
Automatic Level Difficulty Adjustment in Platform Games Using

Genetic Algorithm Based Methodology
Nirach Watcharasatharpornpong

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Payathai Road, Patumwan
Bangkok 10330, Thailand

Tel. +66817536782
notepe@gmail.com

Vishnu Kotrajaras
Department of Computer Engineering

Faculty of Engineering
Chulalongkorn University

Payathai Road, Patumwan
Bangkok 10330, Thailand

Tel. +66890212323

vishnu@cp.eng.chula.ac.th, ajarntoe@gmail.com

Abstract
In platform games, enemy behavior is not complicated. Therefore, challenges in such games come

from the right mixture between enemies and environments of each level. Platform games require

manual testing for tuning the game balance for mass audience. This is very time consuming. In

addition, the difficulty of each level obtained is not guaranteed to suit individuals. Very few researches

tackle how balanced levels can be generated automatically for individuals. This paper proposes a new

methodology for using artificial intelligence to adjust games difficulty to suit players by automatically

generating levels in platform games. The method is inspired by genetic algorithm. It is much easier to

implement compared to an existing reinforcement learning based method, while still maintains similar

gameplay quality. The new methodology also consumes less memory.

Keywords
Level design, platform game, genetic algorithm, automatic difficulty adjustment

1. Introduction
There are many researches that tackle the issue of difficulty adjustments in games. Most of them

concentrate on enemy behavior adjustment. However, for platform games, their challenges come from

learning to overcome obstacles presented by fixed enemies and game environments. Tuning the

difficulty of platform games by adjusting the behavior of enemies will simply destroy the mechanic of

such games.

An alternative approach for difficulty adjustment is to fine-tune the layout of game stages (including

the placement of fixed behavior enemies). Kamnerdnond and Kotrajaras [1] proposed a model for

automatically generating game environments according to players’ performances for platform games.

The model combined reinforcement learning with design methodologies. Their model, however,

required a lot of memory storage because data for individual challenge plays and vote records from all

previous challenges were needed during play.

In this paper, we present an alternative model for platform games level generation according to

players' performances. We abandoned reinforcement learning approach and opted for an approach

inspired by genetic algorithm. This approach resulted in less memory usage while still allowed levels

to be produced effectively. Our prototype was made after Super Mario. We believed that by utilizing a

well-known game mechanism, we would be able to demonstrate our model more clearly.

2. Related Works
Artificial intelligence applications for computer games can be grouped into two categories. The first

category strives for the best possible agent behaviour. Genetic algorithm [2] and reinforcement

learning [3] are prime examples of applications in this category. Bakkes et al. [4] created a team

based AI for Quake III by using genetic algorithm to learn state-specific behavior for the team. Cole et

al. [5] used genetic algorithm to evolve sets of parameters for bots in Counter Strike. Genetic

algorithm was able to tune parameters as good as a highly experienced player could do in fifty

generations, which was a relatively short time for training bots offline. Graepel et al. [6] used

reinforcement learning to tune a fighting game AI character. Spronck et al. [7] introduced dynamic

scripting, a form of reinforcement learning that could adjust an AI to win against its opponent in a

relatively short time. The second category of artificial intelligence applications aims to adapt agents to

suit players. Spronck et al. [7] demonstrated that dynamic scripting could be enhanced so that the

game AI was able to scale its difficulty level to match its human opponent. Andrade et al. [8] applied

reinforcement learning to match players’ performances with those of agents.

All these works concentrated on changing characters or agents’ behavior. For platform games,

making an enemy character adapt or learn new behavior is not quite appropriate because the difficulty

of platform games comes mainly from game environments and obstacles, not from enemy characters

alone. Therefore the adjustment should be applied to the game environments instead. Pagulayan et

al. [9] proposed a method for designing game environments to suit players. Challenges were put into

each game level according to their difficulty. The aim was to teach collections of skills to players

gradually. Players would then be able to improve their skills in order to tackle more difficult challenges

and defeat game bosses. Björk and Holopainen [10] proposed that a game should have mechanisms

for smoothing players’ learning curve in order to provide players with enough skills to progress while

preventing boredom. However, these works mainly discussed good practice for manually designing

game levels.

For automatic level generation of platform games, Kamnerdnond and Kotrajaras [1] used design

methodologies from [9] and [10] together with reinforcement learning to create each suitable level for

players to overcome. A level was formed from several challenges. Each challenge consisted of a

sequence of continuous actions (players could not take a break while performing such action

sequence). Each possible action was derived from players’ control skills. While playing a generated

game level, a player’s performance was recorded. After the player finished each game level, the

collected data was used as feedback to calculate the probability for each challenge to emerge in the

next level. Initially, the system generated all possible challenges that did not contain more than a

certain number of actions. Each challenge had its own difficulty score. All challenges were then

divided into groups. Within each group, challenges were sorted by their difficulty score from low to

high. After a player finished playing a game level, the number of successful and unsuccessful plays

for each challenge was given to the reinforcement learning mechanism. A voting system was used.

Each challenge could cast votes for more difficult or less difficult challenges of the same group. The

spread of the voting range was determined by the play data. The probability for a challenge to be

selected for the next level increased according to its voting score and decreased according to the

number of times the player cleared that challenge (to prevent the challenges from being selected too

often). For each challenge group, a certain number of challenges were chosen this way to construct

the next level. Their system gave good experimental results. However, it consumed a lot of memory.

Our paper presents an alternative level generation algorithm according to players’ performance, with

less memory usage.

3. Our Approach
We utilized a crossover-like mechanism to create new challenges in the next level, keeping them

similar to previous challenges. A challenge was created based on skills we wanted players to learn.

The graph in the middle of figure 1 shows all possible continuous action sequences in a Super Mario-

like game. Action F represents the skill of throwing a fireball. Action M represents running, while E, J,

and A represent avoiding enemies, jumping, and stomping on an enemy respectively. Each action can

have varying difficulty scores depending on its target. For example, jumping to a small platform has

higher scores than jumping to a large platform. A challenge is a sequence of these actions, as shown

on the right of figure 1. In our approach, similar challenges were grouped. The difficulty of each

challenge could be calculated from equation (1).

difh    
 


E MA j

ip
k

ikmije
a

ip anadadad
i

)]([*)]()()([(1)

Jumpiip aaan  1)(;

Where difh is the overall difficulty score of the challenge.

ia is a player's action.

pd is the difficulty score based on the player's skill for the given action.

ed is the difficulty score of the enemy involved in the player’s action.

md is the difficulty score of the map object used during the player’s action.

pn is the number of times the player’s action is repeated continuously. Currently,

only jumping generates the score. Otherwise, it is 1.

ija is the property of the enemy involved with the player's action.

ika is the property of the map object used during the player's action.

A is the set of basic actions that can be carried out by the player.

E is the set of enemies’ properties.

M is the set of map objects' property.

A chromosome represents one challenge. A level can have any number of challenges from a

challenge group. In our prototype, a level consisted of two challenges from each challenge group. At

the first level, chromosomes were created so that each of its actions did not exceed their default

difficulties values. For each challenge group, its Challenge Rank score (CR) for a player could be

calculated from the player’s performances during play. The value of CR for a group of challenges was

used to calculate the change in difficulty score for the challenges of that group in the next level.

Equation (2) - (4) show how CR was calculated.

   12  STPTRL (2)

  12  RLPR (3)

PRPTCR  (4)

Where PT is the number of times the challenges in the group were attempted.

ST is the number of times the challenges in the group were overcome.

RL represents Rank Level. It is the number of character used for the challenges in

the group over several plays. Its smallest value is 1, which happens when the player

character did not die at all.

PR is Play Rank. It is actually RL rescaled in order to calculate CR.

CR is Challenge Rank. It is transformed from RL so that scores are given more to

the number of successful plays.

Figure 1. Challenge Generation

Figure 2. Chromosomes contain actions and their difficulty scores

In our prototype, after a 5th level was played, PT and ST only counted the last three levels. A

chromosome consisted of a string of action types and their corresponding difficulty scores. Figure 2

shows two chromosomes. Both were from the same challenge group, JJ (this group contained

challenges that started with two consecutive jumps).

3.1 Chromosome Preparation

We produced extra chromosomes to be used for crossover with original chromosomes. Each

challenge group was used to generate a number of extra chromosomes. In our prototype, the number

of generated chromosomes was the same as the number of original chromosomes. The CR value

from a challenge group was used to construct extra chromosomes for that group. If CR >0, a newly

produced chromosome should have a higher difficulty score than its source. However, the difference

in scores should not exceed a factor of CR (such factor could be adjusted). If CR < 0, the new

chromosome should have a lower difficulty score than its source, but the difference should not exceed

the value of CR. For each challenge group, extra chromosomes were produced according to the

following steps.

1. The first few elements in the chromosome that identified the group were generated according

to that group’s identity.

2. Then

a. If CR >0, a legal action was randomly added to the chromosome.

b. Else If CR <0, the new chromosome built so far was compared with its source. If the

difficulty score of the new chromosome was less than its source, an action would be

added to the chromosome.

3. The chromosome built so far was then checked to see if its difficulty score matched the value

that was needed. Equation 6 and 7 were utilized.

     phnhcndh difdifdif  (6)

 nCRCLLF  (7)

Where  nhdif is the difficulty score of the chromosome built so far.

 phdif is the difficulty score of the chromosome used as source.

LF is Learning Factor.

CL is Coefficient of Learning. It is a value used to scale the CR value.

 nCR is the difficulty level the current player could overcome.

If the challenge group CR value of the current level is greater than 0,

the value of  nCR will be between the CR value of the previous

level and the CR value of the current level. If the challenge group CR

value of the current level is less than 0, the value of  nCR will be

equal to the CR value of the current level.

Then

a. If  cndhdif < LF , the new difficulty score had not reached the value suitable for the

player. Step 2 was then revisited.

b. If  cndhdif > LF , the new difficulty score was too high. The difficulty score of every

action in the chromosome was checked. If every action had its least possible score,

nothing would be done and the algorithm proceeded to the crossover. Otherwise, an

action that had a lower difficulty score and was situated nearest to the end of the

chromosome was chosen. Its difficulty score was then reduced. Then step 3 was

repeated again.

c. If  cndhdif = LF , the player should be able to play the new challenge and

challenges generated from it. The crossover was performed next.

3.2 Crossover

Our crossover differed slightly from standard Uniform crossover. Parts of the chromosomes which

identified their challenge groups were not modified. Furthermore, each resulting chromosome from

our approach needed to be checked for correct continuous actions (see figure 1). After the crossover,

chromosomes were selected from the results. The chosen chromosomes would become the

challenges of the next level. In our prototype, we selected chromosomes with the

value   LFcndhdif  between 0 and 1. The reason we had to allow other values apart from 0 was

because there might not be any chromosome with   0 LFcndhdif at all after the crossover. We

selected the ones with   LFcndhdif  nearest to 0 first. If more than one chromosome had equal

marks, their order was randomly chosen.

4. Testing and Results
Twelve testers were asked to play our game twice. In the first play, the game utilized Kamnerdnond’s

level generation methodology. In the second play, our level generation technique was applied. A

tester cleared 20 levels for each play. During each player’s session, the difficulty score and the

number of lives the player spent for each challenge were recorded. The memory usage data for each

level was also collected. After finishing both games, each player was asked about how he felt when

playing each game and how the game difficulty changed during play. We need the following model

behavior. First, when a player spent many lives overcoming a challenge, challenges of the same

group in the next level must become easier (but not too easy). Second, when a player spent no life or

very few lives overcoming a challenge, challenges of the same group in the next level must become

harder (but not too hard).

Due to limited space, we cannot show results obtained from every player. However, all the players’

results were very similar. Figure 3 shows the average difficulty score of each challenge group for one

of the players during his 20-level-play of our model. Lives spent by the player in figure 3 are displayed

in figure 4. Table 1 shows each challenge and lives spent to overcome it by the same player.

From the figure 3, 4 and table 1, it can be seen that when a player spent many lives for a group of

challenges in a single level or spent some lives for the same challenge group over consecutive levels,

the challenge difficulty score for that group tended to go down in the next level. On the other hand, if

the player rarely died, the challenge difficulty score for that group tended to go up quickly. Only very

few challenges did not follow this behavior. The players’ opinions support this conclusion. Ten out of

twelve players (83.33%) felt that after they encountered very difficult challenges in a level, the next

level became easier. Eight out of twelve players (66.67%) felt that after they played a very easy level,

the next level became more difficult. All the results indicate that our proposed model can effectively

adjust the game difficulty level according to players’ performances.

Figure 5 displays the average memory usage of each level from Kamnerdnond’s model and our

model, collected from 12 testers, each playing 20 levels for each model. Using the paired t-test, it was

found that the two-tailed P value was less than 0.0001. By conventional criteria, this difference was

considered to be extremely statistically significant. The difference between the mean of

Kamnerdnond’s model and our model equaled 160972.7995. The 95% confidence interval of this

difference was from 152089.6254 to 169855.9736. The intermediate values used in calculations

included t = 37.9279, df = 19 and standard error of difference = 4244.180. Therefore, it can be

statistically shown that our new model has better memory utilization.

Average hdif

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Level

hd
if

avg g1

avg g2
avg g3

avg g4

avg g5

avg g6

Figure 3. Average level difficulty score of player A for each challenge group

Life use

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Level

Li
fe

 u
se

g1

g2
g3
g4
g5
g6

Figure 4. Lives spent by player A for each challenge group

Table 1. Lives spent by player A for each challenge in group 3

Memory used (byte)

11400000
11450000
11500000
11550000
11600000
11650000
11700000
11750000
11800000
11850000
11900000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Level

B
yt

e

old model
our model

Figure 5. Average memory usage

Conclusion
Our main contribution was the new level generation methodology for platform games inspired by

genetic algorithm. Levels generated with our methodology had their difficulty that suited each player’s

skill. The model also had lower memory usage compared to the reinforcement learning approach.

There was some problem with the random nature of crossover. Sometimes a crossover did not

produce any good results. However, this was very rare.

References
[1] Chariya Kamnerdnond and Vishnu Kotrajaras. Automatic Level Difficulty Adjustment in Platform Games Based on Player’s
Performance: Super Mario Case Study, In Proceedings of the 11th National Computer Science and Engineering Conference, Bangkok,
Thailand. : 223-229. 2007.
[2] Tom M. Mitchell. Machine Learning, McGraw – Hill, International Edition 1997, ISBN: 0-07-042807-7.
[3] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning (An Introduction), The MIT Press, Cambridge, Massachusetts,
London, England, 1998, ISBN: 0-262-19398-1.
[4] Sander Bakkes, Pieter Spronck, and Eric Postma. TEAM: The Team-oriented Evolutionary Adaptability Mechanism, In Matthias
Rauterberg, editor, Entertainment Computing - ICEC 2004, Lecture Notes in Computer Science, Springer-Verlag, 3166: 273–282. 2004.
[5] Nicholas Cole, Sushi J. Louis, and Chris Miles. Using a Genetic Algorithm to Tune First-Person Shooter Bots, Congress on
Evolutionary Computation 2004. 1:139-145. 2004.
[6] Thore Graepel, Ralf Herbrich, and Julian Gold. Learning to Fight. In Proceedings of the International Conference on Computer Games:
Artificial Intelligence, Design and Education. :193-200. 2004.
[7] Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-Kuyper, and Eric Postma. Adaptive Game AI with Dynamic Scripting. Machine
Learning. 63(3): 217-248. 2006.
[8] Gustavo Andrade, Geber Ramalho, Hugo Santana, and Vincent Corruble. Challenge-Sensitive Action Selection: an Application to
Game Balancing, In Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’05). : 194-
200. 2005.
[9] Randy J. Pagulayan, Kevin Keeker, Dennis Wixon, Ramon L. Romero, and Thomas Fuller. User-centered Design in Games, Handbook
for Human-Computer Interaction in Interactive Systems, Microsoft Corporation, Mahwah, NJ: Lawrence Erlbaum Associates, Inc. 2003.
[10] Staffan Björk and Jussi Holopainen. Patterns in Game Design, Charles River Media, Inc., 2005, ISBN: 1-58450-354-8.

