2, there were eight 
different strategies represented by eight different colours 
(see Table 3) on the grid before the start of the game. The 
colours were randomly distributed but with even quantities. 
 

 

 
Figure 2  Distribution of strategies before the game 

 

 

 
Figure 3  Distribution of strategies after three rounds 

 

 
Figure 4  Distribution of strategies after eight rounds 
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Figure 5  TFT after fifteen rounds 

 
After three rounds of play, Figure 3 shows that only four 
strategies remained on the grid – Gradual (magenta), All-D 
(red), TFT (cyan) and Random (yellow). We noticed that 
TFT was not performed particularly well at this stage, as it 
was overshadowed by Gradual  and All-D.  Random 
survived round but was expected to ‘die off’ very soon due 
to its limited territory. 
When it reached round eight, TFT started to dominate, with 
Gradual and All-D began to shrink, as shown in Figure 4. 
Based on the evolutionary pattern and growth rate, we 
predicted at this stage that TFT would continue to grow and 
evolve as the eventual winner in this experiment. 

 

  As shown in Figure 5, TFT conquered the whole grid in 
round fifteen and emerged as the eventual winner as 
predicted. We repeated this same simulation for five times to 
observe if there would be any possible variation to the 
results of our experiment. 
 

 

 
Figure 6  A unique result with TFT and All-C both stabilized 

 

The repeated simulations have shown the same results 
throughout, except on one occasion when TFT and All-C 
(green) both have become stabilised in the end with All-C 
occupies less than 1% of overall cells. This unique result is 
depicted in Figure  6. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7   Percentage of evolving strategies over 25 generations 
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The results from our second experiment have clearly shown 
that TFT has outperformed all the other strategies, except in 
certain rare occasions. We also noticed that Gradual and All-
D have similar evolution at the beginning rounds, but would 
start to shrink in size after TFT has begun to take control. 
Figure 7 shows percentage of evolving strategies over 25 
generations. 
 
DISCUSSION 
 
We demonstrated once again in our second experiment that 
TFT was again the overall winner. Based on the results, we 
observed that TFT sprung no surprise to colonise the 
spatialised game of Prisoner’s Dilemma played on a grid in a 
given 25 rounds. However, we also noticed that TFT did not 
do well in the first few rounds of play. The reason TFT did 
not do well at the initial stage of the experiment could be 
caused by its nature in cooperating at its first move. TFT 
came back strongly after 5-8 rounds due to its strength in 
accumulating higher scores. This again concurs with our 
previous two conclusions.  
 
Another interesting result we learned from our second 
experiment was that, in one particular simulation, All-C 
survived the 25 rounds of play together with TFT. This is a 
rare case. From this particular incident we wish to conclude 
that TFT has the tendency to perform rather well when it 
played against strategies similar to its nature. All-C survived 
because of the advantage of playing with TFT. Since it is 
TFT’s nature to follow the opponent’s subsequent moves 
after the first move, this eventually helped All-C to gain 
higher scores while playing together with it. 
 
Therefore, we could conclude from this second experiment 
that there is a group effect in Spatial Prisoner’s Dilemma. 
TFT won the play because there were plenty of similarly 
‘nice’ strategies playing in the simulation. Consider a 
population with a lot of defectors, it would be difficult for 
TFT to win over them because of its slight ‘disadvantage’ in 
its first move to cooperate. The optimal strategy in such a 
population would be to defect every time, yet TFT loses on 
the very first turn.  
 
In this context, we believe that it is not always true to say 
any given strategy is the best, as we have learned from our 
study that there is no single best strategy for the Iterated 
Prisoner’s Dilemma game. Whichever strategy comes out to 
be the best would depend on its opponent’s strategy or the 
strategies among the population, yet players obviously 
would not be able to know the opponent’s strategy until after 
their encounter with each other.  
 
We therefore believe that continuous evaluation of the game  
is necessary in order to enable us to determine the best 
strategy on the fly, while the game is in progress. This 
approach would enable dynamic change of strategies of one 
agent in response to strategies adopted by the population of 
opponents.  This method would be the basis for a strategy 
engine for games, which we named  “strategy middleware”.  
It would be used in a similar way as physics engines, 

working as a separate soft co-processor alongside the game 
engine. 
 
We believe that strategy middleware would help developers 
create games in which the strategy would neither be hard 
coded nor based on learning algorithms, but it would be 
continuously developed and re-assessed using Prisoner’s 
Dilemma Problem. In single player games, this could help to 
set the strategy dynamically when playing against the 
computer. In multiplayer games, the strategy middleware 
could give advice to individual users, in live situation when 
facing dynamically changing strategies of multiple 
opponents. In either case, developers would not need to 
develop strategies. Instead, they would use services of 
strategy middleware. 
 
CONCLUSIONS AND FUTURE WORK 
 
In this paper we investigated different games strategies using 
Prisoner’s Dilemma problem. We adopted experimental 
approach based on cellular automata, where the cells 
represented a population of agents each playing against their 
immediate neighbourhood. 
 
Our work showed that there is no best strategy, but which 
strategy wins depends on the complementary strategies 
adopted by the population of opponents, and duration of the 
game. We conclude that the winning strategy will not be 
static, but that it will change as strategies of the opponents 
change. 
 
Adapting the game to a population of players at varying 
levels requires dynamic re-evaluation of strategies while the 
game is in progress. This requires a strategy engine that will 
look at what the population of players does and choose 
suitable strategies in order to achieve different levels of the 
game. 
 
This can be achieved through a future development and 
implementation of strategy middleware that would help 
developers with strategy services, in a similar way as physics 
engines help with physics services. Prisoner’s Dilemma 
problem could be used as the basis for this development. We 
believe that this approach to game strategy would open new 
possibilities for games. 
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ABSTRACT 
 
Reinforcement learning methods are not yet widely used in 
computer games, at least not for demanding online learning 
tasks. This is in part because such methods often require 
excessive number of training samples before converging. 
This can be particularly troublesome in mobile game devices 
where both storage and CPU are limited and valuable 
resources. In this paper we describe a new AI-based game 
for mobile phones that we are currently developing. We 
address some of the main challenges of incorporating 
efficient on-line reinforcement learning methods into such 
gaming platforms. Furthermore, we introduce two simple 
methods for interactively incorporating user feed-back into 
reinforcement learning. These methods not only have the 
potential of increasing the entertainment value of games, but 
they also drastically reduce the number of training episodes 
needed for the learning to converge. This enhancement made 
it possible for us to use otherwise standard reinforcement 
learning as the core part of the learning AI in our game.  
 
INTRODUCTION 
 
Reinforcement learning methods have in recent years 
increased in popularity and are now-a-days used for solving 
various demanding learning tasks.  Although they have been 
used successfully for years in for example classic board 
game-playing programs (Tesauro 1994), they have only 
recently caught the interest of the commercial game 
community (Evans 2002; Manslow 2004). However, one of 
the main criticisms these methods have met is their lack of 
efficiency. That is, many trials are often needed before the 
learning converges, rendering them practically inapplicable 
in fast paced game environments where many trials are a 
luxury one cannot afford. For any on-line learning method to 
be applicable in practice in games it needs to be fast, 
effective, robust, and efficient (Spronck 2003).   

In this paper we address some the challenges of 
incorporating efficient on-line reinforcement learning 
techniques into gaming environments. We are using 
reinforcement learning as the central component in an AI-
based game that we are developing for mobile phones ― a 
platform where efficiency is of a paramount importance, in 
part because of limited CPU power.  We describe the main 
learning method used in our game, and introduce and 

experiment with two enhancements that allow us to 
incorporate user feedback interactively into the learning 
process. Not only does this allow the user to take on a more 
active role in the development of the game characters, but 
also drastically reduces the number of training episodes 
needed for the learning to converge.   

These enhancements made it feasible for us to use 
reinforcement learning as the central learning component in 
our mobile game.  Although the game is still in early stages 
of development, we have finished prototypes of the 
components that most heavily rely on learning (the athletic 
training events). We used them to demonstrate the feasibility 
of reinforcement learning when augmented with the new 
learning enhancements.  

The remainder of the paper is structured as follows. 
In the next section we give an overview of the game, and 
thereafter we explain in detail the learning procedure used in 
the athletic training event module. We next provide 
experimental results, and finally conclude and discuss future 
work.  
 
GAME DESCRIPTION 
 
The game consists of a (pet) creature in a virtual home 
environment inside a mobile phone or PDA. The objective 
of the game is to raise a creature with desirable 
characteristics.  The player (user) decides which 
characteristics are important, and he or she has various ways 
of interacting with the creature to help shape its character. 
This is in the spirit of games like Black & White. For 
example, a player might want to raise the creature to be a 
good athlete, and would therefore have the creature do 
activities that develop athletic skills, such as swimming or 
running. Alternatively, the player might prefer more of a 
thinking creature, and instead have it read books and solve 
puzzles. In addition to these training activities, the user can 
show off the creature’s skills by having it participate in 
competitions like athletic or mind-game events. These 
competitions can be either single-player (e.g. racing against 
time) or multi-player (e.g. competing against a friend’s 
creature). 
 
Game Architecture 
 
The game is written in Java2 Micro Edition (CLDC 1.1 and 
MIDP 2.0). Most new phones do or will support these new 
standards. We have tested the game on a Nokia 6230 mobile 
phone. 
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Figure 1.  The main modules of the game 
 
The main modules of the game are shown in Figure 1.  
These modules are loosely coupled and all communications 
between them are done via interfaces. 

Daily-life 
This module focuses on the creature’s principal needs, such 
as eating, drinking, sleeping, and social interaction.  The 
food has various attributes; it can be healthy, tasty, fattening 
etc. Healthy and fattening food types have physical impact 
on the creature, where as attributes such as taste affect the 
creature’s mental condition (we’re not too happy when we 
need to eat something that tastes bad). 

Events 
This module contains various sub-games and challenges 
where the user can train the creature in various skills and 
activities and benchmark its performance. These include 
physical activities such as sprinting and swimming events, 
and simple mind-games like 9-men-morris. The more 
training the creature gets in an activity the better it becomes.  
Not only do the physical or mental attributes improve, but 
the creature also learns the best strategy for the given 
activity, for example a good strategy in 9-men-morris, or 
how to pace its speed during a 200 meter sprinting event.  
During the training the user may play the role of a personal 
trainer by giving advices, for example by playing a game 
against it or telling it how to pace its speed during a training 
run.  

Competitions 
Players can sign their creatures up for competitions and 
tournaments, either single or multi-player. The primary 
purpose is to show-off abilities of the creature, but good 
results in such competitions (such as 1st prize in a sprinting 
competition) can provide the player with money and rare 
valuable items. In a competition the creature’s performance 
is decided by its unique combination of personality, abilities, 
and skills acquired through training and other previous 
interactions with the user. Thus it is important to train the 
creature well before entering a competition. 

Mobile 
All mobile device specific code, such as graphics, 
communications, menus and other user interface components 
are kept in a separate module. This enforces transparent 
design which will enable the game to be extended to other 
gaming platforms. 
 
Game AI 
 
Machine learning plays a central role in this game. The main 
objective of the game AI is to support creatures that evolve 
and adapt based on the player’s preference. There are several 
attributes that make one creature distinct from the next, both 
physical (such as strength, dexterity, constitution, fat and 
health) and mental (such as intelligence, wisdom, patience 
and social behavior). The way the user interacts with the 
creature affects how these different attributes develop. The 
exact learning tasks are somewhat different and can be 
coarsely divided in two. 

 In the Daily-life module the task of the learning is to 
allow the various characteristics of the creatures to adapt and 
develop in response to the user’s input. The user is here 
primarily in a parenting role. The creature, when left 
unattended, starts exploring and doing things on its own. For 
example, it could: go hang out around the eating bowl 
looking for food, go playing, eat your slippers, give you 
flowers, break your favourite vase, or even poop on the 
floor.  It is up to the user to raise the creature in a way such 
that it acts responsibly, for example by rewarding it when it 
does good things and punishing it when it does undesirable 
things, e.g. eating unhealthy, staying up late, or avoiding 
exercise and social interactions. These are all activities that 
negatively affect the creature’s health and might possibly 
eventually lead to its death. 

In the Events module, on the other hand, the creature 
learns from experience by repeatedly performing athletic or 
mind game activities. The more it practices the better it gets 
at these activities. There is no input necessary from the user. 
However, if the user wants she can act as a coach and give 
advice. The creature takes notes of and uses the advice to 
speed up its learning curve. In this paper we will focus on 
the learning in this module. 

 

 
 

Figure 2. A scene from the Sprinting sub-game 
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LEARNING 
 
In here we describe the learning method used in the game’s 
athletic training events.  All the different sport training 
events (currently only sprinting and swimming) use the same 
underlying reinforcement learning based methodology. The 
task is to learn the optimal racing strategy for the given 
event, possibly with some learning input from the user. The 
best strategy will differ from one creature to the next 
because of different physical characteristics (e.g. weight and 
maximum stamina). For the same reason the optimal racing 
strategy may differ from one week (or day) to the next, 
because the physical condition of the creature might have 
changed in that timeframe. 

In the reinforcement learning paradigm an agent 
learns by interacting with its environment. The agent has a 
goal that it tries to achieve and while striving towards this 
goal the agent takes actions that affect the environment. The 
agent senses the environment and thus knows the 
consequences of its actions, both in terms of detecting the 
current state of the world, and also by receiving a numerical 
reward in a response to each action. The strategy that the 
agent follows for deciding how to act in different situations 
is called the agent’s policy. The agent seeks to learn the 
optimal policy, that is, the policy that maximizes the overall 
reward it receives in the long run.  

Reinforcement learning problems are typically 
formulated as Markov Decision Processes (MDPs).  
Important world properties are used to represent unique 
states in the MDP. The underlying assumption is that each 
state represents all properties of the environment that are 
important for decision making in that state (Sutton and Barto 
1998). The actions the agent takes give the agent an 
immediate reward and transfer it to a (possibly) new state. 
These state transitions are not necessarily deterministic. 
 
Formulating the Learning Problem 
 
We can formulate the sprinting game as a MDP.  The 200-
meter long running course is divided into 20 consecutive 10-
meter zones. The creature makes a decision at the beginning 
of each zone how fast to run. It can choose between four 
progressively faster speeds: walking, jogging, running, and 
sprinting.  Each running speed affects the creature’s 
endurance differently. The creature’s endurance is 
represented with 21 discrete levels, ranging from 0 
(minimum endurance) to 20 (maximum endurance). The 
endurance decreases 2 levels each zone sprinted, decreases 1 
level when running, does not change when jogging, and 
replenishes by 1 level when walking.  The endurance can 
though never exceed twenty nor become less than zero. If 
the endurance becomes zero the creature can not run 
anymore, but must instead walk the next zone to 
replenishing its endurance. Over all, the decision of how fast 
to run through a zone depends on which zone the creature is 
in and its remaining level of endurance. This formulation of 
the running game allows us to represent it as a (cycle-free) 
Markov-Decisions Process (MDP), as shown in Figure 3. 

 
 

Figure 3. Sprinting game as MDP 
 

 
Each state is uniquely represented by a (z, e) pair, 

where z is the current zone (1-20) and e the remaining 
endurance level (0-20). There are in total 421 different states 
(21 states for each of the 20 zones plus one final state). The 
transitions between the states represent the running speed 
actions, each resulting in us ending in the next zone, 
although with different remaining endurance. The actions 
are deterministic and the reward returned by each action is 
the negation of the time it takes to run the zone at the given 
speed. The states we draw actions for are shown as dark 
colored in Figure 3; the light colored states will also have 
analogous actions although they are not shown. There are 4 
possible actions in each state (walk, jog, run, sprint), except 
in states where endurance is 0 where there is only one 
possible action (walk). 

Depending on the creature characteristics a 
different MDP might be created. For example, if the creature 
is overweight the sprinting action might be disabled, or the 
stamina might drain or replenish at a different phase. Also, 
the walking or running speed (the rewards) may differ from 
one creature to the next or by how well the creature is 
conditioned.  The optimal racing strategy may therefore 
differ from one run to the next, and therefore it may be non-
trivial for the user to figure out the correct policy each time. 
 
Q-learning 
 
For learning the optimal policy we use a well-known 
reinforcement learning algorithm, Q-learning (Watkins 
1989). The pseudo-code of the algorithm is shown in Fig. 4.  
 
 

 
 

Figure 4. The Q-learning algorithm 

Initialize all Q(s,a)  
Repeat (for all running episode): 
 Set s to be a starting state 
 Repeat (for each step in run): 
   Choose a from s using agent policy 
   Take action a, observe r, s’  
   Q(s,a)←Q(s,a)+α[r+γmaxa´Q(s´,a´)-Q(s,a)] 
   s ← s’ 
 Until s is goal state 
End
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 The action-value function Q(s, a) gives for each 
state the value of each of its actions. This is the function we 
must approximate. Once the learning is finished an optimal 
policy is easily achieved simply by greedily choosing in 
each state the action with the highest Q(s, a) value. 

In the beginning the Q(s, a) function is initialized 
with arbitrary values. Next we execute many learning 
episodes from a given starting state; in our case a 200-meter 
sprint from a staring position (any zone 1 state can be a start 
state, depending on the initial endurance of the creature). For 
each episode a decision is made in each step (zone) what 
action to take, that is, how fast to run. We use an ε-greedy 
strategy to pick an action, that is, ε part of the time a random 
action is taken, but otherwise the best action is taken. The 
best action is the one with the currently highest Q(s, a) 
value.  It is necessary to occasionally take locally non-
optimal actions for exploration purposes, otherwise we risk 
getting stuck in local optima and never finding an improved 
policy. This is the reason for using the ε-greedy strategy.  
Typically one gradually decreases the exploration rate as 
more and more episodes are executed. The update rule 
 
  Q(s,a) ← Q(s,a)+α[r+γmaxa´Q(s´,a´)-Q(s,a)] 

 
gradually updates the Q(s, a) action-values until they 
converge. The constant α is an adjustable step size 
parameter, and γ is a discount factor of future rewards (not 
used in our case, that is, set to 1.0).  The term r is the current 
reward, s and a are the current state and action respectively, 
s’ is the next state and a’ an action from that state. The 
maxa´Q(s´,a´) function returns the value of the currently 
best action from state s’. The Q-learning algorithm assures 
convergence to optimal values (in the limit) given that the 
basic Markov properties hold and the α parameter is set 
appropriately. For a more detailed discussion of Q-learning 
see for example (Sutton and Barto 1998). 
 
Improving the learning speed 
 
The standard Q-learning algorithm was able to learn the 
optimal running strategy in our domain within a couple of 
thousand episodes.  However, there were two problems with 
this approach: 

• The first is that this is far too slow convergence for 
the algorithm to be practical in our application 
domain.  Even a few hundred episodes would be 
excessive. 

• The second problem is that the player itself has no 
control over the learning and is simply a passive 
observer.  This could potentially make long 
learning sessions uninteresting.  

 
To overcome the above problems we designed the game 
such that the user is allowed to participate in the decision 
process, effectively taking on the role of a coach by giving 
feedback. This not only allows the user to take on a more 
active role in the game, but the player’s input can 
additionally be used to reduce the convergence time of the 
Q-learning algorithm.   

During a run the user observes the creature and can 
overwrite its decisions. In other words the user can tell it to 
run either slower or faster.  We record the user’s (last) 
preferred action in each MDP state encountered.  There are 
two different ways we can use the user’s feedback to speed 
up the learning. 
 
Imitation Runs 
 
During a many episode training process we periodically 
rerun a running episode coached by the user, taking the user 
preferred actions where applicable.  These reruns are done in 
the background and are transparent to the user. Given that 
the user gave good advice, the creature will get better result 
sooner and thus starts adapting the good strategy. However, 
if the advice was not good the creature might get temporarily 
sidetracked, but then gradually moves away from the user’s 
strategy. 
 
Bonus Reward Points 
 
In this approach extra reward points are awarded to the user-
preferred action during regular running episodes.  On one 
hand, this approach has the benefit of not requiring extra 
reruns. On the other hand, it can be potentially dangerous 
because we are changing the learning problem. Because of 
the bonus reward the total reward is not anymore the 
negation of the total running time. Despite this, given that 
the feedback is useful, Q-learning can still learn an optimal 
policy (and that quickly!). Conversely, giving bad user 
advice can delay the learning process and even possibly 
prevent optimal policy to be learned. Note, however, that 
this does reflect a real life scenario where bad advice from a 
coach is harmful if always followed blindly.  
 
 
EXPERIMENTS 
 
This section gives the experimental results of a comparison 
study between standard Q-learning and Q-learning 
augmented with the enhancements proposed above: imitation 
runs and bonus reward.  We ran the enhanced Q-learning 
methods every fifth episode (instead of a regular episode). 

At the start of a 200-meter sprint the creature has 
full endurance (level 20).  The time it takes to traverse a 
zone when walking, jogging, running, and sprinting are 1.5 
s., 0.8 s., 0.4s. and 0.1s., respectively.  When using an 
optimal strategy (running all but the last zone where one 
sprints) the running time for the 200 meters will be 7.7 s. 
The ε parameter is set to 0.15 and α to 1.0.  We ran the three 
different learning approaches until convergence was reached 
observing how long it took them to find an optimal policy. 
The performance of the three methods is shown in the 
following graphs.  Each data point represents the running-
time average of 10 independent runs (tie-breaks between 
equally good actions are broken randomly; therefore we base 
each data point on several runs). 

in4243
382



7

7,5

8

8,5

9

9,5

10

10,5

11

11,5

12

10 60 110 160 210 260 310 360 410 460

Standard Imitation Runs Bonus Points

 
 

Figure 5. Coach providing helpful advice 
 
 Figure 5 shows how the learning progresses when 
the user provides useful advice (the user performs the 
optimal running sequence). Both the enhanced Q-learning 
methods converge faster than the standard method. Within 
100 episodes they have discovered the optimal policy. The 
standard Q-learning needs about 2000 episodes for that. This 
is a twenty fold reduction in the number of episodes. We ran 
similar experiments with slightly different values for the ε 
and α parameter, but all yielded similar results.  
 We were also curious to know what happens if the 
coach provides useless advice. We ran the same set of 
experiments, but now with a random strategy interleaved 
every fifth episode. The result is shown in Figure 6.  Now all 
methods perform similar, although the Imitation Run method 
is slightly worse to start with. However, within 300 runs 
they all have converged to an equally good policy and within 
about 2000 episodes to an optimal one (same as standard Q-
learning). The reason why random advice does not seem to 
hurt is that Q-learning is a so-called off-policy algorithm, 
that is, it can learn a good policy while following an inferior 
one.   

Finally, we experimented with the case where the 
user deliberately advices a bad policy (walk all the way). In 
this case both the enhanced algorithms started out really 
badly but were eventually able to recover, although it took 
somewhat longer this time.   We did not expect beforehand 
that the Bonus reward approach would be able to recover 
because the learning problem has been changed.  However, 
because the enhanced Q-version is executed only 20% of the 
time and the reward bonus is relatively small, the change in 
total reward is small enough not to affect what is an optimal 
policy. However, this is not necessarily always the case, and 
one must be careful using this approach in situations where 
there are several policies similar in quality. 
 
CONCLUSIONS 
 
In this paper we introduced and experimented with 
techniques for incorporating user-guided feed-back into 
reinforcement learning.  The proposed techniques can 
drastically reduce the number of training episodes necessary 
for convergence. They are also robust against the case where 
the user provides useless feedback.    In our game these 

techniques contributed to the success of the learning by 
making the learning algorithm converge much faster.  This is  
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Figure 6. Coach providing random advice 
 
in our view especially important in mobile games not only 
because of limited computing resources, but also the fact that 
typical user game-playing sessions on mobile devices are 
generally much shorter than on other game platforms 

As a future work we are investigating other ways of 
incorporating and reusing user feedback, as well as 
measuring how well the techniques scale up to larger and 
more complex learning tasks. 
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ABSTRACT 
 
In this paper we study the application of machine 
learning methods in complex computer games. A 
combination of hierarchical reinforcement learning and 
simple heuristics is used to learn strategies for the game 
Settlers of Catan (© 1995 by Kosmos Verlag, Stuttgart) 
via self-play. Since existing algorithms for function 
approximation are not well-suited for problems of this 
size and complexity, we present a novel use of model 
trees for state-action value prediction in a sophisticated 
computer game. Furthermore we demonstrate how a-
priori knowledge about the game can reduce the 
learning time and improve the performance of learning 
virtual agents. We compare several different learning 
approaches, and it turns out that, despite the simplicity 
of the architecture, a combination of learning and built-
in knowledge yields strategies that are able to challenge 
and even beat human players in a complex game like 
this.  
 

INTRODUCTION 
 
Developing programs that play games has always been 
a major challenge for artificial intelligence research. In 
many classical board or card games computers have 
reached the level of human grandmasters, or even 
outperformed them. On the other hand, the computer 
game industry has often ignored current developments 
in AI. Instead they rely mainly on heuristic rules, 
which require a lot of a-priori knowledge by the AI 
designer, and are also very inflexible. Machine learning 
provides a variety of tools to tackle these problems, 
and since Samuel's pioneering work (Samuel 1959) in 
the 1950's, researchers have used learning very 
successfully for games like backgammon, chess or 
poker (see (Fürnkranz 2001) for an overview). There 
are, however, only very few commercial computer 
games that make use of machine learning, and only few 
people are trying to close the gap between research and 
industry. 

 
One of the most impressive applications of machine 
learning in game playing is Tesauro's TD-Gammon 
(Tesauro 1995), which used reinforcement learning to 
master the game of backgammon through self-play. 
This means the program uses only very little 
knowledge from its designer, but rather learns to 
approximate an evaluation function with an artificial 
neural network from the outcome of thousands of 
training games against a copy of itself. After more than 
one million training games and the inclusion of some 
backgammon specific knowledge, TD-Gammon 
reached a playing strength that surpasses most human 
grandmasters. In this paper we demonstrate how 
Tesauro's approach can be modified and applied to 
even more complex games, which are more related to 
commercial strategy games.  
 
For this purpose we decided to study the game Settlers 
of Catan. Due to the monumental size of the problem, 
we need to think about ways to shorten the required 
learning time. We do this by using a hierarchical 
learning architecture, and by incorporating simple a-
priori knowledge. For learning and representing the 
state-action value function we use model trees (Quinlan 
1992), which are better suited for representing 
discontinuities and local dependencies than neural 
networks, as used by Tesauro. 
 

REINFORCEMENT LEARNING  
 
Reinforcement learning (RL) is used to learn strategies 
for an agent through interaction with the environment. 
RL problems are usually formulated as Markov 
Decision Processes (MDPs), where at every time step t 
the agent perceives the state of the environment s, 
chooses and executes an action a, receives a reward 
signal r(s, a), and finds itself in a new state s' = δ(s, a). 
The task of the agent is to find a policy π(s, a), that is, a 
mapping from states to actions, so as to maximize the 
cumulative (discounted) reward over time. The  
discount factor γ∈[0, 1] thereby describes the present 
value of future rewards. 
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The quality of a policy is measured by a value function 
Vπ(s), which is defined as the expected discounted 
return if we start from state s and follow policy π 
(Sutton and Barto 1998). An  optimal policy π* is then 
defined as any policy satisfying Vπ*(s) ≥ Vπ(s) for all 
policies π and all states s. It is also useful to define the 
Q-function Qπ(s, a) as the expected return if we take 
action a in state s, and thereafter follow policy π. Thus, 
knowing Q* = Qπ* is sufficient to find an optimal 
policy, because then we can simply choose π(s) = arg 
maxa Q*(s) at any state s. 
 
The idea behind most RL approaches is policy 
iteration: starting with an arbitrary policy, the agent 
first evaluates the Q-function of the current policy, and 
then improves the policy by selecting new actions that 
are greedy with respect to the current estimation of Q. 
All this is done while the agent interacts with the 
environment and receives numerical rewards or 
punishments. The best-known RL algorithms are Q-
learning and  SARSA (Sutton and Barto 1998). 
 
Obviously the policy to which the algorithm converges 
is highly dependent on the reward signal. For games, 
the most natural choice of rewards is to give the agent 
zero reward for intermediate moves, a positive reward 
(e.g. +1) for winning the game and a negative (e.g. –1) 
or zero reward for losing. The resulting state value 
function then approximates the probability of winning 
from this state, and can be used like an evaluation 
function for heuristic search methods. By choosing 
different reward models, the designer may bias the 
resulting policies, e.g. by also rewarding important 
subgoals. This may speed up the learning process, but 
also bears the risk of learning policies that are not 
optimal in the original reward model. 
 
Self-play is used for learning strong policies in 
adversarial domains. The agent learns while playing 
against itself, and therefore has to face increasingly 
stronger opponents. The major drawback of this 
method is that without sufficient exploration of the 
state and strategy space, the players only learn to 
counter a very small set of policies. This problem is 
particularly severe for deterministic games like chess or 
Go, while e.g. the dynamics of backgammon appear to 
be perfect for this co-evolutionary approach (Pollack 
and Blair 1998). Since Settlers of Catan is also a highly 
stochastic game, the use of self-play seems justified. 
  

APPROXIMATION WITH MODEL TREES  
 
In the above formulation of RL, a value for Q(s, a) has 
to be learned for every possible state-action pair, which 
is impossible for very large, potentially even infinite, 

state spaces. One solution to overcome this problem is 
to define the current state using a finite number of 
features, and to approximate the Q-function as a 
function of a finite-dimensional parameter vector. 
Linear and neural network approximators, which are 
trained via gradient descent, are most frequently used. 
 
Even though these methods have been successfully 
applied for RL tasks, we found that they have certain 
drawbacks that make them less suitable for complex 
game domains. The discrete nature of board games 
produces many local discontinuities in the value 
functions. On the other hand, linear or neural network 
approximators tend to smooth the value function 
globally. It is also often the case that the importance of  
certain state features changes in different situations, 
which is e.g. impossible to represent with linear 
approximators. As TD-Gammon (Tesauro 1995) has 
shown, neural networks can cope with all these 
difficulties, which of course also exist in a game like 
backgammon. However, the price to pay is an 
undesirably high number of training games which is 
needed before reasonable results can be obtained. 
Therefore it is justified to look for alternatives which 
are faster at learning local models and discontinuities. 
 
In (Sridharan and Tesauro 2000) it was shown for a 
smaller scenario, that tree-based approximators have all 
the desired properties and require less training time 
than neural networks. So we decided to use model trees 
for function approximation in this experiment. Model 
trees are similar to decision trees, but instead of 
predicting discrete classes, they predict real valued 
functions. Model trees recursively partition the feature-
space into regions, by choosing one attribute as a split 
criterion at every level of the tree. In the leaves of the 
trees, regression models are trained to predict a 
numerical value from the features of an instance. Most 
model tree algorithms use linear models, but in 
principle any function approximator can be used. 
 
In this paper we used a variant of Quinlan's M5 
algorithm (Quinlan 1992) to learn model trees. This 
algorithm first grows a tree by selecting splitting 
criteria so as to minimize the target variable's variance, 
and then builds linear regression models in the nodes. 
Finally the tree is pruned, which means that sub-trees 
are replaced with leaves, as long as the prediction error 
of the resulting tree does not exceed a certain threshold. 
 
In this context a separate model tree was trained for 
every action, and the target variable was the Q-value of 
this action for the current state. The main disadvantage 
in using model trees for value function approximation 
is that there is currently no algorithm for online 
training. To refine the predictions of a model tree, we 
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must therefore rebuild it from scratch, using not only 
the new training examples, but also the old ones, that 
were used for the previous model trees.  
 
We followed the ideas of (Sridharan and Tesauro 
2000), in which regression trees (model trees with 
constant predictions in the leaves) performed very well 
in a much simpler environment. The goal was to 
develop an offline RL algorithm, suitable for learning 
via self-play. First a number of training matches is 
played, using the current model trees to define the 
policy. The stored game traces (state, actions and 
rewards) and the current estimation of the Q-functions 
are used to calculate the approximate Q-values of the 
new training examples. Also, SARSA-like updates of 
the older training examples are calculated, to reach 
convergence in the self-play process. A new model tree 
approximation of the Q-functions is built from the 
whole updated training set, and these trees are then 
used to play the next set of training games. Even 
though there is not much experience with using model 
trees in reinforcement learning, and no convergence 
results exist, we found that this algorithm yielded 
promising results for a complex game like this. 
 

SETTLERS OF CATAN 
 
Klaus Teuber's Settlers of Catan is probably the most 
popular modern board game in the German-speaking 
area. The island of Catan consists of 19 hexagonal land 
fields of different types, which are randomly placed at 
the beginning of the game. A typical arrangement of 
the board is shown in Figure 1.  
 
 

 
Figure 1: A typical situation in a Settlers of Catan game 

(screenshot from the Java simulation) 
 

Each field is characterized by the resource it produces 
and the production probabilities of the field. The island 
is surrounded by an ocean and nine ports, which do not 
produce anything, but can be used for trading. Four 
players are colonizing the island by building roads, 
settlements and cities on the corners and edges of the 
hexagonal fields.  
 
The players' settlements produce resources, which can 
be used to further expand the colony. Since only 
certain combinations of resources can be used for 
building, and players usually do not possess all of 
them, they have to negotiate with their opponents. The 
players are awarded victory points for their buildings 
and other special achievements. The first player to 
reach ten victory points wins the game. 
 
LEARNING STRATEGIES FOR SETTLERS 
 
The complexity of the rules and the dynamics of 
Settlers of Catan raise questions, that usually do not 
appear in classical board games. Here e.g. we have to 
deal with 3 opponents, and each of them can execute an 
arbitrary number of actions, which makes MiniMax 
approaches almost impossible. There is an element of 
chance for resource production, and interaction with 
the opponents is required for negotiation. Players can 
choose from a large action-set, and they have to 
balance long-term and short-term decisions, always 
depending on the performance of their opponents. All 
this places Settlers of Catan among the most complex 
games for which learning a full game strategy via self-
play RL has ever been tried. 
 
To make this task feasible, we used a hierarchical RL 
approach, in which the whole strategy was divided into 
smaller behaviors, for which independent policies were 
learned. The high-level policy first selects a behavior, 
and this behavior's policy chooses one of several low-
level actions. Each policy (high- or low-level) is 
defined by a set of model trees, which approximates the 
action values for any given state. Given these 
approximate action values a controller would choose 
the next action with some mix of exploitation (i.e., 
choosing the highest valued action) and exploration.  
 
The high-level policy receives only positive rewards 
for winning the game, i.e., at every time step the 
reward for choosing a particular behavior is zero, only 
at the end of the game the winning agent receives a 
reward of +1. The other agents also receive a reward at 
the end of a match, which is scaled between 0 and 1 
according to their victory points. The low-level policies 
are only rewarded for reaching the sub-goal of the 
behavior, so there is only an indirect connection 

in4243
386



between high-level and low-level rewards. The 
collected data (states, actions and rewards) from the 
training games is used to train the high-level policy and 
all low-level policies independently. We used  a-priori 
knowledge to map low-level actions to primitive 
actions, which are the ones that can actually be 
executed on the board. E.g. the low-level action 
build-settlement is mapped to a specific board 
position by a heuristic algorithm. However, the design 
of this heuristics could be simplified significantly, 
because the outcome of a move could be evaluated 
with respect to the learned value functions. This was 
especially useful for assessing trades with the 
opponents, because the profitability could naturally be 
estimated by the resulting change in the value function, 
without relying on an economic model. 
 
Since good state-representation can significantly 
improve the performance of RL controllers with value-
function approximation, we mainly used high-level 
features, which are calculated to summarize important 
facts about the current board situation, rather than 
feeding raw board positions into the learning 
algorithm. 
 
Four different approaches of hierarchical RL were used 
in order to learn Settlers of Catan strategies. The feudal 
approach is inspired by the concept of feudal learning 
(Dayan and Hinton 1993). It lets the high-level policy 
select a new behavior at every time-step, and tries to 
learn both the high-level policy and the behaviors 
simultaneously. In the module-based approach the 
high-level policy changes only when the sub-goal of 
the last selected behavior is reached. The heuristic 
approach used a hand-coded high-level policy, but 
learned the low-level behaviors via self-play. And 
finally the guided approach used the same heuristic 
high-level strategy during learning, but then devised its 
own high-level policy from this experience. 
 

EXPERIMENTS AND RESULTS 
 
First, 1000 random games were played to provide 
initial training examples for the model tree learning 
algorithm described above. Then we ran between 3000 
and 8000 training games for each approach, updating 
the policy after every 1000 games. The policies were 
evaluated in games against random players, previously 
learned strategies, and human opponents. Since there is 
no real benchmark program for Settlers of Catan, 
testing against a human was the only way to assess the 
real playing strength of the learned policies. 
 
The learning and testing environment was written 
entirely in Java (Pfeiffer 2003). Due to the complexity 
of the game and the huge amount of training data 

(about 1 GB per 1000 games), the learning time was 
very high. Playing 1000 games in our simulation 
environment took about one day on a 1.5 GHz dual-
processor machine. Another 20 to 24 hours were 
needed to train the model trees on the same computer, 
so the number of training matches that could be played 
was limited. 
 
The results of the feudal approach were not 
satisfactory, mainly because the agent could not learn 
to stick to one high-level strategy when it was selected. 
Overfitting in the learning of model trees also occurred, 
which resulted in huge trees and even caused a 
decrease of performance for larger training sets.  
 
The module-based approach outperformed the feudal 
strategies, but still it was not competitive in games 
against humans. We found that the low-level behaviors 
made almost the same choices, that a human would 
have made in the same situation with that goal in mind. 
The high-level strategy however was still very poor. 
We also could not avoid overfitting, even though this 
time the trees were pruned more aggressively.  
 
Using a simple heuristic high-level policy in 
combination with learned behaviors, the virtual agents 
for the first time were able to beat a human opponent. 
This heuristic method was a significant improvement 
over the previous approaches. The amount of prior 
knowledge used for this method is still very small, 
compared to "classical" rule-based solutions. The high-
level behavior plays a role in the selection of target 
positions on the board, e.g. for placing settlements and 
roads. This knowledge alone made the heuristics 
outperform most of the previous approaches, even with 
random low-level action selection, which can be seen 
in Figure 2. 

 

 
Figure 2: Performance of heuristic high-level strategies, 
using random or learned action selection in the low-level 

(LL), against other approaches (during 20 games) 
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Figure 2 also clearly indicates that learning is 
responsible for the greatest improvements in playing 
strength, because the trained policy wins most of the 
games against  players who use random low-level 
policies, as well as against all previous approaches.  
 
We also conducted a last experiment, in which the 
agents were guided by the heuristic high-level policy 
during learning. As expected, these agents did not 
reach the level of the heuristic agents, but their 
performance against humans is slightly better than that 
of the module-based strategies. The sub-optimal high-
level strategy, caused by a lack of negative training 
examples (i.e., wrong choices which cause punishment 
instead of reward), is probably the main reason for 
these results. 
 

 
Figure 3: Performance of different strategies against a 

human opponent (during 10 games) 
 
To obtain a rough estimate of the real playing strength 
of the different strategies, the author, who considers 
himself a Settlers of Catan expert, played 10 matches 
against the best strategies from each approach. The 
results of the matches are shown in Figure 3. There 
were always three computer players playing against the 
human, so the three lines show the average number of 
victory points of the worst, average and best artificial 
player. Note that a score of 10 would mean a win in 
every game, so the maximum of 8 points, achieved by 
the best heuristic player, indicates a pretty good 
performance. Actually the heuristic player managed to 
win 2 out of 10 games against the author, and at least 
one of the agents came close to winning in every 
match. Demonstration matches against other human 
players of various playing strengths have confirmed the 
competitiveness of the best learned strategies, but these 
results have not been included in the above statistics. 
 
Summarizing, we can say that although the agents did 
not learn to play at a grandmaster-level, like in TD-
Gammon, the results are encouraging, considering the 
complexity of this game. 
 
CONCLUSION 
 
In this paper we have demonstrated how reinforcement 
learning can be used to learn strategies for a large-scale 

board game. A combination of new and well-tried 
learning methods was used to make this problem 
feasible. We see this as a first step to apply advanced 
machine learning techniques for even more complex 
computer games. This research has shown that the 
combination of learning with prior knowledge can be a 
promising way to improve the performance, and 
ultimately also the human-like adaptiveness of agents 
in computer games. 
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ABSTRACT 
Game AI is defined as the decision-making process of computer-
controlled opponents in computer games. Adaptive game AI can 
improve the entertainment provided by computer games, by 
allowing the computer-controlled opponents to fix automatically 
weaknesses in the game AI, and to respond to changes in human-
player tactics online, i.e., during gameplay. Successful adaptive 
game AI is based invariably on domain knowledge of the game it is 
used in. Dynamic scripting is an algorithm that implements 
adaptive game AI. The domain knowledge used by dynamic 
scripting is stored in a rulebase with manually designed rules. In 
this paper we propose the use of an offline evolutionary algorithm 
to enhance the performance of adaptive game AI, by evolving new 
domain knowledge. We empirically validate our proposal, using 
dynamic scripting as adaptive game AI in a real-time-strategy 
(RTS) game, in three steps: (1) we implement and test dynamic 
scripting in an RTS game; (2) we use an offline evolutionary 
algorithm to evolve new tactics that are able to deal with optimised 
tactics, which dynamic scripting cannot defeat using its original 
rulebase; (3) we translate the evolved tactics to rules in the 
rulebase, and test dynamic scripting with the revised rulebase. The 
empirical validation shows that the revised rulebase yields a 
significantly improved performance of dynamic scripting compared 
to the original rulebase. We therefore conclude that offline 
evolutionary learning can be used to improve the performance of 
adaptive game AI. 
 
INTRODUCTION 
Traditionally, commercial game developers spend most of 
their resources on improving a game’s graphics. However, in 
recent years, game developers have begun to compete with 
each other by providing a more challenging gaming 
experience (Rabin 2004). For most games, challenging 
gameplay is equivalent to having high-quality game AI 
(Laird 2000). Game AI is defined as the decision-making 
process of computer-controlled opponents. Even in state-of-
the-art games, game AI is, in general, of inferior quality 
(Schaeffer 2001, Laird 2001, Gold 2004). It tends to be 
predictable, and often contains weaknesses that human 
players can exploit. 
    Adaptive game AI, which implies the online (i.e., during 
gameplay) adaptation of the behaviour of computer-
controlled opponents, has the potential to increase the 
quality of game AI. It has been widely disregarded by game 
developers, because online learning tends to be slow, and 
can lead to undesired behaviour (Manslow 2002). However, 
academic game AI researchers have shown that successful 
adaptive game AI is feasible (Demasi and Cruz 2002, 

Johnson 2004, Spronck, Sprinkhuizen-Kuyper and Postma 
2004a). 
    To ensure the efficiency and reliability of adaptive game 
AI, it must incorporate a great amount of prior domain 
knowledge (Manslow 2002, Spronck, Sprinkhuizen-Kuyper 
and Postma 2004b). However, if the incorporated domain 
knowledge is incorrect or insufficient, adaptive game AI will 
not be able to generate satisfying results. In this paper we 
propose an evolutionary algorithm to improve the quality of 
the domain knowledge used by adaptive game AI. We 
empirically validate our proposal by testing it on an adaptive 
game AI technique called “dynamic scripting”, used in a 
real-time strategy (RTS) game. 
    The outline of the remainder of the paper is as follows. 
First, we discuss RTS games, and the game environment 
selected for the experiments. Then, we discuss the 
implementation of dynamic scripting for RTS games, 
followed by a discussion of the implementation of an 
evolutionary algorithm that generates successful tactics for 
RTS games. The achieved results are used to show how the 
tactics discovered with an evolutionary algorithm can be 
employed to improve the original dynamic scripting 
implementation. Finally, we draw conclusions and indicate 
future work. 
 
REAL-TIME-STRATEGY GAMES 
RTS games are simple military simulations (war games) that 
require the player to control armies (consisting of different 
types of units), and defeat all opposing forces. In most RTS 
games, the key to winning lies in efficiently collecting and 
managing resources, and appropriately distributing these 
resources over the various game elements. Typical game 
elements in RTS games include the construction of 
buildings, the research of new technologies, and combat.  
    Game AI in RTS games determines the tactics of the 
armies controlled by the computer, including the 
management of resources. Game AI in RTS games is 
particularly challenging for game developers, because of two 
reasons: (1) RTS games are complex, i.e., a wide variety of 
tactics can be employed, and (2) decisions have to be made 
in real-time, i.e., under severe time constraints. RTS games 
have been called “an ideal test-bed for real-time AI research” 
(Buro 2003).  
    For our experiments, we selected the RTS game WARGUS, 
with STRATAGUS as its underlying engine. STRATAGUS is an 
open-source engine for building RTS games. WARGUS 
implements a clone of the highly popular RTS game 
WARCRAFT II. While the graphics of WARGUS are not up-to-
date with today’s standards, its gameplay can still be 
considered state-of-the-art. Figure 1 illustrates WARGUS. The 
figure shows a battle between an army of “orcs”, which 
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Figure 1: Screenshot of a battle in WARGUS. 

approach from the bottom right, and an army of “humans”, 
which attempt to defend a base consisting of several 
buildings. 

 
ADAPTIVE GAME AI IN RTS GAMES 
Game AI for complex games, such as RTS games, is mostly 
defined in scripts, i.e., lists of rules that are executed 
sequentially (Tozour 2002). Because the scripts tend to be 
long and complex (Brockington and Darrah 2002), they are 
likely to contain weaknesses, which the human player can 
exploit. Because scripts are static they cannot adapt to 
overcome these exploits. Spronck et al. (2004a) designed a 
novel technique called “dynamic scripting” that realises the 
online adaptation of scripted opponent AI. Experiments have 
shown that the dynamic scripting technique can be 
successfully incorporated in commercial Computer 
RolePlaying Games (CRPGs) (Spronck et al. 2004a, 2004b).  
    Because the game AI for WARGUS is defined in scripts, 
dynamic scripting should also be applicable to WARGUS. 
However, because of the differences between RTS games 
and CRPGs, the original dynamic scripting implementation 
cannot be transferred to RTS games unchanged. In this 
section a dynamic scripting implementation for the game AI 
in RTS games is designed and evaluated. The basics of 
dynamic scripting are explained first. Then, we highlight the 
changes made to dynamic scripting to apply it to RTS 
games, and discuss the implementation of dynamic scripting 
in WARGUS. The implementation is evaluated, and the 
evaluation results are discussed. 
 
Dynamic Scripting 
Dynamic scripting is an online learning technique for 
commercial computer games, inspired by reinforcement 
learning (Russel and Norvig 1995). Dynamic scripting 
generates scripted opponents on the fly by extracting rules 
from an adaptive rulebase. The rules in the rulebase are 
manually designed using domain-specific knowledge. The 

probability that a rule is selected for a script is proportional 
to a weight value that is associated with each rule, i.e., rules 
with larger weights have a higher probability of being 
selected. After every encounter between opponents, the 
weights of rules employed during gameplay are increased 
when having a positive contribution to the outcome, and 
decreased when having a negative contribution. The size of 
the weight changes is determined by a weight-update 
function. To keep the sum of all weight values in a rulebase 
constant, weight changes are executed through a 
redistribution of all weights in the rulebase. Through the 
process of punishments and rewards, dynamic scripting 
gradually adapts to the human player. For CRPGs, it has 
been shown that dynamic scripting is fast, effective, robust 
and efficient (Spronck et al. 2004a). 
 
Dynamic Scripting for RTS games 
Our design of dynamic scripting for RTS games has two 
differences with dynamic scripting for CRPGs. The first 
difference is that, while dynamic scripting for CRPGs 
employs different rulebases for different opponent types in 
the game (Spronck et al. 2004a), our RTS implementation of 
dynamic scripting employs different rulebases for the 
different states of the game. The reason for this deviation 
from the CRPG implementation of dynamic scripting is that, 
in contrast with CRPGs, the tactics that can be used in an 
RTS game mainly depend on the availability of different unit 
types and technologies. For instance, attacking with weak 
units might be the only viable choice in early game states, 
while in later game states, when strong units are available, 
usually weak units will have become useless. 
    The second difference is that, while dynamic scripting for 
CRPGs executes weight updates based on an evaluation of a 
fight, our RTS implementation of dynamic scripting 
executes weight updates based on both an evaluation of the 
performance of the game AI during the whole game (called 
the “overall fitness”), and on an evaluation of the 
performance of the game AI between state changes (called 
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the “state fitness”). As such, the weight-update function is 
based on the state fitness, combined with the overall fitness. 
The use of both evaluations for the weight-updates increases 
the efficiency of the learning mechanism (Manslow 2004). 
 
Dynamic Scripting in WARGUS 
We implemented the dynamic scripting process in WARGUS 
as follows. Dynamic scripting starts by randomly selecting 
rules for the first state. When a rule is selected that spawns a 
state change, from that point on rules will be selected for the 
new state. To avoid monotone behaviour, we restricted each 
rule to be selected only once for each state. At the end of the 
scripts, a loop is implemented that initiates continuous 
attacks against the enemy.  
    Because in WARGUS the available buildings determine the 
unit types that can be built and technologies that can be 
researched, we decided to distinguish game states according 
to the type of buildings possessed. Consequently, state 

changes are spawned by rules that comprise the creation of 
new buildings. The twenty states for WARGUS, and the 
possible state changes, are illustrated in Figure 2. 
    We allowed a maximum of 100 rules per script. The 
rulebases for each of the states contained between 21 and 42 
rules. The rules can be divided in four basic categories: (1) 
build rules (for constructing buildings), (2) research rules 
(for acquiring new technologies), (3) economy rules (for 
gathering resources), and (4) combat rules (for military 
activities). To design the rules, we incorporated domain 
knowledge acquired from strategy guides for WARCRAFT II. 
    The ‘overall fitness’ function F for player d controlled by 
dynamic scripting (henceforth called the “dynamic player”) 
yields a value in the range [0,1]. It is defined as:  
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Figure 2: Game states in WARGUS. 
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In equation (1), Sd represents the score for the dynamic 
player, So represents the score for the dynamic player’s 
opponent, and b∈[0,1] is the break-even point. At the break-
even point, weights remain unchanged. 
    For the dynamic player, the state fitness Fi for state i is 
defined as: 
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In equation (2), Sd,x represents the score of the dynamic 
player after state x, and So,x represents the score of the 
dynamic player’s opponent after state x. 
    The score function is domain-dependent, and should 
successfully reflect the relative strength of the two opposing 
players in the game. For WARGUS, we defined the score Sx 
for player x as: 
 

xxx BMS 3.07.0 +=                         (3) 
 
In equation (3), Mx represents the military points for player 
x, i.e. the number of points awarded for killing units and 
destruction of buildings, and Bx represents the building 
points for player x, i.e. the number of points awarded for 
training armies and constructing buildings. 
    After each game, the weights of all rules employed are 
updated. The weight-update function translates the fitness 
functions into weight adaptations for the rules in the script. 
The weight-update function W for the dynamic player is 
defined as:  
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In equation (4), W is the new weight value, Worg is the 
original weight value, P is the maximum penalty, R is the 
maximum reward, Wmax is the maximum weight value, Wmin 
is the minimum weight value, F is the overall fitness of the 
dynamic player, Fi is the state fitness for the dynamic player 
in state i, and b is the break-even point. The equation 
indicates that we prioritise state performance over overall 
performance. The reason is that, even if a game is lost, we 
wish to prevent rules from being punished (too much) in 
states where performance is successful. In our simulation we 
set P to 175, R to 200, Wmax to 1250, Wmin to 25 and b to 0.5. 
 
Evaluating Dynamic Scripting in WARGUS 
We evaluated the performance of dynamic scripting for RTS 
games in WARGUS, by letting the computer play the game 
against itself. One of the two opposing players was 
controlled by dynamic scripting (the dynamic player), and 
the other was controlled by a static script (the static player). 
Each game lasted until one of the players was defeated, or 
until a certain period of time had elapsed. If the game ended 
due to the time restriction (which was rarely the case), the 
player with the highest score was considered to have won. 
After the game, the rulebases were adapted, and the next 
game was started, using the adapted rulebases. A sequence 
of 100 games constituted one test. We tested four different 
tactics for the static player: 
 
1. Small Balanced Land Attack (SBLA): The SBLA is a 

tactic that focuses on land combat, keeping a balance 
between offensive actions, defensive actions, and 
research. The SBLA is applied on a small map. Games 
on a small map are usually decided swiftly, with fierce 
battles between weak armies. 

2. Large Balanced Land Attack (LBLA): The LBLA is 
similar to the SBLA, but applied on a large map. A 
large map allows for a slower-paced game, with long-
lasting battles between strong armies. 

3. Soldier’s Rush (SR): The soldier’s rush aims at 
overwhelming the opponent with cheap offensive units 
in an early state of the game. Since the soldier’s rush 
works best in fast games, we tested it on a small map. 

4. Knight’s Rush (KR): The knight’s rush aims at quick 
technological advancement, launching large offences as 
soon as strong units are available. Since the knight’s 
rush works best in slower-paced games, we tested it on 
a large map.  

 
    To quantify the relative performance of the dynamic 
player against the static player, we used the ‘randomization 
turning point’ (RTP). The RTP is measured as follows. After 
each game, a randomization test (Cohen 1995; pp. 168–170) 
is performed using the fitness values over the last ten games, 
with the null hypothesis that both players are equally strong. 
The dynamic player is said to outperform the static player if 
the randomization test concludes that the null hypothesis can 
be rejected with 90% probability in favour of the dynamic 
player. The RTP is the number of the first game in which the 
dynamic player outperforms the static player. A low value 
for the RTP indicates good efficiency of dynamic scripting.  
    If the player controlled by dynamic scripting is unable to 
statistically outperform the static player within 100 games, 

the test is aborted. For the SBLA we ran 31 tests. For the 
LBLA we ran 21 tests. For both the SR and KR, we ran 10 
tests. 
 
Results 
The results of the evaluation of dynamic scripting in 
WARGUS are displayed in Table 1. From left to right, the 
table displays (1) the tactic used by the static player, (2) the 
number of tests, (3) the lowest RTP found, (4) the highest 
RTP found, (5) the average RTP, (6) the median RTP, (7) 
the number of tests that did not find an RTP within 100 
games, and (8) the average number of games won out of 
100.  
 
Tactic Tests Low High Avg Med >100 Won 
SBLA 31 18 99 50 39 0 59.3 
LBLA 21 19 79 49 47 0 60.2 

SR 10     10 1.2 
KR 10     10 2.3 

 

Table 1: Evaluation results of dynamic scripting in RTS games. 
 
    From the low values for the RTPs for both the SBLA and 
the LBLA, we can conclude that the dynamic player 
efficiently adapts to these two tactics. Therefore, we 
conclude that dynamic scripting in our implementation can 
be applied successfully to RTS games.  
    However, the dynamic player was unable to adapt to the 
soldier’s rush and the knight’s rush within 100 games. As 
the rightmost column in Table 1 shows, the dynamic player 
only won approximately 1 out of 100 games against the 
soldier’s rush, and 1 out of 50 games against the knight’s 
rush. The reason for the inferior performance of the dynamic 
player against the two rush tactics is twofold, namely (1) the 
rush tactics are optimised, in the sense that it is very hard to 
design game AI that is able to deal with them, and (2) the 
rulebase does not contain the appropriate knowledge to 
easily design game AI that is able to deal with the rush 
tactics.  
    The remainder of this paper investigates how offline 
evolutionary learning can be used to improve the rulebase to 
deal with optimised tactics. 
 
EVOLUTIONARY TACTICS 
In this section we empirically investigate to what extent an 
evolutionary algorithm can be used to search for effective 
tactics for RTS games. Our goal is to use offline 
evolutionary learning to design tactics that can be used to 
defeat the two optimised tactics described in the previous 
section, the soldier’s rush and the knight’s rush. In the 
following subsections we describe the procedure used, the 
encoding of the chromosome, the fitness function, the 
genetic operators, and the achieved results. 
 
Experimental Procedure 
We designed an evolutionary algorithm that evolves new 
tactics to be used in WARGUS against a static player using 
the soldier’s rush and the knight’s rush tactics. The 
evolutionary algorithm uses a population of size 50, 
representing sample solutions (i.e., game AI scripts). 
Relatively successful solutions (as determined by a fitness 
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Figure 3: Design of a chromosome to store game AI for WARGUS. 

function) are allowed to breed. To select parent 
chromosomes for breeding, we used size-3 tournament 
selection (Buckland 2004). This method prevents early 
convergence and is computationally fast. Newly generated 
chromosomes replace existing solutions in the population, 
using size-3 crowding (Goldberg 1989).  
    Our goal is to generate a chromosome with a fitness 
exceeding a target value. When such a chromosome is 
found, the evolution process ends. This is the fitness-stop 
criterion. We set the target value to 0.75 against the soldier’s 
rush, and to 0.7 against the knight’s rush. Since there is no 
guarantee that a solution exceeding the target value will be 
found, the evolution process also ends after it has generated 
a maximum number of solutions. This is the run-stop 
criterion. We set the maximum number of solutions to 250. 
The choices for the fitness-stop and run-stop criteria were 
determined during preliminary experiments. 
 
Encoding 
The evolutionary algorithm works with a population of 
chromosomes. In the present context, a chromosome 
represents a game-AI script. To encode a game-AI script for 
WARGUS, each gene in the chromosome represents one rule. 
Four different gene types are distinguished, corresponding to 
the four basic rule categories mentioned in the previous 
section, namely (1) build genes, (2) research genes, (3) 
economy genes, and (4) combat genes. Each gene consists of 
a rule ID that indicates the type of gene (B, R, E and C, 
respectively), followed by values for the parameters needed 
by the gene. Of the combat gene, there are actually twenty 
variations, one for each possible state, each with its own 
parameters. The genes are grouped by states. A separate 
marker (S), followed by the state number, indicates the start 
of a state. 
    The chromosome design is illustrated in Figure 3. A 
schematic representation of the chromosome, divided into 
states, is shown at the top. Below it, a schematic 
representation of one state in the chromosome is shown, 
consisting of a state marker and a series of rule genes. Rule 
genes are identified by the number of the state for which 
they occur, followed by a period, followed by a sequence 
number. Below the state representation, a schematic 
representation of one rule is shown. At the bottom, part of an 
example chromosome is shown. Chromosomes for the initial 
population are generated randomly.  

    By taking into account state changes spawned by build 
genes, it is ensured that only legal game AI scripts are 
created. A more detailed description of the chromosome 
design can be found in (Ponsen 2004). 
 
Fitness Function 

To measure the success of a game AI script represented by a 
chromosome, the following fitness function F for the 
dynamic player d, yielding a value in the range [0,1], is 
defined: 
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In equation (5), Md represents the military points for the 
dynamic player, Mo represents the military points for the 
dynamic player’s opponent, and b is the break-even point. 
GC represents the game cycle, i.e., the time it took before the 
game is lost by one of the players. EC represents the end 
cycle, i.e. the longest time a game is allowed to continue. 
When a game reaches the end cycle and neither army has 
been completely defeated, scores at that time are measured 
and the game is aborted. The factor GC/EC ensures that 
losing solutions that play a long game are awarded higher 
fitness scores than losing solutions that play a short game.  
 
Genetic Operators 

To breed new chromosomes, four genetic operators were 
implemented. By design, all four genetic operators ensure 
that a child chromosome always represents a legal game-AI 
script. Parent chromosomes are selected with a chance 
corresponding to their fitness values. 
    The genetic operators take into account “activated” genes. 
An activated gene is a gene that represents a rule that was 
executed during the fitness determination. Non-activated 
genes can be considered irrelevant to the game-AI script the 
chromosome represents. If a genetic operator produces a 
child chromosome that is equal to a parent chromosome for 
all activated genes, the child is rejected and a new child is 
generated.  
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1. State Crossover selects two parents, and copies states 
from either parent to the child chromosome. State 
crossover is controlled by “matching states”. A 
matching state is a state that exists in both parent 
chromosomes. Figure 2 makes evident that, for 
WARGUS, there are always at least four matching states, 
namely state 1, state 12, state 13, and state 20. State 
crossover will only be used when there are least three 
matching states with activated genes. A child 
chromosome is created as follows. States are copied 
from the first parent chromosome to the child 
chromosome, starting at state 1 and working down the 
chromosome. When there is a state change to a 
matching state, there is a 50% probability that from that 
point on, the role of the two parents is switched, and 
states are copied from the second parent. When the next 
state change to a matching state is encountered, again a 
switch between the parents can occur. This continues 
until the last state has been copied. 

2. Rule Replace Mutation selects one parent, and 
replaces economy, research or combat rules with a 25% 
probability. Building rules are excluded, both for and as 
replacement, because these could spawn a state change 
and thus could possibly corrupt the chromosome. 

3. Rule Biased Mutation selects one parent and mutates 
parameters for existing economy or combat rules with a 
50% chance. The mutations are executed by adding a 
random integer value in the range [–5,5]. 

4. Randomization generates a random new chromosome. 
 

Randomization had a 10% chance of being selected during 
evolution. The other genetic operators had a 30% chance. 
  
Results 

The results of ten tests of the evolutionary algorithm against 
each of the two optimised tactics are shown in Table 2. From 
left to right, the columns show (1) the tactic used by the 
static player, (2) the number of tests, (3) the lowest fitness 
value found, (4) the highest fitness value found, (5) the 
average fitness value, and (6) the number of tests that ended 
because of the run-stop criterion. 
 

Tactic Tests Low High Avg >250 
SR 10 0.73 0.85 0.78 2 
KR 10 0.71 0.84 0.75 0 

 

Table 2: Evolutionary algorithm results. 
 

The table shows surprisingly high average, highest, and even 
lowest solution-fitness values. Therefore, it may be 
concluded that offline adaptive game AI was successful in 
rapidly discovering game-AI scripts able to defeat both rush 
tactics used by the static player. 
 
IMPROVING ADAPTIVE AI  
In the first experiment, we discovered that our original 
implementation of dynamic scripting did not achieve 
satisfying results against the two rush tactics. In the previous 
section we evolved new tactics that were able to defeat the 
two rush tactics. In the present section we discuss how the 
evolved tactics can be used to improve the rulebases 
employed by dynamic scripting, to enable it to deal with the 

rush tactics with more success. First, we discuss 
observations on the evolved tactics. Then, we discuss the 
translation of the evolved tactics to rulebase improvements. 
Finally, we evaluate of the new rulebases by repeating the 
first experiment with the new rulebases. 
 
Observations on the Evolved Tactics 
About the solutions evolved against the soldier’s rush, the 
following observations were made. The soldier’s rush is 
used on a small map. As is usual for a small map, the game 
played by the solutions was always short. Most solutions 
included only two states with activated genes. Basically, we 
found that all ten solutions counter the soldier’s rush with a 
soldier’s rush of their own. In eight out of ten solutions, the 
solutions included building a “blacksmith” very early in the 
game, which allows the research of weapon and armour 
upgrades. Then, the solutions selected at least two out of the 
three possible research advancements, after which large 
attack forces were created. These eight solutions succeeded 
because they ensure their soldiers are quickly upgraded to be 
very effective, before they attack. The remaining two 
solutions overwhelmed the static player with sheer numbers. 
    About the solutions evolved against the knight’s rush, the 
following observations were made. The knight’s rush is used 
on a large map, which enticed longer games. On average, for 
each solution five or six states were activated. Against the 
knight’s rush, all solutions included training a large number 
of “workers” to be able to expand quickly. They also 
included boosting the economy by exploiting additional 
resource sites after setting up defences. 
    Almost all solutions evolved against the knight’s rush 
worked towards the goal of quickly creating advanced 
military units, in particular “knights”. Seven out of ten 
solutions achieved this goal by employing a specific building 
order, namely a “blacksmith”, followed by a “lumbermill”, 
followed by a “keep”, followed by “stables”. Two out of ten 
solutions preferred a building order that reached state 11 as 
quickly as possible (see Figure 2). State 11 is the first state 
that allows the building of knights. 
    Surprisingly, in several solutions against the knight’s rush, 
the game AI employed many “catapults”. WARCRAFT II 
strategy guides generally consider catapults to be inferior 
military units, because of their high costs and considerable 
vulnerability. A possible explanation for the successful use 
of catapults by the evolutionary game AI is that, with their 
high damaging abilities and large range, they are particularly 
effective against tightly packed armies, such as groups of 
knights.  
 
Improving the Rulebase for Dynamic Scripting 
Based on our observations we decided to create four new 
rules for the rulebases, and to (slightly) change the 
parameters for several existing combat rules.  
    The first new rule was designed to be able to deal with the 
soldier’s rush. The rule contained the pattern that was 
observed in most of the tactics evolved against the soldier’s 
rush, namely a combination of the building of a 
“blacksmith”, followed by the research of several upgrades, 
followed by the creation of a large offensive force. 
    The second rule was designed to be able to deal with the 
knight’s rush. Against the knight’s rush, almost all evolved 
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solutions aimed at creating advanced military units quickly. 
The new rule checks whether it is possible to reach a state 
that allows the creation of advanced military units, by 
constructing one new building. If such is possible, the rule 
constructs that building, and creates an offensive force 
consisting of the advanced military units. 
    The third rule was aimed at boosting the economy by 
exploiting additional resource sites. The original rulebases 
contained a rule to this end, but this rule was invariably 
assigned a low weight. In the evolved solutions we 
discovered that exploitation of additional resource sites only 
occurred after a defensive force was built. The new rule 
acknowledged this by preparing the exploitation of 
additional resource sites with the building of a defensive 
army. 
    The fourth rule was a straightforward translation of the 
best solution found against the knight’s rush. Simply all 
activated genes for each state were translated and combined 
in one rule, and stored in the rulebase corresponding to the 
state. 
    To keep the total number of rules constant, the new rules 
replaced existing rules, namely rules that always ended up 
with low weights. Besides the creation of the four new rules, 
small changes were made to some of the existing combat 
rules, by changing the parameters to increase the number of 
units of types clearly preferred by the solutions, and to 
decrease the number of units of types avoided by the 
solutions. Through these changes, the use of “catapults” was 
encouraged. More details on the original and revised 
rulebases can be found in (Ponsen 2004). 
 
Evaluating the Improved Rule-base in Wargus 
We repeated the first experiment, but with dynamic scripting 
using the new rulebases, and with the values of the 
maximum reward and maximum penalty both set to 400, to 
allow dynamic scripting to reach the boundaries of the 
weight values faster. Table 3 summarises the achieved 
results. The columns in Table 3 are equal to those in Table 1.  
 
Tactic Tests Low High Avg Med >100 Won 
SBLA 11 10 34 19 14 0 72.5 
LBLA 11 10 61 24 26 0 66.4 

SR 10     10 27.5 
KR 10     10 10.1 

 
Table 3: Evaluation results of dynamic scripting in RTS games using 
improved rulebases. 
 
A comparison of Table 1 and Table 3 shows that the 
performance of dynamic scripting is considerably improved 
with the new rulebases. Against the two balanced tactics, 
SBLA and LBLA, the average RTP is reduced by more than 
50%. Against the two optimised tactics, the soldier’s rush 
and the knight’s rush, the number of games won out of 100 
has increased enormously. Since we observed that dynamic 
scripting assigned the new rules large weights, the improved 
performance can be attributed to the new rules. 
    Note that, despite the improvements, dynamic scripting is 
still unable to statistically outperform the two rush tactics. 
The explanation is as follows. The two rush tactics are 
‘super-tactics’, that can only be defeated by very specific 
counter-tactics, with little room for variation. By design, 

dynamic scripting generates a variety of tactics at all times, 
thus it is unlikely to make the appropriate choices enough 
times in a row to reach the RTP. A possible solution to this 
shortcoming of adaptive game AI, is to allow it to recognise 
that an optimised tactic is used, and then oppose it with a 
pre-programmed “answer” without activating a learning 
mechanism. Note, however, that since the existence of 
super-tactics can be considered a weakness of game design, 
a better solution would be to change the game design before 
the release of the game, to make super-tactics impossible. 
 
CONCLUSIONS 
We set out to show that offline evolutionary learning can be 
used to improve the performance of adaptive game AI, by 
improving the domain knowledge that is used by the 
adaptive game AI. We implemented an adaptive game AI 
technique called “dynamic scripting”, which uses domain 
knowledge stored in rulebases, in the RTS game WARGUS. 
We tested the implementation against four manually 
designed tactics. We observed that, while dynamic scripting 
was successful in defeating balanced tactics, it did not do 
well against two optimised rush tactics. We then used 
evolutionary learning to design tactics able to defeat the rush 
tactics. Finally, we used the evolved tactics to improve the 
rulebases of dynamic scripting. From our empirical results 
we were able to conclude that the new rulebases resulted in 
significantly improved performance of dynamic scripting 
against all four tactics. 
    We draw three conclusions from our experiments. (1) 
Dynamic scripting can be successfully implemented in RTS 
games. (2) Offline evolutionary learning can be used to 
successfully design counter-tactics against strong tactics 
used in an RTS game. (3) Tactics designed by offline 
evolutionary learning can be used to improve the domain 
knowledge used by adaptive game AI, and thus to improved 
performance of adaptive game AI. 
 
Future Work 
It can be argued that a game is entertaining when the game 
AI attempts matching the playing strength of the human 
player, instead of defeating the human player. In parallel 
research, techniques have been investigated that allow 
dynamic scripting to scale the difficulty level of the game AI 
to match the human player’s skill, instead of optimise it 
(Spronck, Sprinkhuizen-Kuyper and Postma 2004c). In 
future work we will add difficulty-scaling enhancements to 
dynamic scripting in RTS games. We will also test dynamic 
scripting in RTS games played against humans, to determine 
if adaptive game AI actually increases the entertainment 
value of a game.  
    In the present research, the translation of the evolved 
solutions to improvements in domain knowledge was done 
manually. Because the translation requires understanding 
and interpretation of the evolved solutions, it is difficult to 
perform the translation automatically. Nevertheless, in future 
work we will attempt to design an automated mechanism 
that translates tactics evolved by offline evolutionary 
learning into an improved rulebase for dynamic scripting. 
The addition of such a mechanism would enable us to 
completely automate the process of designing successful 
rulebases for dynamic scripting.  
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ABSTRACT  
 
 Among evolutionary learning techniques, one can find 
Classifier Systems (CS) and Genetic Algorithms (GA). GA 
generally evolve simple data structures, series of information 
unit. CS deal with condition-action structures.  
 By consequences, CS are well-suited for perception-action 
decision learning.  
 In non-scripted video games, both Non Player Characters 
(NPC) and players are a full freedom. In this case, NPC need 
efficient high-level decision system. It will decide why the 
NPC will adopt behaviors such as wandering, fleeing, 
following, shooting, hiding, etc. 
 Non-scripted games do need efficient high-level decision 
rules. These rules are difficult, tiring and time-consuming to 
write by hand. We propose instead to force NPC learn high-
level behavior. 
 For this, we use CS to obtain rules of behavior thanks to an 
off-line learning session. This article describes what using 
CS for NPC requires. Among others, it needs to choose and 
build perceptual and action genes and chromosomes. 
Furthermore, it requires to choose fitness for rewarding  
NPC.  
 Then we propose an example of application for a simple 
video game.  
 
INTRODUCTION 
 
 Computer Games (CG) present two kinds of entities in the 
point of view of Artificial Intelligence : Player Characters 
(PC) and Non Player Characters (NPC). NPC are the ones 
controlled by the core game engine. Decision making for 
NPC uses : 
- any hard coded decisions like in "case" C instruction ; 
- any simple scripted rules base as in LUA language ; 
- any high-level decision system. 
 In Action\Adventure games, NPC can play several roles 
regarding the player but they are above all enemies towards 
players.  
 In this case, NPC enemies have two kinds of situation. In 
scripted games such as Half-Life solo mode or Max Payne, 
they are present to participate to a written scenario and do 
not have to interfere in the story. In this case, they have a 
short life time and no liberty of move nor decision. 
 On the contrary, in Multiplayer modes as "Deathmatch" or 
"Team Deathmatch", or "Shoot Them Up" games as Unreal 
Tournament or Quake III, NPC and PC are symmetric. NPC 

have the same role as players, have a full freedom and a 
longer life time. We propose to work on this kind of NPC. 
 
 
DECISION MAKING FOR NON-PLAYER 
CHARACTERS 
 
 To provide interaction between PC and NPC, CG 
developers have to tell NPC which basic behavior to adopt 
according to the situation. Here is a simple example of rule: 

 
 A set of rules could be mathematically assimilated to a 
Finite State Machine (FSM) (Houlette et al. 2003). Today, 
mainly three ways are used to implement such a technique : 
- write the rules in a “hard-coded” way, i.e. in the source 
code ;  
- put the set of rules outside the code, i.e. in a script. It 
allows developers not to recompile engine for each 
modification of behaviors rules ;  
- use a graphical user interface software to easily build the 
FSM and export it in the desired language ; 
 Some drawbacks of such techniques are explained in 
(Manslow 2002) : 
- limiting the scope of the problem to a finite set of entities is 
dangerous ; if the system becomes complex, you can easily 
forget a state ;   
- defining a complete FSM is an extremely long process ; 
- when system complexity grows up, developers should 
expect to see an even greater list of events and states to 
support it. As logic errors are common in programming, 
event errors are common in FSM. Large and complex FSM 
can easily become a nightmare to modify and tune. However, 
tuning is  the hottest game production time because it 
determines if the game will be funny or not. 
 Rather than building the whole rules base manually, we 
propose to force NPC to learn how to play. Resulting 
behavior should be optimal, coherent and intelligent. After 
the learning session, we could export these rules to any 
language that game designers could modify. 
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Fig.1 : Example of a rule for NPC in Shoot games  
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LITTERATURE REVIEW 
 
Learning for video games  
 
 The bibliographic study from (Kirby 2003) shows that 
learning for CG, independently of the used technique (Neural 
Network, Reinforcement Learning or Genetic Algorithms), 
leaves CG developers baffled. 
 Our issues show two different learning tasks. The first is the 
one made during the game, called on-line, and the second is 
the one made before game commercial release, realized by 
developers during production sessions, called off-line 
learning. 
 The first one suffers from a maximum of negative critics 
from CG developers. Mostly all uses of online learning 
resulted in unplayable games with bad gameplays or made 
NPC learn just a little or not at all (Manslow 2002). 
However, (Spronck et al. 2003) shows that this could be 
useful for dynamic scripting in Role Playing Games. 
 On the other side, off-line learning techniques are difficult 
to tune and to use to get the desired behavior. Nevertheless, 
this kind of learning is safe because it minimizes the 
appearance of non-desired behaviors during the game. This 
can be obtained by letting the game designer delete, select 
and reinforce the rules of his choice after learning session. 
Off-line learning also presents advantages to enhance NPC 
behavior and to find holes in the game engine (Spronck et al. 
2002). 
 Off-line learning has to build dynamically and automatically 
an efficient set of rules. It should be much more pleasant for 
the game designer to use this offline learning rather than 
writing each rule manually.  
 In this article, our purpose is mainly to obtain efficient 
behavior rules after a more or less long off-line learning 
session. For this, we have chosen the evolutionary algorithm 
called Classifier Systems (CS). 
 
Classifier Systems and Genetic Algorithms 
 
Genetic Algorithms (GA) and Classifier Systems (CS) has 
been introduced by (Holland 75). GA emphasize the use of a 
"genotype" that is decoded and evaluated.  A population of 
different genotype is then mixed using evolutionary Darwin 
theory to find the best subjects. 
 Whereas genotypes in GA are often simple data structures, 
as a list of parameters for example, CS deal with rule 

structures ; each Classifier being a 'condition-action' rule.  
 Let consider the simple model of CS of Fig.2. In 
evolutionary algorithms, each subject of the population is a 
solution trial. In the CS point of view, each subject of the 
population is a solution part of the system. This means that 
the genomes in GA is represented by each subject. In CS, it 
is represented by each Classifier (see Fig.2).  
 As a consequence, each part of a classifier, condition and 
action, represents a chromosome. Each chromosome 
contains some genes. Each gene represents a perception or 
action unit. These genes can contain different kinds of  data : 
boolean, integer, float, interval, etc. 
 A CS is then a system handling a pool of n classifiers 
(Holland  et al. 99). To interact with the environment, CS 
clients send and receive messages (a, b, c, …) to and from 
the CS via Message Board, recording perceptions and actions 
history. The client will compare this perception chromosome 
to the condition part of each classifier and send the best 
action chromosome corresponding to the perception. Each 
classifier has a fitness value, i.e. a note which indicates his 
strength to solve the problem (between –200 & 200 in Fig 2).  
When different classifiers reply to the same perceptions, CS 
use a bidding system to get the wining subject.  
 At the initialization time, the whole rules are chosen 
randomly. During learning, the Environment acts according 
to the rules of the CS using bid system for concurrent rules. 
When the Environment detects that a client has done a good 
or bad action, it rewards or punishes the last classifiers used 
by this client (Reward from the Environment in Fig.2). 
 To make the whole population evolve, during the learning 
session, we have to call the GA function to mix the 
population of classifiers in order to create a new generation 
(at left in Fig.2). It will kill the worst, keep the best, and 
produce probably better new subjects, here classifiers. This 
evolution uses recombination mechanisms. (Buckland 2003) 
lists the main mechanisms needed :  
- selection using elitism and tournament techniques ; 
- duplication using reproduction rules ;  
- mutation which locally change one or several genes of a 
chromosome ;  
- recombination with simple or multiple crossover points, 
which combine two or more chromosomes between them.  

 
Fig 2 : A simple Classifier System architecture  
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Genetic Algorithms, Classifier Systems, and 
Video Games 
 
 (Robert et al. 2002) presents first works using CS for NPC 
for the action selection. This work has been particularly used 
for Massively Multi-players Online Role Playing Games, 
MMORPG. Unfortunately, it does not really help us as it 
uses personal, unusual and undocumented CS. Despite this, 
(Robert  et al. 2003) uses this kind of CS in Multiplayer 
games. Even if the kind of CS used in this work differs too 
much from ours, it deals with the same issues.  
 (Demasi et al. 2003) presents works on both online and 
offline learning, but using GA, not CS. Nevertheless, they 
build their chromosomes in the same way CS are modeled : 
<condition><action>. Whereas we propose to work only on 
pure offline learning, it deals with both learning types even 
on mixing online and offline evolutions. Moreover, it 
proposes to animate the player agent with both hand-made 
rules data and human internet data, which is unfeasible in 
our case. To finish, it has the same point of view for basic 
perception (like distance to enemy) and high level behavior 
(like chase player) as our experiment. All these points can 
help us with the global issues of this kind of works, but do 
not help us about pure CS choices.  
 (Sanza et al. 2000) and (Sanza et al. 2001) simulate a  soccer 
game. The NPC have to decide at each time what to do, on 
the basis of both an individual fitness value and a collective 
reward. This last is evaluated relatively to the efficiency of 
the whole team. Here, each football player has his own CS 
because each player has a different goal (attack, defense,…). 
We have construct our experiment with help of this work.  
 (Heguy et al. 2002) present a generic CS for a real-time task 
learning. Even if this work mainly deals with an artificial life 
purpose, the use of CS in dynamic environments for 
behaviors learning is similar to our goal. It is used here in a 
virtual basketball simulation. This work has the same issues 
as the other ones : team fitness and CS modeling. 
 In spite of those works, and according to the CG 
bibliography, unclear trials of using GA and CS for CG let 
consider that the use of these techniques is not obvious in 
this context. 
 And yet, CS have a major advantage on others learning 
techniques. One of the problems which appear for behavior 
learning is result readability. Indeed, game designers want to 
keep control over behavior rules for tuning purpose. It means 
that the results have to be understandable and modifiable by 
user. Precisely, CS have the advantage of giving 
understandable results, contrary to Neural Networks for 
example. Indeed, neural networks concentrate their 
knowledge, during and after learning sessions inside a 
structure topology (number of hidden layers, number of 
neurons per layer…), and inside synapse weights. This 
structure is totally unreadable if one want to know which 
weight controls which behavior component.  
 For CS, the knowledge is concentrated in the set of rules. 
Originally, each classifier is just a bit concatenation as 
« 01011001->1110101 ». But after the translation work, each 
rule could be easily understood as “if condition then action”. 
Example: « if Distance to enemy lower than 100 and Enemy 
busy, attack enemy » which is very understandable. 
 To conclude, literature review shows that behavior learning 
is a delicate subject when applied in video games. Moreover, 
CS have been rarely applied in their basic theory. We 

propose here to clarify the use of CS in a simple video 
games. 
 
APPLICATION 
 
 Here is an example of application of CS for a simple game 
(fig.2) : 
- a world, kind of maze with tunnels and holes ; 
- several termites, which can see, walk and attack Hunter ; 
- a hunter, which can see, run and attack termites ; 
 

 The termite score increases when they kill Hunter and 
Hunter wins when it kills all the termites. 
 We use for this work RenderWare Artificial Intelligence 
(RWAI 2004). RWAI separates entity actions by low and 
high level decisions. The low level deals with entity 
direction, speed and shooting parameters. The high level 
decision, called Brain structure, only selects global 
behavioral agents as Wander, Flee, Attack, etc. This work 
deals with high level decision only.  
 Then Hunter and termites could have the choice between the 
following behaviors :  
- wandering using a random destination point ;  
- attacking any visible entity ; 
- following any visible entity ; 
- fleeing or hiding from an entity ; 
 Game engine has been set to provide an inequality between 
termite and Hunter hits. The hunter kills a termite in just one 
shot. When a termite hit the hunter, this last loses only a 
quarter of his life. This will force the termite to search for a 
better rule than : “If Hunter Visible then Attack Hunter”.  
 In this application, Hunter entity has a hard coded behavior 
which is :  
"If Termite(s) seen  then Attack Nearest Termite  

else Wander"  
 It means that only the termites use CS decision system. 
 We have now to explain what is required to apply CS in this 
simple game.  
 (Sweetser 2003) explains the main difficulties to use 
Evolutionary Algorithms for games :  
- representing possible solutions in genes, chromosomes and 
genomes ; 
- finding an adequate fitness function for rewarding good 
behaviors ;  

 
Fig.3 : one hunter versus several termites  
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 In our application, the first difficulty is to select perceptual 
genes. Main dangers are to put termites in under perception 
(not enough perception to solve problems) or upper 
perception (too much perception genes).  
 Fig.4 presents the modeling we propose for the termites 
classifier representation. We have tried to minimize number 
of perceptual genes (only 3 in this experiment) by choosing 
the most important : number of visible termites, number of 
closed termites & hunter visibility. The Fig.4 only shows 3 
examples of classifier (C1, C2, C3) but you can easily 
imagine 40 rules as in our experiment. This choice of 
perception chromosome has been made with good reasons. 
Indeed, after writing hand made rules, we have checked that 
this perception allow the termites to win as much as Hunter. 
So this verification gives us a reference on the possible 
efficiency of the learning. 
 The second difficulty is to manage the fitness function. We  
decide to reward the termite Messages Board only when this 
termite hurts the Hunter. We show here that the fitness 
function depends on the problem. This means that each game 
has his own fitness function even if it could often be similar 
("Kill enemy" for example). Here, we choose the easier way 
to reward actions. As the termites have to hurt the hunter 
many times to kill it, we could think that rewarding hurting 
could lead to his death. 
 In this example of application, CS has to discover and keep 
the best rules that make termites kill hunter. For this, reward 
has been set to 50 and happens only when a termite hurts the 
Hunter. Number of classifier has been set to 40.  
 Score measure equals to score of termites divided by score 
of Hunter. Learning session is required for letting CS evolve. 
Testing session is necessary to calculate set of rules 
efficiency. Both sessions last 30 minutes. At initialization, 
the Hunter always starts from the same point, the termites 
start from random points in the world.  

 
MAIN RESULT 
 
 We will show here preliminary results of this experiment in 
its first version.  
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Fig. 5 : Mean results using different rules types 
 

 A summary of our main result is presented in Fig.5. We see 
that Hand Made Rules do not exceed learned ones (mean 
obtained after 10 testing sessions). 
 After learning sessions, CS effectively gave efficient rules 
like this one (C3 in Fig. 4): 
 
"If  NumberVisibleTermite = 3 

and NumberOfClosedTermite = 2  
and HunterVisible = true 

then  Attack Hunter" 
with  strength=130  
  

 
Fig. 4 : Classifier System architecture applied to a simple video game 
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 We can also see that learning rules are better than pure 
random rules, showing that learning session has been useful 
to find efficient rules even if not perfect.  
 
DISCUSSION 
 
 We have shown that using CS for NPC decision systems 
needs several requirements. The main difficulties are 
building well-chosen genes, and getting an adequate fitness 
function using rewards and punishments.  
 There are probably two reasons for the results we obtained.  
 The first one is about “non-deterministic” systems. It seems 
that the game we used is not deterministic. That means a 
same action in same conditions does not always result in the 
same consequence.  This is explained by uses of random 
(such as in the “Wander” behavior). The results could be also 
explained by pure game engine noises like physics between 
entities, processor unit load, etc. In other words, external 
parameters make the consequences of the NPC decision 
vary. 
 This instability could explain why the CS rules hardly 
converge. 
 The second reason is caused by the fitness. Nearly every 
supervised learning algorithms build their knowledge thanks 
to an efficient fitness function, i.e. reward or punishment 
functions. In non-scripted video games, it seems the only 
reward we can do with CS is when a sub-goal has been 
achieved by a NPC. GA & CS are generally used with 
accurate and stable fitness functions. In such video games, 
we should only have a rare and fuzzy reward.  
 We have seen that the results of CS learning in a highly non 
-deterministic environment is quite week.  
 The next step is now to work on different kinds of CS that 
could deal with such non-deterministic commercial video 
games.  
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ABSTRACT

Imitation is a powerful mechanism the human brain applies
to extend its repertoire of solutions and behaviors suitable
to solve problems of various kinds. From an abstract point
of view, the major advantage of this strategy is that it re-
duces the search space of apropriate solutions. In this con-
tribution, we discuss if and how the principle of imitation
learning can facilitate the programing of life-like computer
game charecters. We present different algorithms that learn
from human generated training data and we show that ma-
chine learning can be applied on different levels of cognitive
abstraction.

Introduction
Considering the past two decades, we can clearly observe
a coevolution of commercial computer games, computer
graphics and networking. However, for the time being,
this dynamic between game industry and academic research
seems rather an exception than the rule. Although the poten-
tial for another coevolution is obvious, behaviour program-
ming for game characters and artificial intelligence (AI) or
machine learning (ML) research hardly inspired each other.

Of course, ideas from academia have entered game AI pro-
gramming. But it is striking, though, that the two most preva-
lent AI techniques in game programming, i.e. the A∗ algo-
rithm and finite state machines, are somewhat old-fashioned.
A∗-search for pathfinding was introduced more than three
decades ago (Hart et al. 1968) and finite state machines with
outputs even date back to the 1950s (Mealy 1955, Moore
1956)

The main reason why more recent results just merely in-
fluence game character programming is that algorithms that
would produce the versatility and flexibility of human play-
ers are still not available. So far, research on autonomous
agents mainly focused on robots that navigate through the
physical world. And even though roboticists recognise the
importance of learning from demonstration in order to con-
strain the search space spanned by this task (Schaal 1999),
it’s fair to say that uncontrollable environmental dynam-
ics and sensor noise still consume more intellectual efforts
than techniques for behaviour representation and learning.

However, this situation is about to change as the AI and
ML communities are beginning to discover the merits of
computer games (Amir & Doyle 2002, Laird 2001, Le Hy
et al. 2004, Nareyek 2004, Sklar et al. 1999, Yannakakis &
Hallam 2004, Spronck et al. 2002)

In this paper, we will discuss the possible impact of imi-
tation learning techniques for computer games. To this end,
we will briefly summerise behavioural, neurobiological and
AI and ML perspectives on imitation learning. Then we
will identify different levels of human behaviour that occur
in computer games and consequently will require algorith-
mic solutions. Following an idea discussed in (Bauckhage
et al. 2003), we will thus report on different techniques of
analysing the network traffic of multiplayer games in order to
realize game agents that exert human-like behaviour learned
from examples.

Imitation Learning for Games
Numerous behavioural science experiments document that
infants endeavour to produce a behaviour previously demon-
strated to them. Some psychological studies on imitation
learning even suggest that infants devote most of their time to
the imitation of observed behaviours (Rao & Meltzoff 2003).

Obviously, imitation requires a mechanism to map per-
cepts onto actions. And indeed, neurophysiological examina-
tions indicate that there are particular brain areas specialised
in imitation (Hietanen & Perrett 1996). After finding neurons
that were specific to the execution of goal related limb move-
ments, a connection to imitation came with the discovery of
mirror neurons (at least in the brain of macaque monkeys)
which are active during the observation as well as the execu-
tion of a task (Kohler et al. 2002).

Backed by these results from behavioural science and neu-
robiology it is no surprise that the idea of imitation learn-
ing is getting ever more popular in AI and robotics. Cur-
rent robotics research on imitation learning mainly concen-
trates on sub-symbolic techniques like neural networks and
fuzzy control. However, it is well known that such low-level
approaches do not scale well to situations of many degrees
of freedom. As a consequence, the concept of movement
primitives was introduced to encode complete temporal be-
haviours (Fod et al. 2002, Schaal et al. 2003). In fact, there
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Figure 1: Training sample generation at a “lan-party”

is evidence that the human brain uses movement primitives
to produce goal oriented actions since using such primitives
considerably reduces the number of parameters that must
be learned (Thoroughman & Shadmehr 2000). Movement
primitives are thus closely related to mirror neurons some
of which are believed to be high-level representations of be-
haviour.

The capabilities of the human brain of course extend to
virtual worlds and learning how to play a computer game is a
process of training and imitating experienced players. In the
following, we will thus argue that –similar to robotics– learn-
ing from demonstration can provide an avenue to behaviour
programming for computer game characters. Unlike present
day robotics, however, computer games provide an excellent
testbed for the learning of complex behaviours. For most
genres, the behaviour of game characters will be composed
of reactive, tactical and strategic decisions. While the latter,
higher cognitive aspects are still widely neglected in robotics
(since the problem of sensor noise is so predominant), com-
puter games allow to study them rather effortlessly.

To substantiate our arguments, we will base the discussion
on the example of ID software’s game QUAKE II R© . First,
we shall describe what kind of percepts this game provides
as input for imitation learning. Then, we will present algo-
rithmic solutions for different kinds of behaviour.

Why Quake ?
QUAKE II R© is a so called Ego or First-Person-Shooter. Fig-
ure 2 shows a typical game situation the way a human player
views the gaming world, from a first-person perspective.

The main goal of the game is to get the most points in a
fixed time span. Points are gained by shooting enemy play-
ers (so far we are not using team based game modifications,
therefore all other players are opponents).

The game takes place in a 3D gameworld which is loosely
based on the real world. The human players can move around
freely, their actions are bound to the game physics, which
are also based on the real world, not all places are always

reachable.
Different types of items (weapons, armor, health pack-

ages) are distributed at fixed positions around the map. If
an item is picked up, it reappears about thirty seconds later
at the same position. From these item positions arises one
strategical component of the game. Winning is a lot easier by
smart item control, get the best items for yourself and only
allow the most weak weapons and armors to be picked up by
your enemies. But there are of course endless possibilities
of different strategies, which all might lead to a successful
gameplay.

Winning a game does not only depends on good aiming,
smart playing is often a better way to success - maybe that
is the reason why even game bots playing with superhuman
aiming are still beaten by good, experienced human players
1.

So why would we want to use such a complex game for im-
itating human controlled game agents? Simpler games, more
focused onto one aspect of human acting could maybe pro-
vide better results with less effort, besides, by using a home-
made game we could avoid the troubles of interacting with
someone else’s (mostly closed source) software.

There are basically two answers to that question. First,
imitating humans wandering around a 3D virtual world and
performing tasks of different complexity is not only of in-
terest for the gaming community and might provide further
insights on the modeling of human behaviours in general.
The level of abstraction compared to the real world is a lot
lower than in Chess, Tetris or PacMan. In addition, unlike
in the real world, we have perfect sensor data. The second
point is, that by using a commercially successful game, we
have access to an incredible huge database of records of hu-
mans playing the game – these so called demo files can be
recorded by ourselves (Figure 1 shows a possible location
for demo recording) or just downloaded from numerous sites
on the internet. Having an almost unlimited amount of train-
ing samples, showing nothing less than humans performing
complex tasks in complex environments is a unique (so far
almost unrecognized) setting.

The training data or demo files we are dealing with are
records of the network traffic. They contain information
about the exact locations (x, y, z) the player assumed, nearby
items and other players. Temporary entities like sounds, and
flying projectiles are also included. There is no need for a
visual analysis of a game scene, since all necessary infor-
mation is already available on a cognitive higher level. The
same applies to the player actions, they are included as sim-
ple velocity and position vectors.

Categories of Behavior
Our current model for the imitation of a human player’s be-
haviour in QUAKE II R© consists of three separate layers as

1http://botchallenge.com offers a competition on who is the
fastest human player in beating nightmare (which is somehow equal to su-
perhuman) skilled game-agents in the game QUAKE III R©
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Figure 2: A typical situation in the FPS QUAKE II R© , augmented by some entity descriptions.

item pickups, long term goals ...
Strategy

Reactive Behaviors
basic movements, aiming ...

Tactics
anticipation, smart localized behaviorsTraining Samples

Behavior Learning

Motion Modeling

Game Agent

Figure 3: A model for generation of human-like game agents by imitating human play styles.

visualized in Figure 3 (since the model is rather abstract,
it’s transfer to other games is straightforward). The decision
for this design was based on observations as well as on a
widely believed psychological hierachy of human behaviour
(Hollnagel 1994).

On top-most level, there are strategic behaviours which
are used to achieve long term goals. In our case, besides the
obvious goal of winning the game, several other (sub)goals
were identified. Most strategies are targeted at securing im-
portant areas and important items. Still there is a constant
change in specicific subgoals which depends on the current
game-state (e.g. if a player is low on health, health refill-
ing items might be more attractive than the most powerful
weapon). The player who manages to control the important
places of the map, with the most valuable items, will greatly
enhance his chances to win the game.

The second layer represents tactical behaviours. Tactics
usually are defined by a smart, localized situation handling.
While the strategy tells the player about the next important
region on a map, the tactics are responsible for evading pos-

sible threats on the way. Since tactics highly depend on an-
ticipation of an enemy player’s movement, a broader under-
standing of a scene is necessary. Prominent examples include
the laying of traps or securing of areas by putting it under
constant fire.

The most basic layer is given by reactive behaviours. Here
we find simple reactions to audio-visual percepts. This in-
cludes movement, jumps, but also aiming and shooting on an
enemy player as well as the prediction shots based on audible
cues.

Although this discrimination of behaviours is rather strict
and suggests a selection of one active layer of behaviours,
they are to be understood as concurrent sets of behaviour.
However, unexperienced players are more likely to concen-
trate on only one aspect. They will either engage in combat
or look for better items, whereas experienced players have no
problems in improving their strategic position while being in
combat (often combat itself holds many tactical parts as well,
e.g. taking cover or avoiding small passages). A classifica-
tion of behaviours into categories makes the whole problem
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Figure 5: The left figure shows an observed movement pat-
tern of a human player in the topological map representation,
the right figure shows the corresponding computed potential
field forces.

of imitating humans a lot easier and finally manageable.
Apart from behaviour learning we discovered that the

problem of motion modeling is another integral part for im-
itation learning. In early experiments, we noticed that, al-
though the actions seemed reasonable, the motion of our arti-
ficial agent looked jerky and were more robot- than life-like.
Moreover there is a strong coupling between the actions a
human player performs and the actions he is motion-wise ca-
pable of doing. Artifical agent’s usually do not have such
restrictions, they can instantly turn and even aim perfect on
long ranges. Therefore the imitation of a human controlled
agent’s motion is necessary and poses another challenge.

On the one hand, we thus need to find approaches for
learning by observation what to do in a given game situation.
On the other hand, we have to find the appropiate, life-like
motion for doing so. An integration into a consistent frame-
work would be desirable.

Learning Strategies

In (Thurau et al. 2004a), we presented an approach for learn-
ing strategic behaviours. It realized goal oriented movement
in 3D, including situation dependent item pickups and area
control.

The approach consists of two parts. First, a topologi-
cal representation of the 3D gaming world is learned by
means of applying a Neural Gas Algorithm to the positions
~p = [x, y, z] a human player held during a match. Neural
Gasses extended the popular k-means clustering algorithm
and are especially suited for building topological represen-
tations (Martinez & Schulten 1991). In our case, the result
is similar to the widely used waypoint-maps. But since it is
data-driven, it provides an elegant and accurate way of gen-
erating waypoint maps corresponding to human gameplay.
Figure 4 shows an exemplary topological representation.

In a second step, Artificial Potential Fields are placed into
the topological map. These potential fields then guide the
game-bot. Since strategies change according to game-states,
the training samples are clustered in the state space of the
agent yielding prototypical game states. Here the game-state
includes information about the current items of the player
and his health and armor values.

For each such state a potential field force distribution
is computed which recreates movement patterns typically
observed in that state, Figure 5 shows a simple example.
Changes in the internal state of the agent cause switches
among the field forces and thus will lead the agent to other,
more attractive locations and items, thereby implicitly defin-
ing situative sequential item pickups as long-term goals.

To cope with known flaws of potential field approaches,
namely local minima and weak potential field forces on cer-
tain parts of the map, we make use of Avoiding the Past
Pheromone Trails (cf. (Balch & Arkin 1993)). These trails
reinforce a chosen direction and drive the agent out of lo-
cal minima. The obtained results were convincing. Strategic
behaviours, situation dependent item-pickups or preferences
for certain map areas could be learned and convincingly re-
produced.

Learning Tactics
Tactical behaviours were described as a smart localized be-
haviour. However, learning or imitating such behaviours is
not an easy task. It requires a broader understanding of a sit-
uation. For example, the observation of a human player am-
bushing an enemy player is itself a rather simple sequence of
actions. But in order to imitate it, it wouldn’t be enough
to copy the action sequence. Instead, underlying contex-
tual prerequisites to activate tactical behaviour have to be ex-
tracted. In the given example the enemy player might have
been entering a room with only one exit, thereby giving the
opportunity to ambush him. But learning such an understand-
ing for situations provides a great challenge.

Right now we are searching for an appropriate represen-
tation of such more abstract scene understanding. Unfor-
tunately, up to now there are only little known techniques
of how to approach that topic. Moreover, since we prefer a
data-driven approach to the imitation of tactical behaviours,
we do not want to label sample sequences or rely on com-
mon game AI methods like finite-state machines or scripting.
Recent work thus examined the application of Mixture of Ex-
perts architecture (Jordan & Jacobs 1994). In particular, we
studied the context dependent handling of different weapon
types. First results are encouraging, i.e. Mixture of Experts
architectures were observed to learn the handling of different
weapons; further experiments are necessary though.

Learning Reactive Behaviors
In (Thurau et al. 2003), we presented an approach for learn-
ing purely reactive behaviours (note that potential fields are
often referred to as reactive behaviours, but since we ef-
fectively model long-term goals with them, we discussed
them above). In QUAKE II R© , reactive behaviours can be
characterized as a direct functional mapping of game states
~st, ~st−1 . . . ~st−n onto player reactions ~a. Typical reactive be-
haviours include aiming, shooting or dodging projectiles.

At first the training sample set is separated by letting a Self
Organizing Map (SOM) (Ritter et al. 1992) unfold itself into
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Figure 4: A 3D map and its topological representation as an outcome of a Neural Gas algorithm

the game-state space (in (Thurau et al. 2003), the game-state
space consisted of the agent’s position and an enemy’s posi-
tion). Training samples are then assigned to a corresponding
SOM Neuron thus separating the data into different clusters.
In a second step, we trained Multi Layer Perceptrons (MLP)
for each cluster. Figure 6 provides a graphical presentation
of the described approach.

For each new game situation, the most similar prototypical
game-state from the SOM-Neurons is selected and its corre-
sponding MLP used for behaviour generation.Thereby sim-
ple reactive behaviours, aiming or movement in 3D, could
be learned. However, even after introducing time-dependent
Time-Delayed-Neural-Networks the approach is limited to
ad-hoc reactions to game-states. Long-term goals and plan-
ning of actions should be taken care of by strategical or tac-
tical behaviour models.

Motion Modeling
Although the approaches presented so far reproduce human
behaviours, the game agent’s motion often appears jerky and
can be easily distinguished from the smooth motions of a
human player. An artifical game agents motion is thus an
integral part of its appearance, for a realistic impression it
should be as human-like as possible.

Our approach to motion modeling from imitation is based
on movement-primitives (Fod et al. 2002). Movement-
primitives, as the basic building blocks of movement, can be
derived from a game agent’s motion vectors using Principal
component analysis (PCA). Thereby individual movement-
primitives for individual players are obtained. To discretize
a player’s motion, prototypical motion vectors are extracted
from the projections of the training-sample motion vectors
onto the eigenvectors (or movement-primitives), using a k-
means algorithm. Every single training sample motion vector
can now be described by a more general action primitive ~v.
Usually a number of up to 800 action primitives is sufficient
and covers the set of possible motions very well. Choosing

less action primitives results in a more choppy movement,
however, larger numbers of action primitives didn’t lead to
an observable smoother recreation of movements.

Complex movements result from sequencing action prim-
itives. Since the right sequencing of action primitives, for
imitating a human controlled game agent’s motion, is given
in the training sample set, probabilities for the execution of
an action primitive can be extracted. Two transition matrices
are computed. One expresses interdependencies between ac-
tion primitives, the other expresses localized dependencies,
based on the position of the player in the topological repre-
sentation.

Given these matrices, the next action primitive to execute
is chosen according to a roulette wheel selection over the
probabilities for all action primitives. The probability for the
execution of a single primitive ~vi can be denoted as:

P~vi =
P (~vi|~vl, wk)∑n
u=1 P (~vu|~vl, wk)

=
P (~vi|~vl)P (~vi|wk)∑n
u=1 P (~vu|~vl)P (~vu|wk)

where P (~vi|wk) denotes the probability of executing ac-
tion primitive ~vi for topological node graph node wk, and
P (~vi|~vl) denotes the probability of executing action primi-
tive ~vi as a successor of action primitive ~vl. These prob-
abilities can be extracted from the training samples by in-
specting the observed action primitive sequence. Since
all probabilities can be computed in advance, the ap-
proach is computationally rather inexpensive, managing
to execute up to 20-30 action primtives a second in our
MATLAB R© QUAKE II R© client. A detailed analysis can be
found in (Thurau et al. 2004b).

Using this approach, we managed to imitate (or recreate)
complex sequences of motion. This includes not only sim-
ple movements, but also jumps over ledges and the infamous
rocket jump (a maneuver, where a player fires a rocket on
the ground and jumps at the same time, thereby reaching
otherwise unreachable places – considered an experienced
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Figure 6: Architecture for learning situation dependent reactive behaviour, establishing a direct mapping of state space variables
onto player actions.

Figure 7: Game-agent performing a long jump by means of movement primitives

player’s move). Figure 7 shows the artificial agent perform-
ing a long jump to an otherwise not reachable region. The
created movements appeared smooth and payed attention to
the observed human player’s style of movement, creating in-
deed life-like motion.

Conclusion
In order to create more human-like computer game agents,
we proposed the usage of imitation learning. Thereby fol-
lowing a general trend in robotics towards imitation learning
and following evidences in psychology on the importance
of imitation for behaviour development in infants. Unlike
other approaches in the field of machine learning in games,
we concentrate on the highly complex genre of Ego or First-
Person-Shooter games. These game types provide us with
an incredibly huge amount of training samples - records of

human player’s, being downloadable from the Internet. We
presented a comprehensive approach for the imitation of a
human controlled game agent for a FPS game.

First, we identified different behavioural layers, namely
strategic, tactical and reactive behaviours. Besides the be-
haviour learning, we clarified the importance and influence
of motion modeling on a life-like appearance of an artifi-
cial game character. Finally, we outlined suited approaches
for behavioural learning in each of the mentioned layers and
sketched our recent work on the topic of motion modeling.

Since human behaviour during a game is very complex and
rich of problems when it comes to machine learning, an arti-
ficial player that integrates all the techniques presented above
was not yet realized. However, from the results discussed in
this paper, it is reasonable to conclude that imitation learning
is a well suited method for behaviour generation of artifi-
cial game characters. Concerning individual aspects of game
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play, our game-bots outperform conventional bots which are
driven by finite state machines or similar architectures. Bots
that learned by imitation definitely stay closer to what a hu-
man player is doing since they consequently rely on obser-
vations of human players. Therefore, we are convinced it is
worthwhile to further pursue this topic in order to see how
far imitation learning will bring game characters.

Acknowledgements
This work was supported by the German Research Founda-
tion (DFG) within the graduate program “Strategies & Opti-
mization of Behaviour”.

REFERENCES

Amir, E. & P. Doyle. 2002. Adventure Games: A Challenge for
Cognitive Robotics. In Proc. Int. Cognitive Robotics Work-
shop. Edmonton, Canada: .

Balch, T. & R. Arkin. 1993. Avoiding the past: A simple but effec-
tive strategy for reactive navigat. In Proc. IEEE Int. Conf. on
Robotics and Automation.

Bauckhage, C., C. Thurau & G. Sagerer. 2003. Learning Human-
like Opponent Behavior for Interactive Computer Games. In
Pattern Recognition. Vol. 2781 of LNCS Springer-Verlag.

Fod, A., M.J. Mataric & O.C. Jenkins. 2002. “Automated Deriva-
tion of Primitives for Movement Classification.” Autonomous
Robots 12(1):39–54.

Hart, P.E., N.J. Nilsson & B. Raphael. 1968. “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths.” EEE
Trans. on Systems Science and Cybernetics 4(2):100–107.

Hietanen, J.K. & D.L. Perrett. 1996. “Motion sensitive cells in the
macaque superior temporal polysensory area: response dis-
crimination between self-generated and externally generated
pattern motion.” Behavioral Brain Research 76:155–167.

Hollnagel, E. 1994. Human Reliability Analysis: Context & Con-
trol. Academic Press.

Jordan, M. I. & R. A. Jacobs. 1994. “Hierarchical mixtures of ex-
perts and the EM algorithm.” Neural Computation 6:181–214.

Kohler, E., C. Keysers, M.A. Umiltà, V. Gallese L. Fogassi & G.
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ABSTRACT 
We show that cooperation can be evolved in the N-person 
Iterated Prisoners’ Dilemma using the Population Based 
Incremental Learning Algorithm but that the algorithm often 
finds a local rather than global optimum. We show how a 
simple extension to the algorithm enables cooperation more 
reliably to be found and motivate this algorithm by recent 
challenges to conventional evolutionary theory. 
 
INTRODUCTION 
 
A central thrust in modern computer games is making the 
computer player, the “AI”, more intelligent. This is usually 
construed as giving the AI some adaptability – it must respond 
to situations within the game, learning as the game progresses. 
One of the central methods of modern computational 
intelligence is Evolutionary Algorithms, particularly the 
Genetic Algorithm (GA). GAs mimic the process of evolution 
in order to evolve good solutions to a problem. The problem is 
often thought of as lying in a search space and the GA blend  
exploration of the search space with exploitation of the 
solutions found so far which are better than the others. There is 
a balance between these two aspects: too much exploration 
leads to a lengthy search; too much exploitation leads to 
premature convergence to a less-than-optimal solution. 

s 

 
GAs have been used to create intelligent behaviours in game 
playing (see e.g. [Champandard, 2004] for some recent work). 
In this paper, we discuss an abstraction of the Genetic 
Algorithm known as Population Based Incremental Learning 
and use it on the standard game, the N Persons Iterated 
Prisoners’ Dilemma. We show how an extension of the basic 
algorithm can be used to create nice but retaliatory rules which 
are best in the context of evolving cooperation. 
 
THE PRISONERS’ DILEMMA 
The Prisoners’ Dilemma is a well-known game from 
mathematical Game Theory. Two men, charged with a joint 
violation of a law, are held separately by the police. Each is told 
that, 
1. if one confesses and the other does not, the former will be 
given a reward and the latter will be fined. 
2. if both confess, each will be fined. 
At the same time, each has good reason to believe that 
3. if neither confesses, both will go clear. 
 
The players can only choose to cooperate with each other or 
defect. The cooperator earns "R", reward for mutual 

 cooperation when his competitor also cooperates, and 
only gets penalty "S", sucker's payoff, when the other 
defects. A defector will obtain "T", the temptation to 
defect, when the competitor cooperated. However, if both 
players choose to defect, they both are fined "P", the 
punishment for mutual defection. There are two 
constraints on the payoffs that the prisoners’ dilemma 
should satisfy, 
1. T>R>P>S 
2. R>(S+T)/2 
This is a 2X2 non-zero sum non-cooperative game. "Non-
zero sum" indicates that the benefit obtained by one 
player is not necessarily the same as the penalty received 
by another player at the same round and "non-
cooperative" means that no pre-play communication is 
allowed between the players. [Colman, 1982] [Rapoport, 
1966] 
It is in each participant’s best interests to defect – this 
maximises his/her gain no matter what the other does– but 
if both participants cooperate, their joint gain exceeds the 
sum of any possible individual gains should both or either 
defect.  

The commonsense argument for defecting goes like this: 
"A prisoner's dilemma is a simultaneous choice. There is 
no way that your choice can affect the other player's 
choice. So, the situation is simple. No matter what the 
other player does, you're better off by defecting. That 
means you should defect." The commonsense argument 
for cooperating does like this: "The two players' situations 
are identical. It is unrealistic for one to expect to take 
advantage of the other by defecting. Assuming that the 
players are both rational, they should decide on the same 
strategy. The two realistic outcomes are mutual 
cooperation and mutual defection. Both prefer the 
cooperative outcome, so that's what they should do, 
'cooperate'." 
Number of Cooperators 0  1 2 …  N-1 
Cooperate C0 C1 C2 … CN-1

Defect D0 D1 D2 … DN-1

Table 1: The payoff matrix for a single prisoner in a 
population of N players. There may be 0,1,…,N-1 
cooperators in the remainder of the population . 
 
Robert Axelrod [Axelrod, 1987] developed the iterated 
prisoner dilemma (IPD) to describe the appearance of 
cooperation. He has shown how a Genetic Algorithm can 
be used to evolve cooperation between the prisoners. In 
Axelrod's tournaments, there was a property, which 
distinguished the relatively high-scoring entries from the 
relatively low-scoring entries. This is the property of  
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Round R1 R2 R2 R3 R3 R3 R3  
History - D C DD CD DC CC  
Length 1 N+1 N+1 (N+1)2 (N+1)2 (N+1)2 (N+1)2  
         
 R4 R4 R4 R4 R4 R4 R4 R4 
 DDD CDD DCD CCD DDC CDC DCC CCC 
 (N+1)3 (N+1)3 (N+1)3 (N+1)3 (N+1)3 (N+1)3 (N+1)3 (N+1)3

Table 2 Chromosome length for a memory of 4 rounds 
 

being nice, which is to say never being the first to defect. 
Another property of the best decision rules is forgiveness.  
 
This can be described as the property that a rule has to 
cooperate when the other resumes cooperation. A rule that 
punishes the opponent's defection is a retaliatory rule. For 
example, Tit for Tat, a rule which says just do what your 
opponent did in the last round, is a retaliatory rule, as it 
punishes the opponent's defection by defecting in the next 
round. However, it also a forgiving rule as it returns to 
cooperation with only one cooperation from the opponent. 
 
The payoff matrix can be represented as in Table 1 which 
shows the gain for a single prisoner in a population of N-
players. It is important to note that the return is dependent on 
the actions of the other N-1 players in the population. The term 
Ci (Di) refers to the payoff to the current strategy if it cooperates 
(defects) when there are i other cooperators in the population. 
This payoff determines the fitness function in our simulations. 
 
The payoff matrix of the NIPD must satisfy, 

1. It pays to defect: Di > Ci for all i in 0,…,N-1. 
2. Payoffs increase when the number of cooperators in 

the population increases: Di+1 > Di and Ci+1 > Ci for all 
i in 0,…,N-1 

3. The population as a whole gains more, the more 
cooperators there are in the population: Ci+1 > ( Ci + 
Di+1)/2 for all i in 0,…,N-2. Notice that this last gives a 
transitive relationship so that the global maximum is a 
population of cooperators. 

 
Colman [Colman, 1982] has indicated that the NIPD is 
qualitatively different from the 2IPD and that certain strategies 
that work well for individuals in the 2-Prisoners' Dilemma fail 
in larger groups.  
We have shown that the chromosome in Table 2 can be used to 
evolve solutions to the NIPD. The first bit determines if the 
strategy will cooperate (“1”) or defect (“0”) on the first round. 
In round 2, the decision is taken dependent on whether the 
strategy cooperated or defected in round 1 (second and third 
blocks respectively). And then in each block, the bit that 
determines whether to cooperate or to defect in this round is 
identified dependent on the number of cooperators in round 1. 
This may vary from 0 to N, so N+1 bits are necessary. In round 
3 the decision depends on the strategy's previous decisions: DD, 
CD, DC, or CC. Within each block there are (N+1)*(N+1) 
histories determined by the number of cooperators in each of 
the first two rounds, i.e., 00, 10, 20, 30, 01, 11, 21, and so on.  

 
In this paper, we consider the N-player Prisoners' Dilemma 
game where N>2. Previous experiments [Wang, 2002] have 

 shown that the N=7 is a critical value: if N>7, 
cooperation is very difficult to achieve. 

 
When GAs are used, many simulations [Wang, 2002] 
show local fitness optima in which players mutually defect 
at the first few rounds then mutually cooperate after that. 
These situations appear no matter which selection 
operators are used: it is an open question as to whether the 
problem is innate in genetic procedures.  

 
POPULATION-BASED  LEARNING 
 

The Population-Based Incremental Learning (PBIL) 
method was originally proposed by Baluja [Baluja, 1994]. 
This approach is a combination of Genetic Algorithms and 
the Hill-Climbing or gradient ascent method.  

 
The object of the PBIL is to create a probability vector 
which, when sampled, reveals high quality solution 
vectors with high probability with respect to the available 
knowledge of the search space. 

 
The vector of probabilities is updated at each generation. 
The change in the probability vector is towards the better 
individuals of the population and away from the worst 
individuals. Each bit or component of the probability 
vector is analysed independently. This method does not 
pretend to represent all the population by means of a 
vector, but it rather introduces a search based on the better 
individuals. 

 
The two parameters in the PBIL method that must be 
defined for each problem are the population size (number 
of samples generated) and the learning rate (LR). The 
process is as follows: 

 
1. Create a vector whose length is the same as the 
required chromosome and whose elements are the 
probabilities of a “1” in the corresponding bit position of 
the chromosome. This vector is intialised with 0.5 in all 
positions. 
2. Generate a number of samples (we use 100 in the 
simulations below) from the vector where the 
probability of a 1 in each bit position of each vector is 
determined by the current probability vector. 
3. Find the fittest chromosomes from this population. 
4. Amend the probability vector’s elements so that the 
probability of a “1” is increased in the positions in 
which the fittest chromosomes have a 1. 
 
This process ends when each element of the vector 
approaches 1 or 0. The upgrade of the probability vector 
is done using 
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 ∆pi = η (Ebest(chromosomesji) - pi) 
where ∆pi is the increment to the vector’s ith element, η is 
the learning rate, Ebest (chromosomesji) is the mean value of 
the ith chromosome bit taken over the fittest chromosomes 
and pi is the probability of a 1 in position i in the current 
generation. 
 
We may show that the PBIL can be used to evolve 
cooperation but that we often get only partial cooperation 
e.g. the whole population may defect at round 2 but regain 
cooperation at subsequent rounds. A typical result is shown 
in Figure 1. 
 
The numbers of competition outcomes stay  relatively 
steady throughout hundreds of generations, especially the 
number of 0-cooperators and 7-cooperators. That means the 
players either all mutually defect or they all mutually 
cooperate. We note that they also try other competition 
outcomes in some rounds. We check the probability vector 
at the end of simulation from the trial shown in Figure 1 and 
find that the first left bit is 0 and that only some bits at the 
right part of the probability vector are not 1 or 0. That means 
this population almost converges and the difference between 
strategies that individuals have is very small. However, the 
created individuals under this probability vector defect at the 
first round before finding a route to cooperation. Because of 
the lack of the exploration capability in the converged 
population, the population can not move out but sinks into 
this local fitness optimum  and remains there throughout the 
generations. Since there are so many local fitness optima 
that the simulation could sink into in this set of simulations, 
we consider the original PBIL with the learning rate=0.1 is 
not a suitable search method to simulate the 7-player IPD 
game. 
 
Also, there is a hitchhiker problem which happens in PBIL. 
The bits on the chromosomes of the winners which might 
not be used during the competition can be changed during 
the simulation. The reason for these individuals’ success is 
not affected by what values they have on these bits which  

have never been used. The upgrade process does not 
consider the factors for success in the winners and changes 
all the probabilities on the vector. It updates every position 
of the probability vector using the information from the 
winners even though some bits of the winners have not been 
used during previous competitions and might also lead to 
worse results if they were used. This hitchhiker problem  

decreases the performance and quality of the search. 
 

The cooperative PBIL algorithm is designed to meet this 
problem. 

 
THE COOPERATIVE PBIL ALGORITHM 

 
Ben-Jacob [Ben-Jacob, 1998a] [Ben-Jacob, 1998b] 
challenges the new Darwinian view of the chromosome as 
static code which may be decoded to create phenotypes. 
Ben-Jacob notes the experimental evidence that mutations 
in bacteria exist prior to there being a need for or benefit 
from such mutations, however, while this might suggest 
that random mutations do exist in populations, it does not 
preclude non-random mutations. Ben-Jacob [Ben-Jacob, 
1998b] then notes experimental evidence that bacteria 
may demonstrate genomic changes other than during 
replication. There is further evidence that a specific 
mutation will occur in high frequencies only when needed 
to remove the selective pressure and further that such 
mutations will not trigger any other mutations. It is the 
view of [Ben-Jacob, 1998a] [Ben-Jacob, 1998b] that 
major evolutionary changes occur in response to a 
population meeting paradoxical environmental conditions; 
Ben-Jacob contrasts paradoxes with problem solving - the 
normal processes of evolution may be sufficient when a 
population meets a problem in this environment but a 
paradox calls for a more directed evolution in which 
change is directed by the population as a whole onto 
individuals within the population. Let us consider that 
paradoxes in the NIPD are created when a prisoner wishes 
to respond nicely to other cooperators but retaliate against 
the defectors. However with only one action, each 
prisoner can only respond in the same way to all. 

 
Thus we design an improved PBIL, the Cooperative PBIL 
Algorithm, which will use the environmental input to 
direct the evolutionary process but which will not cause 
unnecessary side effects in genes which need not be 
changed in response to environmental paradoxes. This 
improved algorithm is described below. 

 
1. Find the highest fitness chromosomes as the winner 
just as in the PBIL algorithm. 
2. Select representative chromosomes among the 
population randomly. This step and step 3 were repeated 
20 times in the simulations below. 
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Figure 1. Convergence of the PBIL algorithm, η=0.1 
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3. The winners compete against these representative 
chromosomes and the bits of the chromosomes used  through these 
competitions are recorded. 
4. Use the recorded bits in the chromosomes of the winners to 
upgrade the values of the same positions of the probability 
vector. 
5. Recreate the new population randomly under the 
probabilities of the probability vector. 

 
This procedure guarantees that only the bits which contribute to 
the success of the winners will be upgraded and the other unused 
bits will not influence the probability vectors. If the bit has not 
been used throughout the generations, the probability of this bit 
still remains around 0.5 and allows continuing exploration of 
these bits by the population if needed. The creation of the unused 
strategies encoded on these bits creates variation in the population 
which is not affected by the previous competitions which did not 
involve them. 
 
The crucial difference between the Cooperative PBIL algorithm 
and the ordinary PBIL algorithm is that there is no genetic drift in 
this algorithm: only those bits which are actually used in 
determining fitness are used in modifications to the chromosome. 
 
If we increase the learning rate, exploitation works more strongly 
and exploration becomes weaker. The population converges 
quickly and the search may improve in quality. However, if 
learning experience and selection moves the chromosome in a 
wrong search direction, the search may fall into a local fitness 
optimum due to weak exploration. We may expect that there are 
many trials in which the simulation falls into a local fitness 
optimum, and so we should find a suitable learning rate to keep 

the balance between exploration and exploitation to keep the 
performance high and the quality of search satisfactory. From the 
simulation of the last section, we know that, with η=0.1, the  

 search works well in finding mutual cooperation. 
We investigate how a higher learning rate affects the 
appearance of mutual cooperatiocooperation and which 
rate is the best for the simulated NIPD game. 

 
Firstly, we use a learning rate of 0.2 to investigate the 7-
IPD via the Cooperative PBIL and find that in 10 of 25 
trials, we can achieve total mutual cooperation. The 
number of successful trials to achieve mutual cooperation 
is slightly lower than when we use a learning rate of 0.1. 
We also note the strong effect of exploitation in that many 
trials achieve a local fitness optimum and maintain this 
population of very stable strategies. 6 of these 10 
simulations achieve the global fitness. There are 4 trials 
which achieve mutual cooperation in a local fitness 
optimum in which the players mutually defect at the first 
round or at the first two rounds. Comparing the 
simulations which achieve the global fitness optimum 
when we use 0.2 as the learning rate with that when 0.1 is 
used, we find that this stronger exploitation, due to the 
higher learning rate, does not improve the performance of 
the search. There are also some trials which still need 
several hundred generations to evolve mutual cooperation 
(See Figure 2). A qualitatively similar behavior is seen in 
Figure 3 from a different simulation with the same 
parameter set: there is a period of turmoil, sometimes with 
quieter periods embedded followed by the emergence of 
cooperation. 

 
From the simulation using the PBIL with different 
learning rates, we can draw a graph to show the 
influence of the learning rate on the emergence of 

cooperation (See Figure 4). We see that too high or too 
low a learning rate applied to the Cooperative PBIL 
makes the performance worse. Too high a learning rate  
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leads to a lack of exploration and too low a learning rate means 
little information is passed to the next generation. Both extremes 
lead to a bad performance, i.e., mutual cooperation is not 
achieved. However, from the experimental results, we can not say 
which interval of values of learning rates is optimal for a search 
with the PBILs. Two similar learning rates can give different 
results. Therefore, we do not suggest which learning rate is 
optimal for the investigation of the evolutionary game. However, 
almost half the trials achieve mutual cooperation when a learning 
rate of 0.5 is used for the investigation with the Cooperative 
PBIL. We may say that this performance is acceptable and 
comparable for the investigation of the 7-IPD with other 
evolutionary methods. 
 
Even though the Cooperative PBIL is an improved PBIL method, 
the optimal learning rates for the Cooperative PBIL and the 
standard PBIL are different. The investigation of the NIPD shows 
that a good learning rate for a simulation with the Cooperative 
PBIL does not work well with the standard PBIL. Performance is 
best with the Cooperative PBIL when the learning rate is 0.5. 
However, with the standard PBIL, the best learning rate is 0.05. 

 
 

CONCLUSION 
 
We have previously compared Genetic Algorithms using roulette-
wheel and rank selection with Population Based Incremental 
Learning and shown that the last gives comparable performance 
with  the best GA methods. 
 
In this paper, we have amended our PBIL algorithm so that it 
updates only those positions on its probability vector which 
actually contributed to the fitness of the best chromosomes. This 
resulted in an elimination of the hitch-hiking problem which 
results in some bits being upgraded because, by chance, they 
happened to be a particular value on the best chromosome(s). We 
showed that the resulting algorithm gave improved performance 
in terms of the evolution of cooperation. Figure 4 shows that we  
do not need to be as careful in our choice of learning rate as we 
have to be with the standard PBIL algorithm. The algorithm was  

motivated by recent challenges to evolutionary theory 
which considered that under crisis situations, evolution 
can step outside its normal boundaries in order to solve 
paradoxes which might not otherwise be solved within the 
evolutionary process.  
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