
Solving Recurrence Relations

1. Guess and Math Induction

Example:

Find the solution for an = 2an−1 + 1, a0 = 0

We can try finding each an:

• a0 = 0

• a1 = 2 ∗ 0 + 1 = 1

• a2 = 2 ∗ 1 + 1 = 3

• a3 = 2 ∗ 3 + 1 = 7

• a4 = 2 ∗ 7 + 1 = 15

Observing the result, we see that the result is

an = 2n − 1.

But do not answer yet. We need to prove it

first, using math induction.

Base case: a0 = 20 − 1 = 0, same result as the

given definition.

Assume: an = 2n − 1

Prove: an+1 = 2n+1 − 1

an+1 = 2an + 1, from recurrence definition.

= 2(2n − 1) + 1, from the assumption.

= 2n+1 − 1, as we wanted.
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2. Expand it

an = 2(2an−2 + 1) + 1 = . . . = 2n − 1

as we’ve seen. But this is error-prone.

3. Change variables

Example: 1

an = (an−1)
2

an−2
, a0 = 1, a1 = 2, (n > 1)

Divide both sides by an−1, we will get

an

an−1
=

an−1

an−2

So, let bn = an

an−1
, the above equation will be-

come:

bn = bn−1

And since a1

a0
= 2, 2 will be the value of the

first bn, and all other following bns. Therefore

an = 2an−1

Now that we achieve the simple form, we can

use previous methods to find the (in this case

is 2n) solution.
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Example: 2

an = n ∗ an−1 + n!, a0 = 2

Divide all by n!. We will get

an

n!
=

an−1

(n − 1)!
+ 1

Let bn = an

n! . We will get

bn = bn−1 + 1, b0 = 2

Now we can easily find the solution of bn (we

get bn = 2 + n).

But we are not finished. Don’t forget the ques-

tion asks for an, not bn. We can use bn to find

an anyway.

an

n!
= bn = 2 + n

Therefore an = n!(2 + n).
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Solving Recurrence Relation with Formula

Definition 1

A linear homogeneous recurrence relation of de-

gree k with constant coefficients is

an = c1an−1 + c2an−2 + . . . + ckan−k

where c1, c2, . . . , ck are called the coefficients, are

REAL, and ck 6= 0.

Example:

• an = an−1 + (an−2)
2. Not linear because it has

−2 on an−2.

• Hn = 2Hn−1 + 1. Not homogeneous. Homoge-

neous contains recursive terms only.

• Bn = n ∗ Bn−1. Not have constant coefficient.

Deriving the formula

Let the solution of

an = c1an−1 + c2an−2 + . . . + ckan−k

be

an = rn

where r is constant. Substitute it into the original

equation, we get:

rn = c1r
n−1 + c2r

n−2 + . . . + ckr
n−k
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When we have n = k This can be arranged into

the form:

rk − c1r
k−1 − c2r

k−2 − . . .− ck−1r − ck = 0 (1)

This is what we called the Characteristic Equa-

tion.

Theorem 1

Let c1 and c2 be REAL numbers. Suppose r2 −
c1r − c2 = 0 has two distinct roots (say, r1 and

r2), then

an = c1an−1 + c2an−2 (2)

has

an = α1r
n
1 + α2r

n
2 (3)

as its general solution, where n = 0, 1, 2, . . . and

α1, α2 are constants.

Prove: by substituting the formula and see if it

remains true.

First we know r2−c1r−c2 = 0 can be rearranged

as

r2 = c1r + c2 = c1r1 + c2 = c1r2 + c2 (4)

Now we look at an (originally from equation 2):

an = c1an−1 + c2an−2
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If we apply equation 3 to an−1 and an−2, we get:

an = c1(α1r
n−1
1 + α2r

n−1
2 ) + c2(α1r

n−2
1 + α2r

n−2
2 )

which can simply be rearranged as

an = α1r
n−2
1 (c1r1 + c2) + α2r

n−2
2 (c1r2 + c2)

We can substitute r2
1 and r2

2 for c1r1 + c2 and

c1r2 + c2 respectively (see equation 4). Hence we

get:

an = α1r
n−2
1 (r2

1) + α2r
n−2
2 (r2

2)

The terms cancelled out, and we are left with

an = α1r
n
1 + α2r

n
2

which is the solution we want.
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Example: 1

Find the solution of an = an−1 + 2an−2, a0 =

2, a1 = 7.

Answer:

The characteristic equation is r2 − r − 2 = 0.

We can find 2 roots, 2 and −1.

Then we can apply the formula and get

an = α12
n + α2(−1)n

Substitute n = 0 and 1, and considering the

given initial conditions, we get two equations:

a0 = α1 + α2 = 2

and

a1 = α1 ∗ 2 + α2 ∗ (−1) = 7

From these two equations, we can find α1 and

α2. We get α1 = 3 and α2 = −1.

Therefore

an = 3 ∗ 2n + (−1)(−1)n

is the solution.
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Example: 2

Fibonacci Problem (Follow the white rabbit hoho),

find the solution of

fn = fn−1 + fn−2, f0 = 0, f1 = 1

Answer

The characteristic equation is:

r2 − r − 1 = 0

Therefore r1 = 1+
√

5
2 and r2 = 1−

√
5

2 . By the

formula, we get

fn = α1(
1 +

√
5

2
)n + α2(

1 −
√

5

2
)n (5)

Substituting n = 0 and n = 1 in equation 5, we

get:

f0 = 0 = α1 + α2 (6)

f1 = 1 = α1(
1 +

√
5

2
) + α2(

1 −
√

5

2
) (7)

We use equation 6 and equation 7 to get α1 and

α2. We get α1 = 1√
5

and α2 = −1√
5
. Therefore the

final solution is:

fn =
1√
5
(
1 +

√
5

2
)n − 1√

5
(
1 −

√
5

2
)n
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Warning! Theorem 1 can be used only when all

the roots rs are different, otherwise we cannot find

αi.

Theorem 2

Let c1 and c2 be REAL numbers where c2 6= 0.

Suppose r2 − c1r − c2 = 0 has only one root (say,

r0), then

an = c1an−1 + c2an−2

has

an = α1r
n
0 + α2 ∗ n ∗ rn

0 (8)

as its general solution, where n = 0, 1, 2, . . . and

α1, α2 are constants.

We can prove it in the same way as case with

distinct roots.

Example: 1

Find the solution of an = 4(an−1 − an−2), n >

1, a0 = 0, a1 = 1

Answer

The recurrence relation is:

an = 4an−1 − 4an−2

First, find the characteristic equation, we get:

r2 − 4r + 4 = 0
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This characteristic equation has two same-value

roots, both equal to 2. Therefore, following the

formula, we get:

an = α12
n + α2 ∗ n ∗ 2n

Substitute a0 = 0 and a1 = 1, we get two equa-

tion:

0 = α12
0 + α2 ∗ 0 ∗ 20 = α1

and

1 = α12
1 + α2 ∗ 1 ∗ 21 = 2α1 + 2α2

Therefore α1 = 0 and α2 = 1
2. This means the

solution is:

an = 2−1 ∗ n ∗ 2n = n ∗ 2n−1

Example: 2

Find the solution of an = 3an−1 − 4an−3, n >

1, a0 = 0, a1 = 6, a2 = 24

Answer

First, find characteristic equation:

0 = r3 − 3r2 + 4 = (r − 2)(r − 2)(r + 1)

We get r1 = 2, r2 = 2, r3 = −1. There are both

distinct roots and replicated roots. So we use both

formula to get the following general form:
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an = α1r
n
1 + α2 ∗ n ∗ rn

2 + α3r
n
3 (9)

Substitute a0 = 0 in equation 9, we get

0 = α1 + α3 (10)

Substitute a1 = 6 in equation 9, we get

6 = α1 ∗ 21 + α2 ∗ 1 ∗ 21 + α3 ∗ (−1)

= 2α1 + 2α2 − α3 (11)

Substitute a2 = 24 in equation 9, we get

24 = α1 ∗ 22 + α2 ∗ 2 ∗ 22 + α3 ∗ (−1)2

= 4α1 + 8α2 + α3 (12)

From equation 10, 11, and 12, we get the values

of alphas.

α1 = 0, α2 = 3, α3 = 0

Therefore an = 3n2n, (n ≥ 0).
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Generalization of Theorem 1 and 2

Theorem 3

Let c1, c2, c3, . . . , ck be REAL numbers. Sup-

pose characteristic equation rk−c1r
k−1−c2r

k−2−
. . .−ck = 0 has k distinct roots (say, r1, r2, r3, . . . , rk),

then

an = c1an−1 + c2an−2 + . . . + ckan−k (13)

has

an = α1r
n
1 + α2r

n
2 + . . . + αkr

n
k (14)

as its general solution, where n = 0, 1, 2, . . . and

α1, . . . , αk are constants.

Example:

Find a general solution of

an = 6an−1−11an−2+6an−3, a0 = 2, a1 = 5, a2 = 15

Answer

First, make the characteristic equation and find

its roots:

r3 − 6r2 + 11r − 6 = 0

(r − 1)(r − 2)(r − 3) = 0
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Roots are r1 = 1, r2 = 2, r3 = 3.

Therefore the general solution form, with αs at-

tached, is:

an = α1 + α2 ∗ 2n + α3 ∗ 3n

Substitute a0 = 2, a1 = 5, a2 = 15, we get 3

equations with 3 unknowns, so all the αs can be

found, and the final solution discovered (by you :))

Theorem 4

Let c1, c2, c3, . . . , ck be REAL numbers. Sup-

pose characteristic equation rk−c1r
k−1−c2r

k−2−
. . .−ck = 0 has t distinct roots (say, r1, r2, r3, . . . , rt)

with multiplicities m1, m2, m3, . . . , mt (This im-

plies m1 + m2 + m3 + . . . + mt = k),

then

an = c1an−1 + c2an−2 + . . . + ckan−k

has

an = (α1,0 + α1,1n + . . . + α1,m1−1n
m1−1)rn

1

+ (α2,0 + α2,1n + . . . + α2,m2−1n
m2−1)rn

2

+ . . .

+ (αt,0 + αt,1n + . . . + αt,mt−1n
mt−1)rn

t

as its general solution, where n = 0, 1, 2, . . . and

αi,j are constants for 1 ≤ i ≤ t and 0 ≤ j ≤
mi − 1.
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Solving Non-Homogeneous Recurrence Relation

Example:

an = 3an−1 + 2n

Theorem 5

For recurrence relation of the form:

an = c1an−1 + c2an−2 + . . . + ckan−k + F (n)

The solution is

a(p)
n + a(h)

n

where a(h)
n is the solution of the Homogeneous part.

And a(p)
n can be found from the following pattern:

f(n) a(p)
n

cn pcn

ctn
t + ct−1n

t−1 + . . . + c1n + c0 ptn
t + pt−1n

t−1+

. . . + p1n + p0

(ctn
t + ct−1n

t−1 + . . . + c1n + c0)c
n (ptn

t + pt−1n
t−1+

. . . + p1n + p0)c
n

(ctn
t + ct−1n

t−1 + . . . + c1n + c0)c
n nm(ptn

t + pt−1n
t−1+

. . . + p1n + p0)c
n

The last case in the table is for when c is a root

of the characteristic equation with multiplicity m.
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Example: 1

Find the solution of an = 2an−1 − 6, a0 = 1

Answer

First, let us find a(p)
n , using the pattern, we get:

a(p)
n = p

Substitute a(p)
n in the original recurrence relation:

p = 2p − 6

Therefore, p = 6 = a(p)
n .

Ok. We finish with a(p)
n . It is time to find a(h)

n

The characteristic equation from the original (ex-

cluding the non-homogeneous part) is:

0 = r − 2r0 = r − 2

Therefore r = 2. a(h)
n is α12

n.

Substitute a0 = 1 for the whole recurrence rela-

tion, we get:

1 = a
(p)
0 + a

(h)
0 = 6 + α12

0

Therefore α1 = −5.

The final solution is a(p)
n + a(h)

n = 6 + −5 ∗ 2n.
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Example: 2

Find the solution of an = 2an−1 + (n + 1)4n −
2, a0 = 5

Answer

First, let us find a(h)
n . Since it is the same as the

last example, we get a(h)
n is α12

n.

Now we find a(p)
n .

By the table, a(p)
n = (p0n + p1)4

n + p2. We

substitute this in the original recurrence relation.

We get:

(p0n+p1)4
n+p2 = 2(p0(n−1)+p1)4

n−1+p2+(n+1)4n−2

We find each of the ps by comparing the coeffi-

cients. The above equation can be rearranged as:

(0.5p0)n4n+(0.5p1+0.5p0)4
n+(−p2) = n4n+4n−2

We can see that 0.5p0 = 1, 0.5p1 + 0.5p0 = 1,

and −p2 = −2.

Therefore p0 = 2, p1 = 0, p2 = 2. So

a(p)
n = (2n)4n + 2

The solution is:

an = a(p)
n + a(h)

n = 2n4n + 2 + α12
n

We finally find α1 by substituting the above equa-

tion with a0 = 5. We get α1 = 3.
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Thus, the final answer will be an = 2n4n + 2 +

3 ∗ 2n.

Example: 3

Find the solution of

an − 2an−1 = 4 ∗ 2n, a0 = 4

Answer

First, rearrange, we get an = 2an−1+4∗2n. The

a(h)
n is the same as before, α12

n.

The main thing here is finding a(p)
n . From the

table:

a(p)
n = p0 ∗ 2n ∗ n1

The n1 is multiplied in because 2 is the same as

the root value.

Apply this to the original recurrence relation, we

get:

np0 ∗ 2n − 2 ∗ (n − 1) ∗ p0 ∗ 2n−1 = 4 ∗ 2n

Solve this, we get p0 = 4.

Now we can find the final solution.

an = a(h)
n + a(p)

n = α12
n + 4 ∗ 2n ∗ n

Substituting a0 = 4, we get α1 = 4. Therefore

the final answer is

an = 4n ∗ 2n + 4 ∗ 2n
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Finding a(p)
n

Example: 1 Find the a(p)
n of an = 3an−1 +

2n, a1 = 3.

Answer

Characteristic equation is 0 = r − 3, therefore

r = 3 and a(h)
n = α ∗ 3n.

Now we find a(p)
n from 2n.

a(p)
n = p0n + p1

Substitute a(p)
n in the original recurrence rela-

tion. We can find p0 and p1 by comparing coeffi-

cients:

p0n + p1 = 3(p0(n − 1) + p1) + 2n

p0n + p1 = 3p0n − 3p0 + 3p1 + 2n

0 = 2p0n − 3p0 + 2p1 + 2n

0 = n(2p0 + 2) + (2p1 − 3p0)

2p0 + 2 and 2p1 − 3p0 must be 0. Therefore we

get p0 = −1 and p1 = −1.5.

Thus a(p)
n = −n − 1.5.
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Example: 2

Write the a(p)
n of a recurrence relation whose

roots of characteristic equation are r1 = r2 = 3,

where:

• f(n) = 3n

Answer

a(p)
n = p ∗ 3n ∗ n2

because 3 is the same value as the 2 roots.

• f(n) = n ∗ 3n

Answer

a(p)
n = (p1n + p0) ∗ 3n ∗ n2

• f(n) = n2 ∗ 2n

Answer

a(p)
n = (p0n

2 + p1n + p2) ∗ 2n

• f(n) = (n2 + 1) ∗ 3n

Answer

a(p)
n = (p0n

2 + p1n + p2) ∗ 3n ∗ n2
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Example: 3

Find a(p)
n of an = an−1 + n.

Answer

First, the characteristic equation

0 = r − 1, r = 1

Therefore a(h)
n is α ∗ 1n = α.

Notice that f(n) = n is actually f(n) = n ∗ 1n.

i.e. it has the root.

Therefore

a(p)
n = (p0n + p1) ∗ 1n ∗ n1

= n(p0n + p1)

Substitute it in the original recurrence relation,

we get:

n(p0n + p1) = (n − 1)(p0(n − 1) + p1) + n

p0n
2 + p1n = p0n

2 − p0n + p1n − p0n + p0 − p1 + n

0 = n(1 − 2p0) + (p0 − p1)

Therefore p0 = p1 = 0.5. a(p)
n = n(0.5n +

0.5).
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