
1

1

Mathematical Reasoning (Part 1)

2

Mathematical Reasoning terms

• Theorem = statement that can be shown to be true
• proof = sequence of statements that show that the theorem is true
• axiom, postulates = assumptions, hypothesis
• rules of inference = rules used to draw conclusion for each step of

a proof
• fallacies = incorrect reasoning
• lemma = simple theorem (used in the proof of a bigger theorem)

2

3

Mathematical Reasoning terms (cont.)

• Corollary = a proposition that can be established directly from a
theorem

• conjecture = statement that has unknown truth value
• an argument is valid if whenever all hypothesis are true, the

conclusion is also true (p->q for example)
– but a hypothesis can be false, i.e. valid does not mean correct

4

Rules of inference

• These are tautology that we can use in a proof
• Example: tautology

q
qp

p

∴
→

Modus ponens (law of detachment)

qqpp →→∧))((

3

5

qpqp
rprqqp

pqpq
qqpp
qpqp

pqp
qpp

→¬∧∨
→→→∧→

¬→→∧¬
→→∧

∧→∧
→∧
∨→

])[(
)()]()[(

)]([
)]([

)()]()[(
)(

)(addition

simplification

conjunction

Modus ponens
Modus tollens

Hypothetical syllogism

Disjunctive syllogism

6

Example of logical proof

• Show that

wakeupgoodsleepearly
sleepearlysendmail
finishworksendmail

→
→¬

→

wakeupgoodfinishwork →¬

See the board :)

leads to the conclusion that

4

7

• Show that

leads to the conclusion that
backearlycanoe
canoeswim
sunnyswim
coldsunny

→
→¬

→
∧¬

backearly

See the board :)

8

Rules of inference for quantifier

)(
)()(

)(
)()(

cP
cPxxP

cP
cPxxP

→∃

→∀ if Uc ∈
for an arbitrary Uc ∈)(xxP∀→

for some element Uc ∈
for some element Uc ∈)(xxP∃→

U instantiation

U generalization
E instantiation

E generalization

5

9

Rules of inference for quantifier (example)

• Show that

thclassdiscretemaDon
xcomstudentx
thclassdiscretemax

∈
∀
∈

)]([

leads to the conclusion that
)(Doncomstudent

See the board :)

10

Method of proving theorem in the form p->q

• Direct proof
– assume p true
– show q is true

• Indirect proof
– is a direct prove of

• Vacuous proof
– show that p is false

pq ¬→¬

6

11

Method of proving theorem in the form p->q
(cont.)

• Trivial proof
– show q is true

• Contradiction proof
– assume the negation of we are proving is true, then find any

contradicting statements
– e.g. to prove p, we must assume to be truep¬

12

Method of proving theorem in the form p->q
(cont2.)

• Proof by cases
– to prove , we can, instead,

prove that
– to prove , we can prove
– to prove , we can prove

qppp n →∨∨∨)...(21

)...()()(21 qpqpqp n →∧→∧→
qp ↔)()(pqqp →∧→

nppp ↔↔↔ ...21

)(...)()(13221 pppppp n →∧∧→∧→

7

13

Proving theorem with quantifier

• To prove
– just find an x that works = constructive proof
– can prove by other means, such as contradiction

• To prove
– usually it is proving that it is false
– just show an x where P(x) is false = counter example

)(xxP∃

)(xxP∀

14

Important prove example: Halting problem
• There is no program that, given a program and an input, can

determine if that program terminates
• Prove by contradiction:
• assume

• Let K be another machine such that
– if H(P,P) halts, K(P) loops and vice versa

• Then we replace P by K for both machine H and K -> we see
contradiction

HP
I “halt” or “loop”

8

15

Mathematical Reasoning (Part 2)

16

Mathematical Induction, proving

We do it by:
• show that the base case is true
• assume P(x) is true, and use this assumption to show that P(x+1) is

true

)(xxP∀

Inductive hypothesis

9

17

Math. Induction, why does it work?!

• Assume we know the base case and P(x)->P(x+1) are true
• Let’s assume that there is some x that makes P(x) false. That x

must be a member of a set (let’s say set S) which holds all x that P
(x) is false.
– Then there is a least element k of the set S
– hence, k-1 is surely not in S and therefore P(k-1) must be true
– by the first assumption, P(k) must also be true…. But this is

contradiction.

18

Math induction example:

Prove: 1+3+5+… = n*n (increment for 2n-1 each time)
• Base case: n=1: yes, LHS =RHS
• Assume: …………..
• Show: …………..

See the board

10

19

Prove:
• Base case:
• Assume:
• Show that:

nn 2<
121 <
nn 2<

)1(2)1(+<+ nn

See the board

20

Prove:

• Base case: j=0
• Assume:………….
• Show that: ………….

1

1

0 −
−

=
+

=
∑ r

aarar
nn

j

j

See the board

11

21

Prove:

• Base case: 1>=1+0/2
• Assume:………….
• Show that:

2
1

2
1

...
3
1

2
1

1
n

n +≥++++

2
1

1
2
1

...
3
1

2
1

1 1

+
+≥++++ +

n
n

See the board

22

Prove: chessboard with 1 square removed can be tiled
using L-shape pieces

• Base case:
• Assume:
• Show that:

nn 2*2

See the board

12

23

Second principle of Math Induction

• Base case
• Assume that P(next to base case) to P(n) are true
• show that P(n+1) is true
• Example: prove that any integer n (>1) is a product of prime

– base case: P(2) yes, 2 is a product of prime
– Assume: P(k) for all k<=n
– show P(n+1)

See the board

24

Recursive (or inductive) definition

• Something that repeatedly call itself…but with smaller input, until
the call ends at the base case
– :
– : factorial f(n+1) = (n+1)f(n) , f(0) = 1
– : fibonacci f(0) =0, f(1)=1, f(n) = f(n-1) + f(n-2)

nn aa 21 =+

13

25

Set with recursive definition

Syx
S
∈+

∈3

See the board

• Example:

• Prove: 3*n is in S
If x is in S and Y is also in S

26

Well-formed formula (what’s it got to do with
recursion?)

• x is a well-formed formula if x is a numeral or a variable
• (f+g), (f-g), (f*g), (f/g), (f exp g) are well-formed formulae if f and

g are.
– X and 5 are well-formed, so is x+5

• T,F and p where p is a propositional variable, are well-formed
• if p and q are well-formed, so is

qpqpqpqpp ↔→∨∧¬ ,,,,

14

27

Well-known recursive algorithms
• Linear search: search(a,i,j,x) -

– if a[i] = x then return 1
– else if i=j then return 0
– else search(a,i+1,j,x)

• Binary search: bisearch(a,i,j,x)
– k = floor((i+j)/2)
– if x=a[k] then return 1
– else if (x<a[k] and i<k) then bisearch(a,i,k-1,x)
– else if (x>a[k] and j>k) then bisearch(a,k+1,j,x)
– else return 0

28

Recursion and iteration

• Fac(n) = n*fac(n-1) ->recursion
• x:=1; for(int k=1,k<=n,k++){x = x*k} -> iteration
• iteration needs less computation (see fibonacci)

– recursion requires many additions
– while iteration requires only few additions z:=x+y; x=y; y=z;

15

29

Mathematical Reasoning (Part 3)

30

Introduction to program verification

To prove that a program is correct
• show that the correct answer is obtained if the program terminates.

(partial correctness) with respect to initial and final assertions
• show that the program always terminates

qSp }{

Initial assertion= properties of input Final assertion = properties of output

To be correct-> whenever p is true, q must also be true. This notation
represents the partial correctness

16

31

Rules about program correctness
rSSprSqqSp };{)]}{()}{[(2121 →∧

qSthenconditionifp
qconditionpqSconditionp

},{
])()}{[(

−−→
→¬∧∧∧

qSelseSthenconditionifp
qSconditionpqSconditionp

},,{
]}{()}{[(

21

21

−−−→

¬∧∧∧

32

Loop invariant

)}({
)}{(

pconditionSconditionwhilep
pSconditionp

∧¬−−
→∧

Loop invariant

