Logic and connectives

* Proposition == statement which is true or false, but not both.
* Letp and q be a proposition:
— P A istrue only when both p and q are true, and false otherwise

— P v @ istrue when at least one of p and q is true

- p S d is true when exactly one of p and q is true, and false

otherwise.
— P —> [ is false only when p is true and q is false.

- p<d is true when p and q have the same truth value



Moreon p —> g

In English

« ifpthenq « p is sufficient for q
« pimplies q « qifp

« ifp,q * q whenever p

« ponlyifq * (1s necessary for p

p unless q is —qd =P o
sometimes P <> {




Translation example

If Jojo 1s over 21 and either he has previously been sentenced to
imprisonment or non-imprisonment 1s not appropriate for him then

a custodial sentence is possible:

JnA(fv=a)—>c

(over21(Jojo)
A (previousprisonment (Jojo) v —nonprisonOK (Jojo)))
— possiblecusto(Jojo)



Summary so far

P pAglPVaP®Gp > qlpeoq
F T T F T T
F F T T F F
T F T T T F
T F F F T T




Equivalence

Tautology == proposition that is always true, no matter what truth

values each proposition has i.e. @ VV [HU€ is true.

Contradiction == proposition that is always false. 1.e.

a n False

Contingency == neither Tautology nor Contradiction.



<=y

* Pislogically equivalent to q if p <> @ 1s a tautology

« We show equivalence (primarily) by truth table, example:

—(pv@q)=—-pr—g

pl g | —p | =G pva—(pvqg) —-pr-q

T T F F T F F
T F F T T F F
F T T F T F F




prlrue < p
PV False < P Identity law

pv e < True
D A False < Fal/se Domination laws

Pvp<=p

PDANp <SP Idempotent laws

_|(_, p) & p Double negation
pvqgesqyp

pnAngd<=dJgnp Commutative laws

PA@Ar)S(PAg)nr
pv(gvr)e (pvg)vr  Associative laws

pr@vr)ys(pag)v(par)
pv(@nar)<s (pvg)A(pv ) Distributive laws



De Morgan’s laws

—~(PAG) = —pv—g
—~(pv@q)= —-pr—g
pP—>g=—pvgs—(pa—qg)
p>psp

PG —q—>—p
pqgs(Pparg)v(—=par—g)
p<qg<=(p—>qg)n(@—p)



Examples

(pAg)—>(pvag)....... always..true?
—(pVv (=P AG)) = —-pAr=G?
pPp>gs(prg)v(—=pAr—g)?



Predicates

¢ X>3 -mm----- > greaterthan3(x)

Predicate tells

us what x 1s

..)

;

tuple

« Predicate can have more than 1 variable i.e. Q(x,y,z



Quantifier

e Universal (for all) \v,
. v greaterthan3(x)

— vx (inthisclass(x) — done calculus(x))

There must be an actual range in real use

— [(inthisclass(a) —>done_calculus(a)] /\ [(inthisclass(b) —>done calculus(b)]



Quantifier (cont.)

« Existential (there exists) =

— El x (inthisclass(x) — done calculus(x))

— [(inthisclass(a) —> done calculus(a)] V [(inthisclass(b) —>
done calculus(b)] V ...



Examples

Ax|[striped (x) A hungry (x)]

Same x 1.e. If x 1s “mycat” then “mycat” must apply

to both predicates.

Ax(striped (x)) A Ax(hungry (x))
S

Two x here are independent

This is the same for V



Order of Quantifiers
Ix3)3z... —.
/

VXYV Z...

Can be arranged in any order

\v/X - y \Must maintain original order

J YV y /

\VIXE y[mOther (y, X)] \Evewone has a mother
E WX[mothe,‘ (y’ X)] — There is a single person who

1s a mother of everyone




Negation Properties of quantifier

—l\V/X <& dX—
— X & \V/X—l




Set

O = {1)3959799}9 P = {2)r949h9n}
Two sets are equal (=) if they have the same elements
o {19395}: {395919195}

Set builder notation: i.e. stating the properties of the set elements

— O = {x | x is an odd positive integer less than 10}

Venn Diagram .
= | % yuniverse

set

<
element



Set terms and notations

gdec A A is an element in A
aeA

0, { } Empty set has no element
Ac B Every element of A is also in B
A B Proper subset

A=8 when (A< B) A (B < A)

Empty set is a subset of every set

a set 1s always a subset of itself




Set terms and notations (cont.)

If S has n distinct elements S is a finite set. n is the cardinality of S

S

Powerset = set of all subsets
Example: P({0,1,2}) = { ¢,{O},{l},{2},{0,1},{0,2},{1,2},{0,1,2}}

P() =}
PPN =D, (D))



Cartesian Product

* Sets do not order elements, but tuples do.
_ (al,a2,a3,a4)
— tuples of 2 elements are called ordered pairs
« Cartesian product of set A and B
AxB ={(a,b)|lacArbecB)}
- A={1,2},B={ab,c} AxB={(1,2),(1,b),(1,0),(2,a),(2,b),(2,c)}

« Cartesian product of n sets

AxAxAx..A ={(a,,4a,8,,..,4,)|

d; € /4/} Where i=1,2,...n



Set Operations

« Union @

AuB ={x|(xeAv(x eB)}
- eg {13,5}u{1,2,3} =41,2,3,5}
- Note: |[AU B|=|A+|B|-|An B

Complement

A=U-A={x|x ¢ A}



Intersection
ANnB ={x|(x e A A(x eB)}
— C.&. {11315} a {11213} — {113}

— Two sets, A and B, are “disjointed” if ANnB = @

 Difference

A—B ={x|(x € A) A(x ¢ B)}
— 1t 1s a complement of B with respect to A

- G {11315} - {11213} — {5}
{11213} - {11315} — {2}



Aug=A

AnlU=A Identity law
AulU =U
Ang=¢ Domination laws
AUVUA=A
AN A=A Idempotent laws
Z — A Complementation law
AuB=BUA

ANnB=BnNnA Commutative laws

Auvu(Bul)=(AuB)uC
AN (B M C) — (A A B) N C  Associative laws

ANn(BuC)=(AnB)U(ANC)
AUu(BNC)=(AuB)N(AuC) Distributive laws



A
C

A
D)

X

X

]
A Nih N
C D
X X

De Morgan’s laws




To show 2 sets are equal

Show that one 1s a subset of the other and vice versa.

« Use set builder notation and logic

~eg. ANB=AUB??
AnNnB ={x|x¢An B}

—(x e AnB)}

—(x e ArXx € B)}
—(xeceAv-(xeB)}
X¢eAvxeB)
xeAuBY



To show 2 sets are equal (cont.)

« Use membership table- similar to truth table

AnB=AUB
A Bl A4 | B A~B AnB | AuB
T T F F T F
T F F T F T
F T T F F T
F F T T F T




Other useful set terms

Bit string- representing set on computer

— ifU={1,2,3,...,10} then odd integers in U can be represented by:

— 1010101010
Symmetric difference- this is just like exclusive or A® B

Successor of A is AU { A}

Multisets - one element can occur more than once

— {1,1,1,2,2,3,3}}  In this case 3 is the multiplicity of element “1”’



Functions

« Let A and B be sets. A function from A to B is

B
A o f:A—B
f(a)=>b

A =domain of f, B= codomain of f, a = pre-image of b, b = image

of a, range of f = set of all images of elements of A



Function Example

Domain ={1,2,3.4}
codomain = {a.b,c.d.e.}
range = {a,b,c}

image of subset S ={1,2,3}
is {a,b}




One-to-one (injective) function

fF(x)=f(y)>x=y
« Strictly increasing function (this must be 1-to-1)

— 1f f has domain and codomain as subset of real numbers,

— fis strictly increasing if f(x) < f(y) whenever x<y (x,y are in the domain

of f)

— fis strictly decreasing if f(x) > f(y) whenever x<y (x,y are in the domain

of f)



Onto (surjective) and bijection

* Onto function has codomain = range

— e.g. f(x)=x*x from set of integers to set of integers is not onto

* Dbiyjection or 1-to-1 correspondence is both 1-to-1 and onto

— e.g. identity function is 1-to-1 and onto



Inverse and composition

 Function f must be 1-to-1 and onto in order to have inverse.

— Not 1-to-1 : the inverse won’t be a function

— not onto: there is a b that can’t map back to a

e if[(g:A>B)A(f:B—>C)]—

(f - g)a)=1r(g(a))

— eg ifA=1{abcjand B= {123} let (g: A— A),(f:A—> B)

— g(a)=b, g(b)=c, g(c) =a, fla) =3, f(b) =2, flc) = 1....
(fog)a)=7(g(a))=r(b)=2..efc
(gof)(a)=g(f(a)) = g(3) = undefined



fog#gof

« E.g.1if both fand g are functions from/to integers
— f(x) =2x+3 g(x) =3x+2
— (fo g)(x) = flg(x)) = f(3x+2) = 2(3x+2)+3= 6x+7

— (goHx) =g(f(x)) = g(2x+3) = 3(2x+3) +2 = 6x+11

« Note: fof1 , Flof are identity functions



Graph of function

« Let fbe afunction from set A to set B.

— The graph of fis the set: {(a, b) | adc An f(a) — b}
— It is a subset of the cartesian product of A and B

— plot it on X,y coordinate



Floor and Ceiling functions

 Let x be areal number. A floor function rounds x down to the
closest integer <= x. A ceiling function rounds x up to the closest

Integer >=x

>

fx_|=6

— X =5.56

v|x|=5




Properties of floor and ceiling

X—1<|_ngx<\_xj+1
fx1—1<xg|_x—\<x+1
x|~ x
~x]=-{x]

X +intJ: |_XJ+int
X +int_|= |_X_|+int




Sequence

* A sequence is a function from a subset if INT to a set S
— d, is the image of integer n. It is a “term” of the sequence
— if d, =1/n then a sequence starting with &y is 1,1/2,1/3,1/4,...

— finite sequence is called “string”

* length of string is the number of terms in that string

» Arithmetic progression sequence 1s a sequence that has the form:

aa+d,a+2d,a+3d,....a+nd

* Geometric progression:

a,ar,ar*,ar?,...,ar"



Summations

/ Upper limit

n
d,+d4d, +t...+ad, = Zaj/ Index of summation

Jj=m
\ Lower limit

* To change index, example: from 1 to 5 to O to 4, just let k = j-1

5 4
-2 2
2 J =2 (k+1)
j=1 k=0
e For nested summation, do the inner summation first

« To find general formula, example: (see next page)



S:Zn:arj
j=0

IS = rzn:arf = Zn:arf”
j=0 j=0

n+1

n
rS = ;ark - /(Z_(:)ark +(ar™ - a)

1S =5+ (ar™ -a)
ar’' —a
r—1

5:




Useful Summation (can be inductively proven)

ik _ n(n+1)

P 2

Z”: £ n(n+1)(2n +1)
pai 6

Zn:k3 _ n*(n+1)°

P 4



Function and Cardinality

Sets A and B have the same cardinality 1ff there 1s a one-to-one

correspondence from A to B

A set that is finite or has the same cardinality as the set of natural
number 1s countable. e.g. odd positive integers

— Another way to think : countable iff we can list that set’ elements in a

sequence

A set that 1s not countable 1s uncountable e.g. a set of real numbers



Growth of function (Big O)

Let f and g be functions from integers or real to real. f(x) is O(g(x))

if |f (X )| <C | g(x )| whenever x>k -> C.k are constants
— the pair C and k is never unique

- eg X +2x +1 is O(x?)
~ because X2 +2X +1< X? +2x° + x* =4 x?

— notice that X 2is also O (X 2 +2X + 1) thus the two functions are

of the same order

g(x) can be replaced by a function with larger absolute value



Theorem of Big O

e Let f(x)=a x"+a, x""+..+ax +a, whereall @,

are real numbers. Then f(x) = O(x")

* Big O therefore can estimate function e.g.:
— 1+2+3+.../n <=n+ntn+...+n = n2
— n! =1*2*%3*  *n <=n*n*..*n =/7n

~ andthus log M<logn” = nlogn =0O(nlogn)



Growth of combinations of functions

* To find big O of f1+12:

(F, + £)(X)| = |.(x) + £, ()
< |f,()|+|f,(x)
< C|lg,(x)|+ C,|g, (x)
< €, max(|g, (x)],|g,(x)) + €, max(|g, (x)], |9, (x))
- (C, + C)max(|g, (X)), |g,(x))
. Therefore, (1, + £,)(x) = O(Max(g,(x), g,(x))

— x> max(kl,k2)



Growth of combinations of functions (cont.)

« What about f1*f2

(F.5,)(x)| < C|g,(x)C,|g,(x)
< (C1C2)‘g1gz (X)‘
+ Therefore (£,75,)(Xx)=0(g,(x)g,(x))



The use of Big O: example

« Use Big O to estimate

f(x)=3xlog(x!)+(x*+3)logx
x X
x log x

O(x*log x)



Big Omega and Big Theta

Big O i1s only the upper bound

a lower bound is Big Omega. Theta indicates both lower bound

and upper bound.

Let f and g be functions from integers or real to real:

- ) is Q(g(x)) if |F(x)| = Clg(x)| wheneverx>k > Ck

are constants

- fxis ©(g(x)) if (F(x) =0(g(x))) » (F(x) =Q(g(x)))



Big Omega and Big Theta (examples)

.+ F(x)=8x>+5x%+7>8x" forall positive real numbers x.
Thus it is of Q(X3) (it is also O()(3))

F(X)=1+2+3+...+x (knowntobe O(X*) )isalsoQ(x?)

and therefore @(X*) because

1+2+3+...+X2£+(£+1)+...+X

vV

X
+ ot =
2

Y
X N X N| XN
N | X N |

v
&
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