
Strong Induction (Second Principle)

Example:
There are two piles of cards, players take

turn:

• each turn: one player removes any num-
ber of cards from 1 pile (any of the
two).

• The player who removes the last card
wins.

Show that if, in the beginning, the two
piles contain the same number of cards,
then the second player can always win.

Answer:
Let n be the number of cards in each

pile.

1. Base case: When n=1, the first player
can only remove 1 card from 1 pile.
There is no other choice for him. So
the second player can remove the 1 re-
maining card in another pile and win.
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2. Inductive Hypothesis: For n = 1
to k, the second player always wins.

3. Proof: We must show that second player
can win when n = k + 1.

When n = k + 1, let us say the first
player removes j cards from one pile,
leaving k + 1− j cards in the pile.

So the second player can remove j cards
from the other pile, leaving the same
amount on both pile.

And it can be seen that 1 ≤ k+1−j ≤
k, hence the second player can win by
the inductive hypothesis.
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Example: Prove that the number 12 or
more can be formed by adding multiples
of 4 and/or 5.

Answer:
Let n be the number we are interested

in.
We first use Normal Induction:

1. Base case: n = 12, this can be formed
from 4 + 4 + 4. Thus base case proven.

2. Inductive Hypothesis: For n = k,
n is multiples of 4 and/or 5.

3. Proof: We must show that k + 1 is
multiples of 4 and/or 5.

for k + 1

• If at least one 4 is used for the case
where n = k, then replace this 4 by
5, and we therefore get n = k + 1
from the additions of 4 and/or 5.

• If there is no 4, it means only 5 are
used. Since k ≥ 12, at least three
5 are used. Replace this 5 + 5 + 5
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by 4 + 4 + 4 + 4 and we will get
k + 1, which is still the additions of
4 and/or 5.

Now we will proof this using strong in-
duction.

1. Base case: is divided into the follow-
ing cases:

• when we have 12: This is 4 + 4 + 4.

• when we have 13: This is 4 + 4 + 5.

• when we have 14: This is 5 + 5 + 4.

• when we have 15: This is 5 + 5 + 5.

These are the proven base cases.

2. Inductive Hypothesis: Let k ≥
15. Assume that all numbers from 12
to k is the result of adding 4 and/or 5.

3. Proof: We must show that k + 1 is
multiples of 4 and/or 5.

for k + 1

•We use the result of k − 3, which
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satisfies the hypothesis, and add it
by 4. This completes the proof.

• Note that we have many subcases
for base case because the induction
by using k − 3 does not work with
13, 14, and 15.
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Well-Ordering Property

Every nonempty set of nonnegative in-
tegers has a least element.

We can use this directly in proof.
Example: Prove that, if a is an integer

and d is a positive integer, then there are
unique integers q and r with 0 ≤ r < d
and a = dq + r.

Answer:
First, do the existence proof;
OK. Let S = {(a−dq) ∈ Int|(a−dq) ≥

0}. By the well-ordering property, S has
a least element, r = a− dq0.

This is assuming there exists a = dq+r.
Then we see if, at the same time, r < d
is true. If true, then this is the existence
example we want.

0 ≤ r because r must be a member of
S, as defined by us.

We show that r < d by assuming the
negation is true:
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r ≥ d

r − d ≥ 0

(a− dq0)− d ≥ 0

a− d(q0 + 1) ≥ 0

This means a− d(q0 + 1) must also be a
member of S, and this is less than r. Con-
tradiction, because r is already the small-
est number in this set.

Therefore r < d. Now we have the exis-
tence proof.

The second step is to prove the unique-
ness.

Do the contradiction proof:

1. If q is not unique that means there ex-
ists

q2 6= q

, a= dq+r = dq2 + r

We can derive further that:

dq + r = dq2 + r
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dq = dq2

q = q2

Contradiction, q must not be equal to q2.
So we conclude that q is unique.

2. If r is not unique... this is exactly the
same method of proof. We will get the
uniqueness result.

Example: In one tournament football
match of m teams (m ≥ 3). Each team
plays every other team once. Prove that
if there is a cycle, for example ”A beats B
beats C ...”, then there is a cycle of exactly
three teams. (There is no draw game)

Answer:
Prove by contradiction. Assume there is

no cycle of length 3.
Let S be a set of all cycle length (S is

not empty since we know there is a cycle
for sure). By well-ordering property, let k
be the least element of S.

From our assumption, k > 3.
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Let’s look at one cycle ”A beats B beats
C beats ... ” of length k. What would the
result of A and C be?:

• If C beats A, then there is a cycle of
length 3. Contradiction.

• If A beats C, then we can form a new
cycle by omitting B from the cycle we
are looking at. Thus obtaining a cycle
of length k − 1. But this is contra-
diction, since k is already the smallest
cycle size.

Infinite Descent Proof

is to show that for a proposition P (n),
P (k) is false for all positive integer k.

1. Assume that P (k) is true for at least 1
k.

2. By the well-ordering property, there is
the least positive integer j such that
P (j) holds.
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3. Find j′ such that j′ < j and P (j′) is
true. Thus contradiction.

This is what Fermat used to prove there
is no solution to

x4 + y4 = z4

Example: Prove that
√

2 is irrational.
Answer:

1. Assume
√

2 is rational then
√

2 = m
n .

2. By the well-ordering property, there is
a least positive integer N , such that√

2 = M
N . And we know M 2 = 2N 2

3. Now we do this:

M

N
=

(M −N)M

(M −N)N

=
M 2 −MN

(M −N)N

=
2N 2 −MN

(M −N)N
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=
(2N −M)N

(M −N)N

=
2N −M

M −N

We now have M−N as a denominator.

4. Because 1 <
√

2 < 2:

1 <
√

2 < 2

1 <
M

N
< 2

N < M < 2N

0 < M −N < N

Therefore M −N < N , contradicting
our original assumption.
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Structural Induction

Example: Given the following string length
definition, where w is a string and x is a
character:

l(emptyString) = 0,

l(wx) = l(w) + 1

Prove that:

l(xy) = l(x) + l(y)

where x and y are in σ∗, the set of strings
over alphabet σ.

Answer:

1. Base case: We must show that

l(x∗emptyString) = l(x)+l(emptyString)

for all x ∈ σ∗.

l(x∗emptyString) = l(x) = l(x)+l(emptyString)

It is obvious that the base case is true.

2. Recursive step:
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Assume l(xy) = l(x) + l(y).

We must show that l(xya) = l(x) +
l(ya) for every a ∈ σ.

From the original definition:

l(xya) = l(xy) + 1

and
l(ya) = l(y) + 1

Therefore, with the assumption, we get:

l(xya) = l(xy)+1 = (l(x)+l(y))+1 =

l(x) + (l(y) + 1) = l(x) + l(ya)
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Example: Given the definitions of full
binary tree as follows:

height, for a full binary tree, T :

• h(T ) = 0, if T consists of only a root.

• h(T ) = 1+max(h(T1), h(T2)), where
T1 and T2 are full binary trees.

number of nodes for a full binary tree,
T :

• n(T ) = 1, if T consists of only a root.

• n(T ) = 1 + n(T1) + n(T2), where T1
and T2 are full binary trees.

Prove that for a full binary tree, T , n(T ) ≤
2h(T )+1 − 1.

Answer:

1. Base case:

n(onlyRoot) = 1 ≤ 20+1 − 1

Thus the base case holds.

2. Inductive step: Assume that:

• n(T1) ≤ 2h(T1)+1 − 1
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• n(T2) ≤ 2h(T2)+1 − 1

3. Prove:

n(T ) = 1 + n(T1) + n(T2)

≤ 1 + (2h(T1)+1 − 1) + (2h(T2)+1 − 1)

≤ 2 ∗max(2h(T1)+1, 2h(T2)+1)− 1

≤ 2 ∗ 2max(h(T1),h(T2))+1 − 1

≤ 2 ∗ 2h(T ) − 1

≤ 2h(T )+1 − 1

Thus the proof completes.
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