
1

Mathematical Reasoning (Part 1)

2

Mathematical Reasoning terms

• Theorem = statement that can be shown to be true
• proof = sequence of statements that show that the theorem is true
• axiom, postulates = assumptions, hypothesis
• rules of inference = rules used to draw conclusion for each step of

a proof
• fallacies = incorrect reasoning
• lemma = simple theorem (used in the proof of a bigger theorem)

3

Mathematical Reasoning terms (cont.)

• Corollary = a proposition that can be established directly from a
theorem

• conjecture = statement that has unknown truth value
• an argument is valid if whenever all hypothesis are true, the

conclusion is also true (p->q for example)
– but a hypothesis can be false, i.e. valid does not mean correct

4

Rules of inference

• These are tautology that we can use in a proof
• Example: tautology

q
qp

p

∴
→

Modus ponens (law of detachment)

qqpp →→∧))((

5

qpqp
rprqqp

pqpq
qqpp
qpqp

pqp
qpp

→¬∧∨
→→→∧→

¬→→∧¬
→→∧

∧→∧
→∧
∨→

])[(
)()]()[(

)]([
)]([

)()]()[(
)(

)(addition

simplification

conjunction

Modus ponens
Modus tollens

Hypothetical syllogism

Disjunctive syllogism

6

Example of logical proof

• Show that

wakeupgoodsleepearly
sleepearlysendmail
finishworksendmail

→
→¬

→

wakeupgoodfinishwork →¬

See the board :)

leads to the conclusion that

7

• Show that

leads to the conclusion that
backearlycanoe
canoeswim
sunnyswim
coldsunny

→
→¬

→
∧¬

backearly

See the board :)

8

Rules of inference for quantifier

)(
)()(

)(
)()(

cP
cPxxP

cP
cPxxP

→∃

→∀ if Uc ∈
for an arbitrary Uc ∈)(xxP∀→

for some element Uc ∈
for some element Uc ∈)(xxP∃→

U instantiation

U generalization
E instantiation

E generalization

9

Rules of inference for quantifier (example)

• Show that

thclassdiscretemaDon
xcomstudentx
thclassdiscretemax

∈
∀
∈

)]([

leads to the conclusion that
)(Doncomstudent

See the board :)

10

Method of proving theorem in the form p->q

• Direct proof
– assume p true
– show q is true

• Indirect proof
– is a direct prove of

• Vacuous proof
– show that p is false

pq ¬→¬

11

Method of proving theorem in the form p->q
(cont.)

• Trivial proof
– show q is true

• Contradiction proof
– assume the negation of we are proving is true, then find any

contradicting statements
– e.g. to prove p, we must assume to be truep¬

12

Method of proving theorem in the form p->q
(cont2.)

• Proof by cases
– to prove , we can, instead,

prove that
– to prove , we can prove
– to prove , we can prove

qppp n →∨∨∨)...(21

)...()()(21 qpqpqp n →∧→∧→
qp ↔)()(pqqp →∧→

nppp ↔↔↔ ...21

)(...)()(13221 pppppp n →∧∧→∧→

13

Proving theorem with quantifier

• To prove
– just find an x that works = constructive proof
– can prove by other means, such as contradiction

• To prove
– usually it is proving that it is false
– just show an x where P(x) is false = counter example

)(xxP∃

)(xxP∀

14

Important prove example: Halting problem
• There is no program that, given a program and an input, can

determine if that program terminates
• Prove by contradiction:
• assume

• Let K be another machine such that
– if H(P,P) halts, K(P) loops and vice versa

• Then we replace P by K for both machine H and K -> we see
contradiction

HP
I “halt” or “loop”

15

Mathematical Reasoning (Part 2)

16

Mathematical Induction, proving

We do it by:
• show that the base case is true
• assume P(x) is true, and use this assumption to show that P(x+1) is

true

)(xxP∀

Inductive hypothesis

17

Math. Induction, why does it work?!

• Assume we know the base case and P(x)->P(x+1) are true
• Let’s assume that there is some x that makes P(x) false. That x

must be a member of a set (let’s say set S) which holds all x that P
(x) is false.
– Then there is a least element k of the set S
– hence, k-1 is surely not in S and therefore P(k-1) must be true
– by the first assumption, P(k) must also be true…. But this is

contradiction.

18

Math induction example:

Prove: 1+3+5+… = n*n (increment for 2n-1 each time)
• Base case: n=1: yes, LHS =RHS
• Assume: …………..
• Show: …………..

See the board

19

Prove:
• Base case:
• Assume:
• Show that:

nn 2<
121 <
nn 2<

)1(2)1(+<+ nn

See the board

20

Prove:

• Base case: j=0
• Assume:………….
• Show that: ………….

1

1

0 −
−

=
+

=
∑ r

aarar
nn

j

j

See the board

21

Prove:

• Base case: 1>=1+0/2
• Assume:………….
• Show that:

2
1

2
1

...
3
1

2
1

1
n

n +≥++++

2
1

1
2
1

...
3
1

2
1

1 1

+
+≥++++ +

n
n

See the board

22

Prove: chessboard with 1 square removed can be tiled
using L-shape pieces

• Base case:
• Assume:
• Show that:

nn 2*2

See the board

23

Second principle of Math Induction

• Base case
• Assume that P(next to base case) to P(n) are true
• show that P(n+1) is true
• Example: prove that any integer n (>1) is a product of prime

– base case: P(2) yes, 2 is a product of prime
– Assume: P(k) for all k<=n
– show P(n+1)

See the board

24

Recursive (or inductive) definition

• Something that repeatedly call itself…but with smaller input, until
the call ends at the base case
– :
– : factorial f(n+1) = (n+1)f(n) , f(0) = 1
– : fibonacci f(0) =0, f(1)=1, f(n) = f(n-1) + f(n-2)

nn aa 21 =+

25

Set with recursive definition

Syx
S
∈+

∈3

See the board

• Example:

• Prove: 3*n is in S
If x is in S and Y is also in S

26

Well-formed formula (what’s it got to do with
recursion?)

• x is a well-formed formula if x is a numeral or a variable
• (f+g), (f-g), (f*g), (f/g), (f exp g) are well-formed formulae if f and

g are.
– X and 5 are well-formed, so is x+5

• T,F and p where p is a propositional variable, are well-formed
• if p and q are well-formed, so is

qpqpqpqpp ↔→∨∧¬ ,,,,

27

Well-known recursive algorithms
• Linear search: search(a,i,j,x) -

– if a[i] = x then return 1
– else if i=j then return 0
– else search(a,i+1,j,x)

• Binary search: bisearch(a,i,j,x)
– k = floor((i+j)/2)
– if x=a[k] then return 1
– else if (x<a[k] and i<k) then bisearch(a,i,k-1,x)
– else if (x>a[k] and j>k) then bisearch(a,k+1,j,x)
– else return 0

28

Recursion and iteration

• Fac(n) = n*fac(n-1) ->recursion
• x:=1; for(int k=1,k<=n,k++){x = x*k} -> iteration
• iteration needs less computation (see fibonacci)

– recursion requires many additions
– while iteration requires only few additions z:=x+y; x=y; y=z;

29

Mathematical Reasoning (Part 3)

30

Introduction to program verification

To prove that a program is correct
• show that the correct answer is obtained if the program terminates.

(partial correctness) with respect to initial and final assertions
• show that the program always terminates

qSp }{

Initial assertion= properties of input Final assertion = properties of output

To be correct-> whenever p is true, q must also be true. This notation
represents the partial correctness

31

Rules about program correctness
rSSprSqqSp };{)]}{()}{[(2121 →∧

qSthenconditionifp
qconditionpqSconditionp

},{
])()}{[(

−−→
→¬∧∧∧

qSelseSthenconditionifp
qSconditionpqSconditionp

},,{
]}{()}{[(

21

21

−−−→

¬∧∧∧

32

Loop invariant

)}({
)}{(

pconditionSconditionwhilep
pSconditionp

∧¬−−
→∧

Loop invariant

	Mathematical Reasoning (Part 1)
	Mathematical Reasoning terms
	Mathematical Reasoning terms (cont.)
	Rules of inference
	Example of logical proof
	Rules of inference for quantifier
	Rules of inference for quantifier (example)
	Method of proving theorem in the form p->q
	Method of proving theorem in the form p->q (cont.)
	Method of proving theorem in the form p->q (cont2.)
	Proving theorem with quantifier
	Important prove example: Halting problem
	Mathematical Reasoning (Part 2)
	Mathematical Induction, proving
	Math. Induction, why does it work?!
	Math induction example:
	Second principle of Math Induction
	Recursive (or inductive) definition
	Set with recursive definition
	Well-formed formula (what’s it got to do with recursion?)
	Well-known recursive algorithms
	Recursion and iteration
	Mathematical Reasoning (Part 3)
	Introduction to program verification
	Rules about program correctness
	Loop invariant

