
1

DirectPlay

Vishnu Kotrajaras,
PhD

What is DirectPlay?

It is a multiplayer component of DirectX
It abstracts communication methods away
– Same function call for communication by TCP/IP,

serial cable and modem to modem
– The communication methods are called “service

providers”
– Still, there are different elements that need to be

checked, such as TCP/IP can guarantee packets,
but other protocols may not be able to

2

Finding Service Providers

We must enumerate them to find which service
providers are available
Enumerate = cycle through it and create a list
– Then we can select what to use from this list

An alternative is to
– Attempt to use a certain service provider that you

want, and see if the call returns with no error

Game Sessions

It is an instance of a multiplayer game running
simultaneously on two or more computers
People on the same sessions can see one
another (theoretically, because the game area
may be very large)

3

Peer-to-Peer Game Sessions

Players communicate directly with all other
players
Traffic increases dramatically with each
additional player

Peer Communication Object

To start peer-to-peer, first you must create a
CLSID_DirectPlay8Peer object

IDirectPlay8Peer *g_pDP;
CoCreateInstance(CLSID_DirectPlay8Peer ,

NULL,
CLSCTX_INPROC_SERVER,
IID_ IDirectPlay8Peer,
(LPVOID*) & g_pDP);

Initialize
the object

4

Peer Hosting

There is a host (server) that is used for
accepting new players
Host migration
– If the host quits, another player is automatically

selected as a host
To connect to a host
– Specify the host you want to connect
– If you are using TCP/IP, you also need IP address

and port number

Peer-To-Peer Host duty

Keeping track of who is in the game
Informing everyone when a new player joins
the game
Informing everyone when a player leaves the
game
Accepting or denying a new player to the game

5

Client/Server Sessions

Clients only talk to server
The server manages everything

Server Communication Object

Must create CLSID_DirectPlay8Server object
The interface that accompanies it is
IID_IDirectPlay8Server

6

Server Hosting

Usually, server is a stand-alone console application
No graphics

– Allows a player to host a game and play it on the same
machine (without too much resource wasted in graphics)

Server needs to set up port for players to connect
– If you are behind a firewall, you need to open up some ports
– Once you decide which port to use, call the host function of

DirectPlay

DirectPlay Addresses

To establish a connection, you must have an
address to connect
– Socket: URL + port number
– DirectPlay: special address that holds info

Ip adress, baud rate etc

7

The Address Object

To create an address, you must use
IDirectPlay8Address interface. You must
create CLSID_DirectPLayAddress com object

hReturn = CoCreateInstance(CLSID_DirectPLay8Address,
NULL, CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Address,
(LPVOID*) &g_pHostAddress);

if (FAILED(hReturn)){
MessageBox(hWindow, “Fail to Create Host Address()”,

“Invalid Param”, MB_ICONERROR);
return –1;

}

The Address Object (cont.)

Two types of address objects
– One for the computer you are running the

application = device address
– One for the computer you are connecting to = host

address
Creating an address is not enough, we must
set it up for the data it needs to hold, that is,
setting its service provider

8

Setting Address Object’s Service
Provider

//set the host address to TCP/IP
if (FAILED(hReturn = g_pHostAddress ->

SetSP(&CLSID_DB8SP_TCPIP))){
MessageBox(hWindow, “Fail to SetSP for Host Address”,

“Invalid Param”, MB_ICONERROR);
return –1;

}

CLSID_DB8SP_IPX
CLSID_DB8SP_MODEM
CLSID_DB8SP_SERIAL

Modem to modem

Contents of DirectPlay Address

Is a string that contains value pairs
First part contains
– x-directplay:/ // this is the address, before setting

//Service provider
Once SetSP() is called, it fills in the string with
the provider’s GUID (unique identifier)

x-directplay:/provider=%7BEBFE7BA0-628D-11D2-AE0F-
006097B01411%7D;

device=%7BIP ADAPTER GUID%7D;

Service provider’s GUID

GUID of the device on your computer the connection will use

9

Address Strings

Provider
Device
hostName //used mainly for TCP/IP
Port // port on the host, used in TCP/IP or IPX
ApplicationInstance //GUID of the game you

//want to connect
Baud // baud rate for modem or serial connection
StopBits //the stop bits for modem or serial connection

We saw in the previous page

Address Strings (cont.)

Parity // the parity of modem or serial
connection
PhoneNumber //the phone number to call for

//modem connection
FlowControl // the flow control for modem or

//serial connection
Program // an optional program GUID

10

To use TCP/IP to connect to IP
192.168.0.2 on port 6000

x-directplay:/provider=%7BEBFE7BA0-628D-11D2-AE0F-
006097B01411%7D;

device=%7BIP ADAPTER GUID%7D;
hostname= 192.168.0.2;
port=6000;

You can put # at the end. After #, you can put any strings

Each of these is called a
“component”

IDirectPlay8Address Functions

We have two ways to work with the address
– The first is, access the address string info directly
– The second is, use the interface’s functions to

modify the string
– The interface functions are shown next page

11

IDirectPlay8Address Functions
(cont.)

BuildFromURLW buillds a Dplay address from a wide string
BuildFromURLA buillds a Dplay address from a string
Duplicate Duplicates the Dplay address
SetEqual Sets the address to be equal to another address
IsEqual checks whether two addresses are equal
Clear clears out the address string
GetURLW retrieves the address in wide string format
GetURLA retrieves the address in string format
GetSP retrieves the service provider GUID from the address
GetUserData retrieves any user-specified data
SetSP sets the service provider GUID in the address

IDirectPlay8Address Functions
(cont2.)

SetUserData sets user data in the address
GetNumComponents gets the number of components in

the address
GetComponentByName gets the contents of a component by

name
GetComponentByIndex gets the contents of a component by

position
AddComponent adds a component to the address
GetDevice gets the device in the address
SetDevice sets the device in the address
BuildFromDPADDRESS sets the address to be equal to the

address used in Dplay 4

12

AddComponent()

HRESULT AddComponent(
const WCHAR *const pwszName, // component name
const void *const lpvData, //data to be used
const DWORD dwDataSize, //size of the data to be used
const DWORD dwDataType //type of data of which this

//component consists
)

พวกตัวแดงนีเ่ดี๋ยวมีอธิบายเพิ่ม

Component Name

DPNA_KEY_APPLICATION_INSTANCE the application
instance

DPNA_KEY_BAUD modem baud rate
DPNA_KEY_DEVICE connection device
DPNA_KEY_FLOWCONTROL modem flow control
DPNA_KEY_HOSTNAME IP or host name
DPNA_KEY_PARITY modem parity
DPNA_KEY_PHONENUMBER modem phone number
DPNA_KEY_PORT IP port
DPNA_KEY_PROGRAM program GUID
DPNA_KEY_PROVIDER service provider
DPNA_KEY_STOPBITS modem stop bits

13

Size of the data to be used

3 possibles size
– sizeof(DWORD)
– sizeof(GUID)
– (wcslen(wszYourString)+1)*sizeof(WCHAR)

Length of wide character string

Account for NULL terminator

Total string size

Type of Data

DPNA_DATATYPE_STRING
DPNA_DATATYPE_DWORD
DPNA_DATATYPE_GUID
DPNA_DATATYPE_BINARY

14

AddComponent() Example

hReturn = g_pHostAddress ->
AddComponent(DPNA_KEY_HOSTNAME,
wszHostName,
wcslen(wszHostName)+1)*sizeof(WCHAR),
DPNA_DATATYPE_STRING);

if(hReturn != S_OK){
MessageBox(hWnd, “Fail to AddComponent()”,

“hrJoinGame()”, MB_ICONERROR);
return –1;

}
All that is done so far is preparing the connection

DirectPlay Message Handler

When messages are received, they are sent to
message handler

player host

IDirectPlay8Peer/Server

Message handler

msg

Msg (can queue here)

msg

15

Creating Message Handler

Example: setting handler in peer-to-peer
if(FAILED(hReturn=g_pDP -> Initialize(

NULL,
DirectPlayMessageHandler,
0)))

{
MessageBox(hWnd, “Fail to create message handler”,

“DirectPlay Error”, MB_ICONERROR);
return –1;

}

This is the function to use

IDirectPlay8Peer interface
variable

Initialize()

HRESULT Initialize(
PVOID const pvUserContext, // who sent the message
const PFNDPNMESSAGEHANDLER pfn, //name of the message

//handler function to receive DirectPlay messages
const DWORD dwFlags //normally NULL

)

See next page

16

Message Handler Function

HRESULT WINAPI MessageHandler(
PVOID pvUserContext, // user’s context
DWORD dwMessageId //type of message passed
PVOID pMsgBuffer //actual message contents

)

The message handler must be thread safe
because it can be called from multiple
locations

Type of Message passed (some are
only for certain interfaces)

DPN_MSGID_ADD_PLAYER_TO_GROUP
DPN_MSGID_ASYNC_OP_COMPLETE
DPN_MSGID_CLIENT_INFO
DPN_MSGID_CONNECT_COMPLETE
DPN_MSGID_CREATE_GROUP
DPN_MSGID_CREATE_PLAYER
DPN_MSGID_DESTROY_GROUP
DPN_MSGID_DESTROY_PLAYER
DPN_MSGID_ENUM_HOSTS_QUERY
DPN_MSGID_ ENUM_HOSTS_RESPONSE
DPN_MSGID_GROUP_INFO

17

Type of Message passed (cont.)

DPN_MSGID_HOST_MIGRATE
DPN_MSGID_INDICATE_CONNECT
DPN_MSGID_INDICATE_CONNECT_ABORTED
DPN_MSGID_PEER_INFO
DPN_MSGID_RECEIVE
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP
DPN_MSGID_RETURN_BUFFER
DPN_MSGID_SEND_COMPLETE
DPN_MSGID_SERVER_INFO
DPN_MSGID_TERMINATE_SESSION
DPL_MSGID_CONNECT

Type of Message passed (cont2.)

DPL_MSGID_CONNECTION_SETTINGS
DPL_MSGID_DISCONNECT
DPL_MSGID_RECEIVE
DPL_MSGID_SESSION_STATUS

18

Example: Inside Message Handler
Function

Switch(dwMessageId){
case DPN_MSGID_HOST_MIGRATE:
{ vShowText(hLB_Output, “Migrate Host”);

PDPNMSG_HOST_MIGRATE pHostMigrateMsg;
pHostMigrateMsg =
(PDPNMSG_HOST_MIGRATE)pMsgBuffer;

//check to see if we are the new host
if(pHostMigrateMsg -> dpnidNewHost == g_dpnidLocalPlayer){

vShowText(h_LB_Output, “(HOSTING)”);
}
break;

}
}

Create the right message
structure pointer

Example2: Processing Chat Packet

case DPN_MSGID_RECEIVE:
{

PDPNMSG_ RECEIVE pReceiveMsg;
pReceiveMsg =
(PDPNMSG_ RECEIVE)pMsgBuffer;

vShowText(hLB_Output, (char*) pReceiveMsg ->
pReceiveData);

break;
}

19

Initializing Peer-To-Peer Session

1. Initialize COM
2. Create an IDirectPlay8Peer interface
3. Initialize the message handler
4. Create a device address
5. Set the service provider
6. Create a host address

Initializing COM

hReturn = CoInitialize(NULL);
if (FAILED(hReturn)){

MessageBox(hWindow, “Error initializing COM”,
“DirectPlay Error”, MB_ICONERROR);

return hReturn;
}

Do it once per thread

When exit game, do CoUninitialize()

20

Create an IDirectPlay8Peer
interface (only once)

IDirectPlay8Peer *g_pDP;
If (FAILED(hReturn =CoCreateInstance(CLSID_DirectPlay8Peer ,

NULL,
CLSCTX_INPROC_SERVER,
IID_ IDirectPlay8Peer,
(LPVOID*) & g_pDP))){

MessageBox(hWnd, “Can’t create DPlayPeer”,
“DirectPlay Error”, MB_ICONERROR);

}

นี่คือโคดที่
กลาวถึงตั้งแต
ตอนแรกที่พูดถึง
peer-to-
peer ไง

CoCreateInstance() is used to create a local copy of COM object.
This is the only way a COM object can be used

CoCreateInstance()

CoCreateInstance(
REFCLSID rclsid , //CLSID that matches the object you are trying

//to retrieve i.e. use the interface’s
LPUNKNOWN pUnkOuter, //is the object part of an aggregate?
DWORD dwClsContext,//how the object’s code will be processed

//e.g. CLSCTX_INPROC_SERVER means
//the object will run in the process that calls it

REFIID riid, //reference to the interface of the object (always IID)
LPVOID* & ppv //address of variable to receive interface pointer

)

Class’s unique id.

21

Initializing Message Handler (yes,
we already talked about it)

if(FAILED(hReturn=g_pDP -> Initialize(
NULL,
DirectPlayMessageHandler, //this is our message handler function
0)))

{
MessageBox(hWnd, “Fail to create message handler”,

“DirectPlay Error”, MB_ICONERROR);
return –1;

}

Yes, we must create the handler function

DirectPlayMessageHandler()

HRESULT WINAPI DirectPlayMessageHandler(
PVOID pvUserContext, DWORD dwMessageId,
PVOID pMsgBuffer)

{
HRESULT hReturn = S_OK;
Switch(dwMessageId){

….
}
return hReturn;

}

22

Creating the Device Address

It represents your machine’s method for
communication, we already talked about it in “Address
Object”

hReturn = CoCreateInstance(CLSID_DirectPLay8Address,
NULL, CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Address,
(LPVOID*) &g_pDeviceAddress);

if (FAILED(hReturn)){
MessageBox(hWindow, “Fail to Create Device”,

“CoCreateInstance()”, MB_ICONERROR);
return –1;

}

Set the Service Provider (we
already talked about this too)

if (FAILED(hReturn = g_pDeviceAddress ->
SetSP(&CLSID_DB8SP_TCPIP))){
MessageBox(hWindow, “Fail to SetSP() for device address”,

“Invalid Param”, MB_ICONERROR);
return –1;

}

23

Creating the Host Address and Set
it’s Service Provider

Similar to what we did for device address
hReturn = CoCreateInstance(CLSID_DirectPLay8Address,

NULL, CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Address,
(LPVOID*) &g_pHostAddress);

if (FAILED(hReturn)){
MessageBox(hWindow, “Fail to Create Host Address”,

“CoCreateInstance()”, MB_ICONERROR);
return –1;

} if (FAILED(hReturn = g_pHostAddress ->
SetSP(&CLSID_DB8SP_TCPIP))){
MessageBox(hWindow, “Fail to SetSP() for host address”,

“Invalid Param”, MB_ICONERROR);
return –1;

}

Hosting a Peer-to-Peer Session

hReturn = g_pDP -> Host(
&dnAppDesc, // application description
g_pDeviceAddress, //IDirectPlay8Address of our device address
1, //how many addresses are in the second parameter
NULL, //for future
NULL, //for future
NULL, //player context info
NULL //flag e.g. DPNHOST_OKTOQUERYFORADDRESSING

);

Pop-up window can come up to ask for additional connection info

This device address now becomes host

24

Application Description

Is a structure
typedef struct _DPN_APPLICATION_DESC{

DWORD dwSize; // size of DPN_APPLICATION_DESC structure
DWORD dwFlags;
GUID guidInstance; //GUID for the instance of the app.
GUID guidApplication;
DWORD dwMaxPlayers; // if 0, infinite players can join
DWORD dwCurrentPlayers; //only filled when we use

//GetApplicationDescription()
WCHAR* pwszSessionName; // in unicode format

Application Description (CONT.)

WCHAR* pwszPassword; // in unicode
PVOID pvReservedData; //reserved to NULL
DWORD dwReservedDataSize; //reserved to NULL
PVOID pvApplicationReservedData;
DWORD dwApplicationReservedDataSize;
}DPN_APPLICATION_DESC, *PDPN_APPLICATION_DESC;

Before using it in hosting, you must first clear and initialize it

DPN_APPLICATION_DESC dnAppDesc;
ZeroMemory(&dnAppDesc, sizeof(DPN_APPLICATION_DESC));
dnAppDesc.dwSize = sizeof(DPN_APPLICATION_DESC);

25

Flags for Application Description

DPNSESSION_CLIENT_SERVER
DPNSESSION_MIGRATE_HOST
DPNSESSION_NODPNSVR
DPNSESSION_REQUIREPASSWORD
We can mix flags with (|) operator
For peer sessions, you can leave it to NULL
unless you allow host migration
If DPNSESSION_REQUIREPASSWORD is
used, then we must set the value of pwszPassword

Setting Peer Information

This is done before calling Host()
Set your player info so that other players can see you

typedef struct _DPN_PLAYER_INFO{
DWORD dwSize; //size of DPN_PLAYER_INFO structure
DWORD dwInfoFlags; //type of info. stored in the structure
PWSTR pwszName; //player name in unicode
PVOID pvData; //player description
DWORD dwDataSize; //size of player description
DWORD dwPlayerFlags; // DPN_PLAYER_LOCAL or

// DPN_PLAYER_HOST
} DPN_PLAYER_INFO, * PDPN_PLAYER_INFO;

DPNINFO_NAME

26

Setting Peer Information (cont.)

The code is
//create local player info
DPN_PLAYER_INFO dpPlayerInfo;
//clear out the structure
ZeroMemory(& dpPlayerInfo, sizeof(DPN_ PLAYER_INFO));
//set the size
dpPlayerInfo.dwSize = sizeof(DPN_ PLAYER_INFO);
//this structure contains the player name
dpPlayerInfo.dwInfoFlags = DPNINFO_NAME;
//set the name
dpPlayerInfo. pwszName = wszPeerName;

Before using it, you must first clear and initialize it

Set Peer Info in g_pDP

Done after the player information structure is
created

if (FAILED(hReturn = g_pDP -> SetPeerInfo(
&dpPlayerInfo,
NULL,
NULL,
DPNSETPEERINFO_SYNC))){
MessageBox(hWindow, “Fail to SetPeerInfo()”,

“DirectPlay Error”, MB_ICONERROR);
return –1;

}

27

SetPeerInfo()

HRESULT SetPeerInfo(
//the player info that we set up
const DPN_ PLAYER_INFO *const pdpnPlayerInfo,

//user-specified context, usually NULL
PVOID const pvAsyncContext,
// don’t use
DPHABDLE *const phAsynHandle,

//can only use DPNSETPEERINFO_SYNC
const DWORD dwFlags

);

Hosting Review

1. Initialize and set up peer info, using DPN_
PLAYER_INFO and SetPeerInfo()

2. Set up application description with
DPN_APPLICATION_DESC data structure

3. Optionally add the port number to the device
address

4. Use Host()

28

Joining a Peer-To-Peer Session (4
steps in total)

1. Set up peer info //เหมือนเดิมเลย
2. Set up application description

• Create the description and load it with the size and GUID for
the application

3. Set the host name and optional port number
• Use AddComPonent()

ZeroMemory(&dpnAppDesc, sizeof(DPN_APPLICATION_DESC));
dpnAppDesc.dwSize = sizeof(DPN_APPLICATION_DESC);
dpnAppDesc.guidApplication = DP_CHAT;

The code for this is in the next page

Joining a Peer-To-Peer Session
(cont.)

//add host name to address
hReturn = g_pHostAddress ->

AddComponent(DPNA_KEY_HOSTNAME,
wszHostName,
wcslen(wszHostName)+1)*sizeof(WCHAR),
DPNA_DATATYPE_STRING);

if (hReturn != S_OK){
MessageBox(hWnd, “Fail to AddComponent()”,

“hrJoinGame()”, MB_ICONERROR);
return –1;

}
// then add port number to address

29

Joining a Peer-To-Peer Session
(cont2.)

hReturn = g_pHostAddress -> AddComponent(DPNA_KEY_PORT,
&dwPort,
sizeof(DWORD),
DPNA_DATATYPE_DWORD);

if (hReturn != S_OK){
MessageBox(hWnd, “Fail to AddComponent()”,

“hrJoinGame()”, MB_ICONERROR);
return –1;

}

4. Connect to the host using the Connect() function

The Connect() function

HRESULT Connect(
const DPN_ APPLICATION_DESC *const pdnAppDesc, //app.desc.
IDirectPlay8Address *const pHostAddr, //host address
IDirectPlay8Address *const pDeviceInfo, //device address
const DPN_SECURITY_DESC *const pdnSecurity, //NULL
const DPN_SECURITY_CREDENTIALS *const pdnCredentials, //NULL
const void *const pvUserConnectData, //app. specific data, or NULL
const DWORD dwUserConnectDataSize, //size of the previous, 0 normally
void *const pvPlayerContext, //user context, can be NULL
void *const pvAsyncContext, //user-supplied context data, return when

//DPN_MSGID_CONNECT_COMPLETE is received
DPNHANDLE *const phAsyncHandle, //NULL for synchronous connection
const DWORD dwFlags //one or more flags to set

);

30

Once you call Connect()

When the host accepts the connection, you get
DPN_MSGID_CONNECT_COMPLETE message

– Once this message is received, the connection is complete
hReturn = g_pDP -> Connect(

& pdnAppDesc,
g_pHostAddress,
g_pDeviceAddress,
NULL,NULL,
NULL,0,NULL,NULL
&g_hConnectAsyncOp,
NULL

);

End

