Name………………………………….…..ID……….…………..Section….…….CR58…………………….

FACULTY OF ENGINEERING

CHULALONGKORN UNIVERSITY

2143203 Fundamental Data Structure and Algorithm

Year 2, First Semester, Examination Oct 03, 2008. Time 13:00-15:00

Name………………………………….…..Identification no.……….…………..section….… CR58………

Important

1. This exam paper has 5 questions. There are 11 pages in total including this page. The total mark is 25 (will be scaled to 30).

2. Write your name and ID on top of every page of this question sheet.

3. When the exam finishes, students must stop writing and remain in their seats until all question sheets and answering books are collected and the examiners allow students to leave the exam room.

4. A student must sit at his/her desk for at least 45 minutes.

5. A student who wants to leave the exam room early (must follow 4.) must raise his/her hand and wait for the examiner to collect his/her papers. The student must do this in a quiet manner.
6. No books, lecture notes or written notes of any kinds are allowed in the exam room.

7. No calculators are allowed.

8. A student must not borrow any item from another student in the exam room. If you want to borrow an item, ask the examiner to do it for you.

9. Do not take any part of the question sheet or answering books out of the exam room. All papers are properties of the government of Thailand. Violators of this rule will be prosecuted in a criminal court.

10. A student who violates the rules will be considered as a cheater and will be punished by the following rule:

· Suspected cheaters will get an F in the subject they are suspected to cheat, and will not be able to enroll in the next semester.
· Cheaters will get an F in the subject they are suspected to cheat, and will not be able to enroll in the next 2 semesters.
Acknowledged
Student’s signature(………………………………….)
Methods that can be used from List, Tree, and Stack are in figure 1, 2, and 3 respectively

1. (5 marks) If the first element of a list has index == 0, explain how you would exchange the value of element with index number x and y in a list (drawing can help). Write method public void swap(int x, int y) for class LinkedList (figure 1) that will perform such work.

2. (5 marks) Explain how to modify a list such that even numbers are in the front portion of the list and odd numbers are in the back portion (drawing can help). Write method public void evenOdds() for class LinkedList (figure 1) that performs such task. You can only create variables of primitive types.

3. (5 marks) There is a maze

1 1 1 1 1 1

1 1 1 0 0 1

1 0 0 0 F 1

1 0 S 0 1 1

1 1 1 1 1 1

The number 1 represents wall and number 0 represents walkway. Let S be the starting point and F be the end point of travel (they are also walkways). We can systematically find a way from S to F by recording the coordinate (X, Y) that we can travel to (at that moment in time) onto a stack. The order of storage is top, bottom, left, and right respectively. Let the coordinate of the most left-bottom number 1 be (0, 0).
The original state of our stack will be:

Walking is done by popping stack and then move to the popped coordinate. Then push the information of empty spaces surrounding that coordinate onto the stack (using top, bottom, left and right again) (we never push the coordinates that we have visited). We repeat this until we reach the destination. When the destination is reached, we do not push anything onto the stack.

What is the final stage of the stack?

4. (5 marks) Assuming that we have class Queue of integer with methods:
· public void enqueue(int x); put x at the end of the queue.

· public int dequeue(); remove the value at the front of the queue. Return that removed value.
Explain how we can modify a queue’s content so that only even number remains (drawing can help). Write method public void removeOdd() of class Queue that performs this task.

5. (5 marks) Write a method public void moveToRoot(BinaryNode n) of class BinarySearchTree (figure 2). This method moves n up the tree by continually swapping it with its parent node. The property of binary search tree will be destroyed, but you do not need to worry about it.

1. class ListNode{

2. int element;

3. ListNode next;

4. // Constructors

5. ListNode(int theElement)

6. {

7. this(theElement, null);

8. }

9. ListNode(int theElement, ListNode n)

10. {

11. element = theElement;

12. next = n;

13. }

14. }

15. public class LinkedListItr{

16. ListNode current; //currently interested position

17. LinkedListItr(ListNode theNode)

18. {

19. current = theNode;
20. }

21. /**

22. * See whether current pass the end of the list.
23. * @return true if current is null.
24. */

25. public boolean isPastEnd();

26. /**

27. * @return item in current, or throw exception if current is
28. * not in the list.

29. */

30. public int retrieve();

31. /**

32. * move current to its next position. Nothing is done
33. * if current is null.
34. */

35. public void advance();

36. }

37. public class LinkedList{
38. ListNode header;
39. public LinkedList(){

40. header = new ListNode(0);

41. }

42. public boolean isEmpty(){

43. return header.next == null;

44. }

45. public void makeEmpty(){

46. header.next = null;

47. }

48. /**

49. * Return iterator pointing to header node.

50. */

51. public LinkedListItr zeroth();

52. /**

53. * Return iterator pointing to the node next to header.
54. * (can be null)
55. */
56. public LinkedListItr first();

57. /**

58. * Insert a new node following a node pointed to by p.
59. * @param x item to put in a new node.
60. * @param p iterator pointing to position in front of the new node.
61. */

62. public void insert(int x, LinkedListItr p);

63. /**

64. * @param x item that we want to find.
65. * @return iterator pointing to a node that has x, or null if x is

66. * not in the list.
67. /*

68. public LinkedListItr find(int x);

69. /**

70. * Return iterator pointing to a node before the first node that has

71. * x.

72. * If x is not in the list, return an iterator pointing to the last

73. * node of the list.
74. */

75. public LinkedListItr findPrevious(int x);

76. /**

77. * Remove the first node that has x.
78. * @param x item in a node that we want to remove.
79. */

80. public void remove(int x);

81. /**

82. * Remove the node next to header.
83. * @return the removed integer from the removed node.
84. */

85. public int removeFirst();

86. }

Figure 1. Linked List methods
1: class BinaryNode{

2: // Constructors

3: BinaryNode(int theElement){

4: this(theElement, null, null);

5: }

6: BinaryNode(int theElement, BinaryNode lt, BinaryNode rt){

7: element = theElement;

8: left = lt;

9: right = rt;

10: }
11: int element;
12: BinaryNode left;
13: BinaryNode right;
14: }
15: public class BinarySearchTree

16: {

17: private BinaryNode root;

18: /**

19: * Construct the tree.

20: */

21: public BinarySearchTree()

22: {

23: root = null;

24: }
25: /**

26: * Insert into the tree; duplicates are ignored.

27: * @param x the item to insert.

28: */

29: public void insert(int x);

30: /**

31: * Remove from the tree. Nothing is done if x is not found.

32: * @param x the item to remove.

33: */

34: public void remove(int x);

35: /**

36: * Find the smallest item in the tree.

37: * @return smallest item or throw an exception if empty.

38: */

39: public int findMin();
40: /**

41: * Internal method to find the smallest item in a subtree.

42: * @param t the node that roots the subtree.

43: * @return node containing the smallest item or null if the

44: * subtree is empty.

45: */

46: public BinaryNode findMin(BinaryNode t);
47: /**

48: * Find the largest item in the tree.

49: * @return the largest item or throw an exception if empty.

50: */

51: public int findMax();
52: /**

53: * Internal method to find the largest item in a subtree.

54: * @param t the node that roots the subtree.

55: * @return node containing the largest item, or null if the

56: * subtree is empty.

57: */

58: private BinaryNode findMax(BinaryNode t);
59: /**

60: * Find an item in the tree.

61: * @param x the item to search for.

62: * @return matching item or throw exception if not found.

63: */

64: public int find(int x);
65: /**

66: * Internal method to find an item in a subtree.

67: * @param x is item to search for.

68: * @param t the node that roots the subtree.

69: * @return node containing the matched item, or null if not

70: * found.

71: */

72: private BinaryNode find(int x, BinaryNode t);
73: /**

74: * Internal method to get element field.

75: * @param t the node.

76: * @return the element or throw exception if t is null.

77: */

78: private int elementAt(BinaryNode t);
79: /**

80: * Internal method to insert into a subtree.

81: * @param x the item to insert.

82: * @param t the node that roots the subtree we are working
83: * on.

84: * @return the node that roots the subtree.

85: */

86: private BinaryNode insert(int x, BinaryNode t)
87: {

88: if(t == null)

89: t = new BinaryNode(x, null, null);

90: else if(x< t.element)

91: t.left = insert(x, t.left);

92: else if(x > t.element)

93: t.right = insert(x, t.right);

94: else

95: ; // Duplicate; do nothing

96: return t;

97: }

Figure 2. Binary Search Tree methods
1: public class Stack{

2: private ListNode top;

3: public Stack(){

4: top = null;

5: }

6: /**

7: * Test if the stack is empty.

8: * @return true if empty, otherwise return false.

9: */

10: public boolean isEmpty();

11: /**

12: * Make the stack empty.
13: */

14: public void makeEmpty();
15: /**

16: * Return the top element of stack. Does not change the stack.
17: * @return the top element of stack.
18: * @throw Underflow if the stack is empty.
19: */

20: public int top() throws Underflow; }

21: /**
22: * throw away the top element of the stack.
23: * @exception Underflow if the stack is empty.
24: */

25: public void pop() throws Underflow;
26: /**

27: * throw away the top element of the stack and return it.
28: * @return the top element before it gets removed.
29: * @exception Underflow if the stack is empty.
30: */

31: public int topAndPop() throws Underflow;
32: /**

33: * push a new element on top of stack.
34: * @param x integer to put in stack.
35: */

36: public void push(int x);
Figure 3. Stack Methods

top

(1,1)

(2,2)

(3,1)

PAGE

Page 2 of 11

