Name…………………………id …………..………section……….CR58………

FACULTY OF ENGINEERING

CHULALONGKORN UNIVERSITY

2143203 Fundamental Data Structure and Algorithm

Year 2, First Semester, Examination Dec 12, 2008. Time 13:00-16:00 (3 hours)
Important

1. This exam paper has 2 parts. Each part has 3 questions. There are 11 pages in total including this page. The total mark is 60.

2. Write your answers in this exam paper.

3. Write your name and ID on every page of this exam paper.

4. When the exam finishes, students must stop writing and remain in their seats until all question sheets are collected and the examiners allow students to leave the exam room.

5. A student must sit at his/her desk for at least 45 minutes.

6. A student who wants to leave the exam room early (must follow (5)) must raise his/her hand and wait for the examiner to collect his/her papers. The student must do this in a quiet manner.

7. No books, lecture notes or written notes of any kinds are allowed in the exam room.

8. No calculators are allowed.
9. Students are not allowed to go to toilets. Pencil cases are not allowed.
10. A student must not borrow any item from another student in the exam room. If you want to borrow an item, ask the examiner to do it for you.

11. Do not take any part of the question sheet out of the exam room. All papers are properties of the government of Thailand. Violators of this rule will be prosecuted in a criminal court.

12. A student who violates rule 7-10 will be considered as a cheater and will be punished by the following rule:

· Suspected cheaters will get an F in the subject they are suspected to cheat, and will not be able to enroll in the next semester.

· Cheaters will get an F in the subject they are suspected to cheat, and will not be able to enroll in the next 2 semesters.

Acknowledged
Student’s signature(………………………………….)
Part 1: (30 marks) Sorting and Tree, with Big O
All the analysis can be informal, ie. you can just explain in English why it works and why the running time is such and such.
1. (10 marks) Suppose that arrays A and B are sorted. Each of them contains N elements. Write a pseudo code to find the median of (A union B) that runs in O(log N). You must also write down your running time analysis of your pseudo code.

2. (10 marks) An array contains N numbers, and you want to determine whether two of the numbers sum to a given number K. For instance, if the input is 8,4,1,6 and K is 10, the answer is yes (4 and 6). A number may be used twice. Do the following
2.1 Give an O(N^2) algorithm to solve this problem.
2.2 Give an O(N log N) algorithm to solve this problem. (Hint: sort the items first. After doing so, you can solve the problem in linear time.)
Write down your pseudo code and its running time analysis.

3. (10 marks) Two trees, T1 and T2 are isomorphic if T1 can be transformed into T2 by swapping left and right children of (some of the) nodes in T1. For example, the two trees in Figure are isomorphic because they are the same if the children of A, B, and G, but not the other nodes, are swapped. Write a pseudo code to decide if two trees are isomorphic that runs in a polynomial time. You must write down the running time analysis of your algorithm.

 a
 / \
 b c
 / \ /
 d e g
 / /
 f h

 a
 / \
 c b
 / / \
 g e d
 \ /
 h f

Part 2: (30 marks) hash and heap
4. (10 marks) Given a hash table for integer data of size 11. Let hash(x) = x%TableSize and hash2(x) = 7-(x%7). The hash table already has 2 and 5 inside. Show and explain (step by step) what happens when 13, 24, 16, 27, 9 are inserted into the table in order. The table at each step is drawn for you.
	
	
	2
	
	
	5
	
	
	
	
	

	
	
	2
	
	
	5
	
	
	
	
	

	
	
	2
	
	
	5
	
	
	
	
	

	
	
	2
	
	
	5
	
	
	
	
	

	
	
	2
	
	
	5
	
	
	
	
	

	
	
	2
	
	
	5
	
	
	
	
	

5. (10 marks) A heap is used to build a Huffman tree for English alphabets. Each data element stored in the heap is stored as an object of class HuffmanNode.
public class HuffmanNode{

public String element;
// an English alphabet. At start, each HuffmanNode in the heap represents an //alphabet and its frequency. But as the Huffman tree is built, a HuffmanNode // does not need an alphabet in its element if it is not a leaf node.

public int frequency; //this can be added up during the Huffman tree

 //construction.

public HuffmanNode left;

public HuffmanNode right;
}

Let the class Heap have the following methods:
· public boolean isEmpty(): returns true if the heap is empty, false otherwise.

· public Object removeMin(): removes a HuffmanNode object with the lowest frequency from the heap. It returns the removed object.
· public void add(Object x): adds a HuffmanNode object to the heap. The object is automatically put into its correct position within the heap according to its frequency value.

Write the following method of class Heap:

public HuffmanNode buildHuffmanTree(Heap h) that builds a Huffman tree from any given heap. The method returns the root of the finished Huffman tree as its result.

6. (10 marks in total. Read the whole question first.) In this question, we are trying to add queue-like operations to heap, while still keeping all heap operations and structure intact. Let class Heap be as follows:
public class Heap{

Object[] thearray;

public Heap(){

// a working constructor that initializes everything correctly.

// Do not write code for this.

}

public boolean isEmpty(){

// returns true if the heap is empty, false otherwise.

// Do not write the code for this method.

}

public Object removeMin(){

// removes an object with the lowest value from the heap.

// It returns the removed object. Do not write code for this.

}

public void add(Object x){

//adds new object to heap. The object is put in correctly according to its // value. Do not write code for this method.

}
}

a) (2 marks) Explain how each piece of data stored in a heap should change so that the ordering of a heap and a queue can both be preserved.

b) (1 mark) Write a class (please name it HeapInfo) and constructor for your proposed piece of data from a).

For question c) and the rest, assume the following:

· class HeapInfo from question b) has method public int compareTo(Object x) that it can use to compare itself with another HeapInfo object, x. The method compareTo returns 0 if the two objects are equal in value, returns -1 if this has smaller value than x, and returns 1 if this has larger value than x.

· To remove anything from the heap array, you must use only the provided removeMin() as a basis. You cannot modify the array directly.
· To add anything to the heap array, you must use only the provided add() as a basis. You cannot modify the array directly.

· You can create another Heap (this new heap must only call the provided Heap methods).

· You must not create another array, list, stack, queue, tree.
· You will be writing methods of class QueueHeap, which extends from Heap.

· You can add new variables and methods to class QueueHeap, as long as it does not violate earlier assumptions.
c) (2 marks)Write method:
public void enqueue(Object x) : This method puts a new object into QueueHeap.

Next question is on the next page.
d) (1 mark) Give an example of how a dequeue could be done.

e) (4 marks) Write method:

public Object dequeue(): This method removes an object from QueueHeap. The removed object is the oldest object put into the QueueHeap with the enqueue() method. The method returns the removed object as its result.

Insert 13

Insert 24

Insert 16

Insert 27

Insert 9

								 More space next page

								

More space next page.

								

								

								

								

