
Halting Problem

Assume H(P,I), which able to tell that
any P with any input I loops or halts, ex-
ists.

So H it should be able to tell us whether
P with input P (itself) loops or halts as
well.

Let K(P) take the output of H(P,P).

• If H(P,P) has ”loop forever” as output,
then K(P) halts.

• If H(P,P) has ”halt” as output, then
K(P) loops forever.

So what if we use K as input to K itself.
Substitute K in, you see the contradic-

tion.

Resolution

This is another use of the tautology

((p ∨ q) ∧ (¬p ∨ r)) → (q ∨ r)

The part q ∨ r is called resolvent.
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Example: Show that the hypothesis ”Jojo
is running or it is not raining” and ”It
is raining or Doppio is playing football”
imply that ”Jojo is running or Doppio is
playing football”

Answer:
We can present these sentences by sub-

stituting:

• p = It is raining

• q = Jojo is running

• r = Doppio is playing football

in the above tautology. We can conclude
q ∨ r straightforwardly.

Example: Show that (p ∧ q) ∨ r and
r → s imply (p ∨ s).

Answer:

1. (p ∧ q) ∨ r is (p ∨ r) and (q ∨ r).

2. r → s is ¬r ∨ s.

3. So now we have (p ∨ r) and (¬r ∨ s).
By resolution, we can say that (p ∨ s).
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Fallacies

Proof that use wrong tautology! I’ll name
two:

• use [(p → q) ∧ q] → p :fallacy of
affirming the conclusion

• use [(p → q) ∧ ¬p] → ¬q :fallacy of
denying the hypothesis

Proof by cases

Example: Show that |xy| = |x||y| where
x and y are real numbers.

Answer: proof stages are as follows:

1. Let p be ”x and y are real numbers”. p
is equivalent to p1 ∨ p2 ∨ p3 ∨ p4:

• p1 is ”x ≥ 0 ∧ y ≥ 0”.

• p2 is ”x ≥ 0 ∧ y < 0”.

• p3 is ”x < 0 ∧ y ≥ 0”.

• p4 is ”x < 0 ∧ y < 0”.

2. let q be ”|xy| = |x||y|”.
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3. We must show that p1 → q, p2 → q,
p3 → q, and p4 → q:

• p1 → q: xy ≥ 0, therefore |xy| =
xy = |x||y|.

• p2 → q: xy ≤ 0, therefore |xy| =
−xy = x(−y) = |x||y|.

• p3 → q: xy ≤ 0, therefore |xy| =
−xy = −x(y) = |x||y|.

• p4 → q: xy ≥ 0, therefore |xy| =
xy = (−x)(−y) = |x||y|.

Example: Show that the 3 following state-
ments:

• p1: n is an even integer.

• p2: n− 1 is an odd integer.

• p3: n2 is an even integer.

are equivalent.
Answer: We show this by showing p1 →

p2, p2 → p3, and p3 → p1.
To show p1 → p2, we use direct proof.
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Say, n is even, therefore:

n = 2k

n− 1 = 2k − 1

= 2(k − 1) + 1

which is the form of an odd integer, i.e.
2m + 1.

To show that p2 → p3, we use direct
proof. Suppose n− 1 is odd

n− 1 = 2m + 1

n = 2m + 2

n2 = (2m + 2)2

= 4m2 + 8m + 4

= 2(m2 + 4m + 2)

Thus it can be seen that n2 must be even.
To show p3 → p1, we use an indirect

proof, assume n is not even, we mus show
that n2 is not even.

n = 2m + 1

n2 = (2m + 1)2

n2 = 4m2 + 4m + 1
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= 2(2m2 + 2m) + 1

which is a form of an odd integer. Thus
we have the whole proof.

More Proof by Cases

Example: Prove that if n is an integer
not divisible by 2 or 3, then n2 − 1 is di-
visible by 24

Divide n into cases:

1. n = 6k: ignore since this is divisible by
2 and 3.

2. n = 6k + 1: this is one case where we
concern.

3. n = 6k+2: ignore since this is divisible
by 2.

4. n = 6k+3: ignore since this is divisible
by 3.

5. n = 6k+4: ignore since this is divisible
by 2.

6. n = 6k + 5: this is one case where we
concern.
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For the case where n = 6k + 1,

n2 − 1 = (n− 1)(n + 1)

= 6k(6k + 2)

= 6k(6k + 2)

= 12k(3k + 1)

Notice that k(3k+1) is always even (try
some example by yourself i.e. when k is
odd and when k is even).

Thus there is a q that makes k(3k+1) =
2q, this will make the above n2−1 = 24q,
thus divisible by 24.

For the case where n = 6k + 5,

n2 − 1 = (n− 1)(n + 1)

= (6k + 4)(6k + 6)

= 12(k + 1)(3k + 2)

Notice that (k+1)(3k+2) is even (again,
try it when k is odd and when k is even).
Thus we get n2 − 1 is divisible by 24 for
all the cases we concern.
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Example: Show that there are no inte-
gers x and y that makes x2 + 3y2 = 8.

Answer:
We know that x2 > 8 when |x| ≥ 3,and

3y2 > 8 when |y| ≥ 2. Therefore

• x can only be −2,−1, 0, 1, 2

• y can only be −1, 0, 1

From these cases, possible values of x2

are 0, 1, 4, while possible values of 3y2 are
0 and 3. This means that the largest value
of x2 + 3y2 is only 7, never 8. This com-
pletes the proof.

Nonconstructive Existence Proofs

Proof ”for some”, but not by finding work-
ing samples. It can be contradiction proof,
etc.

Example: Show that there exist irra-
tional numbers x and y, such that xy is
rational.

Answer:
We know that

√
2 is irrational. Use it!
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If
√

2
√

2
is rational, we will have the an-

swer right away. That is x = y =
√

2.

If
√

2
√

2
is irrational, we can have x =√

2
√

2
and y =

√
2. In this case,

xy = (
√

2
√

2
)
√

2

= (
√

2)2

= 2

In any case, there is, for sure, a situation
that xy is rational.

Uniqueness Proof

To show that x is unique:

1. show that x (with the desired property)
exists.

2. show that if y 6= x, then y does not
have that property.

Example: Show that if p is an integer,
then there exists a unique integer q such
that p + q = 0.
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Answer:
If p is an integer, then it is obvious that

there exists an integer q = −p that makes
p + q = 0. What we need to show next is
that q is unique.

suppose r is an integer (r 6= q), and p +
r = 0. We can derive:

p + q = p + r

q = r

This contradicts the assumption. There-
fore q is unique.
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Beware of mistakes

Example: The proposition 1 = 2 has the
following incorrect proof step:

1. a = b : given

2. a2 = ab: multiply both sides

3. a2 − b2 = ab − b2 : subtract b2 from
both sides

4. (a− b)(a + b) = b(a− b) : factor both
sides

5. a + b = b: divide both sides by
a− b

6. 2b = b: replace a by b

7. 2 = 1: divide both sides by b

The one in bold is wrong. Yes a− b = 0,
it is divide by zero.
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Example: The false theory ”If n2 > 0,
then n > 0” has the following incorrect
proof:

Assume n2 > 0
Because (n > 0) → (n2 > 0) is a tau-

tology. We conclude from this that n > 0.
This is wrong. The inference rule is not

used. This is fallacy of affirming the con-
clusion.

Example: The false theory ”If n is not
positive, then n2 is not positive” has the
following incorrect proof:

Assume n is not positive.
Because (n > 0) → (n2 > 0) is a tau-

tology. We conclude from this that n2 is
not positive.

This is wrong. The inference rule is not
used. This is fallacy of denying the hy-
pothesis.

Example: The false theory ”If x is a real
number, then x2 a positive real number”
has the following incorrect proof:
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Let p1 be ”x is positive”, p2 be ”x is
negative”, and q be ”x2 is positive.” We
use proof by case:

1. p1 → q: obvious.

2. p2 → q: when x is negative, x2 is pos-
itive anyway.

So, both cases are proven.
WRONG! We forget the case where x =

0, which will make the proposition false.

Circular Reasoning (fallacy of begging the question)

The statement is proven using itself. It
is important not to make this mistake.

Example: The incorrect proof of ”n is
an even integer whenever n2 is an even
integer” is as follos:

Assume n2 is an even integer, then n2 =
2k for some integer k. Let n = 2l for
some integer l. Therefore n is even.

Totally wrong, where does ”Let n = 2l”
come from? This is assuming what we
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want to prove. (Or can be seen as an at-
tempt to ”Mua” the answer )

Proof Strategies

Forward Reasoning: This is what
we do in direct and indirect proof.
Backward Reasoning: To prove q,

we can find p that we can prove p → q.
Example: Given two distinct positive real

numbers a and b, their arithmetic mean
is (a+b)

2 and their geometric mean is√
ab. Show that

(a + b)

2
>
√

ab

To show this, we can work backward from
the wanted conclusion:

(a + b)

2
>
√

ab

(a + b)2

4
> ab

(a + b)2 > 4ab

a2 + 2ab + b2 > 4ab
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a2 − 2ab + b2 > 0

(a− b)2 > 0

(a−b)2 > 0 only when a 6= b. This is the
original condition. The proof is complete.
We can now easily use forward reasoning.

Example: A stone pile contains 15 stones,
two people take turn removing 1 or 2 or
3 stones at a time from the pile. Show
that the first player can win the game no
matter what the second player does.

Answer:
Work from the gameover stage, the pile

has 1 or 2 or 3 stones for the first player.
The step before this win must be when

there are 4 stones in the pile (just think of
the case, say, 5 or 6 stones)

One step before must have 5 or 6 or 7
stones. (first player removes the stone to
leave 4 remaining)

One step before, second player must re-
move stones from a pile size of 8 (so that
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we can get 7,6,5 in the next step)
One step before, first player must re-

move stones from a pile of 9, or 10, or
11 stones.

One step before, the second player must
remove stones from a pile of 12 stones.

One step before, the first player thus
must remove 3 stones.

Thus the first player can win in any case.

Open Problem: Fermat’s Last Theorem

xn + yn = zn

has no solutions for x, y, z, with x, y, z 6=
0. Where n is an integer which > 2.

Fermat wrote that he proved it... but in
fact didn’t publish...Others look for this
proof for over 300 years.

Eventually proven by Andrew Wiles,
using theory of elliptic curves. He spent
10 years proving it -′′−.
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Open Problem: Goldbach’s Conjecture

1742... He guessed that every odd in-
teger n, where n > 5, is the sum of
three primes. Euler told him this is
the same as saying every eveninteger
n, where n > 2, is the sum of two
primes.

Supporting examples (e.g. 4 = 2+2, 10 =
7+ 3) are found up to all positive even in-
tegers up to 4 ∗ 1014. But no one has ever
proven it yet.

Related proofs are found though:

• O.Ramare, 1995: every even positive
integer greater than 2 is the sum of at
most six primes.

• J. R. Chen, 1966: every sufficiently large
positive integer is the sum of a prime
and a number that is either prime or
the product of two primes.

• H. Iwaniec, 1973: There are infinitely
many positive integers n such that n2+
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1 is prime or the product of at most two
primes.
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