
Proceedings of CGAMES’2006

8th International Conference on
Computer Games:

Artificial Intelligence and Mobile Systems

24-27 July 2006

Hosted by

Galt House Hotel
Louisville, Kentucky, USA

Organised by

University of Wolverhampton

in association with

University of Louisville

and

IEEE Computer Society
Society for Modelling and Simulation (SCS-Europe)

Institution of Electrical Engineers (IEE)
British Computer Society (BCS)

Digital Games Research Association (DiGRA)
International Journal of Intelligent Games and Simulation (IJIGS)

Edited by:

Quasim Mehdi

Guest Editor:

Adel Elmaghraby

Published by The University of Wolverhampton
School of Computing and Information Technology

Printed in Wolverhampton, UK

©2006 The University of Wolverhampton

Responsibility for the accuracy of all material appearing in the papers is the responsibility of the
authors alone. Statements are not necessarily endorsed by the University of Wolverhampton, members
of the Programme Committee or associated organisations. Permission is granted to photocopy the
abstracts and other portions of this publication for personal use and for the use of students providing
that credit is given to the conference and publication. Permission does not extend to other types of
reproduction nor to copying for use in any profit-making purposes. Other publications are encouraged
to include 300-500 word abstracts or excerpts from any paper, provided credits are given to the author,
conference and publication. For permission to publish a complete paper contact Quasim Mehdi, SCIT,
University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1SB, UK,
q.h.mehdi@wlv.ac.uk.
 All author contact information in these Proceedings is covered by the European Privacy Law
and may not be used in any form, written or electronic without the explicit written permission of the
author and/or the publisher.

Published by The University of Wolverhampton, School of Computing and
Information Technology

ISBN 0-9549016-1-4

2

mailto:q.h.mehdi@wlv.ac.uk

Contents

Programme Committee 4

Preface 5

Proceedings 6

Session 2 Keynote Presentation 7

Session 3 15

Session 4 34

Session 5 50

Session 6 63

Session 7 85

Session 8 96

Author Index 108

3

Programme Committee

General Conference Chair
Quasim Mehdi
School of Computing & Information
Technology
University of Wolverhampton, UK

General Programme Chair
Adel Elmaghraby
Computer Engineering and Computer
Science University of Louisville
Louisville, KY 40292, USA

Local Chair Conference Organisers

Dennis E. Jacobi and Donald Anderson, Intellas Corporation, Lousville

International Programme Committee

Don Anderson
Intellas Group LLC, Quantum Int.Corp., USA

Professor David Al-Dabbass
Nottingham-Trent University, UK

Professor Marc Cavazza
University of Teesside, UK

Dr Darryl Charles
University of Ulster, UK

Professor Ratan Kumar Guha
Central Florida University, USA

University of Bradford, UK

Dr Johannes Fuernkranz
Technical University of Darmstadt, FRG

Dr John Funge (iKuni Inc, Palo Alto, USA)

Dr Julian Gold, Microsoft Research Centre,
Cambridge, UK

Dr Stefan Grunvogel
NOMADS Lab, Cologne, FRG

Professor David Kaufman, Simon Fraser
University, Canada
Dr Daniel Livingstone
University of Paisley, UK

Professor Ian Marshall
University of Coventry, UK

Dr Stephen McGlinchy
University of Paisley, UK

Professor Stephane Natkin
CNAM Paris, France

Professor Yoshihiro Okada
Kyushu University, Fukuoka, Japan

Professor Mark Overmars (Utrecht University,
The Netherlands)

Professor Leon Rothkrantz
University of Delft, Netherlands

Dr. Pieter Spronck
University of Maastricht, Belgium

Dr Ian Wright
iKuni Inc, Palo Alto, USA

4

Preface

The Programme Committee is very pleased to welcome all delegates to the 8th
International Conference on Computer Games, CGAMES 06 USA. CGAMES is part
of Game-On® International Conference of Wolverhampton University, UK. We have
the privilege to bring the conference for the second time to the Louisville, Kentucky.
The 7th event was held in CNBDI-Angouleme, France which was a huge success and
well participated. Our 9th International conference: Artificial Intelligence, Animation,
Mobile Systems, Educational and Serious Games, will be hosted by the Dublin
Institute of Technology, Dublin, Ireland, 22nd-24th November 2006. The theme has
been chosen to reflect the major changes in the way in which games are developed
and played.

We are very proud to announce that the conference has successfully maintained its
links with its sponsors: the IEEE Computer Society, British Computer Society,
Digital Games Research Association (DiGRA), and the Society for Modelling and
Simulation (SCS) who where the first sponsors of the conference, we are thankful to
them for their help and support.

The conference will endeavour to help the new researchers and MSc/MPhil/PhD
research students to present their work to their peers and experts in the field in order
to improve the quality of their work in this exciting subject area. The quality of
submitted papers has been maintained at a high standard by having them reviewed by
our reviewers who have been delighted with the work produced by the authors. Our
special thanks go to the reviewers who have been most diligent in their task by
providing detailed and useful feedback to authors. The best papers will be reviewed
for possible inclusion in the International Journal of Intelligent Games & Simulation
(IJIGS).

This conference has flourished by the hard work put in by our colleagues in
Louisville. Our big thanks and appreciation go to their generosity and time and effort
to help organise this conference and provide valuable support. We particularly wish to
thank the General Programme Chair, Professor Adel Elmaghraby; University of
Louisville and colleagues at the Intellas Corporation, Don Anderson and Dennis
Jacobi.

We would also like to thank the School of Computing & Information Technology,
University of Wolverhampton, UK, especially the Dean Professor Rob Moreton for
his endless support.

We trust that you will all enjoy your stay in Louisville and benefit from this
conference by making new contacts for future mutual collaboration.

Quasim Mehdi, General Conference Chair
University of Wolverhampton, July 2006

5

Proceedings

6

Session 2
Keynote Presentation

7

GAMING IN CONTEXT: THE SOCIAL, CULTURAL AND EDUCATIONAL
RELEVANCE OF COMPUTER GAMING

Don Anderson

Intellas Group, LLC, 15424 Beckley Hills Drive, Louisville, KY 40245 USA
(502) 254-1601

danderson@intellas.com

Keywords

Games, war games, educational games,
multi-player games, role-playing.

Abstract

Myopia is a common affliction among those
involved in technology. Simply put it is
failing to see the forest because of the trees.
As technologists and creators of computer
games and computer gaming platforms, it is
easy to become too narrowly focused on
specific technical issues that apply to our
work. This is not to say that these issues are
not important and need to be addressed in
order for the quality and capabilities of
computer games to increase, but rather that
we can not afford to lose the perspective of
the context in which they exist and operate.

Computer games and game technology are
profoundly influencing the world around us
in both obvious and subtle ways. Modern
cultures and societies are faced with the
most rapid rate of change in the course of
human history. Change in itself is neither
positive nor negative. Rather it is how we
frame and direct this change that adds the
element of whether or not a particular
change or element of change is positive or
negative. This paper will attempt to take a
snapshot of computer games from this
larger context and demonstrate how they
are becoming an important and integral part
of the world around us.

Background

Gaming had remained relatively unchanged
throughout most of the course of human
history. Games have been with us since
ancient and possibly even prehistoric times.
The majority of these games involved two
players pitting their skills in a variety of
games of strategy. In the Ancient Near East
these included such games as Marcala,
Seega, Senet and Quirkat. In India the
ancient predecessor of Chess was born. In
China such games as Go and Mah Jongg
appeared. In Ancient Rome in addition to
some of the aforementioned Near Eastern
games, there were Tali, Tesserae (a dice
game), Duodecum Scripta (Twelve Lines),
Tabula (a backgammon predecessor), and
Latrunculi.

Most of these games were two dimensional
and involved strategy of mind on mind
between two players. A few functioned as
group gambling games, but were still
essentially two dimensional. This gaming
methodology continued for several
thousand years with no essential changes
until the modern era.

In a previous study for a United States Air
Force project our team identified three
generations of war games, which can also
be applied to games as a whole. In fact a
fourth generation could be added to the
original three to define the emergence of

8

mailto:danderson@intellas.com

multi-dimensional games over the course of
the last ten years. See Figure 1.

GENERATION FOCUS SCOPE
First Strategy Mind on mind

Second Attrition Force on force

Third Effects System on system

Fourth ? Interaction
/integration ?

Multi-
dimensional?

Figure1. Game generations

After several thousand years of first
generation games, the second generation
was born through the medium of a new
generation of board war games that more
accurately modeled conditions on the
battlefield through the depiction of military
units as individual game counters with
attributes of attack and defense strength,
movement and unit type. Although the first
vestiges of this system appeared during the
17th century using miniatures to depict the
combat units, the real origins of these
second generation games came in the early
19th century in Prussia when civilians and
members of the Prussian Army developed
the first detailed and realistic war games.
Civilian war gaming in the United States
began in 1953, with the development of a
game called “Tactics” by Charles Roberts
in Baltimore, Maryland. This resulted in the
creation of the Avalon Hill Company in
1958 and the release of such games as
Tactics II, Gettysburg, and Dispatcher. By
1962 Avalon Hill was selling 200,000
games per year and added such titles as U-
Boat, Chancellorsville, D-Day, Civil War,
Waterloo, Bismarck and Stalingrad.
The games developed during this time
period and still being developed in the
present involved “sides” and force on force.
Victory came through attrition and the

achieving of specific objectives or goals in
the game scenario.

In the mid 1970’s another phenomena
occurred that would impact the course of
gaming and the advent of the computer
gaming industry. Gary Gygax and Rob
Kuntz introduced the first set of rules for a
new fantasy role-playing system,
“Dungeons & Dragons,” and founded TSR
Games. Role-playing introduced a system
in which any reasonable number of players
could enter the game. Play could be set for
short periods of time all the way up to
campaigns that could go on for days,
months or even years. Success or victory
was redefined in contrast to the typical
board game in which one player emerged
victorious. In Dungeons & Dragons success
or victory is judged on a more individual
level, but also by a particular group to
which the player has affiliated him/herself.

Soon after the introduction of the role-
playing paradigm, the affordable micro
computer made its appearance, and the
computer game became a reality. Initially
computer games were simply conversions
of their board game or war game
counterpart. The advent of a variety of
different role-playing games along with
later advances in game theory applied to
traditional two dimensional board games
brought the inception of the third generation
of games that placed increasing emphasis
on the relationship of effects in the outcome
of the game.

Although some initial efforts to create text
based Massively Multiplayer Online Role-
playing Games (MMORG) took place as
early as 1978, the real introduction of this
phenomena started in the early 1990’s and
has taken off in the new millennia. The
increased accessibility provided by the
Internet and broadband connections has

9

made this evolution a reality as gaming
enters a fourth multidimensional
generation.

The Computer Gaming Explosion –
Relevance on Steroids

Previous game generations and individual
styles and paradigms within those
generations typically had small, but limited
followings of gamers. For example the
world of the hard core war gamer is a
relatively small and currently shrinking
world. Prior to the transference of role-
playing to the computer, Dungeons &
Dragons also had a limited and loyal
following. Parlor board and card games
have always had a more general and
widespread acceptance, but even these only
affected a very narrow slice of people’s
lives.

Today computer and electronic gaming has
grown into an industry that now surpasses
the movie industry in drawing people’s
entertainment dollars. The sales of video
games in 2003 increased by a dramatic 25%
to $23 billion world-wide (USA Today
2005). Part of the draw is the switch from
passive to interactive entertainment,
entertainment that now pervades every area
and facet of our lives. The former viewer
now becomes an active participant in the
action – and we haven’t seen anything yet!
Instead of passively sitting and watching a
movie, we can become one of the actors,
affecting even the outcome of the story,
based on our response to the story world.

The spread of computer/video games to a
variety of media formats has been
accelerating. Now games are not only
available on PC’s and dedicated game
consoles, but also on a wide range of
portable devices including cell phones,
PDAs and small mobile game devices such

as Game Boy. The introduction and use of
mobile devices has been noted by many in
their research [Mansour et al. 2005].
However the most noteworthy example of
the affect of this explosion on our society is
to see my young nephew totally absorbed in
his Game Boy.

Social, cultural and educational relevance
are evident in the changes taking place in
our global society as a result of this
explosion. Researchers have observed that
the new “game generation” has evolved a
new way of thinking which includes
multiprocessing, a short attention span, and
learning through exploration and discovery
[Kaufman et al. 2005, Asakawa and Gilbert
2003, Gee 2003, Prensky 2001] Based on
these assumptions today’s games provide
the ideal environment for learning within
this new generation of thinkers.

The Social and Cultural Integration of
Computer Games

Social and cultural integration of computer
games is part of an even bigger paradigm
shift – the Information Age. The revolution
and evolution of computer games would not
be possible without the advanced platforms
that have been developed as a result of the
introduction of the microchip and the
dawning of the Computer and Information
Ages. Also the Internet has made possible
the concept of sharing information as
needed over vast distances. This technology
has become part of every facet of our lives
and has become both pervasive and
ubiquitous.

Several researchers in their studies have
been examining using a concept called
Mixed Reality [Cheok et al. 2005]. Mixed
reality moves computing away from the
traditional keyboard and mouse into the real
environment to support more social and

10

interactive behavior. Mixed Reality
combines virtual pieces with the real
environment and is in entertainment an
example of ubiquitous human media
[Dourish 2001].

Magic Land [Ngyuen et al. 2005] [Prince et
al. 2002] [Farbiz et al. 2005] is one example
of the implementation of a mixed reality
environment in which 3D captured avatars
of real humans and 3D computer generated
virtual animations can play and interact
with each other. Users in real space can
interact with the virtual world.

The same research group in Singapore also
has created a Human Pacman game that
uses a mixed reality environment to embed
a virtual playground in the natural physical
world using such technologies as mobile
computing, Wireless LAN and ubiquitous
computing [Cheok et al. 2003, 2004].

One of the more interesting applications
developed by this group is the Poultry
Internet [Lee et al. 2004] which provides a
means of human-computer-pet interaction
that transfers human petting over the
Internet to the pet chicken wearing a special
dress to transmit the sensations.

Another use of computing has been the
integration of a number of recent television
shows with an on-line game component. A
specific example is the new reality show
“Treasure Hunter” running on NBC in the
United States. Each episode integrates a
contest to select the correct answer “Treasure
Chest” to be entered into a drawing of
$10,000 for the evening. Entries are possible
either by a cell phone code or over the
Internet at the show’s web site. Additionally
there is a larger on-line treasure hunt in which
the on-line participant can attempt to solve
the clues to find the ultimate treasure. I am
sure that we can expect more of the same.

These are just a few recent examples of the
increasing integration of computer games
and computer gaming technologies in every
facet of our daily lives. These games are
becoming a vital part of our society and
culture as a whole.

The Educational Impact of Computer
Games

New ways of thinking lead to new learning
models, as observed by researchers in
Canada exploring the use of multi-lingual
computer based educational systems for
medical training and education [Kaufman et
al. 2005]. An interesting observation from
this study is the concept of the development
of a new learning model that is assisted by
simulations and computer games to
transform the role of the student from a
passive to an active mode via peer
collaboration. The student becomes a
teacher, both of himself and of others.

Another valuable observation made by the
same group is that simulations and computer
games also provide the potential for
integrating theory, experience and best
practice. This was further supported in some
of our own interaction with the United
States Air Force to propose development of
a new training system using a combination
of existing game theory along with the
concepts of system on system; effects based
structures for the training modules.

Another study emphasized the importance
of the visual and behavioral fidelity of the
avatars or components of collaborative
learning-based games [Mansour et al.
2005]. The ability of the graphics in such a
system to correctly mimic true human
interaction through body positioning, facial
expressions, and other typical human
behaviors, was observed to greatly
influence the effectiveness of such systems.

11

Even standard off the shelf and on-line
computer games have been observed to
have influence on students’ learning
patterns, reading habits and even television
viewing habits as observed by a Swedish
study [Wiklund 2005]. The study found that
students who read regularly prior to gaming
still did so, but the surprise was that the
ratio of fiction decreased and non-
fiction/technical reading increased.
Television viewing decreased in
importance.

To increase the effectiveness of gaming in
education one group in the Netherlands has
created a game design tool to create
enhanced educationally oriented games
[Overmars 2004]. The tool “Game Maker”
makes use of object-oriented design
concepts to create high quality educational
games targeted to specific purposes. The
interesting fact is that not only are the
products of the system useful in creating
games more targeted to educational
purposes, but also the process of using the
tool is educational in itself to students
exposed to it.
In another recent study [Masuch and Nacke
2004], the enormous potential of computer
games in education both in teaching and
research was found to:

• Motivate students
• Teach interdisciplinary teamwork
• Provide hands on experience in

multimedia integration

Other Issues

In a previous study [Anderson et al. 2004]
the importance of a change in development
methodologies was emphasized to facilitate
the interdisciplinary character of current
game development. The typical creation of
a new video or computer gaming title is
more like a Hollywood production than the

previous concept of a group of computer
geeks developing a program in the
basement. Obviously the revenues being
generated in this industry warrant this
approach.

Which brings up another issue, a powerful
argument for the relevance of computer
games in our society is simply the
enormous financial impact that these games
are having world wide. At the onset of
computer gaming, most of us couldn’t have
imagined this outcome in our fondest
dreams.

Conclusions and Future Work

This paper has summarized the history of
gaming and computer gaming to
demonstrate the rapid evolution in the
information age from a paradigm, or a
group of paradigms, that had limited impact
on society and culture as a whole, to the
explosion of computer/video gaming into a
multi-billion dollar industry impacting
nearly ever facet of modern society.
Examples were provided to demonstrate
both the effects and the direction of this
explosion and its integration into the fabric
of culture and society as a whole. The
educational impact and opportunities are
seen to be significant.

Since this change is ongoing and dynamic,
it is only speculation to indicate to specific
directions. However, it appears obvious that
the increasing relevance of computer games
will continue to be influenced by and
influence the society around us. Subtle
variations will exist in the various sub-
cultures in our world as a whole. The
opportunity is afforded for all of us to
celebrate the diversity on our planet and to
discover new ways to achieve peace and
understanding through shared knowledge.

12

Future work is virtually boundless, but in
the instance of this specific topic can be
constrained to observing the direction and
opportunities for increasing the relevance of
computer games in our society. Granted this
does not mean we have to give up the sheer
joy of entertainment in gaming, but rather
that it affords us to learn as we play – learn
to understand one another in a more
profound and meaningful way.

References

Anderson, D., Arnold S., Jacobi, D., Mehdi,
Q., Gough, N. “Turning a Corner: Games
and the Social Content,” in Proceedings of
5th International Conference on Computer
Games: Artificial Intelligence, Design and
Education, Reading, UK, November 2004,
pp.301- 305

Asakawa, T. and Gilbert, N. 2003,
“Synthesizing Experiences: Lessons to be
Learned from Internet-Mediated Simulation
Games.” Simulation & Gaming 34, no.1:
pp.10 - 22

Cheok, A., Fong, S., Goh, K., Yang, X.,
Liu, W., Farbiz, F. 2003. “Human Pacman:
A sensing-based mobile entertainment
system with ubiquitous computing and
tangible interaction.” In NetGames Second
Workshop on Network and System Support
for Games, pp. 106 – 117.

Cheok, A., Xu, K., Liu, W., Teo, H., Teo,
S., Lee, S., Katai, O., Kawakami, H., Notsu,
A. 2004. “Mixed Reality Media for Social
and Physical interaction.” In Proceedings of
International Conference on Artifical
Reality and Telexistence, pp. 79 – 84.
Cheok, A., Li, C., Nguyen, T., Qui, T., Lee,
S., Liu, W., Teh, K., Diaz, D., Boj, C.
“Social and Physical Interactive Paradigms
for Mixed Reality Entertainment,” in
Proceedings of 7th International Conference

on Computer Games, Angouleme, France,
November 2005, pp. 8 – 15.
Dourish, P. 2001. “Where the Action is:
The Foundations of Embodied Interaction.”
In MIT Press.

Farbiz, F., Cheok, A., Wei, L., ZhiYing, Z.,
Ke, X., Prince, S., Billinghurst, M., Kato,
H. 2005. “Live Three-Dimensional Content
for Augmented Reality.” In IEEE
Transactions on Multimedia, vol.7, pp. 514
– 523.

Gee, J.P. 2003. What Video Games Have To
Teach Us About Learning and Literacy.
Palgrave, New York

Kaufman, D., Sauve, L., Ireland, A.,
“Simulation and Advanced Gaming
Environments: Exploring Their Learning
Impacts,” in Proceedings of 7th
International Conference on Computer
Games, Angouleme, France, November
2005, pp. 16 - 25.

Lee, S., Farbiz, F., Cheok, A. 2004. “A
Human-Pet Interactive Entertainment
System Over the Internet.”

Mansour, S., Rude-Parkins, C., El-Said, M.,
“ The Relationship Between the Avatar’s
Behavioral Fidelity and Social Interaction
in 3D Collaborative Learning-Based
Games,” in Proceedings of 7th International
Conference on Computer Games,
Angouleme, France, November 2005, pp.
60 - 65.

Masuch, M., Nacke, L., “Power and Peril of
Teaching Game Programming,” in
Proceedings of 5th Game-On International
Conference on Computer Games: Artificial
Intelligence, Design and Education,
Reading, UK, November 2004, pp.347 –
351

13

Nguyen, T., Qui, T., Xu, K., Cheok, A.,
Teo, S., Zhou, Z., Mallawaarachchi, A.,
Lee, S., Liu, W., Teo, H., Thang, L., Li, Y.,
Kato, H. 2005. “Real Time 3D Human
Capture System for Mixed-Reality Art and
Entertainment.” Visualization and
Computer Graphics, IEEE Transactions on
11 (November – December), pp. 706 – 721.

Overmars, M., “Game Design in
Education,” in Proceedings of 5th Game-On
International Conference on Computer
Games: Artificial Intelligence, Design and
Education, Reading, UK, November 2004,
pp.14 – 18

Prensky, M. 2001. Digital Game-Based
Learning. McGraw-Hill, New York.

Prince, S., Cheok, A., Farbiz, F.,
Williamson, T., Johnson, N., Billinghurst,
M., Kato, H. 2002. “3D Live: Real Time
Captured Content for Mixed Reality.” In
International Symposium on Mixed and
Augmented Reality (ISMAR), pp.7 – 13.

Wiklund, M., “Behavioural Changes in
Students Participating in an Upper
Secondary Education Program Using
Unmodified Computer Games as the
Primary Teaching Tool,” in Proceedings of
7th International Conference on Computer
Games, Angouleme, France, November
2005, pp. 66 – 73.

.

14

Session 3

15

TOWARDS ONLINE ADAPTATION IN ACTION GAMES:
CASE STORAGE AND RETRIEVAL

Thomas Hartley and Quasim Mehdi

School of Computing and Information Technology
University Of Wolverhampton, UK, WV1 1EL

E-mail: T.Hartley2@wlv.ac.uk

KEYWORDS

Online adaptation, case storage and retrieval, k-d trees.

ABSTRACT

In this paper we present our work towards the
development of an online learning and adaptation
architecture for non-player characters (NPCs) (agents)
in first person shooter (FPS) computer games. We will
outline the development of our case storage and
retrieval method, which uses an adaptive k-d tree based
approach and discuss the issues related to employing
this technique for online storage and retrieval of cases.
We conclude by evaluating the performance of the
developed data structures and discussing results.

INTRODUCTION

Action games traditionally take place in a 3D
environment, in which the player interacts through the
control of an avatar. These games usually involve
running around and using deadly force against an
enemy (Laird and Lent 2001). This typically means a
player can shoot an opponent using a variety of
weapons, which they pick up from the game world.
Players can also pick up other items such as health
packs, ammo and bonuses (e.g. shield, mega damage
etc). The player observes the game world from a first
person (the head position of the avatar) or third person
perspective (behind the shoulder of avatar). Examples
of action games include Half Life, Quake, Unreal and
Tomb Raider.

Currently opponent behaviour in commercial action
games tends to be achieved through pre-programmed
scripts, finite state machines (FSMs) and the A* path
finding algorithm. The use of these techniques has
yielded impressive results. However by their nature
scripts and FSMs are rigid, predictable and cannot
adapt / generalise to circumstances that were not
anticipated by the artificial intelligence (AI)
programmer (Fairclough et al. 2003). In future, game
developers may need to employ more sophisticated
academic AI techniques, which enable them to make
NPCs in their computer games more human-like and
responsive to the game player. In Hartley et al. (2005)
an online adaptation architecture for interactive
simulations (specifically FPS computer games) has

been proposed as one AI approach that can be used in
games development. Online learning through
interactions with a human user is one of the key
research directions for intelligent agents. Traditionally
computer game AI has not made use of unsupervised
online learning (Spronck et al. 2003); however there
has been a certain amount of research in the area
(Dinerstein and Egbert 2005, Spronck et al. 2003). All
these works produce more believable behaviour for
NPCs and as Spronck et al. (2003) comments; they
demonstrate the potential of this approach for
improving the entertainment value of commercial
computer games.

In this paper we concentrate on the storage and
retrieval approach used in our online action prediction
system (Hartley et al. 2005). We develop an adaptive
k-d tree based technique, which employs a hybrid split
strategy to build trees online as cases are observed. An
optimisation technique is also developed, which
rebuilds trees as they grow out of balance. The
remainder of this paper is organised as follows: In the
next section we discuss related work and the proposed
action and behaviour prediction architecture. After that
we outline the development of our k-d tree based
storage and retrieval method. We introduce and discuss
our hybrid split strategy and our optimisation approach.
We conclude by discussing our initial results and future
work.

ONLINE ADAPTATION SYSTEM OVERVIEW

The architecture outlined in Hartley et al. (2005)
expands on existing work in the area of online
behaviour adaptation. Work in this field has made use
of a variety of approaches, such as prediction, user
modelling, anticipation, reinforcement learning and
plan recognition (Hartley et al. 2005). This work builds
upon existing incremental case based approaches to
modelling an observed entity in order to predict their
behaviour (Dinerstein and Egbert, 2005, Fagan and
Cunningham, 2003 and Kerkez and Cox, 2001), and
makes a number of novel contributions to improve the
capabilities of the system. Specifically our architecture
offers a more comprehensive state representation,
behaviour prediction, and a more robust case
maintenance approach, including case storage and
retrieval. One of the most interesting approaches to
prediction / anticipation in computer games that has

16

inspired our work can be found in Dinerstein and
Egbert (2005). Their system has been designed
specifically for use in real-time interactive simulations,
it provides the ability to model an observed entity and
predict their actions.

Figure 1 illustrates a high-level overview of the
proposed action and behaviour prediction layer of our
adaptation architecture. The input for the system comes
from observed environment events and the output is
action and behaviour predictions. The world interface
module converts environment input into state-action
pairs. Once the input has been properly formatted the
system retrieves close matches to the input from the
case libraries. The action prediction library returns
cases, which are close to the query state-action pair.
The behaviour case library returns cases, which contain
similar states to the query states. These are then passed
to the behaviour pool and actions prediction modules,
which are independent processes and will run in
parallel (i.e. different threads) or sequentially. The
action prediction module generalises actions and
determines a new predicted state based on the
generalised action. The predicted state is then passed
back to the retrieval module in order to determine close
matches to it. The process, between the retrieval and
action prediction modules, is repeated for n time steps
into the future, the predicted state is then passed to an
agent upon the completion of this process. Once
predictions have been made the storage and forgetting
module updates the case libraries using a case
maintenance policy.

Case Maintenance

In order to guarantee the performance of our action
prediction case library, a case maintenance policy is
required. Too many cases in the library can
significantly slow down the system and lead to poor
prediction and generalisation (Kolodner 1993). In
addition deleting cases (or “forgetting”) is very

important when learning something as non-stationary
as human behaviour (Dinerstein et al. 2005). In
Dinersteins’ work the number of cases in a region of
the state space is fixed and cases are selected for
replacement based on their age and unimportance (i.e.
their similarity to a new case being added). This
approach is satisfactory, however limiting the number
of cases in a region of the state space can prevent the
system from learning behaviours and as stated above
having too many cases will reduce the prediction
quality and speed of the system.

Figure 1: High-level overview of the proposed system architecture

In order to keep the action prediction case library at
optimal performance we will use the following
procedure:

• If the closest library case to a query case exceeds a

predefined upper threshold the query case will be
added.

• If the closest library case to a query case is below a
lower threshold, the query case’s view (see next
section) will be compared to the library cases
view(s). If their views are dissimilar the associated
view and action of the query case is attached to the
library case, if they are similar the query case is
discarded.

• If the closest library case to a query case is in
between the lower and upper threshold (as
illustrated in Figure 2), all cases in this area will be
evaluated using a metric. The library case with the
lowest returned metric value will be removed and
the query case added. We formally define the case
replacement policy as follows:

(s,).a,s(with a)(s, all replacer then a) if ttM <

Where is a case in the case library,
is the query case and r is a predefined threshold
value. The metric M is defined as follows:

a)(s,)a,s(tt

 useful. ||)a,(s a),(s, age a)(s, t ×+×+×−= δβα t||M

17

This replacement metric is based on Dinerstein et al.
(2005) approach; however we have also incorporated
“usefulness”, which defines how often the case has
been used in prediction. A case which is used more
often will more likely be retained in the case library.
For example the simple usefulness metric:

 could be implemented.
The time since the case was last used in prediction
could also be taken into account.

 used times age useful ÷=

CASE STORAGE AND RETRIEVAL

Incremental case-based techniques are used in our
proposed system (Hartley et al. 2005) to model an
observed entity. State-action pairs are treated as cases
and stored in a case library. States and actions are made
up of n-dimensional feature vectors. We have proposed
a dual state representation, consisting of primary and
secondary state definitions. The primary state space is
relatively compact and is used for the main searching
and indexing of the system. Additional (or secondary)
state information is stored in environment views that
correspond to specific primary states and is used to
provide a more comprehensive match of states stored in
the case library to query states. As cases are observed a
case maintenance policy (See previous section) is used
to determine if a case will be stored in the library.

The case library is used in the action adaptation layer to
predict an observed entity. Prediction is achieved
through the nearest neighbour (Mitchell 1997)
algorithm, which determines close matching library
cases to a query case. A states associated action is then
used to predict an observed entity’s action. A naive
nearest neighbour algorithm could be used for
prediction, where every instance in the case-base is
examined. However this approach is only suitable for
small case bases as it has a time complexity of O(N),
where N is the size of the case base. Spatial access
methods are used to structure the case base more
efficiently, in order to avoid examining every case in
the library and improve retrieval times.

ADAPTIVE K-D TREES

One of the most well-known main memory d-
dimensional data structures is the k-d tree (Bentley

1975). The idea behind k-d trees is to partition the state
space into disjoint regions by means of iso-oriented
hyperplanes that pass through at least one data point.
The direction of the hyperplane alternates between
dimensions (attributes) at each level of the hierarchy
and acts as a discriminator. The data points represent
nodes in the tree (Gaede and G¨unther 1998).

k-d trees have a number of disadvantages in that they
are unbalanced, sensitive to the order in which points
are added and data is scattered throughout the tree
(Gaede and G¨unther 1998). The adaptive k-d tree
(Bentley and Friedman 1979) overcomes these
deficiencies by choosing a split point that divides data
into about equally populated partitions. The splitting
hyperplanes are still parallel to axes, but they need not
contain a data point and their directions do not have to
strictly alternate (Gaede and G¨unther 1998). Interior
nodes of the tree contain the dimension and the
position of the split. Data is stored in terminal / leaf
nodes. A leaf can contain a list of points, usually up to
a fixed number. Figure 3 illustrates an example
adaptive k-d tree for a 2-dimensional state space, with a
maximum leaf node size of 1.

Figure 2: A lower and upper threshold for a 2 dimensional
case base. q1 is the query case and c1 to c3 are library cases

The adaptive k-d tree is a rather static structure, which
is difficult to keep balanced when faced with regular
insertions and deletions (Gaede and G¨unther 1998).
However there are a number of techniques, which can
be used to mitigate / overcome these limitations.

Figure 3: Adaptive k-d Tree

BASIC CONCEPTS OF OUR APPROACH

The idea behind our solution for fast case retrieval is a
tree structure that partitions the state space into disjoint
cells with each leaf encompassing a region of the

18

space. Leafs (or buckets) are of fixed size and store
cases that are contained within its region.
Decomposition will be achieved through point based
adaptive k-d trees, which are built online as cases are
stored. The split dimension of the tree will be rotated
(i.e. x, y, z, x…) and the split position can be chosen
locally optimal (i.e. optimal to the cases in the bucket
to be split) or independently of the data.

This type of data structure is called semi-dynamic as it
allows weak insertions and/or deletions. Weak updates
can be viewed as updates that do disturb the balance of
the tree, but not too drastically (Overmars 1981). Semi-
dynamic data structures can be transformed into
dynamic ones by building a new structure as the old
one degrades. This process is referred to as
dynamization (Overmars and Leeuwen 1981). The idea
is that neither insertions nor deletions actually need to
restore the “balance” of a data structure immediately,
as long as the structure remains “in reasonable shape”
(Overmars and Leeuwen 1981). Since our case
maintenance policy replaces cases within a region of
the state space, rather than making arbitrary deletions
our system fits well with this idea.

CONSTRUCTION OF THE K-D TREE

In this section we discuss our tree approach in more
detail and explain the process involved in inserting a
new case. Since our adaptive k-d tree is built online and
faces regular updates we need a fast approach that
keeps the tree relatively balanced. We opted to build
the tree as cases are added, using a construction
technique that is akin to LSD-Trees (Henrich et al.
1989). Inserting a case involves traversing the tree to
find the bucket, which corresponds to the region of the
state space that encompasses the new case. The case is
then added to that bucket. After a number of insertions
a bucket reaches its limit and a new insertion results in
it being split, which divides its region into two sub
regions. Initially one bucket corresponds to the entire
state space. When a split occurs a bucket changes into

an internal node and generates two child buckets that
store its cases, according to a split strategy. The new
internal node contains the dimension and position of
the split.

The split strategy involves selecting a split position and
location. In general two categories of split strategies
can be distinguished (Henrich et al. 1989). Data
dependant split strategies depend on the case stored in
the structure, for example using the median cut along a
dimension with the widest distribution of cases.
Distribution dependant split strategies choose the split
position independently of data. For example a uniform
case distribution could be assumed and a buckets
region could be split into equal sizes (Henrich et al.
1989).

To reduce processing requirements we use the
traditional approach of rotating around the split
dimension (i.e. x, y, z, x, …), however selecting a split
location is more complicated. Data dependant strategies
can result in a skewed tree if data is inserted in pre-
sorted order (Henrich 1996). Whereas distribution
dependant split strategies require a hypothesis of the
data distribution to be formulated prior to the tree being
built (Henrich 1996). Since cases in our proposed
system are observed online, based on an agents relative
position to an observed entity, it is difficult to
accurately determine data distribution before hand. In
addition as cases in our proposed system are sequences
of relative positions they will appear in a geometric
order, rather than randomly. As a result we have used a
hybrid split strategy, which attempts to combine the
best of both approaches by adapting the choice of split
location to avoid degradation of the data structure.

Limited Redistribution

We implemented a hybrid split strategy called limited
redistribution (Henrich 1996), which works as follows.
If a bucket cannot accept another case we attempt to
redistribute a case from the bucket to its sibling (I.e. the

Figure 4: Case Redistribution
19

other child of the bucket’s parent node), rather than
splitting the bucket. If the sibling bucket can
accommodate the new case without splitting, a local
redistribution is performed, which shifts the case that is
closest to the split line from the bucket into its sibling
and adjusts the split line in its parent node (Henrich
1996). Figure 4 illustrates this process.

By using this approach the originally set split line can
only be considered preliminary, since it is adjusted as
cases are added. A consequence of this is that the data
structure becomes sensitive to the insertion of presorted
cases (Henrich 1996). Therefore Henrich (1996)
suggests stopping redistribution for those paths that are
in danger of degrading due to presorted insertions. He
formally defines this process as follows. Let β denote
the number of buckets in the k-d tree and let l denote
the length of the path from the root node to the bucket.
Limited redistribution is only performed if 3 < l – log2
β. Redistribution is therefore only performed when the
path from the root node to the bucket being split is
short enough (i.e. considered to be balanced, based on
the number of buckets in the structure).

OPTIMAL TREES:
A FULLY DYNAMIC K-D TREE

As discussed above the drawback to our construction
method is that it only supports weak updates. In order
to stop the tree degrading drastically we developed an
optimisation routine, which rebuilds a balanced tree
online. To this end, we based our design on
dynamization work by Overmars (1981) and Overmars
and Leeuwen (1981). Overmars (1981) developed a
dynamization scheme that transformed semi-dynamic
data structures into dynamic ones by maintaining
multiple static structures. They demonstrate that a new
structure can be constructed and take over from the old
one in a set number of updates, if enough processing
time is available.

Our k-d tree dynamization process works as follows.
The case base at most consists of 2 structures, OLD-
MAIN and MAIN, however normally only MAIN
exists (Overmars 1981). As updates occur the tree
slowly becomes imbalanced. When the number of
insertions and deletions become half the structures
initial size we check if l – log2 β > 3, where l is the
longest path length in the tree. When this becomes true,
MAIN is made into OLD-MAIN and a new MAIN is
started. At this point we assume MAIN had n0 cases
and that the new MAIN can take over from OLD-
MAIN in λn0 updates, where λ is some factor, which in
this case should be less than half the size of the initial
case-base (λ < ½ n0). Otherwise the structure may need
to be rebalanced before it is rebuilt. In addition we have
added the check l – log2 β > 3, so that the tree is only

rebuilt when the current structure is actually out of
balance. Overmars (1981) assumes the tree will need
rebuilding when the number of updates reaches half its
initial size, however this may not always be the case.

Building the new MAIN consists of two steps, building
the tree and inserting buffered updates. For this process
we use the following notation, where S is a structure
containing n points (Overmars 1981). IS(n) is the time it
takes to perform a weak insertion, DS(n) is the time it
takes to perform a weak deletion and PS(n) = the time it
takes to build a tree.

Step 1. For some time we will do the following:
• Continue to update OLD-MAIN, so we have an up

to data structure.
• Spend IS(n0 + λn0) + PS(n0) / λn0 time building the

new tree with every insertion and DS(n0 + λn0) +
PS(n0) / λn0 time building the new tree with every
deletion.

• Store each update in a buffer BUF. The updates are
inserted into the new tree when it is built.

Step 2. For some more time, until BUF is empty we
shall do the following:
• Continue to update OLD-MAIN, so we have an up

to data structure.
• Spend IS(n0 + λn0) + PS(n0) / λn0 time processing

updates in BUF with every insertion and DS(n0 +
λn0) + PS(n0) / λn0 time processing updates in BUF
with every deletion.

• Store each update in BUF if it is not empty,
otherwise the update can be inserted in the new
MAIN.

Once step 2 is complete the new main can take over
from the old main, which is removed from memory.
This process shows us how much time we need to
spend building the data structure when an update
occurs. However additional time can be spent building
the tree when no updates are occurring. For example
when there are no observable entities in range.

Basic Procedure for Rebuilding the k-d Tree

The tree rebuilding process is similar to the incremental
building scheme outlined above. However rather than
using a hybrid split policy the median split position of
cases is found. The tree is rebuilt to a specified
maximum bucket utilisation. For example an 80%
bucket utilisation, where each bucket can store at most
10 cases would result in a data structure where each
bucket had a maximum of 8 cases. Specifying a less
than 100% bucket utilisations would reduce the impact
of buffered and new cases on the tree, however it
would increase the trees size and memory usage.

20

The basic recursive procedure for rebuilding the k-d
tree is described below. Initially the method,
BUILDKDTREE, is called to begin the process. This
function creates a root node containing all the cases in
the case base and calls a recursive algorithm,
OPTIMISEKDTREE, which performs the rebuild. Every
node within the tree represents a subset of the case base
and the root node represents the whole case base.

The algorithm described above uses two sub-
procedures NEXTDIMENSION and CREATENEWCHILD. The
NEXTDIMENSION procedure determines which dimension
should be used for the next split. In our system the
dimensions are rotated however, other approaches
(such as, the dimension with the widest distribution of
points (Henrich et al. 1989)) can be used. The
CREATENEWCHILD procedure generates a new instance
of a node according to the passed values.

The most time consuming part of the algorithm is
finding the median split position as it requires linear
time. The algorithm built time T(n) for a set of n points
is therefore:

⎭
⎬
⎫

⎩
⎨
⎧

>+
=

=
1 if /2]),2T([)O(

1 if),1(O
)(T

nnn
n

n

Hence a tree for a set of n points can be constructed in
O(n log n) time.

IMPLEMENTATION AND RESULTS

Our system is implemented in Java and follows closely
the design outline here and in Hartley et al. (2005).

Games agents are visualised in Quake 2 through the
QASE API (Gorman et al. 2005), as illustrated in
Figure 5. A detailed discussion of the full system
implementation is reserved for future work. Here our
experimentation focuses on evaluating the data
structure and its performance to determine its capability
for use in an online case based system such as ours.

Since the development of the data structure was
motivated by its ability to perform well online and
adapt to cases, it is essential to analyze its performance
in this area. Initial experiments focused on how our
algorithms scale and optimisation times.

Figure 5: The proposed online adaptation system connected
to Quake 2 through the QASE API (Gorman et al. 2005)

Table 1 outlines the relationship between the number of
cases in a case base and the build time that is required
to create a balance tree with the optimisation routine. A
visual representation of our tree structure is pictured in
Figure 6. Uniformly distributed 4-dimensional points
were for our experiments. The points were presorted
with respect to their distance to the point 0, 0. For all
experiments the average time of 3 builds was taken, the
maximum bucket capacity was set to 7 and the rebuild
bucket capacity was set to 100% (i.e. 7 cases). A 3.0
GHz Pentium 4 processor was used, with 512MB of
RAM.

Table 1: Build time to create a balanced tree. Where ms =

milliseconds.
21

The results in table 1 indicate that the build time for
5000 cases is relatively large, about 1.5 seconds. By
using the dynamization approach outlined in the
previous section this time can be spread over multiple
updates to the structure, thereby reducing its impact on
the system. However dynamization would not be
worthwhile when only a small number of cases exist
(i.e. less than 500) as the build time is very fast. In
addition our O(n log n) time construction analysis in
the pervious section matches the results in table 1 quite
closely.

The QASE API requires an agent to make a decision
every 100 milliseconds (i.e. 1 frame), however a case
would not need to be stored this often. Storing a case
every 500 milliseconds seems an appropriate approach.
If dynamization is used our initial results would appear
to fit well within this time scale, however further
implementation and analysis is required. For example
prediction time and its CPU usage also needs to be
taken into account.

CONCLUSIONS

In this paper we have proposed a case storage and
retrieval technique for our online prediction system. An
adaptive k-d tree based approach was developed, which
employs a hybrid split strategy to build trees online as
cases are observed. An optimisation technique was also
developed to rebuilds trees as they grow out of balance.
The approach offers better adaptation to the distribution
of cases than fixed partitioning, such as the technique
used in Dinerstein and Egbert (2005), as the data
structure built based on cases in the case base.

The initial experimental results show that the build
time of trees is relatively slow and cannot be done
every frame of a game loop. However when

incorporated with the dynamization technique outline
above this limitation is mitigated. Future work includes
fully implementing the online prediction system and
dynamization approach, including a more in-depth
evaluation.

REFERENCES

Bentley, J. (1975) Multidimensional Binary Search
Trees Used for Associative Searching,
Communications of the ACM, 18 (9), 509-517.

Bentley, J. and Friedman, J. (1979) Data Structures for
Range Searching, Computing Surveys, 11 (4), 397-409.

Dinerstein, J. and Egbert, P. (2005) Fast multi-level
adaptation for interactive autonomous characters. ACM
Trans. Graph. 24, 2 (Apr. 2005), 262-288.

Fagan, M. and Cunningham, P. (2003) Case-based
recognition in computer games. Technical Report
TCD-CS-2003-01 Trinity College Dublin Computer
Science Department.

Fairclough C., Fagan, M., MacNamee, B. and
Cunningham, P. (2001) Research Directions for AI in
Computer Games. Technical report, Trinity College
Dublin, 2001

Gaede, V. and G¨unther, O. (1998) Multidimensional
access methods. ACM Computing Surveys, 30(2):170–
231, 1998.

Gorman, B., Fredriksson, M., and Humphrys, M.
(2005) QASE - An integrated API for imitation and
general AI research in commercial computer games. In
Proceedings of 7th International conference on
Computer games: Artificial intelligence, animation,
mobile, educational, and serious games (CGAMES),
Angoulême, France.

Figure 6: A visual representation of our k-d tree.

Hartley, T., Mehdi, Q. and Gough N. (2005) "Online
Learning from Observation for Interactive Computer
Games", 6th International Conference on Computer
Games: AI and Mobile Systems CGAIMS 2005, July,
Louisville, Kentucky, USA.

Henrich (1996) "A Hybrid Split Strategy For k-d-Tree
Based Access Structures." 4th ACM Workshop on
Advances in GIS. New York: ACM Press, 1996. 1-8.

Henrich, A., Six, H. and Widmayer, P. (1989) The LSD
tree: Spatial access to multidimensional point and non-
point data. In P. M. G. Apers and G. Wiederhold,
editors, Proceedings of the 15th International
Conference on Very Large Data Bases, pages 45–53,
Amsterdam, The Netherlands, August 1989.

22

Kerkez, B. and Cox, M. (2001) Incremental Case-
Based Plan Recognition Using State Indices, Cased-
based Reasoning Research and Development:
Proceedings of 4th International Conference on Case-
Based Reasoning (ICCBR 2001), Aha, D.W., Watson,
I., Yang, Q. eds., pp. 291-305, Springer-Verlag, 2001.

Lent, M. and Laird, J (2001) Learning procedural
knowledge through observation. In: International
conference on Knowledge capture, Victoria, British
Columbia, Canada, ACM Press (2001) 179–186.

Mao, W. and Gratch, J. (2004) Decision-Theoretic
Approach to Plan Recognition, ICT Technical Report
ICT-TR-01-2004.

Mitchell, T. (1997) Machine Learning. McGraw-Hill.

Overmars, M. (1981) Transforming semi-dynamic data
structures into dynamic structures. Technical Report
RUU-CS-81-10 Institute of Information and
Computing Sciences, Utrecht University.

Overmars M. and Leeuwen J. (1981) Worst-case
optimal insertion and deletion methods for
decomposable searching problems. Inform. Process.
Lett., 12(4):168-173, 1981.

Spronck P., Sprinkhuizen-Kuyper I. and Postma E.
(2003). Online Adaptation of Game Opponent AI in
Simulation and in Practice. GAME-ON 2003 4th
International Conference on Intelligent Games and
Simulation (eds. Quasim Medhi, Norman Gough and
Stephane Natkin), pp. 93-100.

23

AI-TEM: TESTING AI IN COMMERCIAL GAME WITH EMULATOR

Worapoj Thunputtarakul and Vishnu Kotrajaras
Department of Computer Engineering

Chulalongkorn University, Bangkok, Thailand
E-mail: worapoj.t@student.chula.ac.th, vishnu@cp.eng.chula.ac.th

KEYWORDS
Testbed , Artificial Intelligence, Commercial Game.

ABSTRACT
Many artificial intelligence (AI) game researchers find that it
is difficult to find a game environment that they can
appropriately test their AI on. They usually have to develop
parts of an existing game, using tools that come with the
game. Some even have to re-write their testing game from
scratch. Finding a perfect game environment that one can
use to test his AI is not easy, especially if a commercial-
quality game is required. Huge amount of time and effort are
lost in finding such ideal testbed. This paper presents AI-
TEM environment, a testing environment for testing AI by
using console game emulator and its ROM data to simulate
and run a commercial game. AI-TEM can be used to plug
many AI onto many commercial games. Researchers
interested in higher-level abstractions of game AI can test
their already developed AI algorithm on a commercial game.
We believe that AI-TEM adds a wider range of possibilities
to AI testing.

1 INTRODUCTION
Research and developments related to computer games have
always focused on graphical technology. However, players
have begun to demand for more playability. Recent games
have incorporated smart AI into their gameplay and became
very successful because of that. Therefore, research in AI is
important for the game industry. On the other hand, games
provide interesting testing environments for AI researchers.
 One problem faced by many researchers is to find or
develop a proper game environment to use in their AI testing
(Graepel et al 2004, Kendall and Spoerer 2004, Ponsen et al
2005). A game that should be used to test AI should have the
following qualities: It should be a game that has many ways
to play, many ways to win, and the game should be complex
enough to separate expert players from novice players. It
should be a commercial quality game. Because if
researcher's AI can win against its initial game AI, then
researchers can claim that the newly developed AI truly has
enough quality and efficiency to use in commercial game
(Spronck et al 2004).
 There are testbeds developed for testing AI (Aha and
Molineaux 2004, Bailey and Katchabaw 2005), but many of
them do not come with a complete game ready to be used.
Researchers will have to find a game or game engine to
integrate with it. Large amount of time may be used.
 This paper proposes another way to test game AI in an
environment that has been well made and well designed,
called AI-TEM (AI-Testbed in EMulator). AI-TEM uses an

emulator of Game Boy Advance (GBA), developed to test
many AI methods.
 In this paper, an emulator means a game console/handheld
emulator that simulates the working of game
console/handheld hardware such as GBA, PlayStation, and
arcade machine on any personal computer. There are many
emulators of console/handheld game hardware.
VisualboyAdvance (VBA) (VisualboyAdvance 2005) and
VisualboyAdvance Link (VBA Link) (VisualboyAdvance
Link 2005) are GBA emulators. ePSXe is a PlayStation
emulator. Even arcade machines have MAME as their
emulators.
 ROM (Read Only Memory) is the game data dumped
from the original game cartridge or disc. Using a game ROM
with its emulator, a game can be simulated and played on
PC.
 We used GBA emulator, VisualboyAdvance, for
developing a prototype of AI-TEM. And we used Street
Fighter Zero 3 (STZ3) game ROM as our test ROM, so that
we could experiment and write additional tools for a real
example. VBA is open-source, therefore we can modify its
functions. There are many interesting games on GBA that
can be used to test AI. VBA also has plenty of resources,
technical documents and support tools provided for us. The
VBA Link is an extended version of VBA. The VBA Link
team modifies original source code to make linkage possible.
In this paper we will call both VBA and VBA Link as VBA.
 STZ3 is a fighting game. In this type of game, a player
must select one character from many characters, and fight
one by one with an opponent character. A player must
decide what action he will perform in many different
situations based on his character and opponent character's
status. Therefore, we believe this is a good game for tuning
our testbed and for AI research.

2 AI-TEM FRAMEWORK
The concept of AI-TEM is generally simple but there is
some low-level work involved. Researcher's AI may need to
know game state data, such as object position or character
animation, but it cannot access the source code of the game.
The AI can only access the source code of the emulator. So
we must get the game state data from memory data the
emulator is emulating. We can see only a binary
(hexadecimal) value of game data that changes in every
cycle of a game execution. We must therefore find out which
address stores the value that we are interested in such as
position, animation, etc. We will use values in those
addresses as game state data for AI testing. When we know
the game state, AI can be written to react in each situation,
by sending a controller input, or forcing memory address
value. Using this concept, we can use AI-TEM as an AI
testing tool.

 24

 Finding each address that stores those game state data is
difficult if done manually. Some values can be found easily,
while some are rather hard to find. User should have some
knowledge about programming in order to be able to identify
address more successfully. Some examples of how to find
the address of game data are demonstrated below.
 Example 1: Finding address of character’s health. Starting
by identifying all the values used in the game. Then the
game is played and the character’s health is forced to
decrease. The value that represents the character's health
should in fact decrease too. All game values are then
searched and compared with values before the health
decreases. It is common to find many values decreasing. The
process should be repeated, with different values of health,
until one address is identified.
 Example 2: Character's bullet position. The concept is the
same as the character's health example. When a bullet moves
forward, its position value should increase continuously. But
the time period that the bullet is alive is very short.
Therefore, repeating the experiment as many times as one
wants becomes difficult. If users must press a command
every time that they want to find a value, it will not be
convenient. A tool that can arrange this situation is needed,
such as movie recorder (section 3.0).
 We had developed some tools to help finding the address
more easily and will describe it in section 3.0 below. There
are other techniques to find values that we will not discuss in
this paper.
 Therefore, in the beginning phase of using AI-TEM, the
user must find the address of game state data that their AI
module needs to know. AI-TEM is depicted in figure 1 and
2, and discussed in more detail in the sections below.

Figure 1: AI-TEM system overview.

2.1 Emulator Core (VBA)

The core of this testbed is VBA (Link) emulator. It is used to
run game ROM and simulate the game. It also has many
tools useful for getting game state and testing AI. These
tools will be described in section 3.1.

2.2 Menu Control

We add a menu into the emulator to control the working of
AI-TEM, to turn on/off AI module or switch between
different AI modules. We can also activate other utilities that
the system may want to use.

2.3 Game State Observer

A game state can be known by observing data on the
memory address of the emulator and locating which address

stores the data that we want to know. (In STZ3, game states
that we are interested in consist of position of a character,
position of the character’s bullet, the character's health, and
current animation of the character.) We implemented this
module by modifying the memory viewer tools of VBA.
Users can identify addresses and size of data (8, 16, 32 bits)
that they are interested in. When AI-TEM is running, in
every frame, Game State Observer will copy the values from
those addresses to the data structure that an AI module can
use.

2.4 Game State Normalizer

Before Game State Observer sends game state data to AI
module's data structure, the game state data must be
normalized or interpreted, depending on the game and
format of data that we obtain from the memory. Example:
For STZ3, we use address 0x20007C2 (16bits) as the
address that stores the character 1P position in the X axis.
The range of value that we got from that address is 44
(002C) to 620 (026C), 576 units. But when using it, we
should normalize x position value to 0 - 576 for user
friendliness. Therefore, we must subtract 44 from the value
copied from the memory of the emulator. This normalization
process is not necessary if researchers do not care about the
format of raw data from the memory. We currently provide
this module as a code template for users to modify.

Figure 2: Work flow diagram of AI-TEM system.

2.5 AI

This module is where a user of AI-TEM will put his AI
module in. In every cycle of emulation, the emulator will
execute this module. This module evaluates the game data
and decides what controller input it will send to the
controller module. There is enough of VBA CPU power for
calculating non-intensive work, such as script (Dynamic
script (Spronck et al 2004), Genetic Programming result
script, etc.). With extension, other AI methodologies can
also be added. In our experiment with the system, we write
two static scripts for testing the use of AI-TEM. The detail
and result of this script will be shown below in section 4.1.

2.6 Python Script Interface

Python (Python 2006) is an interpreted, interactive, object-
oriented programming language. It is also usable as an
extension language for applications that need a
programmable interface. Python is portable: it runs on many

 25

OS such as Windows and Linux. It is one of the most
famous script languages used in many applications.
 We modified the emulator to have an ability to use python
script language, providing interface functions for a script
writer to obtain game state data and to control the game via
any AI module. A script writer can write their python script
separately without running the emulator, and can change
script without recompiling AI-TEM. This will benefit users
who want to test their AI with static script. If researchers can
generate AI output in python script format, it can be tested
conveniently without the need of rerunning the game.
Example of an interface function used in the testing of STZ3
is shown below.
int GetCharacterPositionX (int C)
int PressButton(int button)

 The first function will return a position in the x axis of
character C. The second function will send a parameter
'button' to the Input Controller module. It allows a python
script to command character. Below is the example of
python script that uses those interface functions.
import myLib
def Main_AI_Run_Loop():
if (myLib.GetCharacterPositionX(P2) <10)
{
 return myLib.PressButton(PRESS_B)
}
return 0

myLib is a library of interface functions that we provide
from AI-TEM, it allows user of python script to use function
GetCharacterPositionX and PressButton. This
script results in character kicking (press B) when its
opponent comes closer than a specified threshold.

2.7 Input Controller

The original VBA captures signals from joystick or
keyboard and send them as input to a game. We modified the
system so that our AI module can replace input signals from
normal controller with its own signals.

Figure 3: Usage of tools in AI-TEM system.

3 AI-TEM UTILITY TOOLS
Other than modules described in section 2.0, AI-TEM has
other utility tools that can help in many tasks. Some of them
are original VBA tools that we use in our testbed. Some are

modified tools we made for our own use. The working of
these tools is shown in figure 3 and described below.

3.1 VBA Tools

These are original VBA tools that we had used in AI-TEM.
 Memory Viewer: used for displaying content of every
memory data address in a variety of formats, 8, 16, 32 bits,
sign, unsigned and hexadecimal. Our Game State Observer
is modified from this tool.
 Cheat Search: this tool is originally used for finding an
address of data that we want to find, by searching all of
memory and finding a value that matches a condition given
by user. For example, users can use it to find a value in the
address that is equal, greater or less than some specific
value. In AI-TEM, this tool is used to help in finding address
that Game State Observer will observe.
 Movie Recorder: this tool can record game movie in two
formats. VMV format will record only initial game state and
inputs given by controller. It has a very small file but can
playback only in emulator. AVI can playback in many movie
player programs but its file is larger and uses a lot of CPU
power. Movie recorder can help in a data collection process
(section 3.2) and can help recording the testing output or
debugging.
 Save/Load State: When running a game in the emulator,
the game state can be saved and reloaded to continue to play
at the same point where it was saved. This ability is useful
when researchers want to test decision conditions of their
AI. They can save game state before their AI makes decision
and can reload it to try another decision in perfectly the same
situation.

3.2 Modified Tools

Memory compare tool: As said in section 2.0, finding
address of value that AI module needs to know is difficult.
Therefore, we modified the original VBA tools to be
Memory compare tool. This tool will help in finding an
address of data, by comparing many game states data, given
a condition of data that users are seeking. Example: A user
wants to find the address of character's health in STZ3. He
will dump game states of various situations from the
emulator. We define the game state of situation N as GSn.
GS1: character's health is 100%.
GS2: character's health is 50%.
GS3: character's health is 75%.

The user will set conditions of the value he wants to find. In
this case, a health value address will have conditions as
follows: The value in our required address from state GS1
must be greater than the value from state GS2. The value in
our required address from state GS2 must be less than the
value from state GS3. And the value in our required address
from state GS3 must be less than the value from state GS1.
This tool will compare every data in those game states and
find the address that matches all user-given conditions
automatically, without any need to run the original cheat
search (The cheat search tool requires users to repeatedly
experiment and find any address manually.). If users provide
enough game states and proper conditions, finding a
required address should be straightforward. We believe this
tool can save a great deal of time finding those values.

 26

 Automatic Data Collector: There are some situations that
we want to collect a lot of data from game state. It is difficult
to collect them manually. Example: In order to imitate
human reaction and decide its next response, an AI module
must know the animation of both characters. For example, if
an opponent character is going to punch, our character must
detect the opponent's movement and perform a guard. After
knowing the address that stores values of character
animation, we need to find out which value in that address
corresponds to which animation. (for example, 0 means
stand, 72 means crouch, 124 means jumping) Therefore, we
need some tools to help collecting game data (character
animation data).
 In STZ3, we modified the original VBA function that was
used for forcing values of addresses (Cheat function) to be a
tool for helping us to collect animation data. By writing a
value from the start animation value to the end of animation
value, we forced each character to do all of its actions. We
captured the character’s image of each action and saved it
with its animation value as its file name. We then knew the
animation value for each of a character’s action. Human
intervention was needed to identify the meaning of each
action. An animation database was then produced.

4 EXAMPLE EXPERIMENT IN STZ3
This section will discuss the result of using AI-TEM with
STZ3 ROM to create a simple, static script AI. Table 1
contains the addresses of STZ3 game state data that we
know by the method discussed in section 2.0. Table 2
contains some character animations from a character named
RYU, which we collected after normalization, by using stand
animation as a basis. (Each animation is composed of many
frames, so there are many values in each animation. Figure 4
shows some pictures of animations from table 2.

Table 1: Example address of STZ3 game state data.

Game State Data Address Data Size
character 1 position x axis 0x20007C2 16 bits
character 1 position y axis 0x20007C4 16 bits
character 2 position x axis 0x20043D2 16 bits
character 2 position y axis 0x20043D4 16 bits
character 1 Animation 0x20007D0 32 bits
character 2 Animation 0x20043E0 32 bits

Table 2: Example of character (RYU) animation.

Animation Value
Stand 0, 12, 24, 36, 48, 60
Crouch 276, 288, 300, 312, 72, 228, 240, 252, 264
Jump 420, 432, 468, 480, 492, 504, 516, 528, 444, 456
Punch (Figure 4) 8484, 8496, 8508, 8520, 8532, 8544, 8556
Kick (Figure 4) 9096, 9108, 9120, 9132, 9144, 9156, 9168

4.1 AI Script Experiment

In order to test our AI module and python interface, we had
implemented a static script to control a character in STZ3.
Our test condition for our static script is the character RYU
VS RYU in versus mode. This static script also allows us to
test our AI in a controlled situation. We implemented a static
script for character RYU. Our 1P’s RYU can detect states of
original game AI 2P’s RYU.

 Our first version of the script just randomly performs
action. The result was not as bad as we originally believed.
Even though it had no intelligence, it performed action
continuously and was able to beat the original game AI at
the easiest level. We improved our script in many aspects,
using animation data that we collected. Our static AI can
now sense distance between characters. We also script it not
to use special moves often, since special moves leave
characters defenseless. More combination attacks were also
added. We obtain a better result, as expected. Our static AI
can now beat the original game AI in middle level.
 This experiment convinced us that AI can make use of the
game state and animation of the opponent by using data in
section 4. We also have a fully working python interface
ready for creating future controlled situation.

Figure 4: Example pictures of animation values.

5 DISCUSSION
5.1 Outline steps of Using AI-TEM

Researchers must first find a game that is suitable for testing
their AI method or matches their experimental plan.
 Researchers then identify the game states data that their
AI module needs to know. In normal AI method, such as
scripting, an AI module needs to know only current
situations of the game. But in some AI method such as some
type of Reinforcement Learning, it needs to know a
complete set of actions that the agent can perform in every
situation.
 After that, they must find the address of game state data
that their AI needs to know.
 After the addresses are found, data must be collected from
those addresses and translated into a form that the AI can
understand.
 Finally, AI can be implemented. This topic will be
discussed in more detail in section 5.2.

5.2 Which AI method can AI-TEM be used with?

AI-TEM does not limit AI methods that it can be used with,
because its concept is only using an emulator as game
engine. Some AI methodology, however, requires extra
functions. For example, using Genetic Algorithm requires
running tests large amount of times, may be hundreds or
thousands generation. Therefore, automatic result recorder is
needed. High speed running mode will also be an additional
welcome, for it can save time to train AI.
 High speed mode is already available in VBA and many
other emulators. Not all games may allow us to provide
automatic running mode. This is because, if we cannot find
memory data address that tells us about the beginning and

 27

the end of the game, we cannot force the situation. But in
general, automatic result collection can be done. Therefore,
various AI techniques can be used.

5.3 What kind of Game/AI-Subject should use AI-TEM?

If researchers are interested in first person shooter, real-time
strategies or D&D-style RPG game, there are games that
come with tools. Good testing environment for such games
can be built with such tools. Also, there are very few of
these games on consoles. AI-TEM may not be the first
choice for testing such games. If researchers are interested in
simple platform action game, writing a game from scratch or
finding some open source clone game is not a bad choice
because all environments of the game can be fully
controlled. However, developing games, from tools provided
by a game, or from an open source clone cannot easily get us
commercial-quality game. This is where AI-TEM can come
in. AI-TEM can be used to test an AI developed on a simple,
but fully controllable environment, against real commercial
game. In the case of racing game, it is difficult to know
game state data such as opponent car position and the track
situation. As a result, AI-TEM will not be appropriate. For
fighting game, we think that using AI-TEM is suitable,
because this type of game is rather difficult to make and
even more difficult to make it as good as commercial game.
Therefore, we think the tradeoff in the case of fighting game
is worthwhile. For sport game, we think that it is still
suitable to use AI-TEM, because of the same reason as
fighting game. Even though there may be many game states
that an AI module needs to know, finding them may be
easier than creating a high quality sport game from scratch.
Some AI researchers use Robocup simulation league to be a
testbed for their football AI research (Sean Luke 1997).
However, Robocup simulation league rules are still not the
same as real football rules.
 For other types of games/AI-subjects, researchers have to
consider the same factors as in this section.

5.4 The Limitation of using VBA in AI-TEM

To play a multiplayer mode in VBA (Link), two or more
instances of emulators have to be used. Controlling many
emulators at the same time while testing is not very
convenient. It will be better if the second instance can run in
the screen-off mode, in order to save CPU power.
 Sometimes two connected emulators do not synchronize.
This may damage the automatic module in long run.
Detecting game state of both VBAs becomes necessary. We
can then reload the game again if they do not synchronize.
 Although there are some inconveniences, AI-TEM
generally works well in our experiment. The emulator can be
fixed to tackle the problem.

6 CONCLUSION AND FUTURE WORK
Our work provides an environment for testing AI on a wider
range of commercial-quality games. Our experiment shows
that, with appropriate game ROM, AI-TEM meets the three
requirements in section 1 (test with a commercial-quality
game, the game should not be too simple and there are many
ways to play the game). Researchers can use AI-TEM to test
their AI against the game's original AI or against a human
opponent. Emulator players form huge communities,

therefore many players can help with AI testing. AI
developed by researchers can also be tested against AI
running on script. A well designed script can help an
evolutionary or learning AI improve in an appropriate
direction. Although the GBA is not as powerful as next
generation hardware, many games on GBA are regarded as
classics and have been re-released on several new platforms.
Therefore, AI-TEM is very much viable as testing
environment for commercial-quality games. And the
framework of AI-TEM should be adapted to more emulators
in the future.
 We plan to improve the implementation of the system and
its associated tools. To provide a package for AI research in
the future, we plan to collect the animation data of all
characters in STZ3. We also want to build a cooperative AI
for sport games using our testbed. The game WORLD
SOCCER Winning Eleven is a perfect candidate ROM for
the task. We also have plans to use another emulator with
AI-TEM, such as MAME or ePSXe, in order to access more
types of games. Multiplayer games can be run on MAME
and ePSXe without synchronization or performance
problems because only a single instance of emulator is
needed.

REFERENCES

 Aha, D.W., & Molineaux, M. 2004. Integrating learning
in interactive gaming simulators. Challenges of Game AI:
Proceedings of the AAAI'04 Workshop (Technical Report
WS-04-04). San Jose, CA: AAAI Press
 Bailey, C. and M. J. Katchabaw. 2005. An Experimental
Testbed to Enable Auto-Dynamic Difficulty in Modern
Video Games. Proceedings of the 2005 GameOn North
America Conference. Montreal, Canada.
 Graepel Thore, Ralf Herbrich, Julian Gold. 2004.
Learning to fight. International Conference on Computer
Games: Artificial Intelligence, Design and Education.
 Kendall Graham, Kristian Spoerer. 2004. Scripting the
Game of Lemmings with a Genetic Algorithm. Proceedings
of the 2004 Congress on Evolutionary Computation, IEEE
Press, Piscataway, NJ, pp.117-124
 Ponsen Marc J.V., Hector Munoz-Avila, Pieter Spronck,
and David W. Aha. 2005. Automatically Acquiring Domain
Knowledge For Adaptive Game AI Using Evolutionary
Learning. Proceedings The Twentieth National Conference
on Artificial Intelligence.
 Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson,
James Hendler. 1997. Co-Evolving Soccer Softbot Team
Coordination with Genetic Programming. First International
Workshop on RoboCup, at the International Joint
Conference on Artificial Intelligence.
 Spronck Pieter, Ida Sprinkhuizen-Juyper, Eric Postma.
2004. Online Adaptation Of Game Opponent AI With
Dynamic Scripting. International Journal of Intelligent
Games and Simulation, Vol. 3, No. 1, University of
Wolverhampton and EUROSIS, pp.45-53.
 Python (2006). Python Language
http://www.python.org
 VisualboyAdvance. (2005). GBA Emulator
http://vba.ngemu.com
 VisualboyAdvance Link. (2005). GBA Emulator
http://vbalink.wz.cz/index.htm

 28

http://www.python.org/
http://vba.ngemu.com/
http://vbalink.wz.cz/index.htm

ARTIFIST: ARTIFICIAL INTELLIGENCE FRAMEWORK FOR INTERACTIVE

STORYTELLING

Minna Ruuska and Antti Virtanen
Department of Computer Science

Tampere University of Technology
Korkeakoulunkatu 10, 33720 Tampere,

Finland
E-mail: minna.ruuska@tut.fi, antti.virtanen@tut.fi

KEYWORDS
Interactive Storytelling, Artificial Intelligence,
Computer Games, Multiagent Systems

ABSTRACT

In this paper we present an interactive storytelling
framework suitable for games, where the story line
is composed of actions made by multiple agents.
The agents are given rules of conduct by
constructing probabilistic decision trees and
graphs. The agents choose their actions
simultaneously using the trees, the graphs, and
their individual knowledge bases. The
probabilistic nature of the reasoning algorithm
enables creation of life-like, believable agents that
act logically most of the time, but may
occasionally do something surprising. This should
help maintaining the interest of players even after
multiple sessions, since the story line changes over
sessions.

INTRODUCTION

Recently, AI has become a major selling point of
computer games. New games, such as Oblivion
(Oblivion) and Mass Effect (Mass Effect), have
been advertised for having non-player characters
(NPC) that can act independently and do all the
same things the player can. This approach creates
games, where the story line is composed of the
choices made by the characters rather than being
fixed. Creating such AI is far from simple,
especially, if one wants AI characters to be
capable of more than plain shooting and fighting.
Moreover, many issues in such AI generalize over
a number of games creating a need for an AI
middleware.

Several different approaches have been used for
creating multiagent interactive storytelling
environments. For instance, (Young and Riedl)
have used hierarchical partial order causal link
planning algorithm, (Cavazza et al) have used
hierarchical task network planning, and (Mateas
and Stern) have used the reactive-planning
language ABL added with dramatic beats.
However, the idea of planning as a primary
reasoning system has a few problems. First of all,
most of the time, we humans do not make
decisions by carefully pondering the consequences
of each action. In most cases we just do what we
feel like doing or what we are used to doing.
Another problem is efficiency. As the number of
goals increases, finding the optimal action takes a
lot of computing time. The human players also
constantly change the game world forcing
recalculation of plans. In most games the goal is to
make the characters seem human rather than
rational, and efficiency is a paramount concern.
Therefore, planning is not necessarily the best
computing model for game AI.

Our vision of game AI relates strongly to
improvisation theatre. Imagine a group of actors
who are to present an improvised play at a
renaissance fair. They are given a topic for the
play and a set of phrases and actions typical to the
time period. The characters and relationships
between them are settled, and the play may begin.
From these premises even the same group of
actors may create different plots and develop the
play differently. The major goal is to create an
entertaining and believable story. In our system,
ARTIFIST (Artificial Intelligence Framework for
Interactive Storytelling), players and NPCs are like
actors, improvising based on the initial situation
and rules of conduct defined by the game designer.
Each choice of action for NPCs is based on the

29

agent’s personal characteristics and its view of the
world. Since the choices are not deterministic and
the player can affect the story by choosing his
actions, each playing session is unique. The vision
behind Chris Crawford’s Storytron (Storytron)
engine is somewhat similar and some parts of it
bear close resemblance to ARTIFIST. However,
the ultimate goal of Storytron is to generate rich
interactive stories rather than actual playable
games.

SYSTEM DESCRIPTION

ARTIFIST consists of three main components:
agents and background processes that are run in
the scheduler of ARTIFIST, probabilistic decision
trees, and an action graph (Figure 1). The game
can have several types of agents (e.g. humans,
dogs, cats, policemen, thieves) that can be
inherited from each other. Agent types differ from
each other in the structure of their knowledge base
and decision trees they use. The agents of the same
type differ in the contents of the knowledge base,
possessions (money, armour etc.), and personal
characteristics (i.e. honesty, aggressiveness). Each
agent is handled by the algorithm which runs as a
thread in the scheduler of the AI engine (Figure 2).
The algorithm itself is the same for all agents, but
the knowledge base and the decision trees are
different.

Initiative Actions

Initiative actions are chosen using probabilistic
decision trees. They consist of condition nodes and
leaf nodes. Leaf nodes are either initiative actions
or subtrees. Figure 3 presents a small example of a
subtree. The same branch can appear in several
different trees as well as several times in the same
tree. Thus, a decision tree structure is not really a
tree in mathematical sense but rather an acyclic
directed graph.

Actions are obtained by calculating a path from
the root node to a leaf node which is an action
node. On each condition node, the branch is
selected by evaluating child nodes and making a
probabilistic choice amongst them. This
probabilistic approach neatly creates agents that
usually take the obvious action for a given
situation, but may occasionally do something less
apparent. Search for new initiative action is started

Agents

Background
processes

Decision tree

Action graph

OGRE

CEGUI

Scheduler

Figure 1 System overview

check for messages

search for
initiative action

check for
request

action graph

search for
reactive action

perform action

decision tree

messagesno messages

uses

uses

requestotheraction
found

no action
found yet

Figure 2 The reasoning algorithm of the agents

whenever agent is not engaged in an interaction or
the conversation has paused. Not all agents,
however, have to have decision trees: it is
sometimes necessary to create an agent that is
merely reactive and cannot initiate actions.

Reactive Actions

Reactive actions are managed by using a
messaging system. Messages received by agents
can be divided roughly into two categories:
requests for communicational act during an
interaction and perceptions from the environment.
A perception could be, for instance, a bomb
exploding or Jill and Tom kissing. The former
would probably cause a visible reaction of the
agent running to the opposite direction, while the
latter would simply result in the agent deducing
that Jill and Tom like each other, which might be
of interest to the agent or not. These messages are
arranged according to their priorities – emergency
messages with high priorities are handled first and
more subtle information later. If the message
queue becomes too long, the least important

30

enough money?

give up bargain stingy?

item cheap? bargain

bargainbuy item

not even
close

plenty
barely

no yes

yes no

Figure 3 An example of a decision tree branch

bargain

refuse to sell accept drop price

accept refuse to buy

offer way
too low offer

ok default

price still
too high

price ok price way
too high

Figure 4 A fraction of an action graph

messages are discarded. The priority system
prevents agents from being occupied with trivial
issues, if surprising important things happen.

Discussions

Verbal interaction between agents is managed by
special interaction objects. They contain
information about the discussion at hand, and
provide means for communication via a message
transmission system. When an agent initiates an
interaction with another agent, an interaction
object is created and a request for answer is sent.
The receiving agent will then choose the most
appropriate follower action by using the action
graph, which consists of action nodes as depicted
in Figure 4. The neighbours of the previous action
node are suitable answers to the last remark. The

action graph contains the actions for all
participants. Each node has associated code that
executes the action (visible and audible reactions,
effects on agent’s knowledge base and on global
objects) and a utility function that evaluates the
utility of the action in current situation. The action
is selected amongst the neighbouring nodes of the
previous action probabilistically, using utilities as
weights. For impossible actions the utility function
returns zero. After performing an action, the agent
sends a request to the other participants, if it
expects to have some an answer. Thus, an
initiative action starts an unpredictable sequence
of actions which ultimately ends to an end-action
or an end-interaction node that does not require an
answer. Though the sequence is unpredictable, it is
limited by the graph and utility functions, and
therefore the interaction always makes sense.

Player Interaction

Any form of interaction requires the players to be
able to make their own choices. Currently, a set of
possible actions is gathered from a decision tree
and offered to the player. In situations with a large
number of possible choices, typically only the
most promising ones are offered for selection.
Thus the player may select only one of the actions
a NPC in the same situation could select. This
guides the player-NPC communication towards
realistic and meaningful results still offering a lot
of freedom for the player to test different
approaches. Furthermore, we feel that parsing
algorithms for natural language are not
sophisticated enough for free text input to be used
in most games. Nevertheless, if a sufficiently good
natural language processing system was available,
it could be integrated to our system in a manner
fairly similar to that described in (Mateas and
Stern 2004). Choices of reactive actions are
gathered the same way for player agents and
NPCs. If only one possible choice exists, it is
executed automatically; otherwise all choices are
offered to the player.

Background Processes

Sometimes it is necessary to model phenomena
that change over time, for instance, manage the
weather, increase capabilities of the player or his
enemies towards the end of the game, or escalate
dramatic elements to achieve better story arch. We

31

might even want to add in extra characters during
the game. Needs like these are handled by
background processes which run as threads in the
scheduler of ARTIFIST. The background
processes may affect the game world in any way
the designer sees fit.

IMPLEMENTATION

We have designed ARTIFIST to be suitable for
real computer games rather than being just a
research project. To pursue this goal we have tried
to make the system fast and as easy to use as
possible. ARTIFIST is written in C++ and the
whole design is object oriented and designed to be
portable and extensible. At the moment, the AI
scheduler does not create real threads, but instead
runs them in a single thread solely responsible for
all agents and background processes. The
rendering is done by another system thread.
Instead of using a full-scale game engine we have
used free Ogre3D (Ogre3D) and CEGUI (CEGUI)
libraries for graphics and user interface.

EXAMPLE APPLICATIONS

To demonstrate the capabilities of ARTIFIST we
have created a few example applications. We have
created simulations where the agents walk around
and have short conversations without user
interaction. Our current simulations are basically a
proof-of-concept, but we have been planning
various more challenging simulations with much
more complicated agents. In addition to
simulations we have created one playable game,
The Murder Game.

The Murder Game

In the Murder Game the player has the role of a
policeman trying to figure out which one of the
suspects is guilty of a murder. The whole game
takes place in an interrogation room, where the
player can call in suspects for questioning. The
suspects are shown as photographs with a few
alternative facial expressions which vary
according to the agent’s state of mind. During the
interrogation, the player can ask questions. The
suspect then answers them either honestly or
dishonestly depending on which answer he finds
advantageous to himself, and how honest he is in
general. An example of a short interview is listed

Figure 5 An interview from the Murder Game

in the Figure 5. In addition to ordinary questions,
the player can ask the suspect to authorize a search
for murder weapon in his accommodation. If the
suspect agrees, the search is carried out, and the
player is given information about the result.
Finally, the player can arrest one of the suspects
and thus end the game. The player is declared
winner, if he was right about the murderer.
Otherwise the real murderer is revealed, and the
player has lost the game. For simplicity we
decided to limit the NPCs to being purely reactive;
they do not make initiative actions or
communicate with each other autonomously.

EVALUATION

Although the examples presented here are
relatively simple, it is easy to imagine that richer
and more complex games could be created by
combining their features. Changing the Murder
Game agents to act autonomously and adding
vivid 3D animation would create quite an
interesting game. Suspects would exchange
information, have conversations and arguments
that could be overheard. Possibly even additional
murders would be committed to hide or revenge
the first one. On the other hand, an interrogation
scene, such as implemented in the Murder Game,
could spice up many more conventional games.

While implementing example applications, we
have found ARTIFIST to be relatively easy to use,
though its usability would benefit tremendously
from a graphical tool for creating decision trees
and action graphs. So far, graphs and trees have
been drawn on a paper in the design phase and
constructed by hand in the implementation phase
using the pictures as a guideline. The pictures have

PLAYER: Ask Al in
PLAYER: Do you think Tom could have done it ?
Al: That’s not possible.
PLAYER: Why not?
Al: Well Tom liked Tim, so I think he is not the killer.
PLAYER: Do you think Ken could have done it?
Al: That’s not possible.
PLAYER: Why not?
Al: Just a hunch.
PLAYER: Do you like Ken?
Al: Yes, I like Ken.
PLAYER: Does Ken have access to cottage 1?
Al: No.
PLAYER: That’s all for now.

32

made communication about the applications easy,
and we believe that even a person with no
programming experience could contribute to AI
design by drawing and discussing them. Thus,
ARTIFIST enables better co-operation between
game designers and programmers and respectively
should result in better games. The transparency of
decision trees and action graphs also makes
locating and correcting errors easier. However, the
fact that the story line is formed by actions of
several independent agents is bound to cause
unpredictable quirks. This was apparent even in
our small example simulations. Similar surprising
problems have been reported also by the Oblivion
development team (Oblivion).

The probabilistic nature of the AI system is the
core idea behind ARTIFIST and enables creation
of life-like believable agents. The ARTIFIST
NPCs take the logical course of action most of the
time in a given situation but may occasionally do
something else. This enriches the playing
experience, since there is always something new to
find in the game, even after many playing
sessions. It also prevents creation of dominant
strategies as the NPS’s do not act
deterministically.

FUTURE WORK

The next step in our work will be implementing a
graphical user interface for constructing decision
trees and action graphs. This should facilitate
making more extensive example applications and,
thus, help us explore the true capabilities of
ARTIFIST. Another area we are going to look into
is making ARTIFIST fit for massive multiplayer
games as well as single player games. This
requires modifications to the player interaction
system and the internal technical solutions, as the
computing has to be divided among multiple
processors and computers. We have also designs
for integrating alternate reasoning algorithms to
cover special situations, where the decision trees
and action graphs do not work well.

CONCLUSIONS

Creating complex interaction between characters
without the help of an AI system is very difficult

and most games offer quite restricted
communication with NPCs. Creating interaction
scenes with ARTIFIST is significantly easier than
doing the same from scratch. The difference could
be even greater, but unfortunately ARTIFIST
currently lacks sophisticated developer tools.
ARTIFIST is well suited for many types of
constantly changing, dynamic game worlds,
because the reasoning algorithm of the agents is
relatively light and does not require continuous
replanning. The probabilistic nature of our
algorithm gives NPCs a life-like, human feel.

REFERENCES

Cavazza, M., Charles, F. and Mead, S. J. 2002. "Interacting
with virtual characters in interactive storytelling", In
International Conference on Autonomous Agents, Bologna,
Italy, 318 - 325

Mateas, M. and Stern, A. 2004. "Natural Language
Understanding in Façade: Surface Text Processing", In
Proceedings of Technologies for Interactive Digital
Storytelling and Entertainment, Darmstadt, Germany, 3 - 13.

Mateas, M. and Stern, A. 2005. "Structuring Content in the
Façade Interactive Drama Architecture", In Artificial
Intelligence and Interactive Digital Entertainment, Los
Angeles, USA,

Young, R. M. and Riedl, M. 2003. "Towards an architecture
for intelligent control of narrative in interactive virtual
worlds", In International Conference on Intelligent User
Interfaces, Miami, Florida, USA, 310 - 312.

CEGUI. http://www.cegui.org.uk/. 20.5.2006

Mass Effect. CGOnline magazine.
http://www.cgonline.com/index.php?option=com_content&t
ask=view&id=530&Itemid=1. 20.5.2006.

OGRE. http://www.ogre3d.org/. 20.5.2006

Oblivion.
http://en.wikipedia.org/wiki/The_Elder_Scrolls_IV:_Oblivio
n. 30.5.2006.

Storytron. http://www.storytron.com. 7.7.2006

BIOGRAPHY

The authors are post-graduate students in Tampere
University of Technology, Department of
Computer Science, Institute of Software Systems.

33

Session 4

34

A Model of Facial Parameter Extraction and Animation

Mariofanna Milanova, Sireesha Sakamuri

Computer Science Department, University of Arkansas at Little Rock, Arkansas, USA

E-mail:mgmilanova@ualr.edu

Abstract
Recent advances in multimedia-related technologies

and new applications such as virtual agents, video
conferencing, visual effects in movies, and virtual
players in computer games are motivating much
research in digital character and face animation In this
paper we present a system for the implementation of
photo realistic avatar using video captured from the
user. This is achieved by constructing a dynamic video
map of facial expressions and mapping them to a 2D
model. The dynamic video map reflects user’s facial
expressions with constant updates directly from the input
video. The goal of this project is to provide a vivid
representation of participants with the use of dynamic
video map in perceptually important facial regions,
notably eyes and mouth as compared to all of the facial
parameters defined by MPEG4. A generic model is used
to initialize the system and geometry updates can be
done much lower than video frame rate.

1. Introduction

Although research has been done on facial modeling
and animation for two decades it still remains a
challenging task to create and animate a realistic faces.
The complexity of the face makes facial modeling and
animation a challenging task. The goal of facial
animation is to create life-like synthetic agents that
would closely mimic the facial movements of human
beings while using low bandwidth.

A novel approach taken by our system is to consider
few important facial regions, which would reasonably
animate the model and there by reduce a lot of
bandwidth. It is a hybrid model with video elements and
model-based approach. We implemented an automated
system that performs face detection, face tracking and
facial feature extraction.

This paper is organized as follows. The second
section summarizes the concept of MPEG4 facial
animation. A description of various components of our

proposed system is given in the third section followed by
relevant implementation details and the result of several
tests. The last section provides the future possible
research and the conclusion.

2. MPEG4 facial animation specification

The main idea behind MPEG4 face animation is to
transmit the commands causing changes in facial
expressions, and to have the client side synthesize the
facial image with the corresponding effect, thus
eliminating the need to transfer images at all [2].
MPEG-4 specifies a face model in its neutral state, a
number of feature points on this neutral face as reference
points, and a set of Face Animation Points (FAP), each
corresponding to a particular facial action deforming a
face model in its neutral state. The FAP value for a
particular FAP indicates the magnitude of the
corresponding action, e.g., a big versus a small smile
[4], [5], [6]. Deforming the face model in its neutral
state according to the specified FAP values for the
corresponding time instant generates a particular facial
action sequence. Then the model is rendered onto the
screen [7].

3. Our proposed system

Our System takes an input video sequence, some of the
facial feature points defined in MPEG4 standard, a
dynamic video map and a facial model as input and
generate a realistic video avatar as output (Figure 1).

 Video

input
Face

Detection
Facial Feature

Extraction

Synthesize
model

Adapt video
map to model

Transmit
parameters

Dynamic
video map

Face
Tracking

Figure1. Outline of our proposed system

 35

 3.1. Face detection • Set the location of P to be the new location of the
control point on frame i+1.

Our project uses a cascade of boosted classifiers and
an extended set of Haar-like features to quickly detect
profile views of faces in images. Haar-like features are
intended to be a computationally efficient way to
simulate early features of the human visual system.
Individually each feature is a weak classifier, and they
are combined to form a series of strong classifiers.
Because later classifiers in the cascade rarely need to be
evaluated, the cascade takes few computations on
average.

In this way we extract the facial features of the person.
The set of new control points are the facial animation
parameters. We considered important facial regions like
eyes, nose and mouth, which produced reasonable
results.

3.4. Constructing a dynamic video map

Once we calculate a set of new control points (the
FAPs) we create a dynamic video map of these facial
animation parameters and transmit them to the receiver.
Video map is just a visual representation of the extracted
facial animation parameters. As an example, a video map
of the below face will comprise of only the control
points.

This algorithm performs rapid object detection with a
cascade of boosted classifiers on Haar-like features. It
requires a large database of training images and a
significant number of processor hours to construct a
classifier so we used a pre-built classifier library.

3.2. Face tracking

 Automatic tracking of human faces from image
sequences is an important and challenging task in
computer vision. We have implemented a real time face
tracking system with Conditional density propagation
algorithm, which is a robust technique for tracking
objects through video sequences in the presence of
clutter. The Condensation algorithm overcomes the
pitfall of the Kalman filtering by allowing the probability
density representation to be multi-modal, and therefore
capable of simultaneously maintaining multiple
hypotheses about the true state of the target. This allows
recovery from brief moments in which the background
features appear to be more target-like (and therefore a
more probable hypothesis) than the features of the true
object being tracked. The recovery takes place as
subsequent time-steps in the image sequence provide
reinforcement for the hypothesis of the true target state,
while the hypothesis for the false target is not reinforced
and therefore gradually diminishes [3].

 Figure2. A video map of the face

3.5. Adapt the parameters to the model

 A single feature point must be mapped to many
vertices along the real face model. Influenced points are
a list of vertices in a vicinity of a feature point that must
move along with this feature point. Individual weights
may be assigned to each influenced point, usually
proportional to the 1/ (distance from the reference point).
This technique of mapping one feature point to multiple
vertices reduces a lot of complex computations while
producing reasonable results [1].

3.3. Face feature extraction
 3.6. Experimental results and performance
 This part deals with the facial feature extraction of the
person in front of the camera. For this purpose we
implemented a version of Motion Estimation Algorithm.

 The proposed approach is implemented as a windows
application with the capability of capturing the real time
video sequence from Microsoft DirectX SDK. It then
applies different techniques like face detection, face
tracking and facial feature extraction to extract the facial
features and then adapt it to the model. One novel
approach is to consider few important facial regions,
which can produce reasonable amount of animation with
less computation cost. Creating a wide range of actions is
one of the important criteria to be evaluated. Our
proposed system is evaluated in this criteria and our
technique produced reasonable amount of expressions..

In order to find a new location for the control point

• Construct a footprint of the control point on frame
i: Fi ;

• For each pixel j in search area on frame i+1,
construct footprint (Fi+1, j);

• Find a pixel P, such that (Fi - Fi+1, P) is minimal

 36

 Most of the new applications for face animation (such
as video conferencing and interactive agents) need real-
time operation. This means that the system has to receive
continuous input (in some form) and produce output in
real-time. A streaming real-time animation not only
needs to be reasonably fast but also has to guaranty
synchronization and work with input and output in
standard formats. Our proposed model satisfied these
criteria.

 Most of the new applications for face animation (such
as video conferencing and interactive agents) need real-
time operation. This means that the system has to receive
continuous input (in some form) and produce output in
real-time. A streaming real-time animation not only
needs to be reasonably fast but also has to guaranty
synchronization and work with input and output in
standard formats. Our proposed model satisfied these
criteria.
 Existing multimedia technologies and standards can
help improve the performance of face animation. In some
cases compliance with these standards can be required,
due to their popularity. Our system uses MPEG-4
standard, which is the first international standard.

 Existing multimedia technologies and standards can
help improve the performance of face animation. In some
cases compliance with these standards can be required,
due to their popularity. Our system uses MPEG-4
standard, which is the first international standard.
 Our system is computationally efficient and do not
require any expensive equipment. Our tracking module
can track the images even in the presence of background
clutter. Another great advantage is mapping one feature
point to a list of influenced points, which greatly reduced
the computations.

 Our system is computationally efficient and do not
require any expensive equipment. Our tracking module
can track the images even in the presence of background
clutter. Another great advantage is mapping one feature
point to a list of influenced points, which greatly reduced
the computations.

Below is the screen shot of our video conferencing
system.

Below is the screen shot of our video conferencing
system.

 Following are the different facial expressions obtained
by our system
 Following are the different facial expressions obtained
by our system

4. Future research and conclusion 4. Future research and conclusion

 Following is the future possible research in this project. Following is the future possible research in this project.

• Extend the model to 3D model; • Extend the model to 3D model;
• Increase the 8*8 Pixel area for better

appearance;
• Increase the 8*8 Pixel area for better

appearance;
• Add artificial intelligence and learning for the

model;
• Add artificial intelligence and learning for the

model;
• Consider the facial textures. • Consider the facial textures.

 We have presented our approach in facial animation
using MPEG4 parameters. With the exponential
diffusion of information, education, entertainment and e-
commerce application developers are seeking new types
of interactive content with new goals to attract wider
customer audience through appealing avatars. Our
approach can be used to construct real time avatars and
pedagogical agents.

 We have presented our approach in facial animation
using MPEG4 parameters. With the exponential
diffusion of information, education, entertainment and e-
commerce application developers are seeking new types
of interactive content with new goals to attract wider
customer audience through appealing avatars. Our
approach can be used to construct real time avatars and
pedagogical agents.

5. References 5. References

[1]. Model-based Coding, Extraction, coding and evaluation of
Face Model Parameters by Jorgen Ahlberg
http://www.icg.isy.liu.se/~ahlberg/papers/

[1]. Model-based Coding, Extraction, coding and evaluation of
Face Model Parameters by Jorgen Ahlberg
http://www.icg.isy.liu.se/~ahlberg/papers/

[2]. MPEG4 Facial Animation, Igor S. Pandzic and Robert
Forchheimer, John Wiley & Sons Publishers.
[2]. MPEG4 Facial Animation, Igor S. Pandzic and Robert
Forchheimer, John Wiley & Sons Publishers.

[3] Condensation Algorithm - Home page.
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/
condensation.html

[3] Condensation Algorithm - Home page.
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/
condensation.html

[4] F.I. Parke, K.Waters. Computer Facial animation, ISBN 1-
56881-014-8, A.K. Peters, 1996.
[4] F.I. Parke, K.Waters. Computer Facial animation, ISBN 1-
56881-014-8, A.K. Peters, 1996.

[5] F.I Parke, A parametric models for facial animation”, IEEE
Computer Graphics and Applications, 2(9), 61-68 (1982).
[5] F.I Parke, A parametric models for facial animation”, IEEE
Computer Graphics and Applications, 2(9), 61-68 (1982).

[6] Real-time 3D Character Animation, Nik Lever, Focal press,
2003.
[6] Real-time 3D Character Animation, Nik Lever, Focal press,
2003.

[7] Pedagogical Agents on the Web. Lewis Johnson, Erin Shaw,
and Rajaram Ganeshan, Center for Advanced Research
[7] Pedagogical Agents on the Web. Lewis Johnson, Erin Shaw,
and Rajaram Ganeshan, Center for Advanced Research
Technology for Education, USC / Information Sciences
Institute, 2002.
Technology for Education, USC / Information Sciences
Institute, 2002.

 37

http://www.icg.isy.liu.se/~ahlberg/papers/
http://www.icg.isy.liu.se/~ahlberg/papers/
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/condensation.html
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/condensation.html
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/condensation.html
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/condensation.html

Semantics Mining for Opponent Strategy Estimation
DAVID AL-DABASS, RICHARD CANT, CAROLINE LANGENSIEPEN

School of Computing and Informatics,
Nottingham Trent University
Nottingham NG11 8NS, UK.

E-mail: david.al-dabass@ntu.ac.uk.

Abstract: Two approaches to winning a game are considered. In the first, opponent’s strategic intensions are reduced to
a parameter vector which drives a multi agent evolutionary semantic net whose output is the tactics trajectory of game
steps. Differential analytical models are used in a multi stage semantics mining process to estimate the opponent’s
strategic intensions from his game steps trajectory. A compound 6th order recurrent semantic architecture is used to
translate the strategy parameters into tactics in a Kalman like process which emulates the action of ‘mirror’ neurons in
biological intelligence. In the second approach, the strategic intensions are implicit in the solution of the game and
Genetic Algorithms are considered for the Sudoku game. GAs are widely regarded as being relatively immune to the
problems of local minima that affect many optimization schemes. However there are situations in which the population
becomes too uniform in composition and the algorithm gets stuck. We discuss the use of a simulated disease mechanism
to overcome this problem. The mechanism acts by reducing the fitness of individuals that are similar to the rest of the
population, thereby giving a competitive advantage to those individuals that display unusual traits. This disease concept
is tested using a simple genetic algorithm example.

KEYWORDS: Strategy estimation, Genetic algorithms, Evolutionary Computation, Simulated Disease, Competitive
Learning, Neural Networks.

I. INTRODUCTION

Opponent’s behaviour in games often exhibit random
characteristics and cyclic behaviour attributed to a set of
‘causal’ parameters that represent strategy. Given the
tactical behaviour time trajectories, recurrent hybrid nets
are proposed to form a semantic architecture to
determine the time derivatives of the trajectory and,
using these derivates, to acquire the values of the
strategy parameters in real time. The recurrent hybrid
nets used posses de-noising properties which can be
easily set. The short-term behaviour may be
approximated by the dynamics of compounded second
order systems [4]. Such systems are sufficiently
detailed to represent the significant features of
complicated game tactics but can be analyzed without
excessive computation [Press et. al, 1992]. Three
‘strategy’ parameters govern the behaviour of a
differential semantic net: natural frequency (ω), the
damping ratio (ζ) and the external input (u), and two
state variables. In a previous paper [6], 3 parameter
estimation algorithms were tested for an equivalent 2nd
order system (ω−2.x''+2.ζ . ω−1. x'+x=u,
x(0)=x0,x'(0)=x'0). The algorithms combine successive
1st order filters of specified cut-off frequencies to
provide smoothing and higher order derivative
estimation, with non-linear static parameter estimators.
Three hybrid methods for parameter estimation were
proposed and tested using the following ‘architectures’:
1) By using three sets of estimated 1st and 2nd ‘tactics’
time derivatives; 2) By using two sets of estimated 1st,
2nd and 3rd tactics time derivatives; and 3) By using a
single set of estimated 1st, 2nd, 3rd and 4th tactics time
derivatives of the measured opponent game moves. The
sensitivity of these architectures to noise is investigated
for a range of noise levels,- deliberate random moves to
mislead the opponent.

A. Differential semantic models: an agent (game
player) may show a temporal behaviour even when the
input parameters to the strategy semantic model are
constant, figure 1. The causal parameters themselves
may be the output of other nodes, which may either be
recurrent nodes or static nodes,- the latter may be
logical or arithmetic. To model this oscillatory
behaviour a second order integral hybrid model is
proposed, figure 2. This model is based on the well
known second order dynamical system which has the
following form:

ω−2 x'' + 2. ζ.ω−1.x' + x = u
 (1)
Where x is the trajectory of game steps (tactics) and ω,
ζ and u are the natural frequency, damping ratio and
input respectively of the strategy semantic model and
represent the 3 causal parameters that form the input.
To configure this differential model as a recurrent
network, a twin integral elements are used to form a
hybrid integral-recurrent net as shown in Figure 2-a.

B. Hybrid Recurrent Nets: The net shown in Figure 2
is a direct representation of equation-1 and is
determined as follows:

i) The output (tactics) x of the strategy net is fed
back to the first subtraction node on the left; as the
input from the left of this node is u the output is (u –
x).
ii) The middle input (to the whole net) from the left is
ω; it is fed as 2 separate inputs to the multiplication
node x to form ω2 at its output, shown with an up arrow
feeding as the lower input of the multiplier node above
it, which is the second node from the left in the top
chain of nodes.

38

Strategy
Causal

Parameters

Figure 1. A Recurrent strategy semantic node (SSN)
exhibits a temporal behaviour at the output despite having

constant causal parameters.
Constant
Causal

parameters
u

 ω

ζ
Temporal
behaviour

Figure 2-a. Hybrid integral recurrent net to model the
temporal behaviour of strategy semantic node in Fig. 1

Figure 2-b. Two of the strategy parameters of

semantic layer i have 2nd order dynamics.

iii) The output of this multiplier node is therefore
ω2.(u – x), i.e. the RHS of equ. 1-A.
iv) The bottom input from the left (to the whole net) is
ζ which is fed as the lower input to the first of the two
multipliers in the bottom chain of 2 nodes,- as the top
input to this node is ω the output is ζ.ω. which is
multiplied by 2 in the 2nd node in the chain to produce
2. ζ.ω.
v) The last node on the right in the top long node
chain is an integrator node that generates x as stated in
ii) above. As it is an integrator node, the input to it
must therefore be the derivative of x, i.e. x’. This is
multiplied by the output of the right node in the bottom
2-node chain (which is 2. ζ.ω) to produce 2. ζ.ω. x’ ,
which is the 2nd term in the LHS of equ. 1-A or the 2nd
term on the RHS of equ. 2-1-B.
vi) By subtracting this output from the output of the
middle node in the top row, we get the full RHS of equ.
1-B, i.e. ω2.(u – x) - 2. ζ.ω.x'.
vii) As the output of the second integrator from the
right (in the top chain) is the first derivative of x, x’,
the input to this integrator node must be x’’, i.e. the
LHS of equ. 1-B.
viii) Connect the output of the middle node of the top
chain (which is ω2.(u – x) - 2. ζ.ω.x') into the input of
the 2nd integrator from the right (x’’) to complete the
equation.

II. SIMULATION STRUCTURE FOR
STRATEGY ACQUISITION

A. Inference Networks: The strategy semantics
embedded within the game player is continually
changing and need dynamic models to represent and
acquire their parameters from observed data. In a

normal inference network the cause and effect
relationship is static and the effect can be relatively
easily determined through a deduction process by
considering all the causes through a step-by-step
procedure which works through all the levels of the
network to arrive at the final effect. A reverse process
is needed here where the observed moves are attributed
to a given strategy semantic model with unknown
parameters and the task of the semantic acquisition
process is to determine the values of these parameters.

B. Strategy Acquisition Dynamics: Work in this
paper extends these ideas to recurrent models where
some or all the strategy parameters are time varying.
The effect is now a time dependent game-move
pattern, which forms the input to a differential
estimation process to determine the strategy semantics
in terms of time varying causal parameters. These
causal parameters will themselves embody knowledge
(meta semantics) which may be obtained through a
second level estimation process to yield 2nd level causal
parameters. These processes consist of a differential
part to estimate the higher time derivative of the game
moves, followed by a non-linear algebraic part to
compute the causal parameters.

Ni 1

x1i 1

x2i 1

Exi 1

Exdi 1

Exddi 1

Extdi 1

Exqdi 1

Ni 1000 rnd n() n
2

Ni
. d.

x1i x2i d.

x2i u 2 ζ. ω
1. x2i

. x1i ω
2. d.

Exi G x1i Ni Exi
. d.

Exdi G1 G x1i Ni Exi
. Exdi

. d.

Exddi G2 G1 G x1i Ni Exi
. Exdi

. Exddi
. d.

Extdi G3 G2 G1 G x1i Ni Exi
. Exdi

. Exddi
. Extdi

. d.

Exqdi G4 G3 G2 G1 G x1i Ni Exi
. Exdi

. Exddi
. Extdi

. Exq.

Figure.3: Iterative Euler integrator for the noise source,
behaviour generator and higher time derivative estimator.

To prepare for behaviour simulation with noise, the
Runge-Kutta integration routine had to be abandoned as
it uses 4 evaluations of the derivative vector which
results in different noise values being used in each
evaluation. A simple iterative Euler integration with a
single evaluation was used, see Figure3.

The top term represents the random number generator
feeding an integrator whose output N forms the noise
source. The 2nd and 3rd terms represent the state space
terms of the 2nd order system generating the observed
trajectory x1 and its derivative x2. The 4th term shows
a 1st order filter whose input is the noise corrupted
trajectory x1+N with a gain G and integration step d.
The 5th to 8th terms show the successive first order
filters that generate the time derivatives of x, i.e. x', x'',
x''' and x''''.

III. STRATEGY PARAMETER ACQUISITION
EXAMPLES

A. Derivative Estimation: Deliberate misleading
random moves added to the trajectory undergoes

39

successive filtering as it passes through the stages of
the higher time derivatives. Low values of G
correspond to low cut-off frequencies in the filter,
which result in smoother derivative estimates. Figures
4 below show 2 such cases for G=20 and 30
respectively, the heavier filtering effect of G=20 on the
derivative trajectories is quite noticeable. The noise
level is 10% of the nominal value of x at 1.0.

x2i

Exdi

i
0 2000

10

0

10
x' & Ex'

Exddi

i
0 2000

100

50

0

50
Ex''

Extdi

i
0 2000

500

0

500
Ex'''

Exqdi

i
0 2000

5000

0

5000
Ex''''

Figure 4-a: Higher derivative estimation: n=0.1, G=20.

x2i

Exdi

i
0 2000

10

0

10
x' & Ex'

Exddi

i
0 2000

100

0

100
Ex''

Extdi

i
0 2000

1000

0

1000
Ex'''

Exqdi

i
0 2000

1 104

0

1 104
Ex''''

Figure 4-b: Higher derivative estimation: n=0.1, G=30

B. Strategy Parameter Acquisition: The highest time
derivative used in this architecture is x'' and thus
unaffected by errors in estimating x''' and x''''. The gain
was set to 20, and a low noise level of 0.1% was injected
into the measured trajectory. The 3 estimated parameter
trajectories are shown in Figure 5-a. After transient
period, all 3 parameters converged to give good
estimation accuracy with ω=8.9, ζ= 0.097 and u=1.004.
The lag index shift, L, clearly had a direct effect on the
accuracy of estimation where it was found that best
results were obtained when L=95.

Although these 2 architectures use higher derivatives x'''
and x'''', they performed equally well using the heavy
smoothing of G=20 and suitable lag compensation as
shown Figure 5-b and 5-c.

Eω1i

i
0 1000 2000

1

10

100
Estimated Omega

Eζ1i

i
0 1000 2000

0.01

0.1

1
Estimated Zeta

Eu1i

i
0 1000 2000

0.01

0.1

1

10
Estimated u

Figure 5-a: Parameter estimation of ω, ζ and u using

Architecture 1, n=0.001, G=20, L=95.

Eω2i

i
0 1000 2000

5

10

15

20
Estimated Omega

Eζ2i

i
0 1000 2000

0.5

0

0.5
Estimated Zeta

Eu2i

i
0 1000 2000

0

0.5

1

1.5
Estimated u

Figure 5-b: Estimated ω, ζ, u using Architecture-2, n=0.001,

G=20, L=95.

Eω3i

i
0 1000 2000

5

10

15

20
Estimated Omega

Eζ3i

i
0 1000 2000

0.5

0

0.5
Estimated Zeta

Eu3i

i
0 1000 2000

0

0.5

1

1.5
Estimated u

Figure 5-c: Estimated ω, ζ, u using Architecture-3, n=0.001,

G=20, L=95.

C. Sensitivity to Misleading Moves: The noise level
was increased to 1% and 10% and the performance of all
3 architectures was demonstrated as shown in Figures 6-
a, 6-b, 6-c, 10, 11 and Figures 7-a, 7-b and 7-c
respectively.

1% Noise level:

Figure 6-a: Architecture-1: Estimated ω, ζ, u using, n=0.01,
G=20, L=95

Figure 6-b: Architecture-2: Estimated ω, ζ, u using n=0.01,
G=20, L=95.

i
0 1000 2000

5

10

15

20
Estimated Omega

i
0 1000 2000

0.5

0

0.5
Estimated Zeta

i

0 1000 2000
0

0.5

1

1.5
Estimated u

Figure 6-c: Architecture-3: Parameter estimation of ω, ζ and u
using n=0.01, G=20 and L=95

40

It is clear that the erratic noise in the parameter
trajectories reduces from Architecture-1 to 2 and from 2
to 3.

10% Noise level:

Figure 7-a: Architecture-1: Estimated ω, ζ, u using
Algorithm-1, n=0.1, G=20, L=95.

Figure 7-b: Architecture-2: Estimated ω, ζ, u using
Algorithm-2, n=0.1, G=20, L=95.

Figure 7-c: Architecture-3: Parameter estimation of ω, ζ and

u using Architecture 3, n=0.1, G=20 and L=95

IV. DISCUSSION

A semantic architecture was put forward and its
effectiveness tested to derive strategy parameters
embedded within game step trajectories. Variations of
the architecture were tried to test the robustness of
estimating strategy parameters for increasing noise
levels to reflect deliberate random moves to mislead
opponents. Heavy smoothing was provided by low cut-
off frequencies, which caused the derivative estimators
to have increasing lags in the successive stages. A
numerical lag compensation technique was introduced
which selected progressively distant values of the
higher derivatives. This, together with the increased
smoothing applied to the higher derivatives, gave
architecture variant-3 the leading edge in strategy
parameters acquisition accuracy. Further work will
investigate deeper levels of semantic agents to provide
more accurate tracking of strategy parameters.

V. SIMULATED DISEASE TO IMPROVE
GENETIC ALGORITHMS

Genetic algorithms are a popular research topic and
have been applied in many different fields and a
variety of different forms [1,2]. One of the attractive
features of this approach is that it seems to be relatively

immune from the problems with local minima that
afflict many optimisation methods. However this does
not necessarily imply that the technique is immune
from such difficulties as failure is rarely reported in the
literature and hence there may have been many
unsuccessful attempts to use the method that are known
only to their authors!

The mechanism that might lead to such a failure is if
the entire population becomes “stuck” in the region of
the local minimum. If the search space is large and the
fitness function does not offer any incentive to move
away from the minimum then this situation may persist
indefinitely. A biological analogy for this would be the
evolution of an ability such as flight where there is
little or no competitive advantage to be had until the
ability reaches a fairly advanced stage. Indeed wings
could be a serious impediment to the survival of a
creature if they aren’t actually good enough to work!
In such a situation the continued diversity of the
population is the key to progress and the fitness
function does not provide any mechanism to provide
this.

In this paper we will investigate the idea of using a
simulated disease mechanism as a means of increasing
the diversity of the population. The hope is that the
disease will eliminate genetic patterns that have
persisted for a long time – allowing new patterns to
emerge that may provide a better solution to the
problem.

VI. TRIAL PROBLEM - SUDOKU

The origins of the idea lie in a toy genetic algorithm
model that was being developed initially as a teaching
example. In recent years the Japanese Sudoku puzzle
has become popular worldwide. These puzzles are
constructed on a 9x9 grid and the idea is to fill in a
numbers in each cell such that every row and column
and 3x3 sub-grid contain all the digits from 1 to 9.
Figure 8 shows an example starting position whilst
Figure 9 shows the solution. Extensions to larger sized
grids and more dimensions exist but the 9x9 size is
most popular.

 7 2

 5 8

2 4 1 5

3 4 1 8 9

 1 6

5 8 7 1 3

 6 5 9 7

 7 9

 1 3

Figure 8: Sudoku puzzle example

41

Now it must be said at the outset that genetic
algorithms are not a particularly good way of solving
these puzzles. It is straightforward to write a program
that follows the same kind of strategies as human
solvers and such programs are totally effective and
very fast. However it was felt that this was a good
domain in which to demonstrate the brute force
effectiveness of genetic algorithms, which can solve
the problem without resort to any form of logical
deduction provided a suitable fitness function can be
defined.

For the initial development the fitness function was
defined to be the total number of violations of the
puzzle rules. A good fitness value is thus a low
number, zero representing a correct solution.

6 4 8 9 7 5 2 3 1

1 7 5 8 2 3 6 9 4

2 3 7 5 4 1 5 7 8

3 6 2 7 5 4 1 8 9

9 1 4 3 8 2 7 6 5

5 8 7 1 6 9 4 2 3

4 2 6 5 9 8 3 1 7

8 5 3 2 1 7 9 4 6

7 9 1 4 3 6 8 5 2

Figure 9: Sudoku Example - Solution

The initial population was defined by randomly filling
in the empty squares. At each generation the
population was sorted by fitness and duplicate patterns
were removed and replaced by new random
combinations. The bottom half of the population was
then removed and replaced by new individuals that
were generated by a procedure of parenting followed
by possible mutation. To generate a new individual two
different existing individuals were selected at random
from the top half of the population. The new individual
was then generated by randomly selecting each place
on the grid from the two parents. A further random
selection allowed occasional mutation of the result.

When this algorithm was tested it converged and
solved the first problem that was tried moderately
rapidly. However further tests showed that, although
initial convergence was quite consistent, the algorithm
often became stuck with around about four errors
remaining in the best solution found. Four errors may
seem a small number but the sudoku search space is
very large and so a solution with four errors could
easily have thirty (out of eighty-one) locations that are
different from the correct solution.

At this stage a modification to the way that the problem
is mapped onto the GA is usually effective and so it

proved in this case. When the system was modified to
force compliance on one constraint (the rows
constraint) for all solutions from the point of initial
pseudo-random generation onwards then consistent and
comparatively rapid convergence was obtained.
However it is interesting to see whether the original
method could be made to work since there may be
situations in which the size of the search space cannot
be reduced in this way.

VII. THE DISEASE MECHANISM

The motivation behind the disease idea is to keep the
evolutionary process going by eliminating genetic
sequences that have existed in the population for a long
time – even if they satisfy the fitness criterion. The
mechanism that we use for identifying such sequences
is a competitive learning neural network of the kind
described by Kohonen, [3] This neural network runs in
parallel with the genetic algorithm. For each generation
of the evolutionary process one training cycle of the
network is run.

Because the Sudoku system is discrete, the standard
competitive learning techniques have to be modified
slightly. The procedure works as follows. Initially a
number of network nodes are set up at random. The
format of these nodes is an array of 81 integers in the
range 1-9 just like the solutions themselves. During a
training cycle each member of the population is
presented to the network in turn and the winning node
(that is the node that most closely resembles the input)
is identified. Next this node is modified to make it
more like the input. Usually, in a competitive learning
network, this is done by adjusting all the weights
(which are floating point numbers) by a small amount.
Here however the weights are integers and
intermediate values have no meaning because the order
of the numbers forms no part of the puzzle definition.
Consequently we have adopted a process in which a
small number of weights (typically 2) are selected at
random and then made to match the input exactly.
Optionally we include a neighbourhood mechanism
whereby a set of nodes that are near to the winning
node are also adjusted to resemble the input. In this
case however fewer cells are changed (typically 1).

When the GA is initialised, the network cannot
converge to anything in particular and so remains
random. As the GA starts to converge so particular
patterns start to persist in the population, allowing the
network to converge on them in turn. At this stage the
process of removing over-persistent patterns can begin.
When the winning node for each member of the
population is computed, the degree of resemblance is
known. This number is used in turn to weight a random
process of “killing”. Thus the longer an individual
exists unchanged within the population the more the
network will contain nodes that are trained to resemble
it and the higher its probability of being killed by the
disease. This process will be all the more rapid if there

42

are many other members of the population that are
similar.

VIII. INITIAL RESULTS

Initial results showed the expected behaviour. The
“death rate” started very small and then increased as
the GA started to converge. This can be observed in
Figure 10. Early tests also showed that the algorithm
converged on a number of combinations of problem
and random number seed where previously if had not.
However one must be very cautious in assessing the
results of random processes until a statistically
significant amount of data has been gathered. It soon
became apparent that this was going to be a difficult
task.

Figure 10: Fitness and Kill Events.

The problem is that the algorithm takes anything from
a few minutes to many hours to converge, assuming
that it is going to converge at all. The original intention
was to gather data for different parameter values and so
to optimise things like the kill probability,
neighbourhood size and so-on. However to do this
many runs would have been required for each
parameter value and this was clearly never going to be
practical. The alternative approach was to look at
secondary factors, such as the rate at which new
“good” solutions (with low numbers of rule violations)
were being generated. This seemed promising at first,
but, as the number of results accumulated, what had
looked like a developing trend dissolved into
randomness.

Another way of looking at the population is to measure
the closeness of its members to the actual solution
rather than just the number of rule violations. We call
this number the secret fitness since in a real application
one would have no mechanism for knowing it. The
secret fitness gives a useful early warning of whether
the solution is actually going to converge. It was
observed that, on the occasions when convergence

never happened, this number started high and remained
so. When the algorithm did converge the secret fitness
had a much lower value from the start.

IX. VARIATIONS ON THE ALGORITHM

In an attempt to obtain better results a few variations
on the algorithm were tried. The most promising of
these seems to be the introduction of a “seasonal”
factor.

Figure 11: Run with disease “epidemic” at around

generation 5000

When the kill rate is very high the normal progress of
the GA is interrupted but a low kill rate does not really
have much effect on the content of the population. It
was conjectured therefore that it might be effective to
have short periods of high kill rate, “epidemics” to re-
randomise the population, interspersed with longer
periods of lower kill rate to allow the GA to converge.

X. FURTHER RESULTS

This “seasonal” mechanism did provide the best
evidence so far of the algorithm working. In Figure 11
we see the plot of new population members of fitness 4
(the best value that is common enough to provide a
reasonable statistical measure) against generation
number. The other curves are the secret fitness of the
new solutions and the rate at which solutions were
observed to be killed. Up to generation 5000 the kill
probability was set to zero and no kills were observed.
After generation 5000 a high kill probability was set
with a progressive decline in subsequent generations.
This pattern is directly reflected by the observed kill
rate. We can observe that the rate of generation of
fitness 4 solutions (as indicated by the slope of the
curve) remains moderate up to generation 5000, pauses
whilst the kill rate is high and then shoots up more
rapidly thereafter. The change is also shown by the
secret fitness. After generation 5000 there seems to be
a change in population, leading to the GA converging
to a solution at about generation 9000.

43

Figure 12: control run as figure 4 but without disease

However caution is required here since a “control” run
with the same random number seed produced the result
shown in Figure 12. Figure 12 is qualitatively similar
to Figure 4 but we note that the changes are not so
sharp and the process took 12000 generations to
complete instead of 9000.

XI. CONCLUSIONS

Two approaches were explored to the problem of
estimating opponent’s strategic intensions, one using
semantic nets to estimate the strategy parameters and
the second using the concept of disease as a way of
maintaining the rate of progress of a genetic algorithm.
While the first approach was successful in theoretical
simulation trails, the second was less so, where it was
not possible to give a convincing demonstration that
the mechanism works owing to the time that would be
needed to gather statistically significant data; however,
there is some evidence that the mechanisms could
perform as intended given further work.

REFERENCES

1. Baeck, T. & Schwefel, H.-P. (1993) "An

Overview of Evolutionary Algorithms for
Parameter Optimization", Evolutionary
Computation, 1(1), 1-23.

2. J. Heitkoetter and D. Beasley, eds., 2001. "The
Hitch-Hiker's Guide to Evolutionary Computation:
A list of Frequently Asked Questions (FAQ)",
USENET: comp.ai.genetic. Available via
anonymous FTP from
rtfm.mit.edu/pub/usenet/news.answers/ai-
faq/genetic/ About 110 pages. Also available on
the Internet at http://www.faqs.org/faqs/ai-
faq/genetic/part1/

3. Kohonen, T. “The Self-Organising Map”
Proceedings of the IEEE; 78(9): 1464–1480.

4. D. Al-Dabass, D. J. Evans, S. Sivayoganathan,
"Signal Parameter Tracking Algorithms using
Hybrid Recurrent Networks", I. J. of Computer
Mathematics, Vol. 80, No. 10, October 2003, pp
1313 - 1322 , ISSN 0020-7160 print.

5. W. Press, W. Vetterling, B. Flannery, S.
Teukolsky, “Numerical Recipes in C: The Art of
Scientific Computing:2nd ed.”, Cambridge
University Press, 1992.

6. Al-Dabass, D, Evans D., and Sivayoganathan, K.,
“Derivative Abduction using a Recurrent Network
Architecture for Parameter Tracking Algorithms”,
IEEE 2002 Joint Int. Conference on Neural
networks, World Congress on Computational
Intelligence, pp1570-1575, Hawaii, May 12-17,
2002.

7. D. Al-Dabass, A. Zreiba, D. J. Evans, S.
Sivayoganathan, "Parameter Estimation
Algorithms for Hierarchical Distributed Systems",
I. J. of Computer Mathematics, Vol. 79, No. 1,
January 2002, pp65-88, ISSN 0020-7160.

8. J. D’Azzo and H. Houpis, “Linear Control
Systems Analysis and Design”, 4th ed., MacGraw
Hill series in electrical and computer engineering.
Control theory, 1995.

9. W. Press, W. Vetterling, B. Flannery, S.
Teukolsky, “Numerical Recipes in C: The Art of
Scientific Computing:2nd ed.”, Cambridge
University Press, 1992.

10. Richard Cant, Julian Churchill, David Al-Dabass,
“Using Hard And Soft Artificial Intelligence
Algorithms To Simulate Human Go Playing
Techniques”, IJSSST, Vol.2, No.1, pp31-40, June
2001, ISSN:1473-804x Online, ISSN:1473-8031
Print.

11. P. Eykhoff, “System Identification Parameter and
State Estimation”, John Wiley & sons, 1974.

12. J. Beck and K. Arnold, “Parameter Estimation in
Engineering and Science”, John Wiley and sons,
1977.

44

VOICE INTERACTION SYSTEM FOR VIDEO GAMES

USED WITHIN "VIRTUAL SINGER" COMPUTER INTERFACE

Jocelyne Kiss and Karim Abdeljelil

Department of Arts and Technologies

University Marne la Vallée

E-mail: kiss@univ-mlv.fr

KEYWORDS

Tools and systems for video games and virtual reality

devices. Interfaces and controllers. Timbre perception and

interactivity. Singing simulation. Serious games.

ABSTRACT

The aim of this paper is to develop voice interaction modules

increasing the immersive potential of video game contexts,

implemented via an interactive virtual singer device. A

number of inquiries are followed around the use of pertinent

features resulting from human-voice spectrum analysis—

including timbre. Connexionist filters provide real-time

discrimination on several levels of information from sound-

recorded digital data to morphing of the virtual singer device,

matching coherent and synchronous voice articulation. This

study is extended to cover the use of timbre characterizations

intended for implementation on multiplayer platforms, thus

referring to the issues of separation of sound sources within

context.

INTRODUCTION

The field of video games using standard modes of interaction

(keyboards, joysticks or mice) is currently expanding beyond

its traditional bases. It now seems only natural to consider

this trend as likely to develop along a number of fundamental

lines such as – for instance – the increase in the amount of

interactivity available from already existing platforms

through a more advanced exploitation of their potentials. In

particular, the current switch-like nature of start operations

might be superseded in order to allow for more adequate

immersion in correspondence with greater diversity in the

quality of external parameters. In this way, the world of

sound, human gestures and new strategies for the integration

of non-linear drama might acquire a significant or even

prominent role in the design process of such immersive

systems. This creative component carries genuine economic

impact and is likely to result in a complete rethink of

representation and playability modes.

Using sound as a mode of interaction leads to the issue of

segmentation and – subsidiarily – to the problem of

extracting units of meaning. Similar to what is required for

the recreation of human behavior (walking, swimming…etc.)

within virtual reality software (Bret, 2000), the creation of a

song automaton will require the building of shapes

developing in time while related to anteriority. This

orientation imposes consideration of morphological and

phonetic categories for musical phrases connected to the

contents of a virtual scene. Implementation of a voice-based

mode of interaction necessarily relies on a specific point of

view determining treatment and therefore on a number of

partially arbitrary decisions—depending on the data

extraction system selected. This much presupposes the

operation of a particular representation system for sounds

and vocal gestures (Kappas and all. 1991).

One of the main objectives in this paper is to implement

analysis techniques designed to capture information specific

to the voice of each player, based essentially on the study of

spectrum and allowing for the development of interactive

strategies within context. Another objective is to focus on the

rendering of intent detectable in a player's voice, so as to

integrate it into the virtual scene while respecting all

multimodal components. This bears on the issue of

computerized modeling of human intent and it seems

necessary to bring in a global solution for the relevant

extraction of intentional data from sound flow - coming from

one or several players - in order to create a system of

coherence between what is "played" and what is "perceived".

To achieve this, we will assume the point of view of an

interaction simulating an adaptive, time-based dimension of

improvisations being sung in real time (Pecchinenda, and all.,

1997). Significantly, we will rely on completion theories for

the modeling of responses from the virtual singer device (for

facial emotion modelization we used old Facs reference,

(Ekma and Friesen 1977)). A first part will be devoted to the

description of the implemented device while expounding its

conceptual rationales. A second part will be focused on

capturing meaning from sound recording, together with

relevant suggestions for methods of exploiting timbre.

Finally, we will explore choices open for accompaniments

and completions of phrases initiated by players within the

framework of designing educational games for the teaching

of singing (Scherer, and Kappas, 1988).

COMPUTER INTERFACE DESCRIPTION

It has long been demonstrated that the quality of immersion

into any interface heavily depends on the player's modes of

involvement (Angel, 2000) regarding potentials being offered

to him/her for progress in accordance with his/her own

propositions. Our current device is built in this perspective

and the use of the player's own voice as the mode of

interaction will be the vector used both to trigger actions and

to sustain the development of further possibilities from the

sound elements provided by the player himself/herself. Its

object will therefore be to support the player in the way of

45

harmony by allowing the avatar to sing with him/her on the

lower third or – depending on each case – on the upper sixth.

Our device creates a sort of chorus and completes the player's

musical phrase while respecting his/ her own initial

propositions.

Our essential idea was to design a sort of intelligent

"karaoke", initially intended for very young children—

including those with psychomotor deficiencies whose

handicaps limit their abilities to use mice or styluses. The

interactive virtual singer would then allow for playful and

entertaining learning of basic nursery rhymes (Scherer and

Kappas, 1988)

Figure 1. General interactivity treatment diagram

The device is built around a virtual singer model - created

using 3DSMAX© for meshing, rendering and animation

keys, including problems of facial articulation in relation to

phonemes intended for pronunciation. Such data are

exploited in real time and animated with Virtools© ,

(middleware system for virtual reality), -interacting with the

voice of any given "player". His/her voice is captured by a

microphone and analyzed in accordance with the standards of

Fourier's theory (including FFT) before generation of data to

be processed through connexionist filters (we used

archirecture filters proposed by Kohonen T., and all. 1992)

allowing for the recognition of pitch and characterization of

timbre at the outcome of learning and calibration processes

(further description below). Neural networks used for this

phase are mainly built on the back-propagation model. Using

the 256 frequencies resulting from FFT and captured at the

network's entry point via a hidden layer, real-time

discrimination is available over two scales.

A stochastic module based on the theory of conditional

probability then animates the singer which follows the player,

suggests possible responses to be sung (i.e. completions of

the player's own phrases) and simultaneously triggers facial

movements in correspondence with on-going vocal

expression (Scotto Di Carlo and Guaïtella, 1995). This

architecture reflects the desire to create an interactive

dimension based on the exploitation of a number of

significant, built-in components of vocal gesture (phonemes,

melodies…etc.). The diagram presented as Figure 1

evidences the in-system management of successive phases

used to treat the available interactivity. Articulation on behalf

of the virtual singer relies on a pattern-matching method

using repertories of pre-recorded sounds and animations used

for synchronous playing (De Bonis and Nahas, 1999). Figure

2 evidences the significance of all components of the human

voice-tract being simulated for a most realistic kind of

articulate singing.

VOCAL INTERACTIVITY

The study of vocal interactivity is based on the knowledge of

our modes of reception/perception of sound phenomena. The

notion of timbre does appear to play a significant part in the

recognition of any sound, together with that of pitch

(Houstma, 1995). Timbre can be defined as set of qualitative

properties of sound (Schaeffer 1966), such as its time

envelope, vibrati, brilliance, spectral envelope…etc. (Plomb,

1970). Their list is not exhaustive—which gives this

definition empirical/consensual aspects. For a number of

scientists, the perceptive recognition of timbre must be based

on 'family groups' (Handel, 1995, and Roads, 1998) sharing

close or identical characteristics. This falls in line with

previous taxonomic studies intended to discover invariant

elements used to achieve speech recognition (Blumstein and

Stevens 1979).

For other researchers, such grouping using type categories

ought to be supplemented within the framework of proper

modeling by the possibility to dissociate timbre from the

pitch at which any sound is played, since it would seem that

short-term human memory acts in this way (Semal and

Demany, 1991). Others still think such classifications

modeling timbre are necessarily limited in general value—

owing to the considerable qualitative differences existing

between the voices of two individuals (Shepard, 1982).

Pattern-matching techniques for timbre recognition have

nonetheless demonstrated some reliability, however much

lengthy calculation time is required (Sethares, 1993). Our

own proposition is based on the treatment and recognition of

a singing voice intended for video games. Hence our

preference for a simplification of the overall problem, i.e.

46

taking into account only a certain number of parameters and

not all listed qualities (D. Herrera-Boyer, and all. 2003) in

order to qualify sound while answering the challenge of real-

time constraints placed on the interface.

One the essential principles of musical analysis is reference

to pitch and duration of sounds. In this perspective, spectrum

analysis does seem to provide an indispensable tool but it

involves complex calculations unfit for real-time constraints

placed on video games. However, this may be avoided using

very specific algorithms of the "Fast Fourier Transformation"

(FFT) type. FFT supposes clustering of sound samples to the

power of 2—generally 256, 512, 1024…etc. This allows for

fast calculation of the spectral formula:

 nc = ∑ µµµ

π
−

m

)
2

nm2
exp()

2

m
(f

2

1
, n ≤ 12 −µ .

The choice of this segmentation results in often undesirable

"side effects", thus making real-time recognition of pitch

more complicated. Let us for example record a "perfect A"

sung at 440Hz by a player and assume our segmentation

mode at every 256 samples with a sampling ratio of 44,110

samples per second. One cycle will take about a hundred

samples and segmentation will therefore result in a

"truncated" wave of 2 cycles and a half. Fourier treatment

will then provide a spectral representation for the first sine

amplitudes equal to 0.303, 0.707, -0.579, -0.163,-0.085, …

etc. Sound now appears as a mere resultant of sinusoids,

unconnected to any perceptible musical concept.

Furthermore, this mode of analysis does not allow for

characterization of pitch from the examination of

fundamental frequency and therefore complicates the

extraction of timbre. "Timbre" is meant here as the set of

secondary harmonics being superadded to the pitch of any

produced sound. In fact, this resulting complexity is the

direct consequence of the inadequate nature of discretionary

segmentation and clustering being used.

Figure 2. Wireframe presentation of the interactive

virtual singer - visualization of articulation-

A proposition to by-pass these undesirable effects is easily

formulated via timbre analysis of sound in accordance with a

frequency system based on the fundamental note. In this

fashion, a "perfect A" analyzed at the frequency of 400Hz

will now result in the series 1, 0, 0, 0…etc. (Fourier

coefficients in sine)—which naturally constitutes the

expected result in terms of characteristic sinusoids. This

approach supposes prior knowledge of pitch and real-time

FFT adaptation, in order to allow for clean differentiation of

the fundamental note from other timbre components. As

regards the determination of instant pitch, two natural

methods may be used: one based on standard FFT treatment

followed by spectrum analysis using differentiation processes

based on calculations; the other – more adequate to real-time

usage – based on a network of artificial neurones (of the back

propagation type) operating from spectral bands to determine

pitches regardless of timbre.

In fact, this task may be subdivided into several recognitions

carried out by several Artificial Intelligence units specialized

for correct interpretation of pitches differentiated from a

wide scale. In simple terms, the automaton's learning process

will rely on the detection of pitch from standard periods of

about 6ms each, bearing in mind that note duration may

easily be deducted for more precise extraction of music data.

At this stage, any sung "A" would be recognized in real time

by the network but its timbre - and therefore its vocal (or

instrumental) imprint - would not be identified. The

corresponding wave function f on the elementary unit of time

is now transformed by scale change into that of

x a f(
100

256
x) via an interpolation process designed to adjust

the first hundred samples to the FFT algorithm at the rate of

256.

Spectrum analysis then evidences the fundamental note to be

an "A" and allows for the appearance of secondary

components readjusted by reverse scale transformation in

order to retrieve real frequencies. Generally speaking, this

treatment will adjust sample clusters in accordance with

sound pitches recognized for FFT treatment at a fixed rate by

means of double scale-change via interpolation. This method

allows for simple, real-time reading in terms of secondary

components' spectral bands being added to enrich the instant

pitch of sounds generated by the user. This "remainder" of

secondary fringes will be defined as "timber residue".

“Timbre residue” may therefore be considered from the

outset as an instant vocal imprint specific to the pitch of

recorded sound. Insofar as timber residue remains of an

unknown nature – subject in principle to great variations

corresponding to each type of human voice -, we thought it

more appropriate to implement a dynamic network of the

Kohonen type (i.e. without learning supervision) to achieve

effective timbre recognition. In simplified terms, this

involves four entry cells capturing four different amplitudes

tested against a range of frequencies equally allotted in

correspondence with the 256 FFT analyses. The network then

performs real-time discrimination in accordance with 64

possible timbres. This interface is only an experimental

47

example and the underlying models are of course likely to

undergo wide-ranging diversifications. Moreover, the instant

vocal imprint may allow – under certain hypotheses and

constraints – for the separation of sources intended for

distinct activities on a multiplayer platform. Let us imagine,

for instance, two players in vocal interaction - respectively

intended for two virtual characters – using the same

microphone. Transmitted signal f will therefore represent the

total of two signals f1 and f2 coming from the two players'

voices. After segmentation and real-time spectrum analysis,

the Fourier coefficients on f,)f(cn =)f(c 1n +)f(c 2n , will

be determined and the problem of separating sources would

consist – in this approach – in retrieving the series

()f(c 1n),()f(c 2n)in order to achieve separation by synthesis

of approximate values for signals 1f and 2f . Such is the

desired condition for selective interactivity.

In theory, without further indications regarding 1f and 2f ,

differentiation is impossible since there is infinite

deconstruction for a signal resulting from the total of two

signal inputs. However, if sources carry their own

characteristics – as is the case with of distinct voice data –

the timbre characteristic may be used as an element of

answer. Indeed, let us imagine a scale (or more generally

speaking a set of sounds) whose notes are subjected to

spectrum analysis when sung at constant intensity by one

voice 1 and one voice 2, and resulting via averaging in

calibrations expressed as Fourier coefficients. Reference

series obtained will be ()h,f(c 1n), ()h,f(c 2n)with h

representing a given pitch. In an instant real situation,

intensities on voices 1 and 2 are coefficiented by factors

1λ and 2λ andfrom the reference situation and perceived

signal f is characterized after spectrum analysis by the

following series of Fourier coefficients:

 (**))f(cn =))t(h,f(c)t())t(h,f(c)t(22n211n1 δδλ+δδλ with

tδ representing the time interval where FFT is applied and

h1 and h2 representing the respective instant pitches assigned

to it. The resulting equation system (**) must now be solved.

In digital terms, it must noted that this system generally

proves incompatible owing to the series ()h,f(c 11n),

()h,f(c 22n) providing average – non-exact – values.

However, minimizing the mean deviation of quantities (if

extant—which is generally the case):

)h,f(c)h,f(c

)h,f(c)h,f(c

)h,f(c)f(c

)h,f(c)f(c

22j11j

22i11i

22jj

22ii

 ,

)h,f(c)h,f(c

)h,f(c)h,f(c

)h,f(c)f(c

)h,f(c)f(c

22j11j

22i11i

11ii

11jj

,

will provide intensity values constant enough to allow for

partial reconstruction of signals 1f and 2f , at time t + tδ .

Such reconstruction will be termed an approximate or

“pseudo-solution”.

The main obstacle remaining is then to determine a real-time

pseudo-solution and a corresponding performing algorithm.

A possible reduction would consist in limiting calculation to

what is sufficient by performing random tests on three sets of

values i, j, k—in order to eliminate in succession all pitches

creating considerable variations. This method affords

adequate results but only for limited sets of listed sounds or

notes.

AVATAR REACTIONS

It seemed essential for us, in order to create expectation and

captivate our young players' attention (Bentley, 2002), to

sustain their interest in the avatar's reactions. The

introduction of specific tag-endings for musical phrases – i.e.

responses – thus creates a renewal of dialogue between the

player and interface. (And create a developpment, an

evolution, like Thompson recommend it, 2002). Tags are

introduced as follows: the user sings a sequence of sound

events, each of them being recorded and analyzed - just as

previously described – for real-time generation of

corresponding harmonization; intervals and durations

between the various sound events are then retained and a

fitting construction to end the phrase is suggested. This

method is actually based – however crudely – on the

antecedent/consequent model used by classical composers.

For instance, a player singing the "C,D,E" sequence will be

accompanied by the virtual singer device singing "A,B,C"

and ending the musical sentence on its own by suggesting, let

us say, "E,D,C". Naturally, improvisation variations are to be

adjusted at will and made as much complex as you want

them.

This model evidences organization based on a polarization

effect. According to music analysts, its duality in both system

and symmetry entails reliance on a principle of musical

coherence at perceptive level (Sadaï 1980). We therefore

considered the part sung by the player to be the "antecedent"

for which we had to provide a consequent. In concrete terms,

we implemented a module intended to determine the overall

key and the main melodic "motives" on the sung segment.

The corresponding consequent is then generated in

accordance with the model's polarity rules. This amounts to

converting some of the motives initially proposed by the

player in accordance with the harmonic context set for the

ending before concluding the phrase with a perfect

cadence—just as recommended by the consequent model.

PERSPECTIVES

Results taken from a young audience have proved conclusive.

The current device does allow them to sing lullabies rhymes

and improvise musical phrases in an entertaining fashion,

playing their own game or in the company of other children.

It affords them an opportunity to learn to the notion of time

value∗, though some aspects of treatment remain somewhat

rudimentary—especially those related to phrase-endings

∗ The time notion as such is often barely apprehended by children with

psychomotor deficiencies. Such deficiencies frequently render interfaces

based on more traditional modes of interaction too difficult to handle.

48

proving to be more efficient within the framework of a

lullaby than with improvisation without reference. Further

research our on behalf will be pursued to provide a more

realistic rendering of articulation and various phoneme

models are already being tested.

REFERENCES

- Angel, E. 2000. Interactive Computer Graphics.

Addison-Wesley.

- Bentley P.J. 2002. Digital Biology. The Creation inside

Computers and How it will Affect us. Headline Review.

- Blumstein, S.E. & Stevens, K.N. 1979, “Acoustic

invariance in speech production: Evidence from

measurements of the spectral characteristics of stop

consonants”. Journal of the Acoustical Society of

America, 66:1001-1017.

- Bret M. 2000, « Virtual Living Beings ». Virtual Worlds.

Heudin J-C.(Ed.), 119-134

- Nahas, M. and De Bonis, M. 2001,

"Image Technology and facial Expression of Emotions"

P. Coiffet & A. Kheddar (Eds) Proceedings of the 10th

International Workshop on Robot and Human

Interactive Communication, pp. 524-527

- Ekman, P., And Friesen, W.V. 1977. Manual for the

Facial Action Coding System, Palo Alto. Consulting

Psychologists Press.

- Handel, S. 1995, “Timbre perception and auditory object

identification”. In Hearing. B.C. J. Moore, ed., New

York: Academic Press: 425-461.

- Houtsma, A.J.M. 1995. “Pitch perception”. In Hearing

B.C.1. Moore (ed.), New York: Academic Press, 267-

295

- Kappas, A., Hess, & Scherer, K.R. 1991, “Voice and

Emotion”. in, Fundamentals of nonverbal Behavior R.

Feldman & B. Rimé (Eds.), New York : Cambridge

University Press : 200-238.

- Kohonen T., Laine P., Tiits, Torkkola K., 1992 “A

Nonheuristic Automatic Composing method”, in, Music

and Connectionnism. Massachusetts Institute of

Technology. 229-242.

- Pecchinenda, A., Kappas, A., & Smith, C.A. 1997

“Effects of difficulty and ability in a dual-task video

game paradigm on attention, physiological responses,

performance, and emotion-related appraisal”. Thirty-

Seventh Annual Meeting of the Society for

Psychophysiological Research, Cape Cod,

Massachusetts. 34. S70.

- D. Herrera-Boyer, G. Peeters, and S. Dubnov,

2003.“Automatic classification of musical instrument

sounds,” J. New Music Res., vol. 32, no. 1: 3–21.

- Plomp, R. 1970, “Timbre as a multidimensional attribute

of complex tones”. In Frequency Analysis and

Periodicity Detection in Hearing, R. Plomp & G.1

Smoorenburg, eds. Leiden: Sijthoff: 397-414

- Roads, C. 1996. The Computer Music Tutorial.

USA.MIT Press.

- Sadaï, Y. 1980. Harmony in its Systemic and

Phenomenological Aspects, Jerusalem, Yanetz. And Y.

Sadaï, 1992, « D’une logique systémique et

phénoménologique de la musique ». Analyse Musicale.

No. 28: 22-28.

- Schaeffer P. 1966, Traité des objets musicaux. Seuil.

- Scherer, K.R., & Kappas, A, 1988. “Primate vocal

expression of affective state”. Dans D.Todt,

P.Goedeking, & D. Symmes (Eds.), Primate vocal

communication. Berlin: Springer-Verlag. 171 – 194.

- Scotto Di Carlo, N., et Guaïtella, I., 1995, “Facial

Expressions in Singing : A pilot study”, Communication

au XIII° Congrès International des Sciences

Phonétiques. Stockholm. 226-229.

- Semal C. and Demany L. 1991, “Dissociation of pitch

from timbre in auditory short-term memory”. J. Acoust.

Soc. Am., 89 : 2404–2410.

- Sethares, W.A. 1993. “Local consonance and the

relationships between timbre and scale”. Journal of the

Acoustical Society of America, 94, 1218-1228.

- Shepard, R.N. 1982, “Structured representations of

musical pitch”. In D. Deutsch (ed.), The Psychology of

Music. New York: Academic Press, 343-390.

- Thompson A. 2002, « Notes on design through artificial

evolution: Opportunities and algorithms », in Adaptive

computing in design and manufacture. Parmee I. C.(Ed.)

Springer-Verlag. 17-26.

BIOGRAPHY

as well as their exploitation within immersive-interactive

interfaces—for video games in particular. Ms Kiss is the

author of numerous papers, interactive installations and plug-

ins based on such themes (including « The perception of

vocality through a virtual 3D interface within the framework

of an interactive opera » in FIRT-IFTR international

conference: The Director in the theatre world, « Animats and

interactive design » in ISIMD 2006, 4th International

Symposium of Interactive Media Design, with Bailly K.;

«Computer analyses of the baby movements: Study of the

precursory elements of language. » in Proceedings of the

Fifth International conference on Human and Computer HC-

2004; and - with Chu-Yin Chen - « Setting up of a self-

organized multi-agent system for the creation of sound and

visual virtual environments within the framework of a

collective interactivity » in Proceedings of ICMC 03)—as

well as of reference books on Modeling of compositional

processes related to cognitive sciences (published in 2004)

and on Singing animats within immersive-interactive

interfaces (to published in 2007). She is also the author of

three educational video games with variable ergonomics

intended for disabled children.

Currently in charge of the

Multimedia & Digital Art syllabus at

the Department of Arts and

Technologies of the University of

Marne la Vallée, Jocelyne Kiss

focuses research on the current

debates defining relationships

between the various types of sight,

sound and other somatic perceptions,

49

Session 5

50

 The Game Genre Factor in Computer Games Based Learning

Mats Wiklund
Department of Computer and Systems Sciences

Stockholm University
Forum 100

164 40 Kista
Sweden

Phone: +46 8 161614
E-mail: matsw@dsv.su.se

KEYWORDS
Computer games, learning, education, game genres, empirical
study.

ABSTRACT

As the usage of commercial, off-the-shelf computer games as
teaching tools are being discussed and empirically studied, the
varying properties of different game genres is an important
factor that should be taken into account. The possible impact
on study results that may be inherent from game genres as
such is an issue that needs to be studied in order to assess the
potential of using commercial games in a learning situation.

To obtain more information on the impact of game genre on a
learning environment, an interview study was conducted.
Students undertaking their 10:th and 11:th year of study as
part of a test project using commercial off-the-shelf computer
games of their own choosing as the main teaching tool, were
interviewed about their favourite game genres. This was
correlated with their study results in the subject of English (as
a second language), for students favouring FPS (First Person
Shooter) games versus MMORPG:s (Massively Multiplayer
On-line Role-Playing Games).

Results show that students with MMORPG:s as their favourite
game genre (with or without other genres in conjunction)
received a higher average number of yearly grades in English
(as a second language) than students with FPS games as their
favourite game genre.

BACKGROUND

As computer games occur in many different shapes and
genres, they possess vastly different properties with respect to
learning. These differences are manifested as different visual
styles, as well as different game tempos and regarding the
type and intensity of the player interaction. Independently
from this, also the typical feedback mechanisms differs among
various game genres. This includes what types of player
actions are rewarded with benefitious objects and/or valuable
skills, leading to advancement in the game. In effect, these
feedback mechanisms are controlling what the player has to
strive for in order to succeed in the game. Such differences
among game genres results in different genres having
different potential as tools for learning.

Among the first observed learning effects regarding computer
games are those related to reflexes and hand-eye co-
ordination. As remarked by Griffiths, these findings are also
accompanied by those pointing out particular aspects of
games as having important bearing on using them as

educational resources: “Research dating back to the early
1980s has consistently shown that playing computer games
(irrespective of genre) produces reductions in reaction times,
improved hand-eye co-ordination an raises players self
esteem. What’s more, curiosity, fun and the nature of the
challenge also appear to add to a games educational
potential” (Griffiths 2002).

The idea to use games as learning tools emerged long before
the existence of computer games, however, with “The modern
era of simulation gaming” (Wolfe and Crookall 1998)
including large simulation games such as the RAND
corporations logistics simulator for the US Air Force, and the
first business simulation being used in college education as
early as 1957 (Dickinson and Faria 1997). These and other
developments made Duke suggest in 1974 that games may
become an entirely new form of communication in education,
as noted by Woods: “He suggested that simulation games
might offer a possible answer to the problems of education in
an increasingly complex society“ (Woods 2004), in reference
to: “…gaming is a future’s language, a new form of
communication emerging suddenly and with great impact
across many lands and in many problem situations” (Duke,
quoted from Woods 2004).

Further research in the area of specific advantages of
computer games as educational tools has pointed out several
aspects where games fit very well into key patterns of
successful learning. As Gee points out, these aspects need not
be related to those features that are perhaps most often noted
regarding computer games, such as the graphics: “The secret
of a videogame as a teaching machine isn’t its immersive 3-D
graphics, but its underlying architecture. Each level dances
around the outer limits of the players abilities, seeking at
every point to be hard enough to be just doable” (Gee 2003a).
This positive aspect of something being hard, and the danger
of making things too easy, is also discussed by Papert: “What
is best about the best games is that they draw kids into some
very hard learning … The fact is that kids prefer things that
are hard, as long as they are also interesting” (Papert 1998).

This touches on the Practice Principle, outlined by Gee as one
of several principles involved in successful learning
situations: “Learners gets lots and lots of practice in a context
where the practice is not boring (i.e. in a virtual world that is
compelling to learners on their own terms and where the
learners experience ongoing success)” (Gee 2003b). Among
other notable such principles are the Achievement Principle:
“For learners of all levels of skill there are intrinsic rewards
from the beginning, customized to each learners level, effort,
and growing mastery and signalling the learners ongoing
achievements”, the Ongoing Learning Principle (abbreviated):

51

“The distinction between learner and master is vague, since
learners … must, at higher and higher levels, undo their
routinized mastery to adapt to new or changed conditions …”,
and the Probing Principle: “Learning is a cycle of probing the
world (doing something); reflecting in and on this action and,
on the basis, forming a hypothesis; reprobing the world to test
this hypothesis; and then accepting or rethinking the
hypothesis” (Gee 2003b).

In the light of these principles, it becomes clear that computer
games fit in very well as an educational tool, especially if one
also takes into account that many games span across subject
boundaries, being able to offer learning in several areas at
once. As pointed out in a study by Kirriemuir and McFarlane
regarding the roller coaster simulator game RollerCoaster
Tycoon: “The game could be used across a number of subject
domains, such as physics (motion and velocity), and business
and economics (running a theme park)” (Kirriemuir and
McFarlane 2003).

The usage of unmodified, commercial, off-the-shelf games is
not the only possibility, though. The development of a
combination of educational software and computer games,
often referred to as “edutainment” has been the result of
efforts trying to explore the game format and fill it with more
traditional, school curriculum oriented material. However, the
usefulness of such edutainment software has been questioned
in many cases, as observed by Kirriemuir: “However, when
game-oriented entertainment and learning or educational
material are combined, the result has often been
disappointing; the educational value is debatable or
irrelevant, and the gaming and engagement qualities compare
poorly to those of pure games” (Kirriemuir 2002).

A similar standpoint is taken by Papert, viewing this
edutainment “offspring” from games and education software
as one possessing none of the best features from either
“parent”: “Shavian reversals – offspring that keep the bad
features of each parent and lose the good ones – are visible in
most software products that claim to come from a mating of
education and entertainment” (Papert 1998). More
specifically, Kirriemuir and McFarlane points out several
reasons for these shortcomings: “Most edutainment has failed
to realise expectations, either because: • the games have been
to simplistic in comparison to competing video games … • the
tasks are poorly designed and do not support progressive
understanding … • the target audience becomes aware that it
is being coerced into ‘learning’, in possibly a patronising
manner” (Kirriemuir and McFarlane 2004). These known
issues regarding edutainment makes it interesting to
investigate if unmodified, commercial off-the-shelf games
may be more useful as educational tools.

Another issue central to using computer games as educational
tools, is the role of the teacher. Here, Kirriemuir notes various
misassumptions about teaching using computer games in the
classroom, such as: “The teacher will be marginalised, and
become partially or fully redundant, by the game. The role of
the teacher is reduced to an assistant who turns the computers
on and off” and “The pupils work individually, boothed, one
to a game, in monastic silence. Learning is an isolated and
unsocial experience…” (Kirriemuir 2005). As Kirriemuir
points out, these are misassumptions, and if realised such
learning environments would be very unfortunate indeed.
Instead, if treated by the teacher as a beneficial resource,
computer games may take the role of tools that may enhance
his/her teaching, the key point being that the games are tools

in the hands of the teacher. Being able to use activities
occurring within computer games as starting points for
educational activities extending out from the games, is one
example of how the teacher in a highly creative and active
way may create fruitful learning situations. A key point from a
study conducted by the British Educational Communications
and Technology Agency, BECTA, is that a strong teacher
focus is essential: “The role of the teacher in structuring and
framing the activity of the learner remains crucial if learning
outcomes are to be achieved.” (BECTA 2001).

Game Genre classification and learning potential

In the absence of a formally defined genre classification
scheme, a spontaneously developed de-facto model is
commonly used to classify computer games. A number of
generally accepted type genres are thus often used to describe
a games genre, including the common case that a game may
be considered to be a combination of several of the type
genres.

Examples of commonly referred to type genres on a high level
of abstraction are action games, strategy games, and role-
playing games. Examples on a more detailed level of
abstraction are FPS (First Person Shooter) games,
construction games, and MMORPG (Massively Multiplayer
On-line Role-Playing Games). The boundaries between
various genres are not always clearly defined, but although the
genre boundaries are sometimes fuzzy, these type genres are
commonly accepted and serve reasonably well as a reference
model for the classification of computer games, at least if
mixtures of genres are also taken into consideration.

When considered as potential tools for game based learning,
the various game genres of commercial computer games offer
different possibilities, in some cases present as a natural
consequence of the game concept as such. With game genres
that possess a high natural potential as a learning tool, a
noticeable learning effect may occur also in those
commercially sold games that are not developed for the
purpose of being a learning tool. An example of this is several
construction/strategy games, from which the player can gain
insights in areas such as city planning, elevator algorithms,
and the operation of amusement parks, by training on these
tasks as they are being simulated in the games.

Another genre with interesting properties from a
teaching/learning perspective is MMORPG:s, Massively
Multiplayer On-line Role-Playing Games. These games, also
referred to as online games, are commonly capable of
handling many thousands of simultaneous players interacting
with each other and the game environment in very large game
worlds with complex in-game economies and social
structures. Gameplay is constantly ongoing, around the clock,
carried out by the players currently connected to the game
servers, persistent worlds. The possibility to chat online with
other players during gameplay is being used frequently.

Online games adds an interesting dimension, increasing the
potential for online games as learning tools. As a result of the
games online nature, player behaviour and progress can be
monitored by game controllers with access to the game
servers. If needed, game controllers could also adjust the
players situation, either by centrally manipulate settings in the
game servers, or by taking physical form in the game world
and communicate with the players directly, for instance in a
mentor-like manner. Alternatively, others than the those

52

controlling the game servers might use the game in this way,
for instance a teacher appearing in the game through his or her
own game account, having in-game meetings with students in
a mentor-like fashion.

The studied test project

In Botkyrka, Sweden, a test project using computer games as
the primary teaching tool for a class of students in upper
secondary education was initiated in the fall of 2003. The
project first included students in their 10:th year of education,
and now in the second year of the project includes students in
their 10:th and 11:th year of education in a mixed fashion.
This represents the first and second year of the non-
compulsory education in the Swedish school system, normally
corresponding to students reaching the age of 16 and 17 if
continuing directly from the compulsory school system.

The pedagogical issue of using unmodified off-the-shelf
commercial computer games as the main teaching tool was of
great interest. The students were free, up to the limitations of
the project budget, to suggest game titles to be used. Although
the teachers has the right to refuse any suggested game they
feel would be too extreme, this veto right had never been used
up to the time of the study. The resulting mix of game titles
thus reflects the preferences of the students themselves:

Game titles used Number of regular players
World of warcraft 20
Counter strike 18
Battlefield 1942 15
Age of empires 11
Age of mythology 11
Star wars galaxies 11
Warcraft III 10
Diablo 9
Rise of nations 9
Morrowind 7
Tibia 7
Sims 5
Neverwinter nights 5
Sim City 4 3
Matrix 3

Game titles used in the project, ordered by the number of
students having played them regularly during their
participation in the project.

With kind permission from all involved parties, we were
allowed to perform an independent study interviewing both
students and teachers. Previous results from studies on this
test project can be found in (Wiklund and Glimbert 2005) and
(Wiklund 2005).

RESEARCH QUESTION

As the learning potential of computer games is debated, more
information in this area is needed. The usage of unmodified,
commercial off-the-shelf games as teaching tools in schools is
of special interest, as their edutainment counterparts have
been observed to possess deficiencies while pure games are
observed to be highly engaging. Since commercial games
show highly varying properties though, and thus may be more
or less suitable as teaching tools, the game genres factor is a
key issue in a learning situation using commercial computer
games.

The research issue addressed in this paper is to find out if
students using unmodified, commercial off-the-shelf computer
games of their own choosing in class, show any notable
differences in study results related to their favourite game
genres. For the purpose of this paper, the subject of English
(as a second language) has been used as an indicator of
achieved results.

METHODOLOGY

The empirical contribution of this paper is an evaluation study
of an ongoing test project in Botkyrka, Sweden, using
commercial, unmodified computer games as the main
teaching tool in upper secondary education. The project in
question includes students in both their 10:th and 11:th year of
education, in a mixed fashion. The interviews were conducted
towards the end of the second year of the four year test
project, at a time when it was clear to the teachers which
grades they would give the students at the upcoming end of
that semester.

All 21 students in the project participated in the study through
in-depth interviews, as well as the two teachers. The moderate
number of students participating in the project is a limitation
to the possibility to generalise results to the entire population,
thus only conclusions regarding the participants in the project
in question are drawn. Also, as all the participating students
were male, gender issues are not addressed in this paper.
However, as all the students in the project were interviewed,
rather than just those choosing actively to participate, the risk
of results being biased as a result of personality differences in
this area was minimised.

The interviews were conducted individually in a separate
room, away from the class room, with no possibilities of
anyone else overhearing the conversations. The students
retained full anonymity, only being identified by a sequential
number untraceable to the specific individual. Each student
was informed of this anonymity, and that his or her answers
would not be disclosed to anyone else. By taking these
measures, the risk of students not daring to answer the
questions honestly was reduced as much as possible.

During the interviews, the interviewer followed a fixed form
with questions to ensure equal coverage of topics with all
students. Only follow-up questions may differ somewhat
among the students, depending on the answers given. The
information was entered into a database for processing. Key
quotes were translated to English for the purpose of appearing
in this paper.

RESULTS

A total of 21 students participated in the test project, all of
which were interviewed for this paper. Regarding gaming
background, all the students reported having played games
frequently prior to entering the studied project, with 13 of
them (61.9%) belonging to clans or guilds.

Favourite game genres

The two most common game genres stated by the students as
their favourite genres were First Person Shooters (FPS) and
Massively Multiplayer On-line Role-Playing Games
(MMORPG:s). When entering the test program, 11 students
(52.38%) stated FPS games being their sole favourite genre,
and 1 additional student (4.76%) stated FPS games to be the

53

favourite genre in conjunction with (offline) Role-Playing
Games (RPG:s), making FPS games a favourite genre of 12
students in total (57.14%) when entering the test program. At
the end of the period studied, these figures had decreased to 7
students in total (33.33%), out of which 5 students (23.81%)
regarded FPS games as their sole favourite genre and 2
students (9.52%) also mentioned other genres in conjunction
(RPG:s and adventure games, respectively).

MMORPG:s were the sole favourite game genre for 3 students
(14.29%) when entering the test program, and a favourite in
conjunction with other genres (strategy and offline RPG:s) for
2 additional students (9.52%), making MMORPG:s a
favourite game genre for a total of 5 students (23.81%) at the
time of entering the studied program. At the time of study 8
students (38.09%) regarded MMORPG:s as their sole
favourite game genre, with an additional 3 students (14.29%)
having other game genres (strategy games, offline RPG:s and
adventure games) as thir favourite genres in conjunction with
MMORPG:s), taking the total number of students having
MMORPG:s as a favourite game genre to 11 (52.38%).

Grades

A large number of grades had been given in several subjects
specific to the program in question, for instance digital
culture, game development, and web design, as well as
general subjects such as history and social science. Focusing
specifically on the subject of English (as a second language),
10 students (47.62%) had at the time of the study received
grades in what is known in the Swedish school system as
"English B", corresponding to the 11:th school year level, the
second year in the test program). An additional 7 students
(33.33%) had received grades in "English A" (10:th year
level, the first year in the test program) only. A group of 4
students (19.05%) had not yet received any grade in English
as a second language while in the test program.

Game genres and received grades

Correlating the favourite game genres stated by the students
with the grades in the subject of English as a second language
received by individual students, the results are as shown in the
following table:

Game genre Students No English
grade

English A
only

English
A+B

FPS only
at start of project 11 4 (36.36%) 4 (36.36%) 3 (27.27%)

FPS + other
at start of project 1 0 0 1 (100%)

MMORPG only
at start of project 3 0 1 (33.33%) 2 (66.66%)

MMORPG + other
at start of project 2 0 1 (50%) 1 (50%)

FPS only
at end of period 5 2 (40%) 3 (60%) 0

FPS + other
at end of period 2 0 0 2 (100%)

MMORPG only
at end of period 8 1 (12.5%) 1 (12.5%) 6 (75%)

MMORPG + other
at end of period 3 1 (33.33%) 1 (33.33%) 1 (33.33%)

Number of students with MMORPG versus FPS games preferences at
the start of the test project and at the time of the study, having
received 0, 1, or 2 grades in English studies while participating in the
project.

The average number of completed years of English studies, as
a function of the favourite game genres MMORPG and FPS
games (with or without other genres in conjunction), is shown
in the following table:

Favourite game genre
stated Students Average number of completed

years of English studies
FPS, at start of project 12 1.00

MMORPG, at start of project 5 1.60

FPS, at end of period 7 1.00

MMORPG, at end of period 11 1.45
Average number of completed years of studies in English (as a second
language), measured as the number of yearly grades received, for
students with MMORPG and FPS games as favourite game genres
when entering the test project and at the time of the study,
respectively.

Teaching methods employed

Interviews with the teachers revealed that their main approach
to teaching using unmodified computer games involved using
in-game activities as starting points for discussions and
assignments of various kinds. This method was applied
constantly. Both teachers reported that the students seemed
highly motivated and interested in discussing issues in various
fields, if the event spawning the discussion/assignment had
occurred in one of the computer games.

The in-games activities are thereby leading to a learning
process starting in-game and then expanding outside of the
game. This is exemplified by one of the teachers: ”When I
observed the students gathering [in the online role-playing
game World of Warcraft] to decide which one of two
dungeons to enter, I was thrilled to see that they performed an
ordered voting procedure, standing up or sitting down to
indicate if they were in favour or opposed to the suggested
alternatives. This led me to have several very fruitful
discussion with them, going into all sorts of voting taking
place in the society, from shareholders of companies to
politicians in the Riksdag [the Swedish Parliament]”
(Wiklund and Glimbert 2005). Both the interviewed teachers
state that in their opinion such in-game starting points is a key
factor when using unmodified, off-the-shelf computer games
in a learning environment.

DISCUSSION AND CONCLUSIONS

The method of interviewing the entire class in question, as
opposed to ask for volunteers, has the advantage of not just
reaching a subset of individuals who might differ from the rest
in various ways. In studies performed on volunteers that have
actively chosen to participate, great care must be taken when
interpreting the results. In such cases it is vital taking into
account that the participants are more interested in the subject
at hand, or at least more active and willing to take part in a
study, than other people in general, even in the same age
group, etc. This potential problem has been reduced as much
as possible by interviewing not just enthusiastic volunteers,
but everyone in the class.

Given the large amount of communication both between
players and between players and NPC:s (Non Player
Characters) in many modern games, the English language is
used extensively also by players from non-English speaking
countries. Since geographical distances become unimportant
when using the computer mediated communication techniques

54

inherent in online games, a natural consequence is that players
frequently encounter other players from various countries,
making chatting in English extremely common. Local servers
using local languages (other than English) are perfectly
possible, but are in practice used less than the ones with
English as the main chatting language. Given the extensive
verbal (textual or in some cases by voice) communication
between players, it is easy to see how students with other
native languages quickly can improve their English speaking
capabilities through such computer games.

Regarding communication between player and game
environment, game genre and atmosphere can greatly
influence the type of English texts encountered, such as quest
texts in for example the MMORPG World of Warcraft being
of a fairly verbose nature. Another example is games set in
historic time, as one student playing the Age of Empires
strategy game remarked: “When you ask the teacher what
some tricky medieval English word means, he tells you the
Swedish word for that. Then you don’t know what that means,
either. Then he explains it, and you know a new word both in
English and Swedish” (Wiklund and Glimbert 2005).

During the interviews, 3 students also made spontaneous
comments directly related to different game genres and their
varying suitability for learning. While all 3 comments pointed
out that game genre has an impact on a games potential as a
learning tool, 2 did so more strongly: "You can learn things
from some games, like English and about history and stuff.
From WoW [online game World of Warcraft] and games like
that, I mean. And medieval strategy games. But not from the
shooters, you don't learn anything there" and "They shouldn't
allow CS [FPS game Counter Strike] and games like that in
school, only online games. Because there you have to think
more.". The third comment was slightly more vague, while
still attributing some importance to game genre in order to
achieve learning: "I don't think it matters what kind of game it
is, I've learnt things from all games! Well, no, perhaps not
from all games, not from really stupid games, those that's just
reflexes. But from all others". Although vaguely defined, it
seems clear that at least one game genre, possibly FPS games,
is unsuitable as a learning tool in this students opinion.

Using the number of yearly grades awarded as a measurement
of the number of completed years of studies in English as a
second language, the average among the students having FPS
games (First Person Shooters) as their favourite game genre
(sole or in conjunction with other genres) at the start of the
test project is 1.00 completed years of English studies.
Comparing this with students having MMORPG:s (Massively
Multiplayer On-line Role-Playing Games) as their favourite
game genre (sole or in conjunction with other genres) at the
start of the test project, this figure increases to an average of
1.6 completed years of english studies. The corresponding
figures at the time of the study is that the average number of
completed years of English studies remains at 1.00 for
students having FPS games as their favourite genre, while
students with MMORPG:s as their favourite game genre had
completed 1.45 years of English studies on average.

Although there is a change over time regarding the students in
favour of MMORPG:s (a decrease from 1.6 to 1.45 completed
years of English studies on average), in both cases this can be
compared to the lower average of 1.0 completed years of
English studies for those in favour of FPS games.

It is worth noting that the visible difference, although
interesting enough in itself, may have at least two different
explanations, neither of which has yet been proven or
falsified. On one hand, its possible that the observed
differences described in this paper may be the result of
students more motivated to study harder also having a
tendency to favour MMORPG:s (massively Multiplayer On-
line Role-Playing Games) to a higher degree than students
favouring FPS (first person Shooter) games. On the other
hand, its also possible that the described differences regarding
study results can be contributed to the fact that those students
playing MMORPG:s to a higher extent are receiving more
training in, and exposure to, the English language, and as a
consequence are both more experienced in, and possibly also
motivated to study, the subject of English (as a foreign
language). Both possibilities may have interesting
implications either regarding games preferences as indicators
or measurement tools, or regarding games as teaching tools.

FUTURE RESEARCH

The study described in this paper indicates a varying learning
potential being present in using unmodified, commercial off-
the-shelf games in class. As the students results, measured as
the number completed years of English studies, varies with
the students favourite game genres, the learning potential
inherent in different game genres is an interesting topic worth
more study.

To better understand whether the observed differences in
study results are the result of students more exposed to certain
game genres receiving specific training through the games as
learning tools, or if students more inclined towards studying
more often than others also choose certain game genres as
their favourites, more research in this area would be valuable.

REFERENCES

BECTA. 2001. Computer games in education project report.
British educational communications and technology agency,
2001.
http://www.becta.org.uk/research/research.cfm?section=1&id=2835

Dickinson, John R. and Faria, A. J. 1997. “A random strategy
criterion for validity of simulation game participation.” In
Simulation and gaming, 28, 263-276.

Gee, James Paul. 2003a. “High score education – Games, not
school, are teaching kids to think.” In Wired Magazine, issue
11.05, May 2003.
http://www.wired.com/wired/archive/11.05/view.html?pg=1

Gee, James Paul. 2003b. What video games have to teach us
about learning and literacy. Palgrave Macmillan, New York,
2003.

Griffiths, Mark. 2002. “The educational benefits of
videogames.” In Education and Health, vol. 20, No 3, 2002.

Kirriemuir, John. 2002. “Video gaming, education and digital
learning technologies.” In D-Lib Magazine, vol. 8, no. 2,
February 2002.
http://www.dlib.org/dlib/february02/kirriemuir/02kirriemuir.html

Kirriemuir, John. 2005. “A survey of COTS games used in
education.” Presented at Serious Games Summit, Game
Developers Conference, San Francisco, March 2005.
http://www.bris.ac.uk/education/research/networks/gern/gdc05.ppt

55

Kirriemuir, John and McFarlane, Angela. 2003. “Use of
computer and video games in the classroom.” Presented at the
Digital Games Research Association (DIGRA) conference,
November 4-6 2003, University of Utrecht, Holland.
http://www.ceangal.com/papers/42.pdf

Kirriemuir, John and McFarlane, Angela. 2004. Literature
review in games and learning. NESTA futurelab report series,
report 8, 2004.
http://www.nestafuturelab.org/research/reviews/08_01.htm

Papert, Seymour. 1998. “Does easy do it? Children, games
and learning.” In Game developer magazine, June 1998, p. 88.
http://www.papert.org/articles/Doeseasydoit.html

Wiklund, Mats. 2005. "Behavioural changes in students
participating in an upper secondary education program using
unmodified computer games as the primary teaching tool". In
the proceedings of CGAMES 2005, the 7:th international
conference on computer games, 28-30 November, 2005,
Angouleme, France. ISBN 0-9549016-2-6.
http://dsv.su.se/~matsw/paper4.pdf

Wiklund, Mats and Glimbert, Lars. 2005. “Students
perception of a learning environment and the teachers role
while using unmodified computer games as learning tools in
upper secondary education”. In the proceedings of CGAIMS
2005, the 6th international conference on computer games, AI
and mobile systems, 27-30 July, 2005, Louisville, Kentucky,
USA. ISBN 0-9549016-1-6.
http://dsv.su.se/~matsw/paper3.pdf

Woods, Stewart. 2004. “Loading the dice: The challenge of
serious videogames.” In Game Studies – the international
journal of computer game research, vol. 4, issue 1, 2004.
http://www.gamestudies.org/0401/woods/

Wolfe, Joseph and Crookall, David. 1998. “Developing a
scientific knowledge of simulation/gaming.” In Simulation
and gaming, 29, 7-19.

AUTHOR BIOGRAPHY

Mats Wiklund completed his
BA degree in computer science
in 1994 and his licentiate degree
in computer science in 1999. He
currently teaches computer
games developement courses at
Stockholm University, working
on his PhD thesis in parallel.
Current research areas focus on
computer games related
commu-nication and learning
issues, both within games and
through other channels
regarding games.

56

Designing Educational Games

Christy M. Bogard and Dr. Rammohan K. Ragade

Computer Engineering and Computer Science Department

University of Louisville

Keywords edutainment, game types, software

component requirements

Abstract

 Educational games have steadily

entered classrooms as a means of challenging

advanced students and tutoring those lacking

comprehension. However, without adequate

educational benefits, instructors are struggling

to continually justify the marginal value added

of using these programs. It is the goal of this

paper to discuss the types of educational

games currently available, to outline the

elements necessary to make a game

entertaining, and to assess the required

components for educational value.

Introduction

 Students have a higher retention rate

of subject material when it is reinforced by

additional sources outside of classroom

instruction. Instructional simulations and

educational games have the potential to

provide this additional reinforcement.

However, educational software, as it exists

today, lacks the components necessary to both

entertain students and provide instructors with

the necessary tools to justify the use of the

game within the classroom. In an effort to

bridge this game, this paper addresses what

components are necessary to developing an

entertaining game and making that game

beneficial within the classroom [2, 4, 11].

Status of the Educational Game Industry

 While the gaming industry has been

growing at an unprecedented rate, expecting to

grow by 71 percent to $85.7 billion by 2006,

the educational software sector has

dramatically lagged, representing only 6.5%

of the computer and video game dollar sales.

As such, published literature on educational

computer games has only begun gaining

substantial volume since 2000 [9, 11, 12, 13,

14, 19].

 However, even given the substantial

growth in literature, leading researchers are

divided on how useful computer and video

games are. Those in favor of these games

claim they can further develop social and

cognitive skills, increase in the retention of

information, and keep students engaged and

motivated in learning. Those against these

games claim they can increase youthful

aggression, result in social isolation, and

because of their addictive nature, cause weight

and health complications [1, 3, 6, 7].

 Given the lack of consensus on the

usefulness of computer and video games

within the classroom, the majority of

published literature on educational software

has focused on the following four categories:

 The first category of articles contains

general overviews of computer and video

games coming to the market. These articles

focus on what new games have been

developed and how they meet a specific need.

In most cases, because the primary intention

of the authors is the sell the given product,

only a biased evaluation is presented, giving a

skewed representation of educational value

contained within.

 The second category of articles is

focused on pre- and post- testing of specific

educational software within a controlled

environment. Because they resemble short-

term, limited case studies often on a single

narrow topic, conclusions reached are often

difficult to reproduce and even more difficult

to generalize in order to make the results

beneficial outside their narrow scope.

 The third category of research is

focused on the effects of gaming on

individuals. This is the largest and most

57

controversial area of research, examining the

physiological, cognitive and social effects of

playing games on users. These articles are

often co-authored by psychologists, focusing

more on the benefits or consequences of

educational games, not on the educational

games themselves.

 The fourth and final category is

focused on research reviews and meta-

analyses. This sector of articles is often

authored by educators and aimed at critiquing

the components of educational software.

Game developers are most interested in this

area of research because it provides a glimpse

into user specifications for educational

software. However, deciphering specific

specifications is often more difficult, as

educators are primarily focused on what

hinders usefulness in the classroom and not

what is necessary to make the games

beneficial [11, 12, 14].

Current Educational Game Types

 Before one can determine clear client

requirements, it is critical to have an

understanding of the games currently

available. Educational games can be divided

into five general categories: Drill and Practice

Games, Half and Half Games, Discovery

Games, Content Games, and Non-Traditional

Games. These five games range from a

primary focus on educational content to a

primary focus on entertainment, respectively

[5, 8, 16, 17, 18].

 Drill and Practice Games, the first type

of game, place focus on continually presenting

similar problems centered on a single concept.

The student practices over and over until he or

she can successfully complete a predetermined

number of problems. At such time, the

student is rewarded, usually with a miniature

activity game or animation. Because students

are often relentlessly drilled on the concepts

within the classroom, this type of game is

typically only entertaining to, and thus

effective for, elementary-age youth. Often,

these games are presented in “Jeopardy”-like

atmospheres, where players create a simple

virtual character that gains points or money

when he or she correctly answers the posed

question and loses points or fined a set amount

of money when he or she incorrectly answers

the posed question.

 Half and Half Games are the second

type of educational games. These games,

considered the foundation of edutainment,

present educational content within an

entertaining game environment. Players are

rewarded by increasingly more difficult

scenarios as they successfully complete the

previously presented challenge. Because the

game environment is highly interwoven with

the educational content presented, the scope of

the educational game is often very narrow,

making the game too specific to be valuable to

a broad audience. One such example is

Oregon Trail. Oregon Trail defines survival

problems for the game player as they move

across the western plains. While players are

presented with some differing scenarios as

they progress, these scenarios are limited in

variety to ensure completion of key

educational modules.

 Discovery Games expand the Half and

Half games by shifting the focus even further

to the entertaining aspect of the game. This is

achieved by introducing an exploration aspect

to the game. Students are encouraged to seek

out the solution to the challenge presented

through a less structured game environment.

Given the increased time required to complete

a challenge or reach a suitable stopping point,

these types of games are often unsuited to the

classroom because most students are forced to

leave the task unfinished, an undesirable state.

“Where in the World is Carmen Sandiego?” is

one such Discovery Game. Students must

move throughout the world in search of clues

as to where Carmen has fled to with a precious

artifact. While the student has vastly more

control over his or her interactions, the game

provides a myriad of clues to assist a lost

player.

 Content games expand upon the

Discovery Games by shifting the focus

primarily to the entertaining environment

aspect, making the educational content

presented the secondary focus. These games

58

introduce an increased risk aspect and further

exploration aspects by reducing the structured

rules of the Discovery Games. However, the

reduced structure combined with the shift in

focus away from the educational content make

these games extremely difficult to use within

the classroom setting because success is often

based on lucky or random discovery of key

pieces of knowledge. An example of a

Content Game is the “Riddle of the Sphinx.”

A player is released into the desert to discover

the ancient Egyptian world with only limited

instructions. While the student can ultimately

complete the objective at hand, it is often

difficult to accurately measure one’s

accomplishments due to lack of guidance.

 Finally, Non-Traditional Games are

the fifth type of educational game. These

games have some clear educational value

presented to the student, but weren’t originally

developed for educational purposes. As such,

these games do not easily classify into the four

traditional game types aforementioned [16, 17,

18].

Designing an Entertaining Game

 Understanding what the five types of

games are lends itself to a discussion of what

elements make a game entertaining. First, and

most importantly, games must have an

interactive environment. The player’s

decisions should drive the game’s responses,

making the interactive element the distinctive

thread separating games from other artistic

ventures such as movies, music, or paintings.

Thus, entertaining games must present

scenarios in which users choose between

different options.

 Decision-making brings the next

element into focus. The game must

appropriately respond to different selections

made by the user. If the game doesn’t produce

different responses to alternative selections,

then the game lacks true interactivity.

 The game also needs an element of

achievement, the third critical element. While

achievement can take on different meanings

with different game contexts, successfully

completing progressive challenges indicates a

natural advancement through the game in

actively seeking the end challenge. With

elements of achievement, there also needs to

be varying degrees of failure. Not

successfully completing a challenge should

result in a setback in the journey to the

conclusion. However, failures should not

result in unconquerable game scenarios.

 The next element needed to make a

game entertaining is clearly defined challenge.

Additionally, the problem presented should be

interesting and having a logical solution that

can be reached by interacting with the game.

The key is finding the appropriate problem

level that is not too simplistic as to bore the

user to move on to other games and not too

complex as to frustrate the user to quit

entirely.

 An entertaining game must also be

fully self-encapsulated, creating an

environment in which the user becomes self-

absorbed within the game world. This is often

called suspension of disbelief, because the

user is so engaged in the game that he or she is

unaware of one’s surroundings.

 Finally, an entertaining game should

have a personal experience for the user,

meaning that while users will have similar

experience, there are specific aspects that

appeal to each individual user. This is often

subdivided into what the user perceives as fun,

what the user learns from the experience, and

what alternative reality the user supplements

with the actual game environment.

 These are only a few of the

components important to creating an

entertaining game, but they represent the basic

building blocks of the game. It is also critical

to recognize that games are created uniquely

in their selected trade-offs in each of these

basic elements [4, 5, 10].

Determining Client Requirements

Understanding the types of

educational games available and the critical

components that make a game entertaining

leads to the determination of what additional

requirements the clients, or school educators

in this context, are seeking. To aid game

59

developers in determining the specific needs

of educators, leading officials have begun

evaluating aspects that are critical for a game

to have educational value within the

classroom. For example, Bringing

Educational Creativity To All (BECTa) and

Teachers Evaluating Educational Multimedia

(TEEM), two leading research organizations

in educational computer games, have both

developed comprehensive lists of components

that are required for games to contribute value

within the classroom, but are currently not

present. This topic is further elaborated upon

in the Master of Engineering Thesis by the

first author [20].

 First, it is critical for the educational

game to record what the student completed

during the gaming session. Educational

games are valuable in the classroom if it can

both increase a student’s understanding of a

concept and provide an analysis of the

student’s learning to the instructor. Current

educational games on the market only record a

student’s level of mastery, often given as a

percent success rate or subjective description

of mastery such as “excellent” or “good.”

Because of the limited artificial intelligence

within the educational games, instructors

cannot determine the underlying concepts that

a student does or does not understand based on

a level of mastery.

In order to provide instructors with the

needed information, the game play interface

must record what the student was able to

successfully accomplish and what the student

failed to master. Because learning is a

complex process that does not easily fit into

precise categories, games should not attempt

to determine the underlying misconception,

but instead provide the most amount of

information possible to the instructor through

a record of the student’s interactions with the

game.

Secondly, educational games should

be able to adapt to students with different skill

levels. In order to continually challenge a

student requires a custom-tailored program

that reacts appropriately to his or her

demonstrated skills. Advancing question

difficulty only after a student has fully

demonstrated mastery of the previous

challenge level results in boredom when a

student has gained mastery but has not yet

completed the current level requirements and

frustration when a student cannot achieve

success at the next challenge level.

In addition to being able to adapt to

students with different skills levels,

educational games should provide similar, but

not identical, repeated experiences. This is

especially beneficial when all students do not

interact with the game simultaneously, but

instead play sequentially. This ensures the

latter students are not simply reproducing

memorized experiences relayed from the

former students. Furthermore, similar but

unique gaming experiences promote

classroom discussion and enable students to

comprehend the experiences of their peers

without having exactly the same experience.

The fourth component required to

make educational games beneficial within the

classroom is providing suitable breaking

points during the game play. Using an

educational game within the classroom is

often inhibited by time constraints and

possible interruptions. Providing stopping

points allows the student to complete a task

while not feeling unsatisfied for having an

uncompleted task. Additionally, providing

completion points can often reduce

unnecessary time repeating previous

accomplishments to resume game play.

Another critical component currently

lacking is appropriate management tools

provided to instructors. Educational games

currently on the market lack developed

Instructor’s manuals that include pertinent

information on structure content and

underlying game models. For example, game

scenarios should mimic realistic expectations

and physical properties of the real world,

furthering psychological, social, and

intellectual development in students.

Providing this information allows instructors

to analyze games for their educational value as

well as their appropriateness to the instructor’s

classroom.

60

While most educational games provide

limited instructions for the instructors, the

educational game play may require elaborate

written instructions to be understood by the

user. When such instructions are required, the

reading comprehension level should match the

target audience age. It is essential game

designers recognize that an educational game

played within the classroom setting must be

capable of functioning independently of

instructor’s involvement, as instructors are

often engaged with students not currently

engaged with the educational game.

Finally, educational games should

foster an encouraging environment that

motivates students to continue involvement

with the game, such as through satisfaction,

desire, anger, absorption, interest, excitement,

enjoyment, and pride in achievement.

Educational games that do not continually

engage the student’s interest are often

dismissed as futile, quickly rendering any

educational value added ineffective.

While BECTa and TEEM have

differing opinions as to the priority of these

components, both agree that without these

components, the costs of using educational

software within the classroom will continue to

outweigh the benefits. Unfortunately, these

components are often expensive to implement.

Commercially, these investments are justified

by the substantial return on investment

through the mass sale of the produced game.

For example, Electronic Arts, the leading

producer of computer games, reported 2004

revenues at nearly three billion dollars. But

educational software cannot produce these

high revenues. As such, producers of

educational games lack the necessary

resources to produce a high quality product

comparable to the currently available

entertainment computer games [2, 4, 8, 9, 11,

15].

Conclusion

Educational games must have the

five/six requirements for entertaining, plus the

six software components to provide instructors

with the necessary tools to justify the use of

the game within the classroom. It is critical to

recognize that games are created uniquely by

balancing the entertaining and the educational

side. This tradeoff will ultimately define the

success of the game.

References

1. Anderson, CA & BJ Bushman, “Effects of

Violent Video Games on Aggressive

Behavior, Aggressive Cognition,

Aggressive Affect, Physiological

Arousal and Prosocial Behavior: A

Meta-Analysis Review of the Scientific

Literature.” Psychological Science, Vol

12 (2001), 353-359.

2. Arter, Judith A & Jay McTighe, Scoring

Rubrics in the Classroom. (Thousand

Oaks, CA: Corwin Press, 2001).

3. Bensley, L & J Van Eenwyk, “Video

Games and Real-Life Aggression:

Review of the Literature.” Journal of

Adolescent Health, Vol 29 (2001), 244-

257.

4. Bringing Educational Creativity To All,

“Computer Games in Education

Project.” (2001).

5. CMP United Business Media. Game

Developer: The Leading Game Industry

Magazine. (San Francisco, CA: 2005).

6. Griffiths, MD, “Violent Video Games and

Aggression: A Review of the

Literature.” Aggression and Violent

Behavior, Vol 4 (1999), 203-212.

7. Harris, J, “Secondary School Students’

Use of Computers at Home.” British

Journal of Educational Technology, Vol

30 (1999), 331-339.

8. Informa Telecoms & Media. Dynamics of

Games (5th edition). (London, UK:

Informa Media Group, 2005).

9. Interactive Digital Software Association,

“State of the Industry: Report 2003-

2004.” (Washington, D.C: IDSA, 2005).

10. Maidment, Robert & Russell Bronstein,

Simulation Games: Design and

Implementation. (Columbus, OH:

Merrill, 1973).

61

11. McFarlane, Angela, Anne Sparrowhawk,

& Ysanne Heald, “Report on the

Educational Use of Games: An

exploration by TEEM of the

contribution which games can make to

the education process.” (Cambridge,

UK: Teachers Evaluating Educational

Multimedia (TEEM), 2002).

12. Mitchell, Alice & Carol Savill-Smith,

“The Use of Computer and Video

Games for Learning: A review of

literature.” (London, UK: Learning and

Skills Development Agency, 2004).

13. National Governors Association, The

Fiscal Survey of States. (Washington,

DC: National Governors Association,

2002).

14. Orey, Michael, Mary Ann Fitzgerald, &

Robert Maribe Branch, Educational

Media and Technology Yearbook 2004,

(Westport, CN: Libraries Unlimited,

2004).

15. Roschelle, Jeremy, et. al. “Developing

Educational Software Components.”

Web-Based Learning and Collaboration.

(Sept. 1999).

16. Sawyer, Ben, The Ultimate Game

Developer’s SourceBook, (Scottsdale,

AZ: Coriolis Group Books, 1996).

17. Swords, Tara, “At the Top of Their

Game.” Dell Insight, (Jan 2005), 6-11.

18. Taylor, John & Rex Walford, Learning

and the Simulation Game. (Beverly

Hills: SAGE Publications, Inc, 1978).

19. Trotter, A., “Budget Crises Leads to

Delays for Technology.” Education

Week, Vol 22, Issue 34 (7 May 2003),

1-2.

20. Bogard, Christy, “Advancements in

Educational Games Through Sound

Software Engineering Principles.”

Master of Engineering Thesis, Dept of

Computer Engineering and Computer

Science, University of Louisville,

Louisville, KY. (July 2006).

62

Session 6

63

FMMG: A FRAMEWORK FOR MOBILE MULTIPLAYER GAMES

Mario Massakuni Kubo and Romero Tori

Avenida Prof. Luciano Gualberto, travessa 3 nº 380

CEP - 05508-900 - São Paulo – SP

Universidade de São Paulo

e-mail: {mario.kubo, romero.tori}@poli.usp.br

KEYWORDS

Games, Framework and mobile multiplayer games.

ABSTRACT

Mobile devices have increasingly evolved, thus becoming an object

of great interest to developers from various fields of study

(database, communication networks, engineering, multimedia,

virtual reality, and computing, among others.)

In this context, the development of games for mobile devices

(especially cell phones) has attracted many, both from universities

and industries.

The goal of this paper is to introduce a framework for mobile

multiplayer games called FMMG. The FMMG provides game

developers with a working consistent environment, which makes it

possible for them to work exclusively on the behavior intended for

their game. We offer here a detailed description of the FMMG

framework structure and of its modules, showing how they are

integrated and consequently result in a powerful and efficient tool

for the development of Mobile Multiplayer Games.

INTRODUCTION

The branch of Games is growing rapidly, now entering a billionaire

market. One of the reasons for such success, besides consumers’

high interest, is the diversity of devices with specific characteristics

that have been produced through the years, ranging from PC’s and

videogames to the most recent mobile devices. However, in spite of

such growth, important questions still remain. These questions are

mainly related with programming languages; hardware;

development platforms’ heterogeneity; database and application

software formatting; interconectivity; management of applications

and their systems, taking into account environmental differences;

ergonomics; software reuse at different frameworks, architectures

and platforms; bandwidth and performance limitations; input/outpt

interface limitations; software and hardware incompatibility;

development and analysis of data communication protocols’

performance in heterogeneous networks; specific domain

application support services (games, education, cooperative work,

software engineering, business, entertainment, and so forth); among

others.

The branches of Games, and especially the branch of Game

applications for mobile devices, are extremely stimulating due to

the technological challenges and the applicability potential they

offer. The fact that this is an emergent multidisciplinary field and

that it allows diverse views with various requirements is

responsible for the lack of systems that can answer all those

questions. Therefore, the branch of Mobile Multiplayer Games

makes an extensive research field on frameworks, engines,

architectures, networks, and distributed computing systems, for

instance. Besides, much research is still to be done in non-

multiplayer games, such as: more precise input/output devices,

man-computer interface, and graphical computing among others.

Developing Mobile Multiplayer Games is a more challenging task

than developing games for PC’s or videogame consoles. Besides

the difficulties in developing a game, the developer must deal with

other intrinsic problems of those devices, such as limitations of

memory, resources and processing, screen size, and inappropriate

input mechanisms (Brooks 1987) (Bethke 2003). In spite of the

differences mentioned above, there are certain elements common to

all kinds of games: collision detection; animation; screen rendering;

user entries; modeling and animation of objects; artificial

intelligence; network communication and algorithms, for instance.

Keeping these common elements in mind, it is possible to put them

all together in a software component, which should be so generic as

to allow it to be used by various kinds of games, but which should,

at the same time, be extremely optimized so that it could supply

good performance and good software quality, and shorten the

development process. Such is the role strongly applied to the

concepts of software engineering framework.

The fact that many of the elements mentioned above still lack

deeper consideration (with respect to the branch of Mobile

Multiplayer Games) together with the lack of an effectively

consolidated structure and the inherent problems of multi-user

applications motivated the development of the FMMG (Framework

for Mobile Multiplayer Games.)

In short, we discuss in this paper the concepts of Game and

framework as follows: in section 2 we present some important

concepts of Game development; in section 3 we introduce the

FMMG; and finally in section 4 we discuss the conclusions from

the development of this project.

GAMES

According to Battaiola (Battaiola 2000), “a Computer Game may

be defined as an interactive system that allows the user to

experience a conflicting situation. Usually there is a background

plot to such experience, which defines the game theme, and

establishes its rules and objectives.”

A Computer Game may also be defined as a system consisting of

three basic parts: plot, engine (framework) and interactive

interface. The success of a Game is dependent upon the perfect

combination of such elements (LaMothe et al. 1994) (Araujo and

Bataiolla 1998) (Battaiola et al. 2001).

The plot establishes the theme, the scenery and the objective of the

game, which the player must achieve by following a sequence of

steps. The task of defining a plot demands not only creativity and

research on the subject, but also an amount of exchange with

pedagogy, psychology, and other disciplines.

The interactive interface controls the communication between

engine and user, displaying a new state of the game. The

development of this interface involves artistic, cognitive and

technical aspects.

The game engine is its control system, the mechanism that

controls the game response according to user actions.

Implementing an engine involves several computing aspects, such

as the choice of an appropriate programming language, taking into

account the easy of use and portability; the development of

specific algorithms; the kind of user interface, and so forth.

Games can be divided according to the number of players into two

categories: Monoplayer Games and Multiplayer Games.

64

Multiplayer Games might also include Massive Multiplayer Online

Games (MMOG’s). MMOG’s are games where thousands of

players interact simultaneously in a persistent virtual world. These

games are held continuously but part of the players may leave the

game while others remain.

The merging of MMOG’s and mobile Games generates a new

world, where it is possible for thousands of users to interact with

each other through mobile devices, thus creating mobile massively

multiplayer online games (MMMOG’s.) For a number of reasons

the perfect integration of those systems has not been completed

yet. Most games currently available for cell phones worldwide

consist of either online or offline single user applications, similar

to the PC games released in the 1980’s. However, the analysis of

the development of both wireless services and markets (e.g. Asia

and Europe) reveals that there is a need as well as a commercial

potential for MMMOG’s. This platform inherits the usual

problems of a traditional MMOG’s, such as the need of guarantee

of robustness, scalability, real-time communication, security and

tolerance to failure.

Today we watch the birth of Massively Multiplayer Ubiquitous

Games (MMUG’s), which comprehend a group of sceneries where

players interact with one another and also with a virtual world

through various devices, which are adapted to the context of

execution, as means to give users the idea that they never leave the

game environment completely. There are significant technological

and scientific challenges in realizing a MMUG, which will have

quite an impact (with strategic value in the near future) on subjects

like interactivity, virtual communities, ubiquity and digital

convergence.

Based on an adaptations from the Distributed Virtual

Environments’ requirements proposed by Van Dam (Van Dam

1993) and by Deriggi (Deriggi 1998) it is possible to list

Multiplayer Game requirements as follows:

• Fast game refresh;

• Minimum latency (delay);

• Multiple input/output device support;

• Simulation of a significant number of objects with

simple, medium or complex behavior;

• Realistic game representation;

• Distribution of long distance data;

• Computing resource and heterogeneous network support;

• Scalability.

Multiplayer Games are distinguishable by five common

characteristics (Sementille 1999):

• Space sharing feeling: all players of a Multiplayer Game

have the illusion of being placed at a same location. The

shared space must show the same characteristics to all

players;

• Presence feeling: when a player enters a shared space,

each player becomes a “virtual player,” called avatar.

An avatar is a graphic representation that might have the

following characteristics: a body structure model, a

movement model, and a physical model. Once in a

Multiplayer Game, each participant can see other avatars

standing in the same space. Also, whenever a participant

leaves the game the other players can see his/her avatar

leaving. Not all players must be human controlled;

• Shared time feeling (synchronization): it is possible for

players to see how they behave in real-time;

• Communication between players: although visualization

is the base for an effective Multiplayer Game, many of

these games also attempt to allow some kind of

communication between players. Communication may

occur by means of movement, animation, text and audio,

and it adds greater sense of presence and reality to any

simulated game;

• Means of sharing: the elements mentioned above

effectively offer a high quality videoconference system.

The real power of a Multiplayer Game derives from its

players’ ability to interact with one another and also with

the game itself. In a combat simulation or Game, for

instance, participants have to shoot or collide into each

other. Interactions like these must be modeled in a

realistic way. Players should be able to choose, move,

handle, and even give other players objects that exist in

the game.

The importance of Multiplayer Games lies in the combination of

graphics with the possibility of having a number of players sharing

information and handling objects inside a Game. The presence of

many autonomous players in the same game is what distinguishes a

Multiplayer Game from a Traditional Game.. Multiplayer Game

forms would be more appropriate to Games that demand

telepresence rendering, that is, the illusion that all players are

present at the same place, even if they are actually physically

appart from each other.

Multiplayer Game Components

Multiplayer Games are made of four basic components: graphic

displays, communication and control devices, processing system,

and communication network. These components work together in

order to supply a sense of involvement to the players.

• Graphic displays: give players a view of the graphic

structure of the Game. Some examples of graphic

displays are: monitor screens, mobile devices’ screens,

glasses (Head Mounted Display - HMD) and CAVEs

(Cave Automatic Virtual Environment - CAVE);

• Communication and control devices: game players have

to handle objects and communicate with other players in

the Game. Such tasks are performed through several

input devices. The most ordinary, however not very

effective, input devices include mouse, joysticks,

keyboards, and also mobile devices’ controls. For more

precise handling tasks, a glove (dataglove) may be used.

Textual communication might be distracting to players,

holding them from total involvement in the Game.

Therefore, in more sophisticated Multiplayer Games,

verbal communication is possible through multimode

interaction;

• Processing System: Multiplayer Games demand a

considerable processing capacity. The processing unit

receives events from a player’s input devices and

computes the effect of these entries over both the

player’s location and other objects in the Game. The

processor must determine how and when to notify other

players about the changes caused by a local player, and

vice-versa. Finally, the processor must render the

graphic display and keep updates from the point of view

of the player in the Game. Therefore, one of the

challenges for Multiplayer Games designers is to allocate

the processor’s timing to the tasks required to sustain the

illusion of presence of players;

• Communication network: in a Multiplayer Game players

need a communication network to exchange information

about changes of position or placement of objects, for

instance. The network is also responsible for the

synchronization of shared states in the Multiplayer

Game, such as time and visibility. It is also important

that the network allow textual and audio communication.

FMMG – FRAMEWORK FOR MOBILE

MULTIPLAYER GAMES

A framework is a set of software components organized and

designed for the construction of a specific domain’s applications.

65

It should be noticed that a Game framework is neither a set of

functions nor an API serving a certain objective. It is not a

finished product either. The framework must be integrated with

the game design implementation (Azevedo 2005) (Pessoa 2001) in

order to form a complete Game. Therefore, the goal of the

framework is to make it possible for its users (the game designers)

to focus only on game designing.

Developing mobile device Games is a complex task. In addition to

the difficulty of developing the Game itself, developers must deal

with various inherent problems of these devices. The use of game

frameworks hence captures the developer’s expertise at a given

platform, supplying a set of components designed and optimized

for those devices. Besides, the use of frameworks also aims the

reusability of the code, of the intrinsic elements of the Game, and

of the platform’s characteristics.

In this context, FMMG (Framework for Mobile Multiplayer

Games) is intended to be as generic as possible so that it can be

used as the basis for any kind of Mobile Multiplayer Game

application, thus providing the program portability between

development platforms for mobile devices based on object oriented

programming language.

FMMG is meant to provide game developers with a set of classes

to help them implement Mobile Multiplayer Games. In the future

an engine may be implemented or aggregate to the framework. By

supplying a working consistent environment, FMMG makes it

possible for game developers to work exclusively on the behavior

intended for their game.

All other functionalities – possible incompatibilities in the

operational environment functioning (each equipment, even

working at a same platform, might have different functionalities

and functioning), for instance – are to be solved by the FMMG.

With the resources the framework supplies, developers will be

free to implement their Game the best way they can, regardless

their (lack of) knowledge about the environment where the

framework is being used.

The FMMG architecture was defined according to identified

requirements, and it was meant to be an open architecture

framework; that is, developers have access to the source code and

may change it.

The MVC (Model-View-Controller) project standard was adapted

(Krasner and Pope 1988) to best suit this framework. The Model

class hence corresponds to the Model, the View class corresponds

to the View itself, and the Controller class corresponds to the

Controller itself. A summary of the description of each interface’s

role as shown in Figure 1 is found bellow:

Figure 1 – MVC Infrastructure

Controller

• Defines the application’s behavior.

• Maps the user’s actions in changes in the Model

interface.

• Selects and controls the active View.

Model

• Encapsules the application’s state.

• Point of access to functionalities.

• Notifies changes in the View.

• Responds to consults of the View.

View

• Renders the application.

• Receives update requests from the Model.

• Sends the user’s entries to the Controller.

Controller

Controller is an abstract class that must be implemented by the

Game developer and informed to the framework. Through this

class the framework is able to inform the Game about events

taking place at the cell phone. The Controller class has two

methods used by the framework to communicate with the Game,

as Figure 2 shows:

Object

Object() : Object
~Object()

Controller

~Controller()
start() : void
stop() : void
resume() : void
suspend() : void
run() : void
event(code : int, param : int) : void

Figure 2 – Controller class

The goals of these methods are:

• start(): method executed just once at the beginning of the

Game. This method should be used to allocate all basic

resources the Game will need while running.

• stop(): method executed just once at the end of the

Game. This method should be used to deallocate all

resources that had been made available to the Game by

the start() method.

• suspend(): method executed whenever the cell phone has

to perform one of its functions (e.g. receiving a voice

call, a shot message, or low battery warnings.) This

method should be used to put the Game on hold, so that

the resources used by the Game are made available for

the cell phone’s operational system to execute other

functions.

• resume(): method executed whenever the operational

system ends the functions that caused a Game

interruption (suspend()). This method should be used to

reallocate all resources needed by the Game so that it

starts running again.

• run(): method executed at each time fraction (depending

on the number of frames per second configured in the

framework.) This method is the entrance to the

execution of the Game. It must be implemented so that

after its execution, it returns the control to the

framework (there can be no infinite loops.) This kind of

implementation should be respected, because the

operational environment used in the framework

implementation must support cooperative multitasks, and

if the control is not returned to the environment, the

device might not work as expected and the keys pressed

by the user will not be recognized. The run() method is

the main loop of the Game, however, such loop is

realized/controlled by the framework.

• event(): method that will be executed whenever an event

that might be of interest to the application occurs in the

operational environment.

The implementation of the Controller class is responsible for the

maintenance of Game states. It defines what action and what view

FRAMEWORK

CONTROLLER

MODEL

VIEW

66

must be executed. This class may be called Macrostate Machine of

the Game.

Model

Model is the abstract class that must be implemented to represent

action in a state of the Game. All intelligence that must be

implemented to a certain state of the Game is encapsulated during

the implementation of the Model interface, as shown in Figure 3.

Basically, the Model class uses the same methods as the Controller

class, for the same ends. It may be called Microstate Machine of

the Game, since it is responsible exclusively for the

implementation of the “intelligence” of a macrostate of the Game.

A macrostate can be composed of various microstates, which are

under the responsibility of the Model class implementation.

Object

Object() : Object
~Object()

Model

~Model()
start() : void
stop() : void
resume() : void
suspend() : void
run() : void

Figure 3 – Model Class

These methods have the following purposes:start(): this method

should be used to start state actions or Game actions.

• stop(): this method should be used to deallocate all

actions that had been made available to the Game by the

start() method.

• suspend(): method executed whenever the cell phone has

to perform the suspension of its functions in the action of

the Game state.

• resume(): method executed whenever the operational

system ends one of the functions that caused a Game

interruption (suspend()) in the action of the Game state.

• run(): method executed at each time fraction. This

method is the entrance to the execution of the class.

View

The abstract class View must be implemented to represent

graphically a state of the Game. It uses basically the same methods

as the Controller class, except for the run() method, here replaced

by the draw() method. Whenever activated, the draw() method is

responsible for the screen update, as shown in Figure 4.

Object

Object() : Object
~Object()

View

~View()
start() : void
stop() : void
resume() : void
suspend() : void
draw() : void

Figure 4 – View Class

Here, the methods have the following ends:

• start(): this method should be used to start the Game

View.

• stop: this method should be used to deallocate the View

that had been made available to the Game by the start()

method.

• suspend(): method executed whenever the cell phone has

to perform the suspension of its functions in the View of

the Game state

• resume(): method executed whenever the operational

system ends one of the functions that caused a Game

interruption (suspend()) in the View of the state of the

Game.

• draw(): method executed at each time fraction. This

method both presents and renders the Game information.

Functioning of the Standard MVC Framework

The infrastructure we propose for the use of the MVC standard in

the framework is based on the use of Controller, Model and View

described in previews sections of this paper and also on the use of

State structures and DataObject class. The State structure is

dependent of the player’s entry or action, and it determines the

current occurrence of a Game. The DataObject class is responsible

for the data structure of the state to be manipulated in the Game.

Figure 5 shows the structure of the MVC standard used by the

framework.

Figure 5 – Structure of the MVC standard used by the Framework

Communication between the Model class and the View class is

established through the implementation of a DataObject class, as

shown in Figure 6. The DataObject class contains all needed

information to execute both the Model class’ and the View class’

methods.

Object

Object() : Object
~Object()

DataObject

m_flag : int

DataObject() : DataObject
~DataObject()
setFlag(flag : int) : void
getFlag() : int
load() : void
unload() : void
resume() : void
suspend() : void

Figure 6 –DataObject Class

The Controller class, where the macrostates of the Game are

controlled by the changeState() method, are requested to represent

it based on the following states:

Controller

Data

Object

Model View

State

67

• DataObjectState.

• ModelState.

• ViewState.

Figure 7 shows the code to the changeState().

Figure 7 –changeState method

The run() method of the Controller class is called upon each

framework iteration, and based on its macrostate control, all

classes representing that macrostate are activated, as shown in

Figure 8.

Figure 8 – run method

Such framework infrastructure results in freedom to develop a

Game in any desired way, and at the same time, it offers the

possibility to reuse the state implementation of one Game into

another. This is possible because state implementation occurs

through the implementation of that three-class set: DataObject,

Model and View. Consequently, there is a development gain,

since Game parts (SplashScreen, Menu, Rank, About and Help)

can be reused, and thus developers may concentrate only on the

development of the GamePlay state of the Game, as Figure 5.9

shows. Also, the time spent in the development process is

reduced, since different developers can work separately on each

state of the Game, which will be put together in the end, forming a

complete Game. In this way, a weakly coupled structure is

formed.

The MVC State based infrastructure for Games can be added to

other State structures, according to the game developer’s needs.

A Game can make use of the following MVC-standard-based

states, as shown in Figure 9.

• SplashScreenState –responsible for the initial opening of

the Game.

• MenuState – responsible for the menu structure of the

Game.

• GamePlayState – responsible for the execution of the

Game itself.

• RankState – responsible for the display of a ranking list

of a Game.

• HelpState – responsible for the display of the Game

help.

• AboutState – responsible for the information about the

Game.

The View and the Model classes are responsible for calling other

class structures belonging to the framework component modules.

These modules contain the game development functionalities.

Figure 9 – An exemple of the use of the MVC standard for Games

Framework Structuring

The analysis of various frameworks and Game engines (Pessoa

2001) (Madeira 2001) (Bernades et al. 2004) allowed us to identify

which component modules would be needed in our framework. A

description of the integrate architecture of frameworks or Game

engines for PC’s proposed by Pessoa (Pessoa 2001) and Bernades

(Bernades et al. 2004) is found bellow:

• Object Manager: responsible for the interaction among

objects and between objects and scenery. There may be

various object managers, one for each group of similar

objects of the Game.

• World Manager: manages the current state of the Game,

interacting with other managers to inform what has to be

done.

• Main Manager: works as a bridge for information

exchange and supplies a single access point to the Game

functionalities.

• Rendering: image generating components with a

determined quality standard, and speed enough to

maintain the Game interactivity.

• Network communication: components responsible for

the communication among players in a Game.

• Sound and Music: components that emit sounds or music

from valid format files in the platform of development of

a Game.

• Artificial Intelligence: components that implement

computer-controlled characters’ intelligence in a Game.

• Collision: components that detect collision of objects in a

Game.

• Physical Simulation: independent components

characterized by the capability of simulating sets of

objects with definable binds and levels of liberty in real-

time.

• User Entry: components responsible for capturing and

transmitting commands received via input devices.

• Multimedia: components responsible for the execution of

video and other kinds of media.

It is important to notice that the component architecture described

above refers to an engine or framework implementation for PC

Games, thus being a too demanding architecture in terms of

memory and processing to be implemented for cell phones.

Modules Proposed for a Framework

The frameworks and engines studied in this project allowed us to

identify the main modules for the definition of FMMG. The

module proposal to form the framework architecture for mobile

devices consists of a basic module and management modules.

The management modules’ and the basic module’s classes are

capable of interacting with each other, depending on the Game

needs, as Figure 10 shows:

Controller

Data

Object

Model View

SplashScreen

Data

Object

Model View

Menu

Data

Object

Model View

GamePlay

Data

Object

Model View

Rank

Data

Object

Model View

Help

Data

Object

Model View

About

…
Controller::changeState(int state)
{
 switch (state)
 {
 case state_1:

stateDataObject = new state
state_DataObject() ;
stateAction = new
State_Model(stateDataObject)
;
stateView = new
state_View(stateDataObject) ;

 }
}
…

…
Controller::run()
{
 stateAction->run() ;
 stateView->draw() ;

 if (stateDataObject->EndOfState())
 {
 changeState(nextState()) ;
 }
}
…

68

Figure 10 – Module Communication Structure

A list of the management modules is found bellow:

• LogManager – utilitary class that helps depuration/debug

processes of a Game;

• ResourceManager – manages the resources (images,

strings, sounds, etc) that may be used by a Game;

• SoundManager – manages the music and sound effects of

a Game;

• FileManager – manages the files used by a Game;

• FontManager – manages the sources available to a

Game;

• NetManager – manages network communication.

The classes listed bellow belong to the basic module of the

framework. They sustain the management modules of FMMG

components and can be used by developers in the construction of a

Game, encapsuling API’s available in the framework operational

environment.

• BitMap – Image class implementation for a Windows

bitmap file;

• Camera – runs down a scenery (vertically and

horizontally) and records/captures all scenes reached by

its “lense” and visual grasp;

• Canvas – responsible for the actions over the physical

screen of the cellphone;

• Circle – creates circles;

• Film – any scene sequence made in a recording period of

a camera;

• Font – represents chosen fonts;

• Image – a basic class that represents an image;

• Label – textual representation of information in the

Game;

• Layer – data structure that represents a layer in a scene.

It is used so that the object order can be evaluated (it

separates what is in the front from what is at back)

• Projector – projects the camera-generated film on

screen;

• Rectangle – creates rectangles;

• Scene – data structure that represents a Game scene. A

scene corresponds to the screen size and is made of

various layers;

• Scenery – data structure that represents the scenery of

the Game. A scenery is made of several scenes;

• Shape – basic class that represents a visual object of the

Game;

• Tile – manages a tile in an image. It represents an image

frame inside an image archive containing various frames

(used in the composition of maps and in animations);

• Window – creates a window on the cell phone screen.

The cell phone screen can be divided into several

windows to facilitate the development of a Game where

too much information must be displayed, but not

refreshed all at once;

• Timertask – abstract class that must be implemented for

use with the Timer class. TimerTask should be

implemented to schedule an execution.

• Timer – schedules a task for execution at a certain time,

without framework control;

• TiledImage – builds a repetitive-pattern image. For

instance, a single color image of size 200x10 can be

easily built from a 10x10-sized image repeated 20 times

horizontally. Vertical repetition is also possible;

• TileContainer – stores the various tiles forming a larger

image (or a screen.), also grouping images and making

the developer’s work easier;

• System – makes the framework functionalities available

for the Game. Through this class the developer can

access source, network and file managers, log, and key

checking functions;

• String – represents a text string;

• Stack – represents a stack where information can be

stored;

• Session – this class is supplied by the framework, and it

represents the Game session, where information is either

stored or accessed at any stage of the Game;

• Queue – abstract class that represents the functionalities

a line must have;

• Poolingtask – implements TimerTask and is used to call

Controller run() methods, respecting the frame-per-

second information specified to the framework. This

class represents the loop of the Game;

• Pool – represents an Object pool. This class is used for

temporary object storage;

• Object – basic class for all framework objects. All

classes must extend from Object;

• List – represents a chained list;

• File – represents a file in the cell phone file system;

• Device – supplies both information and access to

cellphone devices;

• CircleQueue – implements the Queue interface so that a

circular line is generated;

• Context – an abstract class that represents the context of

the environment where the framework is implemented.

Communication Network Structure proposed

for FMMG

Network communication is a solution based on the Client/Server

model for real-time games.

The Client/Server paradigm in a Multiplayer Game implies the

establishment of direct one-way communication (only from client

to server, or only from server to client), with no direct message

exchange between clients. The server is thus responsible for the

transmission of the necessary information to clients.

The advantages of the Client/Server model are:

• All information will pass through the server, so that the

latter can execute an additional process before

retransmiting it;

• The server may be in charge of the filter of selection of

messages sent to clients, producing message traffic

economy;

• Control is centered at the server, which simplifies the

coordination of activities between clients;

• Low connectivity level – clients have to communicate

exclusively with the server, and consequently there must

be only one connection per machine, with simpler

communication protocols;

• A client address directory may be kept at the server, and

the client only has to know the server address;

• Software version control is simplified, since the main

copy is kept at the server, being available for access to

all clients.

The disadvantages of the Client/Server model are:

• There may be delays when trasmiting information, since

Controller

Data

Object

Action View

State

Basic Module Management Module

69

all information must be first sent to the server and then

replicated to clients;

• System scalability depends on the server’s capacity of

precessing and retransmiting information;

• It does not deal well with geographic dispersion, since

the geographicly distant client may not have

communication options other than one specific server;

• If the server fails, the whole system becomes

nonfunctional.

Components are meant to make the development of Multiplayer

Games easier. The network communication module uses the

object/property/event paradigm. Each property change is

acknowledged as an event. Each and every player must be able to

receive the updates made by the other players, so that all of the

multiple players can execute and take part in the same Game. To

attain this situation, the same properties must be shared by the

player who modifies them as well as by the ones who receive

them.

Internally, events make updates in the shared properties, which are

then sent to any player. It is also possible to specify actions to be

executed in response to an event, limiting data transfer only in the

shared properties, and consequently reducing bandwidth use.

Summing up, the network communication module manages the

connection, the login/logout notification, and the data sharing and

processing of the Game.

The server must supply the following capacities:

• A simple sinchonization point for data consistency;

• Preprocessing of Game information;

• Message filter and techniques of bandwidth use

reduction at the server.

The component uses two server layers attempting to increase

scalability and also to allow the simultaneous processing of related

tasks, either in client administration or in the data management.

The two servers that make this possible are:

• Server Manager: manages the initial point of contact in

the connection of a client in a Game. The system can

have only one single server manager.

• Simulation Manager: stores and mediates shared data

access in the Game. The system can have several

simulation managers.

Both server manager and simulation manager can be located either

in the same or in different machines.

Since these servers are separate programs, they can be executed

simultaneously, making simulation administration hence

transparent to the client. That is, any Game being executed will

not be interrupted upon the connection of a new client to the

server manager – something that would not be possible if the two

servers constituted a single program.

With the Client/Server model, as long as all messages are routed

by a central process, system scalability depends on two factors:

• The ability to adjust the power of the central process

hosting machine, and

• The ability to share the work amount between machines.

In a simple server configuration, a single machine manages the

work amount both at the server manager and at the simulation

server. To increase the processing power of the server, we can

either increase the machine speed or use multiple machines to host

the server manager and the simulation managers.

In a multiple server configuration, the server manager’s and the

simulation managers’ work amount is distributed among several

machines. The processing power can be extended with the speed

increase of the machines.

The UDP protocol is used for intercommunication within the

network; therefore, some of the unnecessary overheads imposed

by the TCP protocol are annulled.

A consequence of using the TCP protocol is that

acknowledgements are sent to each package received by the client.

Each acknowledgement is sent in its own package and cannot be

packed with other data. If no acknowledgement is received for a

sent package, the latter is sent again, as it is understood the

package must have been lost, but not replaced. The high level of

packages distributed with the use of the TCP protocol may affect

performance in a shared simulation.

The component reduces package overhead, packing the

acknowledgement with other data and resending lost packages only

when the update has not been replaced by a more recent one. To

attain this, the component overwrites the UDP protocol, which is

an unsafe service, and incorporates its own acknowledgement

functionality to it.

In the component, if no other data is being sent,

acknowledgements are delayed one second before they are sent.

Such delay reduces package traffic in two different ways. Firstly,

it allows the packing of more acknowledgements, provided that

more updates are received. Secondly, it increases the chances of

annulling the transmission of old information in lost packages. In

addition, acknowledgements are packed with other data in order to

reduce the average number of sent packages. Also, the component

allows the specification both of the shared-property update

frequency and of the simulation server update rates, thus reducing

bandwidth use.

The shared-property update frequency indicates the frequency with

which updates are lined for transmission. Thus, if a client makes

20 updates, it is possible that only 10 of them will be lined,

depending on the update frequency and on the type of Game.

The update rate of a connection indicates the frequency with which

packages will be sent to the simulation server and vice-versa. This

may reduce the number of sent packages, since only the most

recent update of a given property will be sent.

Considering that clock systems used by clients in a Mobile

Multiplayer Game are hard to synchronize, the component

internally determines a global simulation time referred to each

client. The global simulation time derives from the estimated

latency time, that is, the time span between the moment the client

makes a change and the moment this change reaches the simulation

server.

The Server Manager manages the initial point of contact in the

connection of a client to a Game. Based on the information given

by component configuration files, the manager authorizes the

connection of the client to the Game, and sends it the simulation

server’s location. Once the client is authorized, the server

manager directs the client to an appropriate simulation server.

The simulation server is also responsible for licensing and for the

system security, with no impairment of the system. Finally, the

server manager includes a graphic interface that shows the

simulation servers and the reference points they are responsible

for, as well as the clients connected to each of them.

The primary function of simulation servers is to store and mediate

Game property access, keeping the most recent copy of Game

data. It also allows the checking of a property’s current values, the

deletion of objects, and the disconnection of clients.

Servers are especially designed to forward game data packages via

sockets, thus working as a gateway, with clients receiving data

packages.

CONCLUSIONS

We introduced in this paper the FMMG, detailing both its

framework structure and its modules, as means to show how they

are integrated, consequently resulting in a powerful and efficient

tool for the development of Mobile Multiplayer Games.

The objective of the FMMG is to provide game developers with a

set of classes for game development, where the FMMG

applications will be application-logic oriented; that is, the logic of

70

a certain domain might be ported to other platforms and seen

through various means, hence assuring greater reusability.

In the future, another objective of the FMMG will be to make it

possible to port Games to a J2ME (Java 2 Platform, Micro

Edition) environment, with just an adaptation of the framework

implementation in the operational environment.

REFERENCES

Brooks, F. P. 1987 – “No Silver Bullet: Essence and Accidents of

Software Engineering,” Computer Magazine, 20(4), pp. 10-

19.

Bethke, E. 2003 – “Game Development and Production,”

Wordware Publishing.

Battaiola, A. L. 2000– “Jogos por Computador – Histórico

Relevância Tecnológica e Mercadológica, Tendências e

Técnicas de Implementação,” Proceedings of XIX Jornada de

Atualização em Informática (JAI) – V. 2, pp. 83-122, SBC.

LaMothe, A., Ratcliff, J., Seminatore, M., Tyler, D. 1994-

“Tricks of the Game Programming Gurus,” Sams Publishing.

Araujo, R. B., Battaiola, A. L. 1998 - “Jogos 3D Interativos

Multiusuários na Internet: Estado Atual, Perspectivas e

Desafios,” Internal Report of DC/UFSCar.

Battaiola, A. L., Domingues, R. G., Feijo, B., Scwareman, D.,

Clua, E. W. G., Kosovitz, L. E., Dreux, M., Pessoa, C. A.,

Ramalho, G. 2001 - “Desenvolvimento de Jogos em

Computadores e Celulares,” RITA, V. 3, N. 2.

Deriggi Jr., F. V. 1998 - “Suporte de Comunicação para Sistemas

Multiusuários de Realidade Virtual,” Masters Degree

Dissertation, UFSCar - Brazil.

Van Dam, A. 1993 - “VR as a Forcing Function: Software

Implications of new Paradigm,” IEEE´93 Symposium on

Research Fronties in Virtual Reality, San Jose, CA.

Sementille, A. C. 1999- “A Utilização da Arquitetura CORBA na

Construção de Ambientes Virtuais Distribuídos,” Doctoral

Thesis – Physics Institute of São Carlos - USP, São Carlos.

Azevedo, E. 2005 – “Desenvolvimento de Jogos 3D e Aplicações

em Realidade Virtual,” Elsevier Publishing.

Pessoa, C. A. C. 2001 – “wGEM: Um Framework de

Desenvolvimento de Jogos para Dispositivos Móveis,”

Masters Degree Dissertation, UFPE.

Krasner, E. K., Pope, S.T. 1988– “A Cookbook for using the

Model-View- Controller User Interface Paradigm in

Smalltalk-80,” Journal of Object Oriented Programming, p.

26-49.

BIOGRAPHY

 Mario Massakuni Kubo is currently

developing his Electrical Engineering Doctorate research in the

field of Computing and Digital Systems Engineering at the

University of Sao Paulo. Master of Computing Sciences (2000) at

the Universidade Federal de Sao Carlos, Specialist both in Projects

Development and Management and in Information Systems (1997),

and graduate Data Processing Technologist (1996) at the

Universidade de Lins. At present working as a project manager at

software development companies and also as a university

professor.

 Dr Romero Tori is Associate Professor at

University of Sao Paulo (USP), a Full Professor at SENAC

University, and general manager of Interlab (Interactive

Technologies Laboratory) at USP. Romero was one of the

pioneers in researching Computer Graphics in Brazil, and he’s

been teaching Computer Graphics in computer engineering

undergraduate and graduate programs since 1984. Romero’s

approach for teaching computer graphics is based on game

technology and in customized software tools, including a Java 3D

game engine, called “enJine”, and an interactive learning tool,

called “Interlab 3D”, both of them developed at his research lab.

Recently Romero was the General Chair of VII Symposium on

Virtual Reality and the Program Chair of WJogos (Brazilian Game

Technology Symposium).

71

Investigation into Mobile Development Tools and Technology for Mobile
Games and Application

Aly Uweso Abubakar Salim and Dr Quasim .H. Mehdi

Games Simulation and Artificial Intelligence Centre (GSAI)
School of Computing.

University of Wolverhampton.
A.Salim@wlv.ac.uk

KeyWords :

Adhoc mobile grid, mobile grid, mobile devices,
protocols, communication,

Abstract

Mobile devices have come a long way with the
advancements in terms of processors, memory etc.
This has brought about flexibility for development of
platforms and different applications far more
superior to older ones used and has prompted
research into better methods of deployment and use
of mobile device capabilities. This paper looks at
different technological advancements in progress and
also proposes a plan for future work evaluates
current and future developments..

1. Introduction

As the mobile devices continue to become more
sophisticated with time and capital investments being
poured into the industry to enable production of
better devices there is more room for play in terms of
production of more sophisticated software (games
and multimedia applications) geared towards mobile
devices [2]. Mobile games and applications have also
come along way from the days of black and white
snake ages. There has been a significant
improvement in terms of graphics and playability all
within the limitations associated with mobile devices
in terms of hardware capabilities and communication.
Games as we know them have three different parts
physics, graphics and game AI. When it comes to
mobile device games then the use of these tools has
to be limited due to the inherent limitations faced by
developers unlike their PC and purpose built game
stations like the Playstation, Xbox, etc. This has to
some extent been looked at with the development of
tools that could help design more appealing games
like the Gapi draw [11] and Opentrek [11] platforms
for graphics and networking. The gapi draw in
particular does go a long way in improving graphics
and thus overall look of the games. As for the physics
capability there are dots of it but not to the extent that
a player would like and lets face it as the generations
of mobile users change the more demanding they

become when it comes to the overall quality of the
games they purchase for their mobile devices be it
FSP’s, strategy, sports or even the puzzle games. A
survey done by Nokia has shown figures for people
that love playing mobile games while waiting for
their means of transport is getting higher [3]. This
type of games requires different degree of
capabilities in terms of physics, graphics and game
AI engines. The PCs or PS2 and Xbox games have
different engines that deal with the complex nature of
each and thus like pieces of a puzzle once fitted
together the game developed is a sight for sore eyes
in most cases. The game AI has been developed in
such away that could literally increase the amount of
AI that is currently available on mobile games. The
rule based development environments require
powerful computers with fast processors but this may
not necessarily be untrue [1]. This requirement may
be needed only during the development stages after
which they can be deployed to less powerful devices.
Once the knowledge base is developed, it can be
extracted and combined with an MEE (Mimosa
Execution Environment) a light weight interpreter for
the mimosa language targeted at a particular subclass
of mobile devices [1]. There are some MEE’s
constructed for different languages for devices
running different operating systems including
Symbian, WinCE etc [1].
The development of game engines for mobile phones
require more critical evaluation of the strengths and
weaknesses of mobile devices and this should be
taken into account when developing these engines
[2].

2. 2.Development Platforms

There are different platforms for game and
application development available for mobile devices
including J2ME, Windows Mobile, Brew, and
Jamdat. Windows mobile is a development platform
for smart phones and PDA’s. It addresses different
aspects with regards to developing applications and
games for mobile devices (10). There are two
instances for windows mobile SDK one for
smartphones and the other for PDA’s [10]. The use
of Windows CE is restricted to PDA’s and deals with
the development platform that supports windows CE

72

(.NET CF platform). This is due to the fact that .NET
CE still needs about 2MB space for it to be installed
and run on mobile devices which is mostly seen in
smart phones and PDA’s [12]. It is designed for
windows based CE compliant PDA’s and
smartphones [14]. As compared to J2ME it is not
open-source which does prove to be more
cumbersome when it is used in research purposes
[13].
J2ME is a collection of configurations, profiles and
optional packages fitted like a puzzle into a
compliant development platform for applications on
mobile devices. It is branched into two paths CDC
(connected device configuration) and CLDC
(Connected limited device configuration) profiles
where the former caters for more hi-end tiered
mobile devices while the latter supports more
average mobile devices with more stringent memory
and processor capability. Thus CDC is a superset of
CLDC. J2ME consists of three layers a virtual
machine, configuration and profile. The java virtual
machine is placed at the lowest level and interacts
with the operating system available it exists in two
types that are already mentioned above namely CDC
and CLDC [12]. There are different components are
used for mobile wireless devices as can be seen in
Fig 1 [4].

Fig 1: Mobile phone software components [4]

Thus the CLDC incorporates MIDP (Mobile
Information Device Profile) profile. MIDP has so far
been reviewed and the latest version out is the MIDP
2.0 with game API which is an asset as far as mobile
game programming is concerned and has refined a lot
of the problems associated with MIDP 1.0 providing
more features for the mobile game programmer to
work with including collision detection, sprites, tiled
backgrounds, layers and layer management [13]. This
addresses some of the challenges which have been
experienced with MIDP 1.0, for example, Collision
detection in MIDP 1.0 was not addressed but it is
included in MIDP 2.0.
A TimerTask had to be run and used to check every
half a second whether the ships had collided or not. If
detected then the timer would stop as shown in listing
below:

 Public class CheckWinTimerTask extends
 TimerTask {
Public void run() {
 If ((ship.friend.x < ship.foerightx)&&
 (ship.friend.x > ship.foeleftx)&&
 (ship.friend.y < ship.foebottomy)&&
 (ship.friend.y > ship.foetopy)){
 System.out.println(“CAUGHT”);
 Ship.caught = true;
 }
 If (ship.caught == true) {
 fspTimer.cancel();
 foe.TimerTask.cancel ();
 checkWinTimerTask.cancel ();
 }
 }
}

The collision detection in MIDP 2.0 can be
performed a lot easier with less coding as shown
below:

 Private void checkShips () {

 If (ship.collidesWith (ship2, true)) {
 Ship.undo ();
 Stop ();
 }
}

It is free to download and use in its entirety and has a
very wide support base though it has its own
limitations [4].

Brew is a Qualcomm ingenuity targeted at its CDMA
(code division multiple access) technology. It
supports C, C++, Java and XML. It however needs
brew based chipsets for it to work thus restricting it
to brew chipset phones only [15]. Its applications are
compiled to machine code which enhances its speed.
As far as the data storage is concerned brew allows
bit level manipulation which increases its efficiency
in this area. Brew does also have some costs which a
developer incurs before gaining some much needed
tools for development [15].
There are different graphics platforms being used to
create graphics for mobile games and multimedia
applications that are required by different hardware
configurations of these devices [11]. Also there are
different types of graphic APIs for handheld graphics
development including Java based graphics APIs,
Frame-buffer APIs and Graphics hardware APIs.
They all seem to have influenced the developers to
think about moulding their products towards the
devices they are trying to create them for thus
creating more gruelling work [11]. The development
platform for graphics extends to different mobile
devices and operates on palm, symbian as well as
windows mobile [11]. The GAPI platform is a
mixture of frame buffer API and Graphics API. It is a
platform that can be used to develop high

73

performance graphics and can be used on a normal pc
and the product implemented onto the mobile device
without downscaling and at the same time the
developers need not worry about device specificities
and can concentrate solely on their products logic. It
has so far been used in quite a few research projects
including Tilt and Feel which explores the use of
mobile devices with a tilt sensor and a vibrotactile
transducer [18]. It has also been used in education
where it has been used for teaching students software
development on mobile devices along with the
OpenTrek platform for networks. Thus this shows
that it is an enabler platform that can be used to
pioneer new mobile device applications and concepts
to be tested on mobile devices [11].

3. Grid Computing and Mobile Devices
Grid computing is rooted to the high performance
computing area. There have been three approaches so
far towards providing alternatives to the massively
parallel processor systems. These include Local area
Networks of work stations (NOW) thus providing
low cost high performance computing e.g. Beowulf
systems. The second approach is the use of
geographically diverse supercomputing resources via
high speed networks bringing together gigaflop
capable centres to form teraflop capable virtual super
PCs yielding huge amounts of performance for
applications that require this. The third approach is
most like peer to peer file sharing where included
with this file sharing is computation, bandwidth and
storage [8].
There has been a lot of research now being funded in
terms of research into mobile devices on formation
and usage of grid services and resources. This is a
pool of untapped enrichment that needs to be focused
on. So far there has been progress within this area
with research being able to break boundaries of
enabling the mobile devices to tap into the resources
available from computing grids. This has been tried
and tested with much success as seen in different
research work like GridLite a framework for
managing and provisioning services on grid-enabled
resource limited devices. It is a framework that has
been tested at the HP laboratories and is used to
minimise resource constraints of mobile devices
using the intelligent grid infrastructure [5]. It is
however pointed towards smart phones and PDAs
thus cutting out the rest of the mobile phones that are
around. Condor grid computing research has
initiated research into integrating mobile devices into
the grid. Condor is on its own is a grid architecture
that runs on a set of heterogeneous computers. Each
PC executes two daemons including a scheduling
daemon and a starter daemon for launching new jobs.
Thus helping tap into the grid infrastructure (6).
Another addition is the proxy-based clustered
architecture which is seen as a way of integrating
mobile devices through an interlocutor (intermediary)
preferably a laptop which provides a link between the

devices and the grid infrastructure as shown in Fig 2
[8].

Fig 2: A Broad view of the proxy-based clustered
architecture [8]

Mobile OGSI.NET is the first venture in terms of
exploiting the possibilities of a native mobile grid. The
use of OGSI standards from Globus in creating an
infrastructure for mobiles to co-operate and share
resources and at the same time is able to tap into the
computer grid infrastructure has been implemented.
The facts that it has been set for windows CE
compliant handsets mostly pocket PCs. It presents a
glimpse into the future to come. Figure 3 shows how
the relationship of OGSI.NET with device hardware
and software layers.

Fig 3: Mobile OGSI.NET and its relation to other
device hardware/software layers [9].

This is also shown that the ability to create and
assimilate a mobile grid infrastructure is not out of
reach but just needs more research and refinement
[9].
A lot of research on mobile devices and grid
integration has been done using Globus and condor
grid infrastructure. There is another infrastructure
which has by far been left out called Plan 9. Plan 9 is
a distributed operating system that us able to create
and maintain per process distributed environments
independent of the physical location of resources
[16]. Thus unlike globus Plan 9 provides allows for
grid creation without changes being made or
middleware being created. Thus the two of them

74

show two different approaches to making of grids
[16]. It being an operating system that is grid enabled
it offers good principles in terms of authentication
processes, data management processes, network
management and also security principles which could
aid in building a strong more reliable and secure
grids in the future [16].
A lot more work has been done towards adhoc
mobile grid applications specifically MoGrid a
project done in brazil for peer 2 peer resource
discovery on mobile grids thus the MoGrid
application. This has focused more on adhoc
networks aiming to provide collaborative support
towards applications that run purely on adhoc
networks [17].
The utilization of technology available towards
formation of mobile grids may unleash a better more
efficient game playing environment for mobile
device owners. If harnessed then the potential for
mobile games and applications becoming even more
enhanced in terms of physics, graphics and AI. It
would help in easing the load of processor power in
terms of being able to play or run more intense
games or applications that may need more processing
resources than the device can offer. Thus the use of
other devices within its reach comes in handy.

4. Communication in Mobile devices

There are a quite a few established communication
methods when it comes to mobile devices. The
client/server network models seem to be favoured
over others. This can be seen by the use of a central
point of resource coordination which still poses
restrictive and centralised approach on wireless
network infrastructure [17]. Thus client server
models serve as a major basic network
communication model used in construction of
wireless networks as far as mobile grids are
concerned. Another model that has been used so far
is the peer 2 peer model that provides flexibility, less
restrictive and decentralised approach towards
mobile networks. This can be seen in MOGRID
project that pioneers the use of a peer 2 peer
discovery protocol layer that allows the distribution
of grid tasks in decentralised and dependant on
different factors among mobile devices [17]. This
project is still in development and further tests are
being conducted with regards to its capabilities.
The use of communication standards however
provides another challenge as different devices allow
different types of wireless communication for
example WLAN, Bluetooth, GPRS, WAP, 3G etc.
There are some studies still being undertaken as to
sourcing out the best possible. Till this moment
though each type has its own strengths and can be
used according to different situations arising.

5. Future Proposal

Thus there has been a lot of development on mobile
grids but along the principles of condor and Globus
grid software which has so far been quite successful.
However there are other avenues that can be
exploited as far as creating mobile grids is concerned
which may prove a lot more beneficial too in terms
of security, data management, resource management
etc. this has led to the idea of investigating the
workings of plan 9 and inferno. Plan 9 being a
distributed operating system that is grid enabled
which may give key contributions toward forming
tighter secure networks over mobile grids and
reducing the risks involved in climbing onto a grid
and letting resources from ones mobile device be
utilised. The proposed idea will be investigated with
an aim of developing an adhoc independent mobile
grid protocol that can be used for different resource
intensive tasks. The use of different mobile devices
to make up the grid is the main focus for this project.
In this work, we aim to explore the use of plan 9 as a
grid enabled platform. Experiment with its
architecture, principles, process handling, and
network communication capabilities etc., will allow
for the further development of an adhoc grid enabled
OS that could be used as a grid protocol for mobile
devices modelled under the Plan 9 and inferno
architecture and processes.
 So first the exploration of Plan 9 will commence
where appropriate scenarios are drafted in to test its
capabilities and give an insight to how it would
support the creation of adhoc mobile grids.
There will be more research into inferno which draws
from plan 9 and is supposed to be a more compact
platform and has similar qualities to plan 9. This will
help in assessing its suitability as a portable operating
system or application on mobile devices.
Networking will be looked at in different aspects and
with regards to different scenarios thus the use of
blue tooth, 3G, WLAN, WIFI among others will be
debated by assessing different situations including
areas with little or no wireless capability, areas of
confined space and on open ground etc. This will
therefore affect the choices of which protocols will
be included for communication between the devices.
Another aspect will be addressed is the security
principles that are offered by plan 9 and assess their
suitability to mobile device grid security. Thus a
suitable test bed will be used to assess it and the
results will therefore shape the direction in which the
security aspect of the adhoc mobile grid will be
decided.

6. Conclusion

The research so far has proved an invigorating
experience and with new mobile devices being
unveiled every quarter there is room for more
advancement in terms of mobile applications and

75

games. This paper goes to an extent to show the
research being done thus far in the field. As for the
development of mobile grids there are still more
improvements being developed due to the increased
capabilities being seen on new devices.
The use grid computing for mobile devices has been
a good turning point as far as use of these
supercomputer highly intensive resources is
concerned. This in time will bring about the
enhancement of games and multimedia applications
thus bridging the QOS gap between mobile devices
applications and desktop computers. A new dawn
seems to have come of age since the breakthrough
into grid computing for mobile devices was realised.
The realisation of how application graphics, features,
AI components especially in games, physics
capabilities can be improved. Thus with the future
proposal that has been briefly outlined in this paper
there is hope of even further accomplishments in the
mobile grid computing field with benefits being
realised for mobile multiplayer games and
multimedia real time applications.

References

[1]. Hall L, Gordon A, James R, Newall L.
2004 “A lightweight Rule-Based AI engine for
Mobile Games, Proceedings of the 2004 ACM
SIGCHI International Conference on Advances in
computer entertainment technolog”, vol. 74. pp 284
– 289.
[2]. Bancroft M., Cant R., Langeniepen C., Al-
Dabass D,. 2005. ”A game engine for Mobile phones.
Proceedings of international conference for
computer games.” Pp. 89 – 95.
[3]. Ritter H, Voigt T, Tian M, Schiller J. 2003
“Experiences using a dual wireless technology
infrastructure to support ad-hoc multiplayer game.
Proceedings of the 2nd workshop on Network and
system support for games.” Pp 101-105.
[4]. Ortiz E. 2004. “A Survey of J2ME
Today.”http://developers.sun.com/techtopics/mobilit
y/getstart/articles/survey/(Accessed 10th March
2006).
[5]. Kumar R, Song X. 2005. “GridLite: A
Framework for Managing and Provisioning Services
on Grid-Enabled Resource Limited
Devices”.http://www.hpl.hp.com/techreports/2005/H
PL-2005-146.pdf (Accessed 5th February 2006).
[6]. González-Castaño F, Vales-Alonso J,
Livny M, Costa-Montenegro E, Anido-
Rifón L. 2002. “Condor grid computing
from mobile handheld devices. ACM
SIGMOBILE Mobile Computing and
Communications Review.”vol. 6. pp 18-27.
[7]. Millard, D., Woukeu, A., Tao, F. B. and Davis,
H. 2005.” Experiences with Writing Grid Clients for
Mobile devices. In Proceedings of 1st International

ELeGI Conference on Advanced Technology for
Enhanced Learning”.
[8]. Phan T, Huang L, Dulan C. 2002. “Challenge:
Integrating mobile wireless devices into the
computational grid. Proceedings of the 8th annual
international conference on Mobile computing and
networking.”pp 271 – 278.
[9]. Chu C. D., Humphrey M. 2004. “Mobile
OGSI.NET: grid computing on mobile devices.Fifth
IEEE/ACM International Workshop on Grid
Computing.”pp. 182 – 191.
[10].Microsoftsite
http://www.microsoft.com/windowsmobile/about/def
ault.mspx. (Accessed 10 march 2006).
[11]. Sanneblad J., Holmquist L.2004.”The
GapiDraw platform: high-performance cross-
platform graphics on mobile devices Proceedings of
the 3rd international conference on Mobile and
ubiquitous multimedia MUM.”vol.83. pp.47 – 53.
[12]. Janecek A., Hlavacs H. 2005. “Mobile and
wireless games: Programming interactive real-time
games over WLAN for pocket PCs with J2ME and
.NET CF. Proceedings of 4th ACM SIGCOMM
workshop on Network and system support for games
NetGames.”pp. 1 – 8.
[13]. Williams C., Burge M. 2004.”Special
session on mobile computing #2: MIDP 2.0 changing
the face of J2ME gaming. Proceedings of the 42nd
annual Southeast regional conference.”pp. 37 – 41.
[14]. O’Hara R., 1997. “Microsoft Windows CE: A
new handheld computingplatform. Proceedings of
the 1997 ACM symposium on Applied computing.”
Pp. 295 – 296.
[15]. Coulton P., Rashid O., Edwards R, Thompson
R.” Creating Entertainment Applications for Cellular
Phones. Computers in Entertainment.” vol. 3. issue
3. pp. 3 – 3.
[16]. Pike R., Presotto D., Dorward S., Flandrena B.,
Thompson K., Trickey H., Winterbottom P. 1995.
“Plan 9 from Bell Labs. Computing Systems.” vol. 8.
pp. 221 – 254.
[17]. Lima L., Gomes A., Ziviani A., Endler M.,
Soares L., Schulze B.2005. “Peer-to-Peer Resource
Discovery in Mobile Grids. Proceedings of the 3rd
international workshop on Middleware for grid
computing MGC.”vol. 117. pp. 1 – 6.
[18] Oackley, I., Angesleva, J., Hughes, S., and
O’Modhrain, S.: Tilt and Feel; Scrolling with
Vibrotactile Display, in Proceedings of EuroHaptics
2004, Munich, Germany.

76

http://www.microsoft.com/windowsmobile/about/default.mspx
http://www.microsoft.com/windowsmobile/about/default.mspx

RECURSIVE INTEREST MANAGEMENT FOR ONLINE GAMES

Pawan Kumar and Qasim Mehdi

School of Computing and Information Technology
University of Wolverhampton

Wolverhampton, UK WV1 1SB
{pawan.kumar, q.h.mehdi}@wlv.ac.uk

KEYWORDS

Multi-player online games, interest management, HLA,
data distribution management, multi-dimensional
routing spaces

ABSTRACT

Performance and scalability in multi-player online
games and distributed simulators mainly depends on
the effectiveness of the deployed interest management
schemes. These schemes aim at providing message-
filtering mechanisms that reduces the communication
overheads. However, in order to do so, they incur
computational costs that are quite significant and are
not suitable for scalable real time systems. In this
paper, a recursive algorithm for interest management is
presented that can be applied for systems that use
multi-dimensional routing spaces for interest
management. The algorithm’s simulation shows that it
is more efficient and scalable than existing approaches.

1. INTRODUCTION

Networked games allow multiple players at
geographically dispersed location to share and play in a
common virtual world. Typically, a player’s node will
contain some subset of the shared virtual world whose
state is influenced and maintained by the player. In
order to have a mutual consistent view of the virtual
world, events or messages are exchanged between
player nodes (either directly or indirectly through a
server) [1]. However, an update occurring at one node
is likely to have an immediate significance for only a
subset of other nodes in the system. The techniques
that exploit this interest of each node to minimise the
number of messages sent are referred as interest
management (IM) schemes.

Interest management systems have been incorporated
in several large-scale distributed simulators [2,3],
collaborative virtual environments [4,5,6] and
multiplayer online games [7,8,9]. These have been
incorporated mainly to allow systems to scale
seamlessly and efficiently. The scalability in these
systems is primarily related to the number of nodes that
can participate and the computational complexity of
the model that is being simulated (e.g. in a game it
could be the number of entities the game has, etc).
Without the IM system, it would entail every update or

state changes at one node to be communicated to all the
other nodes. This could significantly increase the
bandwidth usage, message sent per second and
computational requirements at processing these
messages. However, incorporating IM system would
try to minimise the above at the expense of
computational costs for it’s processing and thus
affecting the real-time requirements of these systems
and degrading performance. Thus, performance and
scalability of these systems mainly depend on the
effectiveness of the deployed IM scheme in these
systems.

Several IM schemes have been adopted in which a
node expresses its interest to some subset of the world.
Only information that is pertinent to the node gets
forwarded to the node. The filtering techniques used to
achieve this can be grid-based [4,5,10], where the
world is partitioned into an n-dimensional grid cell.
Each node subscribes to some set of cells and updates
are sent only between nodes whose subscriptions fall
into the same grid cell. The advantage of this scheme is
in its simplicity by statically partitioning the world in
advance and each grid cell can be associated with a
multi-cast address. However, issues of cell granularity
can either result in imprecise filtering (for coarse
grained) or significant overheads of leaving and joining
multicast groups (for fine grained). Another filtering
mechanism is based on class based filtering [3,11],
where nodes express interest through subscription to
some set of classes and send/receive updates to only
those classes. This scheme is quite powerful and is
used along with other filtering schemes [3]. However,
in its entirety it is not sufficient for scalable systems.
Further, there is region-based scheme [3,6,9], where
simulation entities or nodes specify interest areas in the
form of publisher and subscriber regions where
intersection between them represents a potential
communication between the entities. The regions can
be specified as homogenous multi-dimensional routing
space [3,9] or as auras [6]. The region-based scheme is
more powerful and general as it allows each node to
specify, create and modify the regions at run time.
However, this expressivity does come with a
significant overhead that could lead to a time
complexity of O(n2). In this paper, a recursive
algorithm (order O(nlogn)) for region matching is
proposed where regions are defined using multi-
dimensional routing space (Figure 1). Several other
techniques for IM includes use of N trees [12] for
massively multiplayer online games, sphere of
influence [13] for distributed agent simulation and use

77

of message oriented middleware technologies [14] for
networked games. However, their discussion is beyond
the scope of the paper.

The remainder of this paper is organised as follows.
Section 2 provides a background of existing
approaches to region matching for multi-dimensional
routing spaces. In section 3, the recursive algorithm for
region matching is presented along with its complexity
analysis. In section 4, simulation results and
performance evaluation is provided. Finally, section 5
details conclusion and future work.

2. BACKGROUND AND RELATED WORKS

Much of the works of interest management using
multi-dimensional routing spaces has been undertaken
in the context of High Level Architecture (HLA) [3,16]
and similar concepts have been applied in multiplayer
online games middleware [9]. HLA is a standard
interface specification that provides a general
infrastructure and services for distributed simulation.
Two of its services namely, Declaration management
(DM) and Data distribution management (DDM)
offers IM facilities. While the DM service provides IM
using class-based approaches, the DDM service
provides IM based on region matching where publisher
and subscriber regions are specified using routing
space information. A routing space is defined as a
collection of dimensions that are used to define
regions. Typically, a region comprises of set of extents
where each extent has a bounded range defined along
each dimension of the routing space as shown in
(Figure 1). For IM, node’s specifies object attributes or
interactions that it wishes to publish or subscribe (using
DM) and associate regions (extents) with those
subscriptions (using DDM). When publisher regions
overlap with subscriber regions, connectivity is
established between the two nodes and finally the
information is transmitted. Thus for successful
implementation of IM, it is required that region
matching and connectivity be established as efficiently
as possible. Depending on the context of usage, several
algorithms have been established for DDM. These are
discussed next.

Figure 1: Extents in 2-dimensional routing space

2.1. Brute Force Approach

Brute force approach for region matching simply
checks each of the publisher extents with each of the
subscriber extents for an overlap. This results in a
complexity of O(n2). The advantage of this approach is
in its simplicity and performs well in situations when
most of the publisher extents are overlapping with the
subscriber extents, as probability of getting a matching
pair early is high. However, this algorithm does not
scale well except in situations where high number of
regions overlap.

2.2. Grid Based Approaches

Grid based approaches can be utilised for DDM
implementation as it completely eliminates the
complexity associated with brute force approach. In
this, routing spaces are partitioned into grid of cells and
extents are mapped to some subset of the cells.
Whenever, publisher extents and subscriber extents
overlap with the same grid cell, they are assumed to be
overlapping with each other. A prior application
specific knowledge of the world being simulated is
required for efficient realization of this approach. One
such implementation partition the world into grid cells
and statically assigns multicast address for each grid
cell [10]. This approach is simple and scalable than the
brute force approach. However, issues of cell
granularity, as discussed in [15], can significantly
affect the performance and resource usage of the IM
system. A large cell size could lead to imprecise
filtering, as extents may not be overlapping even
though they are mapped to same grid cell. This would
not only deliver additional data across the wire but also
requires additional processing at the receiver to filter
irrelevant data. On the other hand, a finer grid cell
would require additional resources for maintaining data
structures for each cell. Further, if multi-casting is
used, then this could lead to thrashing in network layer
where extents are modified frequently and are joining
and leaving several multicast groups. In addition, there
can be practical limitation of available multi-cast
addresses [15] that could significantly affect the
scalability of the systems. Thus, application specific
knowledge, network bandwidth, resource availability
are the key metrics for deciding an optimal cell size. In
[17], multi resolution grids were used that were
statically defined and were allocated multicast
addresses. One section of the world uses coarse
resolution while another section uses a fine resolution.

2nd dimension
Extent A

 Publishers
In addition to static approaches, more recent works
uses dynamic grids [18] and hybrid approaches [19] as
an extension to grid based approaches. In dynamic
grids, multicast addresses are dynamically allocated to
the cells that have at least one publishing extent and
one subscribing extent. This results in efficient
utilization of multi-cast address. Hybrid approach, on
the other hand, combines brute force with grids. In this,
world is partitioned into grid cells and then for all
extents in each grid cell, brute force algorithm is used
for region matching. This approach is more scalable

1st Dimension

Extent C

Extent D Extent B

Subscriber

78

than a simple brute force approach and produces less
irrelevant messages than grid based approaches.
However, both still suffer from optimal grid size and
application specific knowledge for their efficient
implementation and have similar drawbacks as with
static grids.

2.3. Spatial Partitioning Based Approaches

Like grid-based approaches, [16] suggested the use of
spatial partitioning or hierarchical approaches for
decomposing the world. In these, world can be
partitioned using persistent spatial data structures such
as quad-trees or oct-trees. These data structures provide
efficient queries for searching. Depending upon usage,
a node retrieved from a tree can have a multi-cast
address associated per node or can have multiple
extents that uses brute force for region matching.
Further, extents can be stored at leaf nodes or at middle
nodes and tree’s depth can be statically fixed a priori or
be allowed to grow dynamically. In addition to these
issues, there are significant costs associated for storage,
maintenance and balancing of these complex trees.
Further, proper partitioning requires application
specific knowledge.

2.4. Sort Based Approach

Recent work of [20] proposed a sort-based approach
for region matching algorithm. In this, for each
dimension in a routing space, a list of endpoints
(representing coordinates of extents in that dimension)
is created, sorted and examined in ascending order to
obtain the overlap information in that dimension.
Extents overlap if an overlap is found in all the
dimensions. However, despite making improvements
to their original algorithm and incorporating additional
data structure for optimisation and intermediate storage
of overlap information, the overall complexity still
remained quadratic [20] and is therefore not scalable.

3. RECURSIVE ALGORTIHM FOR REGION

MATCHING

All above discussed approaches have weaknesses and
are not suitable for interest management in systems that
demand performance and scalability. Our research
aims at finding new approaches for interest
management that uses multi-dimensional routing
spaces and demand performance and scalability. Here
we propose an efficient and scalable recursive
algorithm for region matching that can be applied in
these systems.

3.1. Problem Definition

Given

SforDimensionsofSetSpD
SpaceSp
=

=
)(

,

A region R comprises of set of extents and can be
associated as a publisher or a subscriber. Therefore
problem of region matching requires finding
overlapping publisher and subscriber extents. Let

ExtentsPublisherofSetP =
ExtentsSubscriberofSetS =

xExtentforRangesofSetxR =)(

Then we have

)()()(: SpDPRPRPP iii =∧∃∈∀

)()()(: SpDSRSRSS iii =∧∃∈∀

The problem here is to identify overlapping publisher
and subscriber extents to establish connectivity
between publishers and subscribers. The extents
overlap if

))(),((:, iiii SRPROverlapSSPP ∈∃∈∃

Where is a predicate that is
true if and only if

))(),((yRxROverlap

jioverlapsRRyRRxRRji jiji ==∧∈∈∀ :)(),(,

i.e. each range of one extent overlaps with the
corresponding range of the other extent.

For scalability, it is required that the above overlapping
information of extents is obtained using minimal use of
computational resources.

3.2. Algorithm Description

The algorithm for region matching takes the best of the
existing approaches for region matching. In particular,
this work extends the recent sort based approach to
recursively do region matching and combines brute
force approach when clusters of overlapping extents
have been found. In order to understand recursive
algorithm, a simple scenario is examined. Figure 1
shows four extents in a 2D routing space. Extents A, B
and C belong to region that acts as publisher whereas
extent D belongs to region that acts as subscriber. The
first step in the algorithm identifies grouping of
overlapping extents in one of the dimensions of the
routing space. Figure 2 depicts this scenario. Here all
the extents are projected to one of the dimensions. As
seen, two groups can be obtained, one containing
extents A and B and another containing extents C and
D.

To algorithmically achieve this grouping information, a
mechanism is required for evaluating the lower bound
and upper bound points of each of the extents in that
dimension. For this, a list of all endpoints in that
dimension is created and sorted from lowest to highest

79

value. Figure 3 shows the list before and after sorting
of Figure 1 extents in 1st dimension.

Figure 2: Extents projected to one of the dimensions

Figure 3: List of endpoints along one of the dimensions

Once sorting has completed, the algorithm proceeds to
find the group of overlapping extents in that
dimension. A container group comprising of two sets:
one for holding references of publisher extents and
another for holding references of subscriber extents, is
used for storing the group of extents that are currently
overlapping in that dimension. The algorithm scans for
groups by sweeping along the dimension and
examining endpoints as depicted in pseudo code below.

Figure 4: Pseudo code for finding groups of
overlapping extents along one dimension

For the above scenario, the pseudo code in Figure 4
will form two groups as shown in Table 1. These
would be used further for recursive matching.

Step End point count Group information (Gp)
 Gp.P Gp.S
1 Al 1 {A} {}
2 Bl 2 {A, B} {}
3 Au 1 {A, B} {}
4 Bu 0 Completed
5 Cl 1 {C} {}
6 Dl 2 {C} {D}
7 Cu 1 {C} {D}
8 Du 0 Completed

Table 1: Iterations of grouping algorithm for the
scenario of Figure 1

A special consideration to sort function is required
while sorting the endpoints to consistently group the
extents. This is depicted in Figure 5. Here extent A’s
upper bound coincides with the extent B’s lower
bound. Clearly the order in which they get sorted is
important for proper grouping. If Au occurs before Bl
then extent A and B would incorrectly be placed in
separate groups whereas if Bl occurs before Au then
both A and B occupies the same group. Therefore for
proper grouping, the sort function is implemented as a
binary predicate as depicted in Figure 6.

Figure 5: Extents projected along one dimension where
sorting affects grouping

Figure 6: Binary predicate used for sorting

The group formed in the previous step contains a
reduced set of publisher extents and subscriber extents
that may be overlapping along one of the dimensions.
Thus a mechanism is needed to determine whether this
reduced set of extents overlap or not. This is
determined through recursion. Here, the groups found

(b) List after sorting

(a) List before sorting

{A, B}
{C, D} Groups

Publisher Subscriber

Al Bl Au Bu Cl Dl Cu Du

l (lower-bound) u (upper-bound)

List = { Al, Au, Bl, Bu, Cl, Cu, Dl, Du }

List = { Al, Bl, Au, Bu, Cl, Dl, Cu, Du }

Input: Gp (group)
Gp.P = Publisher Extent Set
Gp.S = Subscriber Extent Set
L = sorted endpoints list along a dimension
count =0;

For each endpoint e in the list L
{
 if (e == lower bound){
 ++count;
 extent = getExtentRef(e);
 if (extent == publisher)

Gp.addPublisher(extent);
 else // subscriber

Gp.addSubscriber(extent);
 }
 else {// e is upper bound
 --count;
 if (count == 0){

groupCompleted(Gp);
 }
 useGroup(Gp);
 Clear(Gp);
 }
}

Extent A

Extent B

Al Au, Bl Bu

Input:)int(, sendpooflistllylx =∈∈
Output: Boolean

⎭
⎬
⎫

⎩
⎨
⎧

∧∧==
<

<

)()()(upperisylowerisxyx
yx

ifyx

80

in one dimension are sent along other dimensions to be
examined in those dimensions. The same process is
repeated for this group. A list of endpoints along that
dimension is created; sorted and examined whether
further sub-groups can be created or not. This process
continues until there is no subdivision of the group or
else the group size reaches a threshold, both of these
used as a criterion for stopping recursion.

For our example scenario, the first group comprising of
extents A and B will be sent along 2nd dimension that
will result in two subgroups one containing A and the
other containing B (Figure 7a). On the other hand, the
second group comprising of extent C and D do not
subdivide any further (Figure 7b).

Figure 7: Groups of Figure 2 sent along second
dimension

Here only three groups were created at the end of
algorithm processing i.e. {A}, {B} and {C, D}. Their
sizes are quite small and it is easy to identify
overlapping extents. With large number of extents, the
sizes of these groups can become significant and thus
every recursive call will attempt to reduce the size.
However, recursion has its own overheads of function
calls and could lead to stack overflow. Thus for
efficiency and to overcome recursion overheads, a
threshold specifying the maximum group size is used
to stop recursion and extents within the group are
finally examined using brute force approach. The brute
force algorithm efficiently considers each of the
extents ranges for a non-overlap using separating axis
along range’s dimension (Figure 8). The steps of the
complete recursive algorithm are depicted in Figure 9.
Steps 1-7 of the algorithm are quite straightforward and
are based on the above discussion. When a sub group is
formed and completed (step 8), a recursive call is made
so that it can be examined along the next dimension.
All groups with size greater than threshold are
examined in all the dimensions before recursion can be
stopped. Since dimension is an abstract concept, this
algorithm can be extended to any n-dimensional
routing space and thus unlike other approaches, it is not
limited to 2D or 3D routing spaces.

booleanOutput
SGpSPGpPInput

:
.,.: ∈∈

;
;

))()((
)(

truereturn
falseretrun

PSSPif
SpDindeachfor

d
l

d
u

d
l

d
u <∨<

:d
yX Extent X’s endpoint in dimension d

Figure 8: checking for non-overlap using separating
axis

2nd dimension

Figure 9: Steps of recursive algorithm for region
matching

3.3. Algorithm’s Complexity Analysis

The algorithm discussed above uses combination of
sorting, brute force approach and recursion to achieve
region matching. The overall aim of this algorithm is to
reduce the inherent O(n^2) complexity of matching
problem for scalability and performance. In order to
provide complexity analysis, we assume there are n
publisher and n subscriber extents and thus the group
size is 2n. The first step in the algorithm checks the
group size with the threshold t and uses brute force
approach when the group size is less than or equal to t.
Thus, maximum complexity of brute force approach is
of order O(t*t). Since sub groups comprises of extents
that are possibly overlapping, the brute force algorithm
yields best performance in this case.

Further, if the group is to be sub divided, it is examined
along one of the dimensions. This requires creating a
list of endpoints and sorting them. The list creation is a
linear time operation of order O(m) for average sized
group (m<2n) and sorting can be achieved in order
O(mlogm) using a quick sort.

(b) Group {C, D}

{B}

{A} Extent A

Extent B

Extent C

Extent D

Input: Gp (Group of all publisher and subscriber
extents)
Output: list (list of Overlapping pairs)

1. If (Gp.size < threshold || invalid dimension d)
2. Do brute force
3. Else
4. Examine current dimension d ∈D(Sp)
5. Create list l of endpoints in d
6. Sort l using binary predicate of Figure 6
7. Find sub-groups of Gp using grouping

 algorithm of Figure 4
8. If Gp is sub-divided, then do steps 1 to 8 for
 each sub-group in other dimensions until

a) The sub-group does not get subdivided and
b) All dimensions have been examined for the

sub-group

{C, D}

(a) Group {A, B}

81

For an average case where most of the extents are non
overlapping, we believe that every recursive call
reduces the average group size m significantly and thus
the algorithm’s overall time complexity is of order
O(nlogn). This is evident from the experimental
simulation of the algorithm as discussed in section 4.

The worst-case performance of the algorithm arises
mainly in two cases. Firstly, when all the extents are
overlapping and secondly, when recursion goes very
deep. In the first case, the algorithm examines all
dimensions and finds only one group in the end that is
sent to the brute force. This process is of order
O(3nlogn + n*n) or equivalently O(n*n). In the
second case, the recursion gets very deep mainly
because of asymmetrical sub-division of the group
such that in worst case there is only one extent in one
of the sub-groups and the remaining n-1 extents in the
other. If a similar sub-division occurs on every
recursive functional call for the larger sub-group, then
there could be n function calls in total having a time
complexity of order O(n). Further, each function call
creates and sorts the list of endpoints that has a time
complexity of order O(nlogn). Thus worst case
complexity is of order O(n*n*logn). However, in
practice such cases are very rare and based on the
average case performance, this algorithm can be
applied for region matching where there are large
number of extents.

4. Algorithm Simulation and Performance

Evaluation

In order to see the effectiveness of the algorithm, we
simulated the algorithm in C++ using visual studio .net
on windows XP running on Pentium 4 3.2 GHz
processor. We implemented DDM service interface of
the HLA standard as defined in the draft specification
[3]. This involved creation and defining classes for a
routing space, dimension, region, extent, range, etc.
Further, singleton object factory was created that acts
as one-stop shop for creation of all the regions, extents
and ranges. The factory maintains set of pooled buffers
for regions, extents and ranges where each of these
buffers maintains free-list and used-list for efficient
creation and deletion of the associated types. In
addition, spaces were used as indices to retrieve the
pooled buffer for regions and extents whereas spaces
and spaces dimension were used as indices to retrieve
range buffers. All these optimisations have been
incorporated so that the region-matching algorithm can
have access to the buffers and associated objects in
constant time.

For evaluation, a comparison of the algorithm’s
performance with the brute force algorithm is made. In
addition, the following performance criteria were
considered for evaluation: the computation time,
scalability factor i.e. total number of extents supported,
variability in threshold i.e. the affects of varying
threshold size on the performance of the algorithm and
the size of the routing space i.e. how algorithm behaves

from average case scenarios to worst case scenarios.
Further, random distribution of publisher extents and
subscriber extents were used throughout the
experiment and average of five runs of the algorithm
for each data set is used to obtain the timing
information. The routing space of 3 dimensions is used
throughout the experimental simulation and the sizes of
extents ranges were generated randomly using the
same random number generator for all the scenarios.
Three scenarios were considered for performance
evaluation. For each of these scenarios, the extents
were varied in numbers from 50 to 5000 whereas
threshold is varied from 5 to 30. Charts 1-4 below
details the simulation results.

0 16 31
174.8

0 0 0 16

890.6
2790.4 6631

18425

1562.4

187.4

28.2 31 50
6.2

0

500

1000

50 100 200 500 1000 1500 2000 3000 5000

Extents

Time
(ms)

BF

R(T=30)

Chart 1: Performance comparison of a recursive
algorithm (Threshold t=30) with brute force for 3
dimensional routing space of size
100000*100000*100000 (Average case scenario)

0 0 0 6.2
16

28.2 31
50

187.4

-50

0

50

100

150

50 100 200 500 1000 1500 2000 3000 5000

Ext ent s

T ime
(ms)

R(T=5) R(T=10) R(T=15) R(T=20) R(T=30)

Chart 2: Recursive algorithm’s simulation results for
variable thresholds (T=5-30) for 3D routing space size:
100000*100000*100000 (Average case scenario)

0 0 0
6.4

18.2

56

-50

0

50

50 100 200 500 1000 1500 2000 3000 5000

Ex t e nt s

Ti me
(ms)

R(T=5) R(T=10) R(T=15) R(T=20) R(T=30)

Chart 3: Recursive algorithm’s simulation results for
variable thresholds (T=5-30) for 3D routing space size:
10000*10000*10000 (Average to worst case scenario)

82

0 0

739.6

2880.3
6562.6

18859.6

1609.3

-500

0

500

1000

1500

2000

50 100 200 500 1000 1500 2000 3000 5000

Extents

Time
ms

R(T=5) R(T=10) R(T=15) R(T=20) R(T=30)

Chart 4: Recursive algorithm’s simulation results for
variable thresholds (T=5-30) for 3D routing space size:
1000*1000*1000 (Worst case scenario)

The first scenario for evaluation of the algorithm was
based on the average case. For this, an expansive
routing space of maximum 100000 units for each of its
dimension was considered (chart 1 and 2). Here,
extents were randomly distributed with ranges having
sizes between 1 to 20 units. This forms an average case
scenario as not only the extents are randomly
distributed but also the size of extents is very small as
compared to the world. This would form an ideal
scenario for a massively multiplayer online game.
Clearly from chart 1, it is evident that recursive
algorithm outperforms the brute force approach. As
hypothesized in the pervious section, the recursive
algorithm does the region matching in logarithmic time
as compared to the brute force approach that rises
exponentially as the number of extents increases.
Further, chart 2 details the recursive algorithm’s
behaviour with different choice of threshold. The
negative bars in the chart reflect occurrence of stack
overflows. Clearly, some interesting observation can be
made form the chart. The algorithm performs smoothly
up to 500 extents for any choice of threshold.
However, as the extents were increased in numbers, the
overheads of recursion dominate and result in stack
overflows for small threshold values. This is true as
more groups are being found with more number of
extents and thus smaller threshold values do not break
the recursion. Further two important observation made
are: when the number of extents is raised to 5000, the
algorithm only succeeds with a threshold of 30 and
whenever the recursion succeeds, the choice of
threshold hardly have impact on the algorithms
performance. These two observations reflect key points
with respect to scalability and performance of the
algorithm. As the number of extents increases, the
value of threshold should be increased appropriately
and if the recursion succeeds, then this increase in
threshold would not affect the algorithm’s
performance. A metric or a heuristic will be required
that can achieve this seamlessly. A simple mechanism
would be to catch the exception and then increase the
threshold. This is yet to be incorporated in the current
implementation of the algorithm.

In addition to the above scenario, we simulated the
algorithm’s performance for two other cases. One that
reflects an average to worst-case scenario i.e. a routing
space of maximum of 10000 units for each of its
dimension (chart 3) and the other that reflects a worst-
case scenario i.e. a routing space of maximum of 1000
units for each of its dimension (chart 4). In both these
scenarios, extents were randomly distributed and the
size of the their ranges varied between 1 to 20 units, as
was the case with average case scenario. Because of
this, the sizes of extents are quite large as compared to
the size of the world and therefore there is a high
probability that most of the extents would be
overlapping with each other. However, such large
extent sizes do not exist in reality for most of the
games. Charts 3 and 4 details the simulation results for
these scenarios. In chart 3, the algorithm performs
smoothly for up to 1500 extents with higher end
threshold values and thereafter recursion overhead
dominates and result in stack overflows (negative bars)
when extents are in between 1500 to 5000 (near worst-
case). This happens mainly because of asymmetrical
sub division of groups and because of possibly large
numbers of extent’s ranges are overlapping in each of
the dimension. Further, it is observed (not in the chart)
that at threshold values of 60 and 200, the algorithm
succeeds and performs exceptionally well when the
number of extents is 2000 and 3000 respectively. This
information details some interesting facts. Comparing
these results with average case scenario (chart 1), it can
be seen that algorithm succeeds in both the cases when
proper threshold is used. Further, with increase in the
number of extents, the threshold value required
increases in small steps (linearly) for scenario in chart
1 whereas for scenario in chart 2, it makes larger jumps
(increases exponentially). Therefore, for proper
running of the algorithm either a heuristic need to be
developed that take this information into account for
setting the value of the threshold or lookups could be
used if the number of extents and world size are known
a priori and remains fixed.

Lastly, chart 4 details the algorithm’s performance for
the worst-case scenario. Here it can be seen that
algorithm performs well for only up to 100 extents.
After that, recursion overheads dominate for extents
between 200 and 500. However, some interesting
results are obtained in the cases when extents are in
numbers between 1000 and 5000. Here, the recursion
succeeds (unlike the previous two cases) to actually do
the region matching and the performance of the
algorithm degrades to the order of brute force (see
chart 1 and chart 4). This happens mainly because most
of the extents are overlapping in this small world size
and very large groups are being formed that cannot be
sub divided and thus after going through all the
recursive calls, the algorithm reverts back to brute
force approach to complete the region matching.
However such a scenario is impossible and has be
created only for evaluation purposes.

83

5. Conclusion and Future Work

In this paper we presented a recursive algorithm for
region matching that can be applied for interest
management systems that uses multi-dimensional
routing spaces. The concept of routing spaces for
interest management has been adopted in standard
distributed simulators and online games platforms. For
scalability and performance, these systems require
efficient solutions to interest management and the
algorithm presented in this paper has potential to be
used in these systems. The simulation results show
promising results for region matching as compared to
more traditional brute force approach. The results were
even more impressive when large numbers of extents
were involved. However, proper mechanism is required
for setting the values of the threshold and we are
researching techniques that can be used for that
purpose. Further, for complete scalable interest
management system, connectivity is to be established
between nodes whose extents overlaps in order to do
information exchange and therefore real evaluation of
the algorithm would entail consideration of the
network bandwidth, connectivity mechanism,
allocation of multicast address, etc to do information
exchange as done in real time online networked games.
For this, we plan to integrate the algorithm in federated
simulations development kit (FDK) [21]. FDK is an
open source implementation of HLA standard
developed at Georgia Institute of Technology. In our
previous work [22], we discussed approaches for
integrating FDK with game engines like Ogre3D so
that it can be used for distributed agent simulation in
online games. The algorithms integration in the FDK
will not only improve the current HLA architecture but
also provides middleware services for scalable online
games.

References

[1] Singhal S, and Zyda M. 1999. Netwroked Virtual

Environments: Design and Implementation. Addision
Wesley

[2] Morse K. 2000. “An Adaptive, Distributed Algorithm
for Interest Management”; PhD Thesis, University of
California, Irvine

[3] US Defence Modelling and Simulation Office. 1998.
High Level Architecture (HLA)- Interface Specification,
version 1.3

[4] Macedonia M, Zyda M, Pratt D, Brutzmann D and
Barham P. 1995. “Exploiting Reality with Multicast
Groups: A Network Architecture for Large-Scale Virtual
Environments”; IEEE Computer Graphics and
Applications, 15(3): 38-45

[5] Miller D and Thorpe J A. 1995. “SIMNET: The Advent
of Simulator Networking”, Proc. of IEEE, 83(8): 1114-
1123

[6] Greenhalgh C and Bendford S. 1995. “MASSIVE: A
Distributed Virtual Reality System Incorporating Spatial
Trading”, Proc. of 15th International conference on
distributed computing systems (DCS 95), IEEE
Computer Society, 27-35

[7] Epic Games 1999. The Unreal Networking Architecture.
World Wide Web,
http://unreal.epicgames.com/Network.htm

[8] Yu A and Vuong S T. 2005. “MOPAR: A Mobile Peer-
to-Peer Overlay Architecture for Interest Management
of Massively Multiplayer Online Games”, in proc. of
International Workshop on Network and Operating
systems Support for Digital Audio and Video, pp: 99-
104

[9] Liu E, Yip M and Yu G. 2005. “Scalable Interest
Management for Multidimensional Routing Space”, in
proc. of the ACM symposium on Virtual Reality
Software and Technology, pp: 82-85

[10] Tan G, Ayani R, Zhang Y S and Moradi F. 2000a.
“Grid-based data management in distributed
simulation”, In Proc. of 33rd Annual Simulation
Symposium, pp: 7-13, 16-20 April, 2000

[11] DIS. 1995. IEEE 1278 Standard for Distributed
Interactive Simulation

[12] GauthierDickey C, Lo V and Zappala D. 2005. “Using
n-trees for scalable event ordering in peer-to-peer
games”, In proc. o of International Workshop on
Network and Operating systems Support for Digital
Audio and Video, pp: 87-92

[13] Logan B and Theodoropoulos G. 2000. “The Distributed
Simulation of Multi-Agent Systems”, in proc. of the
IEEE-Special Issue on Agent Oriented Software
Approaches in Distributed Modelling and Simulation

[14] Morgan G, Lu F and Storey K. 2005. “Interest
management middleware for networked games”, In
proc. of the ACM symposium on Interactive 3D graphics
and game, pp: 57-64

[15] Abrams H, Watson K and Zyda M. 1998. “Three-Tiered
Interest Management for Large-Scale Virtual
Environments”, in proc. of the ACM symposium on
Virtual Reality Software and Technology, pp: 125-129

[16] Van Hook D, Rak S and Calvin J. 1996. “Approaches to
RTI Implementation of HLA Data Distribution
Management Services”, in 15th Workshop on Standards
for the Interoperability of Distributed Simulations

[17] Rak S, Salisbury M and MacDonald R. 1997.
“HLA/RTI Data Distribution Management in the
Synthetic Theatre of War”, in proc. of Fall Simulation
Interoperability Workshop, Orlando, Florida, USA

[18] Roy A. 2000. “Dynamic grid-based data distribution
management in large scale distributed simulations”, MS
Thesis, Department of Computer Science, University of
North Texas

[19] Tan G, Ayani R, Zhang Y S and Moradi F. 2000b. “A
Hybrid approach to Data Distribution Management”, In
Proc. of 4th IEEE International Workshop on
Distributed Simulation and Real-Time Applications, pp:
55-61, San Francisco, CA

[20] Raczy C, Tan G and Yu J. 2005. “A Sort-Based DDM
Matching Algorithm for HLA”, in ACM Transactions
on Modeling and Computer Simulation, pp: 14-38

[21] FDK- Federated Simulations development kit.
Available:
http://www.cc.gatech.edu/computing/pads/software.html

[22] Kumar P. 2005. “Towards Integrating Ogre3D with
FDK”, in proc. of 7th International Conference on
Computer Games (CGAMES), Angouleme, France

84

http://unreal.epicgames.com/Network.htm
http://www.cc.gatech.edu/computing/pads/software.html

Session 7

85

An Optimised Implementation of the A∗ Algorithm using the STL

Bryan Duggan, Fred Mtenzi
School of Computing,

Dublin Institute of Technology,
Dublin 8, Ireland.

{bryan.duggan,fred.mtenzi}@comp.dit.ie

Abstract

In this paper we present our work on develop-
ing a fast, memory efficient and student friendly
implementation of the A∗ algorithm for use in
teaching using the game Dalek World. We first
present our criteria for evaluating an implemen-
tation of the A∗ namely that it should be easy
for students to understand, support multiple
heuristics and demonstrate some of the optimi-
sation issues which are relevant to implement-
ing path finding. We compare three candidate
A∗ implementations using various data struc-
tures to hold the open and closed lists. We con-
clude that our own implementation based on
the STL map and priority queue data struc-
tures is both the easiest to learn from and also
the fastest.

1 Introduction
Our previous work [3] describes Dalek World, a frame-
work we developed to teach a course in games program-
ming at the School of Computing - Dublin Institute of
Technology. In Dalek World, daleks need to navigate
to ammunition spawn points, when they run out of am-
munition. Figure 1 shows a top down view of Dalek
World with shortest paths between daleks and ammuni-
tion drawn.

Path finding in the majority of commercial computer
games is achieved using the A∗ algorithm [4]. In the sec-
ond semester of our course, students learn how the A∗
algorithm is implemented in the game FarCry. Because
the A∗ algorithm is so widely used in path planning,
it is essential for students studying games programming
to have an understanding of not only path finding [6],
but also of the issues involved in creating a memory and
speed optimised implementation. On our degree pro-
gram, students learn the concepts of the A∗ algorithm
in the third year AI Algorithms course. In fourth year,
students learn how to implement the A∗ algorithm us-
ing C++ in Dalek World. This paper describes our work
creating a “student friendly” (and optimised) implemen-
tation of the A∗ algorithm for Dalek World. Our criteria
for implementing the A∗ algorithm in Dalek World were:

Figure 1: Dalek world with paths and part of the navi-
gation graph drawn

1. The implementation must be easy to understand.
To support this, the C++ code should closely re-
flect the pseudo code and require as little ”‘extra”’
knowledge as possible.

2. The implementation must support plug-in heuris-
tics. This is so students can evaluate the algorithm
for speed and efficiency using different heuristics,
such as the Euclidean distance, the Manhattan dis-
tance and the distance squared.

3. It must support Dalek World sized navigation
graphs. The world size in Dalek World is config-
urable, but a world size of 160 x 100 is used on
the course. This results in a search space of 16000
nodes. Partitioning, triangulation and other tech-
niques are not used at this point.

4. It must be fast and memory efficient as it will be
called often and must not cause the program to
“hang” as searches are carried out. As a benchmark,
our goal was to make the implementation as fast as
our adaptation of Buckland’s implementation [2].

86

Our first attempt was to adapt Buckland’s implemen-
tation from “Learning Game AI by Example” [2]. This
implementation is both fast and flexible, however by the
authors own admission, the implementation is difficult
to follow. We therefore implemented our own version
of the A∗ using various data structures from the STL
to hold the open and closed lists. Our implementation
is fast and memory efficient and in fact in most cases,
it outperforms our adaptation of Buckland’s implemen-
tation over the same search space and using the same
heuristics. It also much easier to understand.

The rest of the paper is organised as follows. Section
2 presents a brief introduction to the A∗ algorithm. Sec-
tion 3 describes our adaptation of Buckland’s implemen-
tation and critiques it from the perspective of the criteria
outlined above. Section 4 presents our implementation.
We also present our performance data and compare our
implementation with our adaptation of Buckland’s. Sec-
tion 5 presents our conclusions.

2 The A∗ Algorithm

The A∗ algorithm is a graph search algorithm. Pseu-
docode for the A∗ algorithm is presented in Figure 21.
First the search space (the world in this case) must be
represented as a graph of navigable locations (nodes).
Each node in the graph is connected to other nodes via
an edge. An edge represents whether it is possible to
travel directly from one node to another. Figure 1 shows
a partial navigation graph generated using a flood fill al-
gorithm in Dalek World.

The A∗ algorithm keeps two lists of nodes. An open
list contains all the nodes found that have yet to be ex-
panded and a closed list contains all nodes that the algo-
rithm no longer needs to consider. The algorithm works
by first adding a node representing the start position to
the open list. The algorithm proceeds into a loop, pop-
ping off the node with the lowest f score from the open
list until either the destination position node is popped
or the the open list is empty. Each node that is popped
(that is not the destination node) is expanded. When a
node is expanded, each adjacent node is first checked to
see if it is navigable. If it is navigable, the adjacent node
is then checked to see if it is on the closed list. If its is
not on the closed list, it is checked to see if it is on the
open list. If it is on the open list, the f, g and h scores
are calculated. The h score is the heuristic distance from
the current node to the destination node. The g score is
the cost from the source node to the current node and
the f score is the sum of these two. If the node on the
open list has a higher f score, it’s parent and scores are
updated. [2] refers to this as edge relaxation. Otherwise
the nodes scores are calculated and it is added to the
open list. Once the destination is found, the loop ter-
minates and the path is generated by iterating from the
destination to the start node via parent nodes.

1Adapted from [5], [2], [7]

function findPath(Node start, Node end) {
List open, closed ;
open.empty();
closed .empty();
start . f = start .g = start .h = 0;
open.push(start);
while(! open.isempty()) {

bestNode = open.popLowestFScoreNode();
if (bestNode == end) {

\\Iterate from end to start via parents
\\Construct the path;

}
closed .push(bestNode);

parent = bestNode;
foreach adjacentNode in bestNode.adjacentNodes() {

if (adjacentNode.isTraversable()) {
if (! closed . exists (adjacentNode)) {

if (! open.exists(adjacentNode)) {
adjacentNode.h = heuristicCostTo(end);
adjacentNode.g = parent.g + costTo(adjacentNode);
adjacentNode.f = adjacentNode.g + adjacentNode.h;
adjacentNode.parent = parent;
open.push(adjacentNode);

} else {
// Edge relaxation
openNode = open.find(adjacentNode);
adjacentNode.g = parent.g + costTo(adjacentNode);
if (adjacentNode.g < openNode.g) {

openNode.g = adjacentNode.g;
openNode.parent = parent

}
}

}
}

}

Figure 2: A* Pseudocode

3 Buckland’s A∗

Our first attempt at implementing the A∗ in Dalek World
was to adapt Buckland’s A∗ implementation from “Pro-
gramming Game AI by Example” [2]. In his book, the
author first describes Dijkstra’s shortest path algorithm
and continues by incorporating a heuristic to choose the
next node to expand. This is the feature of the A∗ al-
gorithm that gives it its efficiency over Dijkstra’s algo-
rithm. The author describes his implementations as fol-
lows:

“The implementation of Dijkstra’s shortest
path algorithm can be gnarly to understand at
first and I confess I’ve not been looking for-
ward to writing this part of the chapter because
I reckon it’s not going to be any easier to ex-
plain.”

Buckland’s implementation is indeed hard to under-
stand and is implemented in no less than eleven C++
classes. It is however fast and flexible due to several

87

factors:

1. It uses templates for nodes and edges, therefore can
be used with graphs of any type, (not just naviga-
tion graphs).

2. The heuristic is also a template, meaning that any
heuristic can be used with the algorithm.

3. It uses its own data structures rather than the STL
for the open and closed lists, including an imple-
mentation of an indexed priority queue for the open
list. It has been suggested that greater efficiency
will be achieved if the STL is not used for the data
structures (our implementation suggests this is not
necessarally the case).

On the other hand:

1. It is difficult to understand and requires eleven
classes and many hundreds of lines of code to im-
plement (see table 1). We suggest therefore it is not
a good implementation for learning purposes.

2. In his demos, Buckland pre-generates the graph.
This is the approach we follow in our adaptation
of Buckland’s implementation also. It uses a flood
fill algorithm to pre-generate all the nodes. In Dalek
World, this results in a graph of 16000 nodes. Were
the world to be bigger, the graph would conse-
quently increase. For example for a world of size 500
* 500, the graph would be 250000 nodes. We suggest
therefore, that it would be more memory efficient
were an alternative approach to be adopted that
did not require that the graph be pre-generated.

3. The flood fill algorithm used first adds every single
node to the graph, even those that are not navigable
and then tags non-navigable nodes as invalid. We
suggest that this is also inefficient as many nodes
are added and stored unnecessarily.

4 Our A∗ Implementation
Having adapted Buckland’s implementation, we felt that
an alternative “student friendly” implementation had to
be developed, which was equally as efficient but perhaps
sacrificed some of the flexibility in order to be easier to
understand. We therefore developed our own A∗ im-
plementation using the STL. Our implementation has
several features that make it a better fit for teaching:

1. It is implemented using just three classes. (See Ta-
ble 2).

2. To use the implementation to calculate a path re-
quires just as little as two lines of code. This com-
pares with eleven for our adaptation of of Buck-
land’s implementation.

3. It is implemented using the STL to hold the open
and closed lists and therefore does not require the
coding of any additional data structures.

4. It supports configurable cost and heuristic func-
tions.

Table 1: Classes used to implement Bucklands’s A∗ in
Dalek World
Class Description
SparseGraph A sparse graph that uses node

and edge templates
GraphNode Base class for a graph node
NaveGraphNode A node in a navigation graph
GraphEdge An base class for an edge

connecting two nodes
NavGraphEdge An edge connecting two nodes

in a navigation graph
GraphHelper Generates a graph using the

flood fill algorithm.
Also draws the graph and
generates a Path from the
Graph SearchAStar class

Graph SearchAStar This class implements the A*
algorithm

PriorityQ A heap based priority queue
PriorityQLow A 2-way heap based priority

queue implementation
Path A container for a vector of

waypoints
Heuristic Euclid Implements the Euclidian

distance heuristic

Table 2: Classes used to implement A* in Dalek World

Class Description
Node A navigation graph node
PathFinder Implements the A* algorithm
Path A container for a vector of waypoints

5. It does not require a pre-generated graph. Instead,
nodes are added to the graph as required as the
algorithm proceeds.

Our implementation creates graph nodes on the fly as
required. Thus it does not require the graph to be pre-
generated. A node is represented using an instance of
the Node struct in Figure 3.

We need to access nodes on the open list by retrieving
the node with the lowest f score, and also by position
vector (to check if a node is on the list). We need to
access nodes on the closed list just by position vector.

We first used the STL list template data structures
to hold the open and closed lists. A list has a member
function sort, which sorts the elements by a configurable
sort order. To sort the list it is necessary to provide
a class functor which compares two nodes. To retrieve
nodes by position, list has a member function find if.
Using this function with a comparison functor argument,
it is possible to retrieve a matching element, (to check if
a node exists on the list).

Using STL lists, our implementation was as much
as ten time slower than our adaptation Buckland’s im-

88

Figure 3: A graph Node

struct Node
{

D3DXVECTOR3 pos;
float f ;
float g;
float h;
Node ∗ parent;

};

Figure 4: Data structures used by our implementation

priority queue<Node∗, vector<Node∗>, NodeLessFunctor>
open;

map<D3DXVECTOR3, Node∗> openMap;
map<D3DXVECTOR3, Node∗> closed;

plementation. Profiling of our implementation revealed
that our implementation spent up to 70% of its execu-
tion time sorting the open list and retrieving elements
from the open and closed lists. This confirms [8]’s as-
sertion that the representation of the underlying search
space used will have an impact on the performance and
memory requirements of a path finding system.

We then optimised the implementation in two ways.
The first optimisation we performed was to use an STL
priority queue to hold the open list. A priority queue
is a data structure in which only the largest element can
be retrieved (popped) [1]. An STL priority queue can
be set up using a class functor to compare elements. This
facilitates program defined sort order. The class functor
we used is shown in Figure 5. Using this class results
in the priority queue being sorted in ascending f score.
Because elements are inserted in order into a priority
queue, there is no need to sort the data structure. The
second optimisation we used was to keep a second copy
of the open list in an STL map data structure using node
position vectors as a keys. As entries in both data struc-
tures are pointers, there is a minimal memory overhead
involved in keeping a second copy of the lists in a second
data structure. This eliminated the need for the sequen-
tial search. Declarations of all the data structures used
are presented in Figure 4.

Figure 6 compares search times for our adaptation of
Buckland’s implementation with our implementation us-
ing the STL priority queue and STL map data struc-
tures. To generate this data, twenty searches were
performed using various start and end points in Dalek
World. The program was then executed ten times (per-
forming the same searches each time) and the times
taken by each A∗ implementation were averaged. We ob-
served that in fourteen of the twenty searches, our imple-
mentation either outperformed our adaptation of Buck-
land’s A∗, or was at least as fast. Overall our algorithm
was faster by 34% that in fourteen of the twenty searches,
our implementation either outperformed our adaptaion

Figure 5: Class functor used to sort the priority queue

class NodeLessFunctor
{

Node ∗ p;
public:
NodeLessFunctor() { p = NULL;}
NodeLessFunctor(Node ∗ p) : p(p) {}
bool operator()(Node ∗ f1, Node ∗ f2)
{

return (f1−>f > f2−>f);
}

};

of Buckland’s A∗, or was at least as fast. Overall our
algorithm was faster by 34%.

Figure 6: A comparison of average search time for our
adaptation of Bucklands A∗ algorithm with our imple-
mentation based on the priority queue and STL map
data structures

Figure 7 compares search times for our implementa-
tion using the STL priority queue and STL map data
structures using three heuristics, the Euclidian distance,
the Manhattan distance, the distance squared and us-
ing no heuristic. Again, twenty searches were carried
out using various start and end points, the program was
executed ten times and the average search times were
profiled. As expected, using no heuristic, the number of
nodes expanded was greatly increased and therefore the
time taken by the search to complete was higher. What
is interesting to observe from this data is that using the
Euclidian distance heuristic is often fastest, despite the
fact that the computational overhead for this approach
would seem to be greatest. We speculate that this may
be because to calculate the Euclidian distance, the Di-
rectX API call D3DXVec3Length is used and this call
must be hardware accelerated.

89

Figure 7: A comparison of search times in milliseconds
using different heuristics

5 Conclusions

This paper presented our implementation of a student
friendly yet efficient implementation of the A∗ algorithm.
We first adapted Buckland’s implementation of the A∗
algorithm in our game framework Dalek World. We con-
clude that this implementation is both flexible and effi-
cient. However, we further conclude that due to the
complexity of the implementation, it is not ideal for use
in a teaching environment. We then described our own
simplified implementation of the A∗ algorithm, generat-
ing graph nodes on the fly and using the STL list tem-
plate data structure to hold the open and closed lists.
We conclude that based on data gathered from search
executions, this implementation is also not suitable be-
cause it is too slow. Finally we presented our optimised
implementation of the A∗ algorithm using the STL map
and priority queue data structures to hold the open
and closed lists. We presented data demonstrating that
in Dalek World, it is on average the fastest of the three
implementations. We can therefore say that it is possible
to create a highly optimised implementation of the A∗
algorithm using data structures from the STL, if appro-
priate data structures are chosen. We also conclude that
using three classes as opposed to eleven, our implemen-
tation is more suitable for learning the A∗ algorithm.

On the other hand, we acknowledge that our imple-
mentation lacks the flexibility of Buckland’s implemen-
tation. We also conclude that due to the fact that our
implementation queries the world repeatedly to check if
a node is navigable, it is susceptible to optimisations in
this area.

All the code used for teaching and test-
ing this paper can be downloaded from
http://www.comp.dit.ie/bduggan/games.

6 About the Authors
Bryan Duggan is a lecturer in the school
of computing at the DIT in Kevin St.
He hold a first class honours degree in
computer science and software engi-
neering from the University of Dublin
(studied at the DIT) and a masters
degree in Information Technology for
Strategic Management (DIT). He is
presently working on a PhD with a

working title of ”Modeling Creativity in Traditional
Irish Flute Playing”. He lectures on games programming
and music technology in the DIT School of Computing.

Fred Mtenzi received his B.Sc degree
from University of Dar es salaam - Tan-
zania in 1989. He also received his M.Sc
and PhD from University College Dublin
- Ireland graduating in 2000. Currently,
he is a lecturer in the School of Comput-
ing at the Dublin Institute of technology
- Ireland. His research interests include
design and implementation of heuristic

algorithms for combinatorial optimisation problems, se-
curity issues in mobile devices, games and healthcare
systems and design of power aware protocols for Mobile
Ad Hoc Networks.

References
[1] Leen Ammeraal. C++ for Programmers. Wiley,

2000.
[2] Mat Buckland. Programming Game AI by Example.

Worldware Publishing Inc., 2005.
[3] Bryan Duggan. Learning games programming using

“dalek world”. May 2005.
[4] FarCry. FarCry AI Bible. Crytek, 2003.
[5] Mario Grimani and Mathhew Titelbaum. Beyond a*.

AI Game Programming Wisdom 2, 2005.
[6] IGDA. IGDA Curriculum Framework. Crytek,

IGDA.
[7] Patrick Lester. A* pathfinding for beginners.

accessed from http:www.policyalmanac.orggames-
astartutorial.htm, 2005.

[8] Paul Tozour. Search space representations. AI Game
Programming Wisdom 2, 2005.

90

Personality Profiling Agent using Computer Games
Sidi O. Soueina1, Ahmed H. Salem2, Kondala Rayudu Addagarla3, Adel S. Elmaghraby4

1Computer Science Department, Sullivan University, Louisville, KY 40205,
 2Computer Science Department, Hood College, Frederick, MD 21701,

Suryacom Consulting Services, Lexington, KY. 40511,
4Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292,

ssoueina@sullivan.edu, asalem@hood.edu, rayudu@suryacs.com, Adel@louisville.edu

Abstract - This paper indirectly lays out the theoretical
foundation for reliable personality profiling and detection
methodologies and their application in education. We begin
by discussing two things: the shortcomings of ways classical
personality profiling methods (e.g., Enneagram and BMTI)
are applied and the need for seamless personality traits
detection means. Based on a formal relationship between
personality, skills, and fixations, we introduce a framework
of an interaction model for personality recognition, using a
computer word-find game, and we discuss issues pertaining
to the game player’s subconscious controlling the eye’s
scanpath (fixation and saccades) on words that closely relate
to the personality type without the player’s awareness.

Keywords - Personality Profiling, Educational Games, Eye
Movement, Cognitive Science.

1. INTRODUCTION

Computer gaming techniques have been used to enhance the
delivery of online educational material. Learning Strategies
(LS) [1][2][3] are educational delivery methodologies used
by teachers and instructors in online and regular class
environments. Examples of learning strategies are
experimental learning, collaborative and active learning. In
order to facilitate learning, these strategies incorporate
different methods of information delivery, for example to
break down complex theories and problems into simple parts,
or to metaphorically introduce complex problems and
theories in ways to which the students could relate . Learning
strategy nonetheless does not systematically employ or
measure specific personality traits and learning capabilities of
the students.

Although empirically simple, the consideration of
regular personality profiling techniques brings different
issues. In classical Personality Profiling (PP) methodologies
[4][5][6][7] for example people are presented with
questionnaires. Typically, the subject student would choose a
level of similarity close to his or her personal behavior and
emotions using a scale, e.g., of 1 to 3, where 1 is the least
likely of being similar and 3 the most. The subject’s
Personality Type (PT) is classified, depending on the highest
similarity score of any of the known personality types (PTs).
The main problem with scale-based questionnaires, however,
remains reliability. The non-measurable level of ‘frankness’
brings about the issue of the candidness of the selections
made by subjects that can be classified as a major hindrance
against accuracy of the selections and thus of personality

typing as a whole. The person being tested is subject to the
influence of her of his own ego manipulations (see definition
1) whose effect is mainly, invisible even to herself.
We are investigating seamless methods to detect personalities
 and intellectual traits in ways that are immune to the
influence of the ego. In this paper we are introducing a seed
model and a computerized word find game, where subjects
are asked to find words hidden in a field of randomly
displayed characters. Here we are motivated by the
assumption that the subconscious does automatically identify
the words that closely relate to the personality type of the
person, even if those words are not uniformly displayed in
front of the person in a legible format. We engage a
discussion of issues pertaining to eye-movement and its
relation to the cognitive mind, and we draw possible research
directions from that.

In the following section we will introduce one of the
basic personality profiling methodologies and its brief
history. Formal definition personality types and their
relationship to mental traits and skills are also presented in
this section. In section 3, we introduced the game model. In
section 4 we discuss motivations pertaining to the eye
movement and its relationship to personality. We conclude
with a discussion and new research directions.

2. PERSONALITY AND SKILL

The Enneagram is a psycho-spiritual typing theory developed
in the first Millennia by Sufi Philosophers [8]. Its original
aim is “to understand the self and put the ego under control in
order to reach enlightenment”. This paper is obviously not
focused on the spiritual dimension of the Enneagram. The
Enneagram has long been tested scientifically, and it is that
aspect which we will discuss. The Enneagram clusters the
human behavior into 9 sets, all according to hidden conscious
and subconscious plans, called the Enneas (or intentions).
Every set of intentions tends to cause individuals who
experienced certain pivotal events and lived in certain
familial or societal environments, to behave in certain
recognizable patterns and thus to develop specific identifiable
mental and social skills. These experiences are directed by
certain features of the phenomenon called the ego (see
definition 1). Most interestingly, nonetheless, is that the
personality types do cause the person to develop certain
mental qualities more than others. For examples, the fear of
being deprived is what causes the personality Type 7 (TP7) to
be creative and thus to be able to generate more new ideas in

91

comparison with other personality types. Personality Type 5
(PT5) are known for a behavioral patterns named withdraw-
and-observe which drives their intellectual qualities to higher
performance causing most of them to be scientists1.

2.1. The Nine skills set

Personality can thus be defined to be a set of human beliefs
emotions and behavioral patterns that have developed over
time. Universally there is no reconciliation on a fixed number
of personality types. It seams however that every personality
shares a central motivator or manipulator called the ego and a
pattern of repetitive behavior called the fixations (Definition
2). The intensity of behavior or skill levels in dealing with
events can be measured by the level of fears & desires which
originally gave birth to the fixations (Definition 2). Given an
event set of events e a personality of a human can be define
as following:

!
=

=

+=

mi

i

ii SfP
0

such that if is the set of fixations or actions that

generated feelings of safety or happiness and
i
s is the set of

the new skills gained during the trials and later in life. Figure
1 depicts the main components of personality as follows:

Definition #1. The Ego. The ego is not defined in the typical
societal sense. Rather it is being defined as the psycho-
emotional phenomena that manages one’s intentions and that
at the same time generates human behavior to guarantee
certain materialistic and emotional needs. The intentions are
not always apparent nor understood by the subject person, or
other observing humans. The ego is being developed
throughout the history of the personality but especially during
early childhood where an event or a series of events made the
subject fixated on certain behaviors or beliefs.

Figure 1. Seeking of pleasure and avoidance of fears lead to forming

a Fixation and skills building, or personality.

Definition #2. Fixations. Every ego has a set of fixations or
traits which are mainly behavioral patterns motivated by the
avoidance of fears or seeking of pleasures. Grounded in

1 See conclusions and discussion for a suggested research direction to
quantify this causal relationship.

reality or not, a fixation is a set of actions and thoughts that
generate a dose of satisfaction that makes the ego “feel safe”
ones again. The fixation is an addictive behavior. We are
willing to fight to maintain our fixations intact, for through
them, we feel safety or pleasure.
Fears & Desires. The loss of the protective body, such as the
mother, at an early life stage, drives the self to seek
protection and safety. A feeling of safety is achieved through
fixating the behavior on a particular pattern that make us feel
safe or feel happy after performing it, which in turn makes us
tend to repeat those behaviors.
Definition #3. Skills & Traits. A trait, such as an intellectual
trait, describes the capabilities of the person gained during
skill building. It is an expressive phenomenon that is a
combination of skills and fixations. A trait can be defined as
an object containing action-type, subject-actions, state, scale
and a life-span:
• Trait-type: defines a general or intellectual trait.
• Subjects-Actions: specific predefined variables

representing actual actions.
• State: is an instance of a subject-actions set.
• Life Span: A trait is born when its subject-actions reach a

significant repetitive threshold.
For the sake of this example, we define an Object trait in

BNF as following:

Object :: <trait-type><Subject-actions><Scale> <Life-span>
<action-type> :: <String>
<Subject> :: <act-type>*
<act-type> :: <String>
<Scale> :: <action> | time| state>*
<action> :: <String>
<time> :: <String>
<State> :: <String>
<Life-span> :: [<Subject-action>*<time>*]
<Subject-action> ::<Subject> <State> <Scale>
<String> :: [A – Z]

2.2. Personality Types and applications

The non-spiritual applications of the Enneagram are
numerous [9]. They range from Business and politics to
therapy. In [10] we introduced the foundation of an
Enneagram based adaptive architecture for a Multimodal in-
Car navigation system where the traits of the 9 Personality
Types (9PTs) were to be identified by the system through,
among other means, a Dialog Manager, Speech Recognition
and Facial Recognition modules. To date however we feel
that the Enneagram application in education has not yet
received the attention it deserves. A goal of such a study
would be to reveal the learning personalities of students;
match students with specific subjects of study or specialties,
maximizing by that the odds of success, and of course,
tailoring the teaching to students’ capabilities. In this paper
we discuss this issue and present a seed solution pertaining to
this topic. Since the target is to advice present of future
students on fields of study, we are introducing a slight
modification in the naming of the 9PTs based on every type’s
primary intellectual traits (see a list of the 9PTs in Table 1).

92

Although more conclusive research needs to be done to
reliably extract the different traits, thus far we can empirically
associate the 9PTs with different subjects of study solely
based on the Intellectual Traits we are naming through the
identification of the know Intellectual qualities of every type.
Note however that each intellectual trait we suggest is not a
sole representative of the type career recommendation, but of
all closely matching groups of specializations.

Enneas Gen-Traits Int-trait careers
1 Rational, Idealistic,

Principled, self-controlled
& perfectionist …

Rational
Thinking

Engineering

2 Possessive, Caring,
interpersonal, Generous,
pleasing…

Preventive
Thinking

Strategy and
managerial

3 Adaptive, driven, image-
conscious …

Pragmatic
thinking

Design

4 Sensitive, Withdrawn,
Expressive …

Imaginative Art

5 Intense, Cerebral,
Perceptive, isolated…

Problem
Solver

Scientist

6 Loyalist, engaging,
responsible, Anxious,
Suspicious …

Preventive Unions

7 Enthusiastic, Busy, Fun-
Loving, Spontaneous,
versatile…

Creative
thinking

Inventor, CEO,

8 Challenger, Self-
Confident,
confrontational…

Decisive
thinking

Conflict
resolution,
political science

9 Peacemaker, Receptive,
agreeable …

Reconcile Peace activism

Table 1. A basic format of the general traits of the 9PTs vs. the main Int-
traits and few examples of their recommended subjects of study and careers.

2.3. Intellectual Traits

In traditional Enneagram classification, General Traits and
Intellectual Traits each develop in a lifetime of conservation
of seeking basic desires and avoiding basic fears. In the
following section, taking the original 9PTs in consideration,
we loosely define the concept of intellectual traits and discuss
the rational of the desires and fears that groomed them. See
section 5 for a discussion on a suggestive study on the
relationship between basic fears, basic desires and skills.

Assumption #1. Skill are basic behavior of every personally
developed through the struggle to balance the basic fears
and basic desires, motivated by the loss of protected body.

Assumption #2. Every general traits and intellectual trait is
a skill.

Rational Thinker: The World View of the rational thinker is
that the world is an ill perfect environment, and his/her job is
to make it perfect. The Basic Desire is to be right and the
Basic Fear is the fear of being condemned. The balance of
the fears and desires makes the Rational Thinker more and
more skills at bringing about sound solutions to every day
problems.

Rational Thinker. World View: His/her conviction that the
world depends on them in order to function. Their Basic
Desire is to be loved, and Basic Fear is to be unloved. Basic
character are generosity, friendliness, pridefulness,
reassuring. The balance of fears and desires make preventive
thinker develop care giving and compassionate skills.
Pragmatic Thinker. World View: The motivator believes
that the world gives great consideration and respect for a
champion and that is why, they try to avoid failure at all
costs. Their Basic Desire is to be admired and Basic Fear is
the fear of being rejected. The Balance of basic fears and
basic desires give the change for the pragmatic thinker to
develop skills in generating grounded solutions in all
circumstances to satisfy all parties.
Imaginative Thinker World View: Something's missing in
themselves and others have it. Basic Desire: to understand
self and Basic Fear: is the fear of being defective. The
imaginative thinkers creative skills are developed through
scanning wide range of option and alternatives.
Problem Solver Thinker. World View: The world is invasive
and confusing. I need privacy to think. Basic Desire: to
understand the world Basic Fear: is to be overwhelmed by the
world. This type is insightful, theoretical, detached, eccentric,
and intense. They can be extremely brilliant and inventive,
but also can be alienated. Their problem solving skills are
developed due to isolation and desires to understand the
world.
Preventive Thinker. World View: The world is a threatening
place. Their Basic Desire is to be secure and Basic Fear: is
the fear of being abandoned. They primary motivation of this
type is to find security, resolve their paranoia. Their
preventive skills are developed through experience in always
trying to avoid danger.
The Inventor Thinker. World View: The world is full of
opportunity and options. I look forward to the future. Their
Basic Desire is to be happy and Basic Fear is fear from of
being deprived and gluttony which are the main motivator of
this type to generate new ideas.
Assumption 3. The subconscious identifies phenomena that
closely relates to the personality type of the same person
more than others, e.g., PT9 first reorganizes (discovers)
words that relate to PT9 traits such as “Peacemaker” and
“Receptive” before it does other words.
Assumption 4.The eye of a game player is directed by the
cognitive mind of the player to identify with artifacts, e.g.,
words that most related to his or her personality using a
weight
Decisive Thinker. World View: believe that the world is an
unjust place. I am strong and I ‘defend the innocent’. Their
Basic Desire is to be self-reliant. Basic Fear is the fear from
submitting to others. The fears and desires of the decisive
thinker makes them develop leading attitudes and skills.
Reconciler Thinker. World View: It's best to keep the
peace. Basic Desire: to find union and peace Basic Fear: fear
of separation. The reconciler’s efforts to unite separated parts
stems from his fears of separation.

93

3. PROFILING AGENTS AND WORD-FIND GAME

In section 1 we briefly introduced the classical dilemma of
having to profile the personality through the questionnaires.
The main problem in this approach is that we are dealing with
the ego as defined in section 2 above. We mentioned that the
ego is capable of unconsciously piloting the subject to place
untruthful answer to some of the questions in the
questionnaire. It makes thus sense to find a method(s)
allowing for an ego-independent traits extraction. One of
such method is to observe the subject interact in an
environment, far from ego stimulus that might be related to
the ultimate goal of personality identification.

Computer games are a good alternative canvas
because they gear the person towards his or her natural state
of interaction to deal with solving the game rather than self
evaluation. The user does have to willfully intend to play in
un-orderly manner for the test to fail. We built and tested a
world-find game (Figure 3) based a on a multi-agent model
of three agents (Figure 2).

Figure 2. an agent-based model of the world find game

The Domain Task Management Agent (DTMA) is a generic
agent responsible for managing required data for personality
profiling based on the domain application in use. The
inference capability of such an agent is standard, i.e., by
changing the domain database; in our case the Enneagram
database, other domain database such as the MBTI can be
used. The DTAM has three main parts, which use different
databases, namely the word dictionary, world category and
user data. Second, the Word Categorizer, which divides and
organize the words in the Enneagram dictionary into 9 Types
based on the personality type. Finally the User Database
records the user interaction wit the game and identifies the
user, subject personality type. This is later on used by the
profiler agent to generate the Personality Report.

The profiling agent is an intelligent agent that uses
detailed database of rules describing conditions for
identifying personality types and the types of words that
match them. The user interface of the game is depicted in
Figure 3. The game starts by showing the user a group of

words for two minutes. During these two minutes the player
will only concentrate on the words and try to memories these
words. These words are nineteen words, which is a
description of the personality type. After the words are
displayed to the players for two mints the game interface is
displayed and asking the players to find ten words from the
19 words that were shown earlier, these 10 words are in the
game matrix. The game has a timer that allows the player
“Subject“ to play the game for 20 mints. Once the 20 mints is
passed the game notify the player that the time is up and the
game will generate a report that indicates the player or
personality type the game provide a detailed report regarding
the time that took the player to find the words and also it
generates a histogram report regarding the personality
probability type.

Figure 3. The user interface is a simple web-based word-find-game

(WFG) that lets the subjects find words in a matrix of 15 by 13 characters
consists of an array of 15 main game matrix, as shown in the following

figure.

The first object in Figure 4 is the Random Word Generator.
The purpose of this object is to randomly select words from
the Word Categorizer database and to select 10 words from
the displayed words that the subject or the player needs to
memorize at the game start. The random words generator
assures that the randomly chosen words are one from each
personality type.

Figure 4. Domain/Task Management Agent.

The second object in Figure 4 is the Word Collector and its
task is to collect the words from the random word generator
object and place it in game grid interface. Lastly, the time
tracker tracks the total of all game time and the time acquired

94

by the player to discover the words. Further the time tracker
also brings game to an end after a particular set time.

4. EYE MOVEMENT RATIONAL

In the previous section we presented the game and
claimed that the players’ personalities can be identified
merely by classifying the words the found and matching them
into one or more of the 9PTs. In this section we will briefly
introduce and discuss pertaining scientific research. The
Human Eye moving on subjects exhibits two main
phenomena, namely fixations and saccades [11]. The fixation
is the amount of time the eye rests on a subjects while the
saccades are fast movements that occur between fixations.
Studying these two phenomena has made Eye-Movement part
of the core research in many areas ranging from medicine
[12], engineering [13] and entertainment [14]. In HCI
(Human Computer Interaction) for instance scientist use eye-
tracking in usability in order to measure the effect of colors
and shapes, on how the users navigate through a website [15].
Our interest in eye tracking however is more related to
cognitive science. Our goal is to study the personality through
eye movements tracking while the subject is performing other
activities mental and physical activities, such as playing a
game. Our ultimate goal is to analyze the eye movements,
actions in order to find credible evidence depicting the
relationship between the general traits and intellectual and
personality type.

Figure 5. Personality Type Report.

5. CONCLUSIONS AND DISCUSSION
The fact that the ego is very manipulative and in control of
most of the human activity and capable of sabotaging both
the conscious and unconscious, makes the issue of directly
probing the ego about the fixations, e.g., by expecting
answers to written questions, rather an inaccurate way of
discovering the fixations, traits and skills. It seams, therefore,
that observing the ego in action is the only way for
identifying the personalities / mental capabilities. This
however brings forth many challenges and research
directions. Mainly, how can we quantify and model the
human fixations in order to discover personality traits and
mental capabilities? What are the types of artifacts and
external subjects can serve to devise an appropriate

framework to study and discover personality traits. We intend
to investigate other implementation models that will help us
bring forth a demonstrable relationship between the
subconscious and the actions performed. Most urgently
however, we would like to perform a case study whereby the
profiling results of this game are compared with a
conventional Enneagram test, and further, using an eye
tracking device, to study the significance of the eye’s
movements during the game. Furthermore we would like to
define a model the relationship between the basic fears, basic
desire that lead the birth of skills.

REFERENCES
[1] Tom Atkinson et. al. ”GOALS: Graduate Online Active Learns

Strategies”. Journal Of Computing Sciences in Colleges Vol. 17,
issue 3. February 2002.

[2] J. A. Polack-Wahl et. al. "Learning Strategies and Undergraduate
Research". Proceedings of the 37th SIGCSE technical symposium on
Computer science education SIGCSE '06. ACM Press, March 2006.

[3] John Rieman A field study of exploratory learning strategies ACM
Transactions on Computer-Human Interaction (TOCHI), Volume 3
Issue 3. September 1996.

[4] [4] The Enneagram Inst. “Enneagram Research, Development &
Applications” Retrieved from “www.enneagraminstitute.org”
Retrieved March 2006.

[5] Linda V. Bernes “The 16 Personality Types, Descriptions for Self-
Discovery”. ISBN 0966462475.

[6] Don Richard Riso et al. “Personality Types : Using the Enneagram
for Self-Discovery” Houghton Mifflin . ISBN 0395798671.

[7] Palmer, Helen “The Enneagram in Love and Work”. Harper, 1995.
[8] Darrell M. Dodge. “Possible Applications for Therapy and Personal

Growth for Speech-language Pathologists and People Who Stutter
Retrieved from ”http://members.aol.com/dmdodge/dw/ennestut.htm
in 2006.

[9] Clarence Thomson, “The Enneagram Applications” C Thomspon et.
Al. Editors ISBN 1555521037.

[10] Sidi O. Soueina “An Enneagram Based Model for Personality Based
Adaptive Systems.” Proceedings of AAMASS’03 Melbourne
Australia.

[11] Dario D. Salvucci et. al. " Identifying Fixations and Saccades in Eye-
Tracking Protocols”. Proceedings of the 2000 symposium on Eye
tracking research & applications ETRA '00, November 2000. ACM
Publishers.

[12] Julie A. Jacko et. al. "Using eye tracking to investigate graphical
elements for fully sighted and low vision users. Proceedings of the
2000 symposium on Eye tracking research & applications ETRA '00.
November 2000.

[13] M. Sodhi et., al. "System and & applications I: On-road driver eye
movement tracking using head-mounted devices” Proceedings of the
2002 symposium on Eye tracking research & applications ETRA '02.
March 2002.

[14] Roland Arsenault et. al.," Eye-hand co-ordination with force
feedback”. Proceedings of the SIGCHI conference on Human factors
in computing systems. ACM Press April 2000.

[15] Bing Pan et., al. “The determinants of web page viewing behavior: an
eye-tracking study” Proceedings of the 2004 symposium on Eye
tracking research & applications ETRA '04. March 2004. ACM
Press.

[16] Daesub Yoon et. al. "Mental imagery in problem solving: an eye
tracking study”. Proceedings of the 2004 symposium on Eye tracking
research & applications ETRA '04. March 2004 ACM Press.

[17] Christina Merten et al. "Gestural input: Eye-tracking to model and
adapt to user meta-cognition in intelligent learning environments”.
Proceedings of the 11th international conference on Intelligent user
interfaces IUI '06. January 2006.

95

Session 8

96

MUTI-LEVEL SB COLLIDE: COLLISION AND SELF-COLLISION
IN SOFT BODIES

Jaruwan Mesit Ratan K. Guha Erin J. Hastings

jmesit@cs.ucf.edu guha@cs.ucf.edu hastings@cs.ucf.edu
Department of computer science, University of Central Florida

4000 Central Florida Blvd., Orlando, Florida 32826.

Keywords

soft body simulation, animation, spatial
subdivision, spatial hashing

Abstract

In interactive 3D graphics collision
detection of soft bodies in real time is a significant
problem. It is time consuming because soft bodies
are composed of possibly thousands of moving
particles. Each time step all particles rearrange in
new positions according to their behaviors and
collision must be detected for each particle. To
optimize collision detection in soft bodies, we
introduce a solution called Multi-Level SB Collide.
The method relies on the construction of subdivided
bounding boxes, box hash functions, and contact
surfaces. Multi-level SB collide applies multi-level
subdivided bounding boxes (AABBs) into a box
hash function and uses contact surface method to
detect collision. This contact surface can be used to
detect both collision with other objects and self-
collision in soft bodies. Experimental results show
that multi-level SB Collide is an accurate and
efficient method for real-time collision detection in
soft bodies.

1. Introduction

Collision detection is a fundamental issue
in most all forms computer animation. Many
algorithms are based upon types of bounding
volume hierarchies. Some notable examples are:
bounding spheres (Hubbard 1995, James and Pai
2004), axis-aligned bounding boxes (AABBs)
(Bergen 1997, Teschner et al. 2003), oriented
bounding boxes (OBBs) (Gottschalk et al. 1996),
quantized orientation slabs with primary
orientations (QuOSPOs) (He 1999), and discrete-
oriented polytopes (K-DOPs) (Klosowski et al.
1998). For polyhedral objects, CLOD with dual
hierarchy (Otaduy and Lin 2003) has been also

proposed whereas Separation-sensitive collision
detection (Erickson et al. 1999) was presented for
convex objects.

Another method for collision detect is
spatial subdivision. Numerous variations have been
proposed such as: octtree (Moore and Wilhelms.
1988), BSP tree (Naylor et al. 1990), brep-indices
(Bouma and Vanecek, Jr 1991), k-d tree (Held et al.
1995), bucket tree (Ganovelli 2000), hybrid tree
(Larsson et al. 2001), and uniform spatial
subdivision (Teschner et al. 2003). Some additional
subdivision methods specifically suited for collision
detection in large environments are I- COLLIDE
(Cohen et al. 1995) and CULLIDE (Govindaraju et
al. 2003).

However, most of the methods that have
been mentioned are to solve collision detection
between rigid bodies and other rigid bodies, or
between soft bodies and rigid bodies, which is
slightly less complex problem. In this paper we
present a new efficient algorithm for collision
detection among soft bodies, which is extended
from Mesit et al. 2004. The algorithm is based on
the classical methods of subdivided bounding
volume and spatial hashing. The major contribution
of this paper includes: 1) subdivided bounding box
method, 2) the specialized hash function, and 3) the
contact surfaces.

The paper will proceed as follows: first,
an overview of the proposed algorithm, next
analysis of the algorithm, then a set of the
experiments with the algorithm and results, and
finally conclusions and discuss possibilities of
further work.

97

Figure 1: The skeleton of a soft body object where
the vertices are moving particles interconnected by

force springs.

1.1 Introduction to soft body simulation

A soft body simulation is usually a set of
particles, each of which has its own position,
velocity, and force. Particles are connected to
neighbors by linear springs. Spring length,
elasticity, and damping factor are defined by
physical properties of the soft body. Figure 1 shows
a skeleton of cloth and figure 2 presents two more
types of springs called shear and bend to simulate a
soft body. The shear and bend properties are
required to allow the soft body to stretch in and out.

Figure 2: Shear and bend properties used in soft
body simulation

1.2 Springs and Dampers

Springs are the structures that connect
between two vertices. The function that we use to
stretch or compress is spring force by Hook’s law.
This relates to the “rest length” of the spring and a
“spring constant”. The spring constant determines
the stiffness of the spring. Damper is related to
velocity of vertices, since each vertex has its own
force and velocity. Damper acts against this
velocity. If there are two vertices connected with
springs, dampers slow the relative velocity between

those two vertices. Figure 3 shows compressed
spring and stretched spring.

Figure 3: Spring structure for soft body simulation

with rest length = d

2. Algorithm Overview

For collision detection with soft bodies in
a large environment, we introduce three steps of the
Multi-Level SB Collide algorithm:

1) Multi-level Subdivided Bounding Box (Multi-
level SB): all soft bodies are surrounded by a
bounding box (AABB) for tracking. Two points, a
minimum and a maximum, define the bounding
box. Then, the bounding box is subdivided to n-
levels of sub division. We use 3-level subdivision
for this simulation.

2) Box Hash Function (BHF): we apply the box
hash function to each point that we use to create the
subdivided bounding box. One subdivided
bounding box has 8 points. Each point is hashed
and given hash index by box hash function. List of
subdivided bounding boxes is put in hash table
related to hash index. Then, we compute contact
surface from vertices that belong to subdivided
bounding box in the list of hash table.

3) Collision for Flexible Models (CF): finally we
detect collision for the models. If distance between
points in the flexible models is less than collision
tolerance, collision for flexible models is detected.

2.1 Multi-level Subdivided Bounding Boxes
(Multi-level SB)

The beginning of our algorithm is to do
tracking with multi-level subdivided bounding box.
We are tracking our soft bodies by using AABB
bounding box. Minimum point and maximum point

98

are calculated to bound our soft body. The
bounding box is subdivided in to 2n regions, where
n is level of subdivision. Figure 4 shows 2-level of
subdivision in which the second mid point is
created from the first mid point.

Figure 4: Mid points for subdivision

These objects are subdivided by using the
midpoint. Then, we find depth, height, and depth of
each subdivided bounding box as shown in figure 5.

Figure 5: 8 points for a subdivided bounding box

2.2 Box Hash Function (BHF)

We use Box Hash Function (BHF). The
idea is to use BHF and hash to 8 points that we use
to create the subdivided bounding box. To facilitate
hashing, initially a hash table is created which is
based on grid size. The formula is as follows:

Index = (floor(Grid.min.x / length) * xprime+
 floor(Grid.min.y/ height) * yprime +
 floor(Grid.min.z / width) * zprime)
 % bucketsize;

where length is grid length,
 height is grid height,

width is grid width,
Grid.min.x, Grid.min.y, and Grid.min.z are

minimum points of each grid,
xprime, yprime, and zprime are any prime

number for x, y, and z.

Next, we apply BHF to 8 points of our subdivided
bounding box shown in figure 6.

0 1
3 2

4 5

7

6

Figure 6: Points of subdivided bounding box are
hashed by hash function

Mid points
Since there are 8 points, [0..7], in one subdivided
bounding box, BHF can be written as:

HashIndex = (floor(point[0..7].x /length) *
 xprime+
 floor(point[0..7].y /height) *
 yprime +
 floor(point[0..7].z /width) *
 zprime) % bucketsize
where xprime, yprime, and zprime are any prime
number for x, y, and z
 length, height, and width are length, height, and
width of grid cell.

When we have the hash index, we can put the
subdivided objects to hash table. At this step, we
create one hash table and we have the list of
subdivided objects that have chances of collision.
Figure 7 and 8 show that subdivided box 2 (SB2)
and 3 (SB3) are in the same hash index which is
index 6. Then, contact surface will be calculated.

0 1 2 3

4 5 6 7

SB 2
SB 3

8 9 10 11

12 13

Figure 7: The combination of grid and box hash

function

99

Figure 8: Example of box hash table. Index 6

points to subdivided box 2 and 3

2.3 Self-collision and Collision for flexible
models (SCF and CF)

In this step we find the distances of
vertices in the hash table and then we compare with
a collision tolerance. This step returns true or false.
True is colliding while false is not colliding.
Contact surface can be determined as follows:

Given position of object A and B, d is the distance
between them. If they are in same hash table, then
we find for d. if d < collision tolerance, then they
collide.

Time t = n, d > collision tolerance, they don’t
collide.

Time t = n+1, if d < collision tolerance, they
collide.

2.4 Self-collision in flexible object (SCF)
For every soft body object, it is necessary

to solve self-collisions for internal constraints. Self-
collision in soft bodies can be achieved by using the
contact surfaces. The method of self-collision
avoidance is to create collision tolerance around the
points of flexible object. This collision tolerance
force acts like a shield which rejects the points
passing through the objects. Thus our algorithm
solves for both self-collision detection and normal
collision detection.

To summarize the algorithm, three major
steps are computed for collision detection in every
frame. First, the bounding boxes are subdivided
into n-level of subdivision (3 levels in this
simulation). Then, we apply the box hash function
to subdivided bounding boxes and create hash
table. Finally, for each box hash table, we compute
the contact surface to the vertices in the subdivided
bounding box. As a property hash table we consider
more than a single pair of collisions. Thus multiple
soft bodies are detected for collision in a large
simulation environment.

3. Analysis

First we analyze the method with regard to time
complexity. Since the proposed method is using
hash table, performance depends on subdivided
bounding box distribution in the scene.

Object A

Object B

d

Object C

• Best Case: O(1). In this case every

subdivided bounding box hashes to a
different grid cell. No collision will be
performed at all.

• Worst Case: O(N2). In this case, every
subdivided bounding box in the scene is in
the same grid cell. N is number of vertices.

The benefit of subdivided bounding box is to
reduce cost of hash function. In stead of applying
hash function to N vertices in the scene, the
proposed method spend only O logn N.

Object A

Object B

Object C d

• Without subdivided bounding box: O(N).
In this case every vertex has to be applied
to hash function.

• With subdivided bounding box: O(logn N).
In this case every vertex doesn’t have to
apply to hash function. Only 8 points of
subdivided bounding box have to be
applied to hash function. N is the number
of vertices and n is level of subdivision.

100

4. Experiments and Results

Figure 9: structure of a soft body

A simulation was developed using: Code

(C++), Graphics (OpenGL), and Compiler
(Microsoft Visual Studio). Figure 9 presents a soft
body which is created from 162 vertices and 320
faces. We compare our proposed method to Grid
Hash Function, and Bounding Box, Bounding Box
and Grid Hash Function. Four different scenarios
are created and called A, B, C, and D, in which all
soft bodies are falling down and colliding with a
sphere and ground surface shown in figures 10, 11,
12, and 13. There are 1k, 5k, 10k, and 15k faces in
scenario A, B, C, and D respectively. For the hash
table a bucket size of 101 is applied in scenario A
and B, while a bucket size of 1001 is created in
scenario C and D.

Figure 10: Frame 100 showing a solid body sphere

(below) and a falling soft body object (above)

Initially in Figure 10 there are a solid
sphere (below) and a soft body (above). Then the
soft body collides with the sphere as shown in
figure 11. Later on, there are more soft bodies
falling down and colliding with other soft bodies
presented in figure 12 and 13. They deform with
vertices moving based on the laws of physics,

according to detail in Maciej and Ollila, 2003. The
simulation has been captured at frame 100, 400,
600, and 800.

Figure 11 At frame 400 a soft body object has
collided with the solid body sphere

Figure 12: : At frame 600 multiple soft body
spheres have dropped upon each other, showing

both soft-soft and soft-solid collision

Figure 13: At frame 800 gravity and friction
eventually drop the soft body objects to the floor

101

M
O
D
E
L

Grid
Hash

Function
(frame

per
second)

Bounding
 Box

(frame
per

second)

Bounding
Box and

Grid Hash
Function

(frame per
second)

Multi-
level
SB

collide
(frame

per
second)

A 20 22 40 70
B 18 16 35 57
C 14 13 31 49
D 13 14 25 41

Table 1: The average running time (frame per
second) in each model on a typical laptop:
Pentium-4 3.2Ghz, 1Gb RAM, Nvidia GForce Go
GPU.

The experiment shows that using only a
grid hash function yielded worst performance for
simulations A, B, C, and D. The bounding box
algorithm and combined bounding box with a grid
hash function gave slightly better results. Multi-
Level SB Collide gave the best performance,
achieving significantly better frame rate in all four
scenarios. The results of all experiments show that
our algorithm can reduce time computation in
comparison to the other methods.

5. Conclusions and Future Work

Multi-level SB collides presents the

concept of tracking with Multi-level Subdivided
Bounding box (Multi-level SB), box hash function
(BHF), Self-collision and collision in contact
surface (SCF and CF). The main strength of the
multi-level SB collide lies in the efficiency in
collision detection in soft bodies, only requiring
multi-level bounding boxes and applying into box
hash function. Our method essentially extends the
existing approaches, multi-level subdivided
bounding box and box hash function, with the
concept of contact surfaces. All soft bodies are
surrounded by a bounding box with maximum point
and maximum point. Then, box hash table is
defined by subdivided bounding box and box hash
function. The vertices in same box hash list are,
finally, observed for surface contact for self-
collision and collision. Another benefit of this
algorithm is that we can consider more than one
pair of objects so that multiple, simultaneous soft
body collisions are detected in a large environment
of simulation. The result of this work performed
with 10-15k faces showed that this algorithm is
efficient for detecting collision for soft bodies in
real-time considering the time spent for animation.

As for future work, it is possible to simplify the
operation process to optimize the algorithm that has
been implemented in this paper. Also, a tree
structure could possibly be implemented to
determine the area of collision in the object body
and perform the collision detection in the
overlapped area. However, a tradeoff would be
introduced of additional time required to modify the
tree structure in each time step.

6. References

Bergen, G.V.D. 1997. “Efficient Collision Detection of Complex
Deformable Models Using AABB Trees.” Journal of Graphics
Tools 1997, vol. 2, Issue 4 (Apr.): 1-13.

Bouma, W. and Vanecek, G. Jr. 1991 “Collision Detection and
Analysis in a Physical Based Simulation.” Eurographics
Workshop on Animation and Simulation 1991 (Vienna) 191-203.

Cohen, J.D., Lin, M.C., Manocha, D., and Ponamgi, M. 1995.
“I-COLLIDE: An Interactive and Exact Collision Detection
System for Large-Scale Environments.” Proceedings of the 1995
symposium on Interactive 3D graphics 1995 (Monterey, CA,
United States) 189-196.

Erickson, J., Guibas, L.J., Stolfi, J., and Zhang, L. 1999
“Separation-Sentitive Collision Detection for Convex Objects.”
Proceedings of the tenth annual ACM-SIAM symposium on
Discrete algorithms 1999, Baltimore, Maryland , 327 – 336.

Ganovelli, F., Dingliana, J., and O’Sullivan, C. 2000.
“Buckettree: Improving Collision Detection between
Deformable Objects.” In Spring Conference in Computer
Graphics SCCG 2000 , Bratislava, 156-163.

Govindaraju, N.K., Redon, S., Lin, M.C., and Manocha, D.
2003. “CULLIDE: Interactive Collision Detection Between
Complex Models in Large Environments using Graphics
Hardware.” Siggraph Eurographics Graphics Hardware 2003
(San Diego, CA, Jul. 26-27).

Gottschalk, S., Lin, M.C., and Manocha, D. 1996. “OBB Tree: A
Hierarchical Structure for Rapid Interference Detection.”
Preceeding of ACM Siggraph 1996 (New Orleans, Louisiana,
Aug. 4-6), 171-180.

He, T. 1999. “Fast Collision Detection Using QuOSPO Trees.”
Proceedings of the 1999 symposium on Interactive 3D graphics,
(Atlanta, Georgia, Apr. 26-29) , ACM 1999 55-62.

Held, M., Klosowski, J.T., Mitchell, J.S.B. 1995. “Evaluation of
Collision Detection Methods for Virtual Reality Fly-Throughs.”
Proceedings Seventh Canadian Conference on Computational
Geometry 1995, 205–210.

Hubbard, P.M. 1995. “Collision Detection for Interactive
Graphics Applications.” IEEE Transactions on Visualizationand
Computer Graphics 1995, 1(3):218–230.

James, D.L. and Pai, D.K. 2004. “BD-tree: Output-Sensitive
Collision Detection for Reduced Deformable Models.” in
Proceedings of ACM SIGGRAPH 2004, (Los Angeles, CA ,Aug
8-12).

102

Mesit, J.; Guha, R.;Hastings, E., 2004 “Optimized Collision
Detection For Flexible Objects”. International Conference on
Computer Games: Artificial Intelligence, Design, and Education
CGAIDE2004.

Klosowski, J.T., Held, M., Mitchell, J., Sowizral, H., and Zikan,
K. 1998. “Efficient Collision Detection Using Bounding Volume
Hierarchies of k-DOPs.” IEEE Transactions on Visualization
and Computer Graphics, vol4 issue 1(Jan.) : 21-36.

Larsson, T. and Akenine-Möller, T. 2001. “Collision Detection
for Continuously Deforming Bodies” In Eerographics 2001.,
Manchester, UK, 325-333.

Moore, M. and Wilhelms, J. 1988. “Collision Detection and
Response for Computer Animation” In proceedings Computer
Graphics SIGGRAPH 1988 , 22(4):289-298.

Maciej, M. and Ollila, M., ‘Pressure Model of Soft Body
Simulation’, SIGRAD2003, November 20-21, 2003

Naylor, B., Amatodes, J.A., Thibault, W. 1990. “Merging BSP
Trees Yields Polyhedral Set Operations.” In proceedings
Computer Graphics SIGGRAPH 1990 ,24(4):115–124, 1990.

Otaduy, M.A. and Lin, M.C. 2003. “CLODs: Dual Hierarchies
for Multiresolution Collision Detection.” Proceedings of the
Eurographics/ACM SIGGRAPH symposium on Geometry
processing 2003 (Aachen, Germany, Jul. 27-31), 94-101.

Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D., and
Gross, M. 2003. “Optimized Spatial Hashing for Collision
Detection of Deformable Objects.” Vision, Modeling, and
Visualization 2003. (Munich, Germany, Nov. 19-21).

103

BDI for Intelligent Agents in Computer Games

N.P.Davies and Q.H.Mehdi
Computer Games Centre

School of Computing and Information Technology
University of Wolverhampton

Wolverhampton, UK
E-mail: N.P.Davies2@wlv.ac.uk

KEYWORDS

Deliberative Agents, Computer Games, Artificial
Intelligence.

ABSTRACT

With the emergence of complex computer games and
advanced gaming hardware, possibilities for
overcoming some of the deficiencies in traditional
game AI are becoming feasible. These deficiencies
include repetitive, predictable, and inhuman behaviour
are caused by the reliance on simple reactive AI
techniques. By using more sophisticated AI and agent
techniques, we intend to overcome some of these
problem areas. The aim of our research is to create new
forms of intelligent characters (agents) that will exhibit
human-like intelligence and provide more challenging
and entertaining virtual opponents and team mates for
computer games. We present here our prototype
application that implements a BDI agent system within
the 3D computer game Unreal Tournament via
GameBots and JavaBots technology.

INTRODUCTION

With this continued popularity of computer games,
game players are expecting new challenges with more
sophisticated games and game playing experiences.
Increases in processing power are now giving game
developers opportunities to develop novel techniques
to incorporate into their games. With graphics
capabilities now reaching the point where game
environments are becoming almost photorealistic,
some of this power must become available for AI
systems. Currently developers are looking for new and
inventive ways to keep the game players entertained.
The challenge is to produce artificial intelligence for
computer games characters that can utilise the
increased power afforded by improvements in games
hardware, and make AI agents appear as human-like
as possible so as to improve the game playing
experience.

To produce agents capable of this behaviour in
complex computer game environments we are using
the Belief-Desire-Intention (BDI) model of agency
(Bratman, 1987). In this model, agents are constructed
using humanistic concepts such as goals to achieve,

beliefs about the environment, and plans to achieve
goals. Using BDI, we can simulate the decision making
processes performed by humans, using the same
information available to humans, in order to make the
agent act in a human like way. It is expected that this will
make computer game characters appear more realistic,
and therefore, improve the experience of playing against
artificial game characters. The paper is constructed as
follows. In next section we outline the design of our
system for integrating a BDI reasoning engine into the
computer game Unreal Tournament, and detail the three
layers of the system including deliberation,
communication, and virtual environment. We follow this
with our experimental results, including the initial
implementation where agents interact with the game
environment, exploring, attacking enemies, producing
paths through the environment, following path, and
building health by locating health packs. We conclude
with our future aims, including the addition of a multi-
agent layer for common goals amongst agents.

SYSTEM DESIGN

Our framework, (Figure 1), is constructed using three
layers that integrate several tools available as open
source projects and commercial applications. The layers
are:

Intelligent Agent : Jadex
Game Environment : Unreal Tournament
Communication Layer : JavaBots/GameBots

Each layer is described in more detail below. It should be
noted that our implementation is client-server based, and
as such, requires an extra layer for external
communication with the game engine. This means the
agent is a combination of two separate entities. The first
entity is situated within the Unreal Tournament game,
and can be considered an avatar for our intelligent agent.
The intelligent agent guides the avatar by sending
commands over the network, and builds up a view of the
environment by receiving perception messages. There
are several reasons the system is implemented in this
way; not least is the desire to implement our system in a
modern commercial computer game. It is not possible to
incorporate our AI directly within the game due to
limitations in access to the engines source code.
However, this architecture has the benefit of forcing the

104

mailto:N.P.Davies2@wlv.ac.uk

agent to play the game in the same way as human
players; based on sensor information. In addition, this
type of architecture allows experimentation with
human / agent teams in an extensible framework, and
allows many agents to connect to the game server
simultaneously.

Figure 1: System Design

Intelligent Agent

The intelligent agent layer consists of a reasoning
system, a knowledge base of plans, and data structures
for storing environment information. The reasoning
system is developed using Jadex (Braubach et al,
2004). This is an agent platform that allows the
creation of BDI agents in the Java programming
environment i.e. it allows the creation of agents that
use the mental attitudes of belief, desire, and intention
to model human like reasoning processes. Agents are
created via the specification of beliefs, goals, plans,
events, and capabilities. Goals relate to the state an
agent would like to achieve and can be of several
types; achieve, maintenance, and perform. Achieve
goals are used to perform an action, such as move to a
waypoint. This type of goal can either succeed or fail.
Maintain goals are used to monitor the agent, e.g. make
sure health stays above 50. If the agent’s health drops
below this level, then some action is triggered to rectify
the situation. Perform goals are used to perform actions
that are consistent with a state that don’t have a target
state to reach e.g. ‘explore’ where an agent will
continue to search an environment until some other
event causes it to change behaviour. To accomplish
goals, relevant plans are used. Plans are created via
extending an abstract Plan class that allows messages
to be sent between plans and agents. Agents are
defined in an XML based Agent Definition File (ADF)
were beliefs, goals and plans are linked by specifying
their applicability via trigger statements. There may be
many plans applicable to specific goals, therefore the
plans applicability can be further reduced with
clarifiers such as context conditions, that state that
plans can only be created if certain belief conditions

are met. Beliefs specify agents’ knowledge of the world,
and are used to trigger goals, and plans success or failure.
Beliefs can be any Java object. In our system, we have
created belief objects that store the agent’s status, enemy
locations, navigation info etc. Using this system, we have
developed AI agents that have the ability to respond to
environmental events, identify appropriate plans to
handle the events, and execute those plans in a timely
manner. While executing plans, the agents monitor the
environment, and internal belief structures, in order to
ensure plans are still relevant, and identify new
opportunities.

PlansBDI Layer (Jadex)

Goals

Data
Structures

Beliefs

Network

Virtual Environment
(Unreal Tournament)

GameBots

Messages

Messages

Messages

Game
Agent

Coms Layer
(JavaBots)

Intelligent Agent

Virtual Environment

Our intelligent agent connects to a game environment,
and interacts with it through perceptions and performing
actions. We have chosen to develop our system using the
game engine Unreal Tournament, a three-dimensional,
networked FPS computer game. The game includes
several game types. These include Death Match; a free-
for-all match with the winner decided by the highest
number of frags achieved over a certain time period,
Domination; where players compete to capture and
defend domination points for a specified amount of time,
Capture the flag; where players have to retrieve the
opposition’s flag and bring it back to their base, while
defending their own flag and Team Death Match; where
teams work together to achieve the highest frag rate in a
set time period. The game can be modified in several
ways via an editor and a scripting language. New levels
can be created in the graphical designer Unreal Edit.
Game rules and physics can be modified via the scripting
language Unreal Script. Lewis and Jacobson (2002) point
out the benefits of this solution. The engine is
inexpensive. The graphics rendering capability is
superior to anything that can feasibly be created by small
research groups. Also, the game logic is fully
implemented i.e. the game comes complete with standard
functions such as collision detection, physics systems,
game maintenance etc. Other benefits include the large
user base of players of the game. This gives access to
domain experts for knowledge elicitation, and groups for
evaluation of the completed system. The use of a game
engine is not an ideal solution however. It would be
better to develop a complete computer game where all
functions are accessible at a source code level; a level
that is unavailable through the use of game engines.
Game engines impose limitations that are created by the
game engine developers, which can cause problems, but
is a neat solution to our requirements.
Communication Layer
To facilitate communication between the intelligent
agent and the game world we have adopted the use of the
dual middleware product of GameBots/JavaBots
(Marshall et al, 2006). GameBots is an extension to
Unreal Tournament that resides upon the game server. It
is written in the scripting language provided by the
Unreal developers; Unreal Script, and extends the basic
AI and networking components shipped with the game.

105

GameBots allows external processes to access internal
game AI functions through a network socket
connection via the exchange of messages. For every
game loop, agent perception data is sent as a
synchronous message packet across the network to a
JavaBots client. This information consists of currently
visible navigation points, inventory items, and other
visible agents. Status information is also sent including
the agent’s health, current location, current weapon etc.
Event messages, such collision information, damage
reports etc, are sent whenever they occur in the game
via asynchronous messages. The communication is a
two-way process, and GameBots also receives
messages from the JavaBots client that consist of
actions for the agent to perform. Actions include rotate,
walk, run, shoot etc, and also more complex operations
such as find path, which queries the navigation system
of Unreal Tournament, and sends a list of navigation
nodes back in the form of an asynchronous message.
The client portion used by the intelligent agent is called
JavaBots; a Java based system developed to connect to
GameBots. It is an extensible API that contains
example bots, visualisation applications, and a Bot
Runner application that allows agents to be connected
and visualised via a GUI interface. We have taken the
original JavaBots project and removed the extra
functionality to produce a very simple API that simply
listens for messages, and sends instructions back to
Unreal Tournament. We have removed the sample bots
and Bot Runner classes, and instead use functions
within Jadex to maintain the connection to the game.

Figure 2: Navigation messaging system

Figure 2 shows an example of the messaging system in
which GameBots sends a message block containing
navigation point information to the intelligent agent,
where it is recorded in a belief structure. In Unreal
Tournament, the game agent has a set view cone of
around 45 degrees. At any point in the game, the game
agent is capable of observing a discrete portion of the
game environment contained within this view cone,
which is not occluded by walls. Figure 3 shows a
typical Unreal Tournament view, the game agent can
see inventory items (Heath Packs), and waypoint
nodes. The waypoint nodes are either reachable, or

unreachable. In the illustration, there is a gap between
the game agent, and a platform containing the health
packs; it can therefore see them, but cannot reach them
directly. The navigation node to the right of the
illustration is visible and reachable directly. Therefore,
the agent can run directly to it. This information is
grouped into a single message block, and sent to the
intelligent BDI agent. The intelligent agent receives this
message, parses it, and populates its belief sets. New
nodes (nodes an agent has not seen before) are added to
the list of known nodes. Nodes at the position of the
agent are marked as ‘visited’ to indicate the agent has
explored the position. Two other data sets are populated;
visible nodes and reachable nodes. At each frame, these
sets are cleared, and populated with the new data
contained in the message i.e. only nodes that the agent
can currently see are stored.

Belief Set

Nodes not visible
Visible but not reachable nodes
Visible and reachable nodes

Explored Node
Unexplored Node
Path
Agent

Unreal Tournament

View Cone

Synchronous
Message

Figure 3: Navigation messaging system

EXPERIMENTAL RESULTS

A prototype application has been developed that shows
the potential of the architecture. The intelligent agents
are able to connect to Unreal Tournament, build a 3D
view of the environment, and navigate the world. The
agents are also capable of some basic behaviour in the
game. This includes exploring, navigating, hunting and
escaping. The overriding goal of the agent is to maintain
health above 50. Once health drops below this level, the
agent attempts to disengage from a combat situation, and
find health until its health has reached 90 or above. This
behaviour is achieved via a maintenance goal that
inhibits the ‘explore’ and ‘attack’ goals. When the agent
is attempting to build its health, it will observe the
environment to see if any health packs are currently
visible and reachable. If it can see a health pack, it will
move towards it and pick it up. If there are no visible
health packs, it checks its memory to recall the location
of the nearest health pack to its current location. At this
point, it queries Unreal Tournament to find a path to the
identified health pack from it current location, and then
follow this path. If, on route, it spots another health pack,
it will temporarily drop the goal of following the path in
favour of collecting the new health pack. It will then

106

resume the goal of following the path (assuming it still
requires health). If the agent encounters an enemy
agent while following the path, it will retreat, and
choose a path to an alternate health pack. Following
paths and collecting health behaviour is created using
achieving goals. At each stage of the goal, the agent
can either succeed or fail. If a section of the plan fails,
the agent is capable of retrying the goal, or dropping
the goal and starting again at any stage. If the agent
health is adequate, the agent will revert to the default
behaviour of exploring the environment. It will query
its belief set to find a list of reachable nodes, and check
if any of them have not been explored before. If it
finds an unexplored node, it will move towards it. If it
cannot see an unexplored node, it will run to a random
reachable node. This behaviour is created using a
perform goal, and the agent will continue with this
behaviour until some event causes it to drop the
behaviour. An example of a condition where the agent
will drop the goal is if the agent spots an enemy. When
an enemy is spotted, the agent will engage in an
attacking behaviour that includes firing its weapon,
running towards the enemy, and jumping left and right
until it has either killed the enemy, its health drops to a
point where the maintenance condition forces it to try
to escape, or it is killed. The behaviour of the agent is
presently for illustrative purposes, and is not intended
as a sophisticated behaviour system. However, it does
prove that developing a more complex agent is possible
with a combination of goals and plans within the BDI
framework.

CONCLUSIONS AND FUTURE WORK

It has been proposed that the goal based, deliberative
architecture, BDI, has the potential to produce more
human like behaviour in computer game characters that
will exhibit more realistic behaviour than can be
achieved with simple reactive AI techniques alone. We
have identified a set of tools, and implemented a
prototype application that incorporates the commercial
computer game Unreal Tournament, the reasoning
layer BDI through Jadex, and linked the systems using
the communication system GameBots/JavaBots. We
have created a set of agents that perceive their
environment via sensory information gathered from the
game, and use this information to build up a beliefs
base. Using these beliefs, and a set of desired
conditions, the agent uses its plan base to bring about
beneficial states of affairs. The implementation
currently allows the agent to explore the environment,
attack enemies, find health packs, and navigate the
game map by following a path list. In the next stage of
development, we will expand upon this basic bot, and
add more sophisticated behaviour and tactics. We will
also implement team based behaviours, which will
require agent negotiation techniques and social
abilities. In addition, we will expand upon the BDI
framework, and incorporate a layered architecture

where fast, reactive behaviour can be accomplished in
lower levels, and high level cooperative goals can be
accomplished at higher levels.

REFERENCES

Agent Oriented Software Pty. Ltd. JACK Intelligent
Agents. (2006) http://www.agent-software.com

Bratman, M. (1987) “Intention, Plans, and Practical
Reason” Harvard University Press: Cambridge,
USA

Braubach, L., Pokahr, A., Lamersdorf, W., Krempels, K.,
Woelk, P. (2004) “A Generic Simulation Service
for Distributed Multi-Agent Systems”, in: From
Agent Theory to Agent Implementation (AT2A1-
4) 2004

Epic Games Inc. Unreal Tournament.
http://www.unreal.com

Lewis, M., Jacobson, J., (2002), ‘Game Engines in
Scientific Research’, Communications of the
ACM, Volume 45, Issue 1. New York, USA

Marshall, A. N., Gamard, S., Kaminka, G. J.,
Manojlovich, Tejada S., Gamebots, viewed 10th
Mar 2006, http://planetunreal.com/gamebots/

Norling, E. (2004) ‘Folk psychology for human
modelling: extending the BDI paradigm’. In : Int.
Conf. on Autonomous Agents and Multi Agent
Systems (AAMAS), New York, 2004.

Rao, A., Georgeff, M., (1995) ‘BDI agents: from theory
to practice’ Tech. Rep. 56, Australian Artificial
Intelligence Institute, Melbourne, Australia

Russell, S., Norvig, P., Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, New
Jersey, 1995.

Sellars, W. (1956). ‘‘Empiricism and the Philosophy of
mind,’’ in H. Feigl & M. Scriven, eds., Minnesota
Studies in the Philosophy of Science, 1,
Minneapolis: University of Minnesota Press.

Stich, S. & Ravenscroft, I. (1994): "What is Folk
Psychology?". Cognition 50: 447-68

Valve Software (2004) Half Life 2, http://www.half-
life.com/

Valdes, R.: In the Mind of the Enemy: The Artificial
Intelligence of Halo 2 (2004):
http://stuffo.howstuffworks.com/halo2-ai.htm

Welsh, T., (2005) ‘A Typology of Givaways: An
Evaluation of FPS Bots’ in Proceedings of
CGAIMS’2005 6th International Conference on
Computer Games: Artificial Intelligence and
Mobile Systems 27-30 July 2005

AUTHOR BIOGRAPHIES

NICHOLAS P. DAVIES was born in Wolverhampton,
UK, where he studied Computer Science at the
University of Wolverhampton, and obtained a First Class
Degree in 2003. He is currently researching AI and
Computer Games, and has completed the first two years
of his PhD.

107

http://www.agent-software.com/
http://www.unreal.com/
http://planetunreal.com/gamebots/
http://www.half-life.com/
http://www.half-life.com/

List of Authors Page No.

A
Abdeljelil, K 45
Abubakar Salim, A 72
Al-Dabass, D 38
Anderson, D 8
B
Bogard, CM 57
C
Cant, R 38
D
Davies, N 104
Duggan, B 86
E
Elmaghraby, A 91
G
Guha, RK 97
H
Hartley, T 16
K
Kiss, J 45
Kotrajaras, V 24
M
Massakuni Kubo, M 64
Mehdi, QH 16, 72, 77, 104
Mesit, J 97
Milanova, M 35
Mtenzi,F 86
R
Ragade, RK 57
Ruuska, M 29
S
Sakamuri, S 35
Salem, AH 91
Soueina, SO 91
T
Thunputtarakul, W 24
V
Virtanen, A 29
W
Wiklund, M 51

108

	Session 3
	Session 4.pdf
	Session 4

	Session 5.pdf
	Session 5

	Session 6.pdf
	Session 6

	Session 7.pdf
	Session 7

	Session 8.pdf
	Session 8

	Gaming in Context Final.pdf
	
	Keywords
	References

	RecursiveInterestManagementOnlineGames.pdf
	KEYWORDS
	ABSTRACT
	1. INTRODUCTION

	CGAMES06 proceedings.pdf
	Contents
	Programme Committee
	General Conference Chair
	General Programme Chair
	Local Chair Conference Organisers

	International Programme Committee
	Preface

	This conference has flourished by the hard work put in by our colleagues in Louisville. Our big thanks and appreciation go to their generosity and time and effort to help organise this conference and provide valuable support. We particularly wish to thank the General Programme Chair, Professor Adel Elmaghraby; University of Louisville and colleagues at the Intellas Corporation, Don Anderson and Dennis Jacobi.
	Session 2
	Keynote Presentation

	CGAMES06 proceedings.pdf
	Contents
	Programme Committee
	General Conference Chair
	General Programme Chair
	Local Chair Conference Organisers

	International Programme Committee
	Preface

	This conference has flourished by the hard work put in by our colleagues in Louisville. Our big thanks and appreciation go to their generosity and time and effort to help organise this conference and provide valuable support. We particularly wish to thank the General Programme Chair, Professor Adel Elmaghraby; University of Louisville and colleagues at the Intellas Corporation, Don Anderson and Dennis Jacobi.
	Session 2
	Keynote Presentation

	The game genre factor in computer games based learning.pdf
	The Game Genre Factor in Computer Games Based Learning
	KEYWORDS
	ABSTRACT

	BACKGROUND
	METHODOLOGY
	RESULTS
	REFERENCES

	Facial_expression_Milanova.pdf
	3. Our proposed system
	4. Future research and conclusion

	CGAMES06 proceedings.pdf
	Contents
	Programme Committee
	General Conference Chair
	General Programme Chair
	Local Chair Conference Organisers

	International Programme Committee
	Preface

	This conference has flourished by the hard work put in by our colleagues in Louisville. Our big thanks and appreciation go to their generosity and time and effort to help organise this conference and provide valuable support. We particularly wish to thank the General Programme Chair, Professor Adel Elmaghraby; University of Louisville and colleagues at the Intellas Corporation, Don Anderson and Dennis Jacobi.
	Session 2
	Keynote Presentation

	CGAMES06 proceedings.pdf
	Contents
	Programme Committee
	General Conference Chair
	General Programme Chair
	Local Chair Conference Organisers

	International Programme Committee
	Preface

	This conference has flourished by the hard work put in by our colleagues in Louisville. Our big thanks and appreciation go to their generosity and time and effort to help organise this conference and provide valuable support. We particularly wish to thank the General Programme Chair, Professor Adel Elmaghraby; University of Louisville and colleagues at the Intellas Corporation, Don Anderson and Dennis Jacobi.
	Session 2
	Keynote Presentation

	Facial_Milanova_NEW.pdf
	3. Our proposed system
	4. Future research and conclusion

	Contents.pdf
	Contents

