Mathematical Reasoning (Part 1)

Mathematical Reasoning terms

Theorem = statement that can be shown to be true
proof = sequence of statements that show that the theorem is true
axiom, postulates = assumptions, hypothesis

rules of inference = rules used to draw conclusion for each step of

a proof
fallacies = incorrect reasoning

lemma = simple theorem (used in the proof of a bigger theorem)

Mathematical Reasoning terms (cont.)

* Corollary = a proposition that can be established directly from a

theorem
* conjecture = statement that has unknown truth value

* an argument is valid if whenever all hypothesis are true, the

conclusion is also true (p->q for example)

— but a hypothesis can be false, i.e. valid does not mean correct

Rules of inference

* These are tautology that we can use in a proof

+ Example: tautology (p A (p RN q)) —q
Modus ponens (law of detachment)
P
p—>q

addition p—>(pvQg)

simplification (p N q) — p

conuncion LLPY A (@) > (P AG)

Modus ponens [p A (p — q)] - q

Modus tollens [_'q N (p — q)] — _'p

Hypothetical syllogism [(p — q) N (q — r)] — (p —> r)

[(pv@)A—p]l—>q

Disjunctive syllogism

Example of logical proof

. Showthat S€NAmail — finishwork
—sendmail — sleepearly
sleepearly — wakeupgood

leads to the conclusion that

—finishwork — wakeupgood

See the board :)

—sunny A cold
swim — sunny
—Swim — canoe
canoe — backearly

¢ Show that

leads to the conclusion that

backearly

See the board :)

Rules of inference for quantifier

U instantiation \V/XP(X) —> P(C) ir C € U

U generalization P (C)for an arbitrary C e U —> VXP (X)

E instantiation ElXP(X) —> P(C) for some clement C € U

E generalization | P (C) for some clement C € U~ —> AxP (X)

Rules of inference for quantifier (example)

X e discretemathclass

¢ Show that

Vv x[comstudent (x)]
Don e discretemathclass

leads to the conclusion that

comstudent (Don)

See the board :)

Method of proving theorem in the form p->q

* Direct proof

— assume p true

— show q is true

* Indirect proof

— is adirect prove of ! q —> _'p

* Vacuous proof

— show that p is false

10

Method of proving theorem in the form p->q

(cont.)

+ Trivial proof
— show q is true
* Contradiction proof

— assume the negation of we are proving is true, then find any

contradicting statements

— e.g. to prove p, we must assume™ 1 ,D to be true

Method of proving theorem in the form p->q
(cont2.)

* Proof by cases

- toprove(pl \ pZ Vi V pn) —> { , we can, instead,

woveia(p, = @) A (Dy — G) A (D, = G)
— toprove 0 €> (. we can prove (p RN q) A (q - p)
— to prove pl R pZ R R A S pn , We can prove

(> D) APy > D) Ao n (P, = 1)

12

Proving theorem with quantifier

* To prove HXP(X)

— just find an x that works = constructive proof

— can prove by other means, such as contradiction
* To prove VXP(X)

— usually it is proving that it is false

— just show an x where P(x) is false = counter example

13

Important prove example: Halting problem

* There is no program that, given a program and an input, can

determine if that program terminates
* Prove by contradiction:

* assume p

I

“halt” or “loop”

* Let K be another machine such that
— if H(P,P) halts, K(P) loops and vice versa
» Then we replace P by K for both machine H and K -> we see

contradiction

14

Mathematical Reasoning (Part 2)

15

Mathematical Induction, proving VxP(x)

We do it by:

¢ show that the base case is true Inductive hypothesis

+ assume P(x) is true, and use this assumption to show that P(x+1) is

true

16

Math. Induction, why does it work?!

* Assume we know the base case and P(x)->P(x+1) are true

» Let’s assume that there is some x that makes P(x) false. That x
must be a member of a set (let’s say set S) which holds all x that P
(x) is false.

— Then there is a least element k of the set S
— hence, k-1 is surely not in S and therefore P(k-1) must be true

— by the first assumption, P(k) must also be true.... But this is

contradiction.

Math induction example:

Prove: 1+3+5+... =n*n (increment for 2n-1 each time)
* Base case: n=1: yes, LHS =RHS
e Assume:

e Show:

See the board

18

Prove: 1 < 2n

* Base case: 1 < 21
e Assume:] < 2"
+ Show that: (n + 1) < 2(n+1)

See the board

ar" —a

n
Prove: Zafj =
0 r-1

* Base case: j=0
* Assume:.............

e Show that:

See the board

20

1 1

Prove:

2

e Base case: 1>=1+0/2

1

1

l+=+=-+.+=—21+—
3

2/7

1

+ Show that: 1 +§+_+ een T

3

n
2

1 >1+n+1

2n+1 - 2

See the board

21

Prove: chessboard

using L-shape pieces
¢ Base case:
¢ Assume:

¢ Show that:

27 %k 21 with 1 square removed can be tiled

See the board

22

Second principle of Math Induction

* Base case

» Assume that P(next to base case) to P(n) are true

show that P(n+1) is true

» Example: prove that any integer n (>1) is a product of prime

— base case: P(2) yes, 2 is a product of prime

— Assume: P(k) for all k<=n

— show P(n+1)
See the board

23

Recursive (or inductive) definition

* Something that repeatedly call itself...but with smaller input, until

the call ends at the base case
- an+1 = 2C?n
— : factorial f(n+1) = (n+1Df(n) ,f(0)=1

— : fibonacci f(0) =0, f(1)=1, f(n) = f(n-1) + f(n-2)

24

Set with recursive definition

Example:
3eS

X + y = 5 IfxisinSand Yisalsoin S

Prove: 3*n isin S

See the board

25

Well-formed formula (what’s it got to do with

recursion?)

e xis a well-formed formula if x is a numeral or a variable

o (ft+g), (f-g), (f*g), (f/g), (f exp g) are well-formed formulae if f and

g are.

— X and 5 are well-formed, so is x+5

* T,F and p where p is a propositional variable, are well-formed

« if p and q are well-formed, so is

PPN, PV, P >4, Pp>(F

26

Well-known recursive algorithms

Linear search: search(a,i,j,x) -
— ifali] = x then return 1
— else if i=j then return 0
— else search(a,i+1,j,x)
Binary search: bisearch(a.i,j,x)
— k= floor((i+j)/2)
— if x=a[k] then return 1
— else if (x<a[k] and i<k) then bisearch(a,i,k-1,x)
— else if (x>a[k] and j>k) then bisearch(a,k+1,j,x)

— elsereturn 0

27

Recursion and iteration

Fac(n) = n*fac(n-1) ->recursion
x:=1; for(int k=1,k<=n,k++){x = x*k} -> iteration
iteration needs less computation (see fibonacci)

— recursion requires many additions

— while iteration requires only few additions z:=x+y; x=y; y=z;

28

Mathematical Reasoning (Part 3)

29

Introduction to program verification

To prove that a program is correct

» show that the correct answer is obtained if the program terminates.

(partial correctness) with respect to initial and final assertions
» show that the program always terminates
Initial assertion= properties of input Final assertion = properties of output

oSy

To be correct-> whenever p is true, q must also be true. This notation

represents the partial correctness

30

Rules about program correctness

[(p{S5.}q) A (g{S5,}r)] — p{S5:;S,}r

[(p A condition{S}q) ~ (p A —condition) — g]
— p{if — condition,then — S}q

[(p A condition{S,}q) ~ (p A~ —condition{S,}q]
— p{if — condition,then - S, ,else — S, }q

31

Loop invariant

Loop invariant

(p A condition{S}p) —>
p{while — condition — S }(—condition A p)

32

