
Logic and connectives

• Proposition == statement which is true or false, but not both.
• Let p and q be a proposition:

–                    is true only when both p and q are true, and false otherwise
–                    is true when at least one of p and q is true
–                    is true when exactly one of p and q is true, and false

otherwise.
–                    is false only when p is true and q is false.
–                    is true when p and q have the same truth value

qp ∧

qp ∨

qp ⊕

qp →

qp ↔



More on

In English
• if p then q
• p implies q
• if p, q
• p only if q

qp →

• p is sufficient for q
• q if p
• q whenever p
• q is necessary for p

p unless q  is                        or
sometimes

pq →¬

qp ↔
Converse of
is

qp →
pq →

contrapositive of
is

qp →
pq ¬→¬



Translation example

If Jojo is over 21 and either he has previously been sentenced to
imprisonment or non-imprisonment is not appropriate for him then
a custodial sentence is possible:

caij →¬∨∧ )(

)(
)))()((

)(21(

Jojostopossiblecu
JojoKnonprisonOJojoisonmentpreviouspr

Jojoover

→
¬∨∧



Summary so far

p q p¬ qp ∧ qp ∨ qp ⊕ qp → qp ↔

T T
T F
F T
F F

F T T F T T
F F T T F F
T F T T T F
T F F F T T



Equivalence

• Tautology == proposition that is always true, no matter what truth
values each proposition has i.e.                     is true.

• Contradiction == proposition that is always false. i.e.

• Contingency == neither Tautology nor Contradiction.

Truea ∨

Falsea ∧



• P is logically equivalent to q if               is a tautology
• We show equivalence (primarily) by truth table, example:

≡⇔,

qp ↔

qpqp ¬∧¬⇔∨¬ )(

p q p¬ q¬ qp ∨
T T
T F
F T
F F

F F T
F T T
T F T
T T F

)( qp ∨¬ qp ¬∧¬

F F
F F
F F
T T



pTruep ⇔∧
pFalsep ⇔∨ Identity law

TrueTruep ⇔∨
FalseFalsep ⇔∧ Domination laws
ppp ⇔∨
ppp ⇔∧ Idempotent laws
pp ⇔¬¬ )( Double negation
pqqp ∨⇔∨
pqqp ∧⇔∧ Commutative laws
rqprqp ∧∧⇔∧∧ )()(
rqprqp ∨∨⇔∨∨ )()( Associative laws
)()()( rpqprqp ∧∨∧⇔∨∧
)()()( rpqprqp ∨∧∨⇔∧∨ Distributive laws



)()(
)()(

)(
)(
)(

pqqpqp
qpqpqp

pqqp
ppp

qpqpqp
qpqp
qpqp

→∧→⇔↔
¬∧¬∨∧⇔↔

¬→¬⇔→
⇔↔

¬∧¬⇔∨¬⇔→
¬∧¬⇔∨¬
¬∨¬⇔∧¬

De Morgan’s laws



Examples

?)()(
?))((

?..).......()(

qpqpqp
qpqpp
truealwaysqpqp

¬∧¬∨∧⇔↔
¬∧¬⇔∧¬∨¬

∨→∧



Predicates

• x>3 --------->  greaterthan3(x)

• Predicate can have more than 1 variable  i.e. Q(x,y,z,...)

Predicate tells
us what x is

tuple



Quantifier

• Universal  (for all)
–        x  greaterthan3(x)
–        x (inthisclass(x)        done_calculus(x))

– [(inthisclass(a)        done_calculus(a)]       [(inthisclass(b)        done_calculus(b)]
            …

∀
∀
∀ →

There must be an actual range in real use

→ ∧
∧

→



Quantifier (cont.)

• Existential (there exists)
–       x (inthisclass(x)        done_calculus(x))
– [(inthisclass(a)        done_calculus(a)]       [(inthisclass(b)

done_calculus(b)]       …

∃
∃ →

→ →∨
∨



Examples
)]()([ xhungryxstripedx ∧∃

Same x   i.e.  If x is “mycat” then “mycat” must apply 
to both predicates.   

))(())(( xhungryxxstripedx ∃∧∃

Two x here are independent

This is the same for ∀



Order of Quantifiers
...zyx ∃∃∃ Can be arranged in any order
...zyx ∀∀∀

yx∃∀
yx∀∃

Must maintain original order

)],([ xymotheryx∃∀ Everyone has a mother

)],([ xymotherxy∀∃ There is a single person who
is a mother of everyone



Negation Properties of quantifier

¬∀⇔¬∃
¬∃⇔¬∀
xx
xx



Set
• O = {1,3,5,7,9}, P = {2,r,4,h,n}
• Two sets are equal (=)  if they have the same elements

– {1,3,5} = {3,5,1,1,5}
• Set builder notation: i.e. stating the properties of the set elements

– O = {x | x is an odd positive integer less than 10}
• Venn Diagram

set universe

element



Set terms and notations

BA
BA
BA

Aa
Aa

=
⊂
⊆

∉
∈

φ

A is an element in A

{ } Empty set has no element

Every element of A is also in B
Proper subset

when )()( ABBA ⊆∧⊆

Empty set is a subset of every set

a set is always a subset of itself



Set terms and notations (cont.)
If S has n distinct elements    S is a finite set.  n is the cardinality of S

S

Powerset = set of all subsets

Example: P({0,1,2}) = {      ,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}}

                         P(     ) = {    }

                         P({    }) = {     , {    }}

φ

φ φ
φ φ φ



Cartesian Product
• Sets do not order elements, but tuples do.

– (a1,a2,a3,a4)
– tuples of 2 elements are called ordered pairs

• Cartesian product of set A and B

– A = {1,2}, B = {a,b,c}       AxB = {(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)}
• Cartesian product of n sets

}|),{( BbAabaBA ∈∧∈=×

}

|),...,,,{(... 111321

ii

nn

Aa
aaaaAAAA

∈

=×××

Where i=1,2,…n



Set Operations

• Union

– e.g
– Note:

• Complement

}5,3,2,1{}3,2,1{}5,3,1{ =∪

BABABA ∩−+=∪

)}()(|{ BxAxxBA ∈∨∈=∪

}|{
__

AxxAUA ∉=−=



• Intersection

– e.g.
– Two sets, A and B, are “disjointed” if

• Difference

– it is a complement of B with respect to A
–   e.g.

)}()(|{ BxAxxBA ∈∧∈=∩

}3,1{}3,2,1{}5,3,1{ =∩

φ=∩BA

)}()(|{ BxAxxBA ∉∧∈=−

}2{}5,3,1{}3,2,1{
}5{}3,2,1{}5,3,1{

=−
=−



AA =∪φ
AUA =∩ Identity law
UUA =∪
φφ =∩A Domination laws
AAA =∪
AAA =∩ Idempotent laws

Complementation law

Commutative laws

Associative laws

Distributive laws

AA =

ABBA ∪=∪
ABBA ∩=∩

CBACBA ∪∪=∪∪ )()(
CBACBA ∩∩=∩∩ )()(
)()()( CABACBA ∩∪∩=∪∩
)()()( CABACBA ∪∩∪=∩∪



BABA ∩=∪
BABA ∪=∩ De Morgan’s laws



To show 2 sets are equal

• Show that one is a subset of the other and vice versa.
• Use set builder notation and logic

– e.g.
}|{

???

BAxxBA

BABA

∩∉=∩

∪=∩

}|{

}|{
)}()(|{

)}(|{
)}(|{

BAxx

BxAxx
BxAxx

BxAxx
BAxx

∪∈=

∉∨∉=
∈¬∨∈¬=

∈∧∈¬=
∩∈¬=



To show 2 sets are equal (cont.)

• Use membership table- similar to truth table
BABA ∪=∩

A B A B BA ∩
T T
T F
F T
F F

F F T
F T F
T F F
T T F

F F
T T
T T
T T

BA ∩ BA ∪



Other useful set terms

• Bit string- representing set on computer
– if U = {1,2,3,…,10} then odd integers in U can be represented by:
– 1010101010

• Symmetric difference- this is just like exclusive or
• Successor of A is
• Multisets - one element can occur more than once

– {1,1,1,2,2,3,3}}      In this case 3 is the multiplicity of element “1”

BA ⊕

}{AA ∪



Functions

• Let A and B be sets. A function from A to B is

•  A = domain of f, B = codomain of f, a = pre-image of b, b = image
of a, range of f = set of all images of elements of A

baf
BAf

=
→
)(
:A B



Function Example

1
2
3
4

a
b
c
d
e

Domain ={1,2,3,4}

codomain = {a,b,c,d,e,}

range = {a,b,c}

image of subset S ={1,2,3}
is {a,b}



One-to-one (injective) function

• Strictly increasing function (this must be 1-to-1)
– if f has domain and codomain as subset of real numbers,
– f is strictly increasing if f(x) < f(y) whenever x<y (x,y are in the domain

of f)
– f is strictly decreasing if f(x) > f(y) whenever x<y (x,y are in the domain

of f)

yxyfxf =→= )()(



Onto (surjective) and bijection

• Onto function has codomain = range
– e.g. f(x)=x*x from set of integers to set of integers is not onto

• bijection or 1-to-1 correspondence is both 1-to-1 and onto
– e.g. identity function is 1-to-1 and onto



Inverse and composition

• Function f must be 1-to-1 and onto in order to have inverse.
– Not 1-to-1 : the inverse won’t be a function
– not onto: there is a b that can’t map back to a

• if

– e.g. if A= {a,b,c} and B= {1,2,3}, let
–  g(a) = b, g(b) = c, g(c) = a, f(a) =3, f(b) = 2, f(c) = 1….

))(())((
)]:():[(

agfagf
CBfBAg

=
→→∧→

o

):(),:( BAfAAg →→

undefinedgafgafg
etcbfagfagf

===
===
)3())(())((

...2)())(())((
o

o



• E.g. if both f and g are functions from/to integers
– f(x) = 2x+3   g(x) = 3x+2
– (f o g)(x) = f(g(x)) = f(3x+2) = 2(3x+2)+3= 6x+7
– (g o f)(x) = g(f(x)) = g(2x+3) = 3(2x+3) +2 = 6x+11

• Note:

fggf oo ≠

ffff oo 11 , −− are identity functions



Graph of function

• Let f be a function from set A to set B.
– The graph of f is the set:
– It is a subset of the cartesian product of A and B
– plot it on x,y coordinate

})(|),{( bafAaba =∧∈



Floor and Ceiling functions

• Let x be a real number. A floor function rounds x down to the
closest integer <= x. A ceiling function rounds x up to the closest
integer >=x

56.5=x

  6=x

  5=x



Properties of floor and ceiling
    11 +<≤<− xxxx

    11 +<≤<− xxxx

   
   
   
    intint

intint
+=+

+=+

−=−

−=−

xx
xx
xx
xx



Sequence
• A sequence is a function from a subset if INT to a set S

–        is the image of integer n. It is a “term” of the sequence
– if         =1/n then a sequence starting with        is 1,1/2,1/3,1/4,…
– finite sequence is called “string”

• length of string is the number of terms in that string

• Arithmetic progression sequence is a sequence that has the form:

• Geometric progression:

na

na 1a

karararara ,...,,,, 32

ndadadadaa ++++ ,...,3,2,,



Summations

• To change index, example: from 1 to 5 to 0 to 4, just let k = j-1

• For nested summation, do the inner summation first
• To find general formula, example: (see next page)

∑
=

+ =+++
n

mj
jnmm aaaa ...1

Upper limit

Lower limit

Index of summation

∑ ∑
= =

+=
5

1

4

0

22 )1(
j k

kj
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Useful Summation (can be inductively proven)

4
)1(

6
)12)(1(

2
)1(
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Function and Cardinality

• Sets A and B have the same cardinality iff there is a one-to-one
correspondence from A to B

• A set that is finite or has the same cardinality as the set of natural
number is countable. e.g. odd positive integers
– Another way to think : countable iff  we can list that set’ elements in a

sequence
• A set that is not countable is uncountable e.g. a set of real numbers



Growth of function (Big O)

• Let f and g be functions from integers or real to real. f(x) is O(g(x))
if                                   whenever x>k  ->    C,k are constants
– the pair C and k is never unique
– e.g.                             is
– because
–  notice that       is also                                      thus the two functions are

of the same order
• g(x) can be replaced by a function with larger absolute value

)()( xgCxf ≤

122 ++ xx )( 2xO
22222 4212 xxxxxx =++≤++

2x )12( 2 ++ xxO



Theorem of Big O

• Let                                                                                  where all
are real numbers. Then

• Big O therefore can estimate function e.g.:
– 1+2+3+…+n <= n+n+n+…+n =
– n! = 1*2*3*…*n <= n*n*...*n =
– and thus

01
1

1 ...)( axaxaxaxf n
n

n
n ++++= −

− na

)()( nxOxf =

2n
nn

)log(loglog!log nnOnnnn n ==≤



Growth of combinations of functions

• To find big O of f1+f2:

• Therefore,
– x > max(k1,k2)

)()())(( 2121 xfxfxff +=+

))(,)(max()(

))(,)(max())(,)(max(

)()(

)()(

2121

212211

2211

21

xgxgCC

xgxgCxgxgC

xgCxgC

xfxf

+=

+≤

+<

+≤

))(),((max())(( 2121 xgxgOxff =+



Growth of combinations of functions (cont.)

• What about f1*f2

• Therefore

)()())(( 221121 xgCxgCxff ≤

)()( 2121 xggCC≤

))()(())(( 2121 xgxgOxff =



The use of Big O: example

• Use Big O to estimate
xxxxxf log)3()!log(3)( 2 ++=

x
xx

xx log
2x

)log( 2 xxO



Big Omega and Big Theta

• Big O is only the upper bound
• a lower bound is Big Omega. Theta indicates both lower bound

and upper bound.
• Let f and g be functions from integers or real to real:

–  f(x) is                       if                                       whenever x>k  ->    C,k
are constants

– f(x) is                       if

)()( xgCxf ≥))(( xgΩ

))(( xgΘ )))(()(()))(()(( xgxfxgOxf Ω=∧=



Big Omega and Big Theta (examples)
•                                                         for all positive real numbers x.

Thus it is of                (it is also              )
•                                                  (known to be                 ) is also

and therefore               because

)( 3xΩ )( 3xO

323 8758)( xxxxf ≥++=

xxf ++++= ...321)( )( 2xO )( 2xΩ

)( 2xΘ

xxxx ++++≥++++ ...)1
2
(

2
...321
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2
*
2

2
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2x
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xxx

≥

≥
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