Divide and Concur recurrence relation

Problem size n is divided into a subproblems of size $\frac{n}{b}$. After solving each all subproblems, we need further g(n) operations to combine those results. Thus the recurrence relation of this kind of problem is:

$$f(n) = a * f(\frac{n}{b}) + g(n)$$

How do we solve this?

- 1. Change its variable
- 2. If it is in the form

$$f(n) = a * f(\frac{n}{b}) + cn^d, n > n_0$$

we can solve it with a specific method (see later).

Changing Variable

Example: Solve $B_n = 3B_{\frac{n}{2}} + n, B_1 = 1.$

Let $n = 2^k$ and $A_k = \tilde{B}_{2^k}$, therefore $A_{k-1} = B_{2^{k-1}}$ and we can rewrite the original recurrence relation as:

$$A_k = 3A_{k-1} + 2^k$$
 (1)
Find $A_k^{(h)}$: $r - 3 = 0$, therefore $r = 3$.

Thus $A_k^{(h)} = \alpha * 3^k$ Find $A_k^{(p)}$: $A_k^{(p)} = p * 2^k$, substitute this in equation 1, we get:

$$p * 2^k = 3 * p * 2^{k-1} + 2^k$$

-2 = p

Therefore

$$A_k^{(p)} = -2 * 2^k = -2^{k+1}$$
$$A_k = \alpha * 3^k + -2^{k+1}$$

Since $1 = B_1 = B_{2^0} = A_0$, We have $1 = \alpha * 3^0 + -2^{0+1}$. Solving this, we get $\alpha = 3$.

Therefore

$$A_k = 3^{k+1} - 2^{k+1}$$

We have to transform it back in term of B. We know $k = log_2 n$.

$$B_{2^{k}} = 3^{k+1} - 2^{k+1}$$
$$B_{n} = 3^{\log_{2} n+1} - 2^{\log_{2} n+1}$$

Solving
$$f(n) = a * f(\frac{n}{b}) + cn^d$$

We try to find formula. First, we know:

- a ≥ 1: one big problem must surely consists of more than one smaller problems.
- c > 0: the combination of results must take some time.

- if c = 0, then $cn^d = 0$, which is impossible. - if c < 0, then $cn^d < 0$, which is impossible.

- $d \ge 0$: if d < 0, cn^d will decrease when n increases. This is impossible because if the problem gets larger, it should take more time to combine the results of subproblems.
- b > 1: this is because $\frac{n}{b}$ must < n.
- $n = b^i n_0$: just to make n divisible by b.

Substitute $n = b^i n_0$ in $f(n) = a * f(\frac{n}{b}) + cn^d$:

$$f(b^{i}n_{0}) = a * f(\frac{b^{i}n_{0}}{b}) + c(b^{i}n_{0})^{d}$$

Let $h_i = f(b^i n_0)$. From the above equation, we get:

$$h_i = a * h_{i-1} + cn_0^d * (b^d)^i$$
(2)

This is now in the form of non-homogeneous recurrence relation.

Now we find $h_i^{(h)}$:

The characteristic equation is 0 = r - a, therefore r = a and

$$h_i^{(h)} = \alpha * a^i$$

Now we find $h_i^{(p)}$. There are two possible values for this, where $a \neq b^d$ and $a = b^d$.

When $a \neq b^d$.

$$h_i^{(p)} = p * (b^d)^i$$

Substitute this in equation 2, we get:

$$p * (b^{d})^{i} = a * p * (b^{d})^{i-1} + cn_{0}^{d} * (b^{d})^{i}$$

$$p = \frac{a * p}{b^{d}} + cn_{0}^{d}$$

$$(1 - \frac{a}{b^{d}})p = cn_{0}^{d}$$

$$p = \frac{cn_{0}^{d}}{(1 - \frac{a}{b^{d}})}$$

Therefore

$$h_i^{(p)} = p * (b^d)^i = \frac{cn_0^d}{(1 - \frac{a}{b^d})} * (b^d)^i$$

Now we combine $h_i^{(h)}$ and $h_i^{(p)}$:

$$h_i = \alpha * a^i + \frac{cn_0^d}{(1 - \frac{a}{b^d})} * (b^d)^i$$

Since $n = b^i n_0$, we know $i = log_b(\frac{n}{n_0})$, we can transform h_i back to f(n):

$$f(n) = \alpha * a^{\log_b(\frac{n}{n_0})} + \frac{cn_0^d}{(1 - \frac{a}{b^d})} * (b^i)^d$$

= $\alpha * (\frac{n}{n_0})^{\log_b a} + \frac{cn_0^d}{(1 - \frac{a}{b^d})} * (\frac{n}{n_0})^d$
= $c_1 n^{\log_b a} + (\frac{c}{1 - \frac{a}{b^d}}) * n^d$

where $c_1 = \frac{\alpha}{n_0^{\log_b a}}$.

When $a = b^d$.

$$h_i^{(p)} = p \ast (b^d)^i \ast i$$

Doing it in the same way, we will finally get

$$h_i^{(p)} = cn_0^d * i * (b^d)^i$$

and

$$f(n) = c_1 n^d + cn^d \log_b(\frac{n}{n_0})$$