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Abstract 
In platform games, enemy behavior is not complicated. Therefore, challenges in such games come 

from the right mixture between enemies and environments of each level. Platform games require 

manual testing for tuning the game balance for mass audience. This is very time consuming. In 

addition, the difficulty of each level obtained is not guaranteed to suit individuals. Very few researches 

tackle how balanced levels can be generated automatically for individuals. This paper proposes a new 

methodology for using artificial intelligence to adjust games difficulty to suit players by automatically 

generating levels in platform games. The method is inspired by genetic algorithm. It is much easier to 

implement compared to an existing reinforcement learning based method, while still maintains similar 

gameplay quality. The new methodology also consumes less memory.  
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1. Introduction 
There are many researches that tackle the issue of difficulty adjustments in games. Most of them 

concentrate on enemy behavior adjustment. However, for platform games, their challenges come from 

learning to overcome obstacles presented by fixed enemies and game environments. Tuning the 

difficulty of platform games by adjusting the behavior of enemies will simply destroy the mechanic of 

such games.  

 

An alternative approach for difficulty adjustment is to fine-tune the layout of game stages (including 

the placement of fixed behavior enemies). Kamnerdnond and Kotrajaras [1] proposed a model for 

automatically generating game environments according to players’ performances for platform games. 

The model combined reinforcement learning with design methodologies. Their model, however, 

required a lot of memory storage because data for individual challenge plays and vote records from all 

previous challenges were needed during play.  

 



In this paper, we present an alternative model for platform games level generation according to 

players' performances. We abandoned reinforcement learning approach and opted for an approach 

inspired by genetic algorithm. This approach resulted in less memory usage while still allowed levels 

to be produced effectively. Our prototype was made after Super Mario. We believed that by utilizing a 

well-known game mechanism, we would be able to demonstrate our model more clearly.  

 

2. Related Works 
Artificial intelligence applications for computer games can be grouped into two categories. The first 

category strives for the best possible agent behaviour. Genetic algorithm [2] and reinforcement 

learning [3] are prime examples of applications in this category. Bakkes et al. [4] created a team 

based AI for Quake III by using genetic algorithm to learn state-specific behavior for the team. Cole et 

al. [5] used genetic algorithm to evolve sets of parameters for bots in Counter Strike. Genetic 

algorithm was able to tune parameters as good as a highly experienced player could do in fifty 

generations, which was a relatively short time for training bots offline. Graepel et al. [6] used 

reinforcement learning to tune a fighting game AI character. Spronck et al. [7] introduced dynamic 

scripting, a form of reinforcement learning that could adjust an AI to win against its opponent in a 

relatively short time. The second category of artificial intelligence applications aims to adapt agents to 

suit players. Spronck et al. [7] demonstrated that dynamic scripting could be enhanced so that the 

game AI was able to scale its difficulty level to match its human opponent. Andrade et al. [8] applied 

reinforcement learning to match players’ performances with those of agents. 

 

All these works concentrated on changing characters or agents’ behavior. For platform games, 

making an enemy character adapt or learn new behavior is not quite appropriate because the difficulty 

of platform games comes mainly from game environments and obstacles, not from enemy characters 

alone. Therefore the adjustment should be applied to the game environments instead. Pagulayan et 

al. [9] proposed a method for designing game environments to suit players. Challenges were put into 

each game level according to their difficulty. The aim was to teach collections of skills to players 

gradually. Players would then be able to improve their skills in order to tackle more difficult challenges 

and defeat game bosses. Björk and Holopainen [10] proposed that a game should have mechanisms 

for smoothing players’ learning curve in order to provide players with enough skills to progress while 

preventing boredom. However, these works mainly discussed good practice for manually designing 

game levels.     

 

For automatic level generation of platform games, Kamnerdnond and Kotrajaras [1] used design 

methodologies from [9] and [10] together with reinforcement learning to create each suitable level for 

players to overcome. A level was formed from several challenges. Each challenge consisted of a 

sequence of continuous actions (players could not take a break while performing such action 

sequence). Each possible action was derived from players’ control skills. While playing a generated 

game level, a player’s performance was recorded. After the player finished each game level, the 

collected data was used as feedback to calculate the probability for each challenge to emerge in the 



next level. Initially, the system generated all possible challenges that did not contain more than a 

certain number of actions. Each challenge had its own difficulty score. All challenges were then 

divided into groups. Within each group, challenges were sorted by their difficulty score from low to 

high. After a player finished playing a game level, the number of successful and unsuccessful plays 

for each challenge was given to the reinforcement learning mechanism. A voting system was used. 

Each challenge could cast votes for more difficult or less difficult challenges of the same group. The 

spread of the voting range was determined by the play data. The probability for a challenge to be 

selected for the next level increased according to its voting score and decreased according to the 

number of times the player cleared that challenge (to prevent the challenges from being selected too 

often). For each challenge group, a certain number of challenges were chosen this way to construct 

the next level. Their system gave good experimental results. However, it consumed a lot of memory. 

Our paper presents an alternative level generation algorithm according to players’ performance, with 

less memory usage.      

 

3. Our Approach 
We utilized a crossover-like mechanism to create new challenges in the next level, keeping them 

similar to previous challenges. A challenge was created based on skills we wanted players to learn. 

The graph in the middle of figure 1 shows all possible continuous action sequences in a Super Mario-

like game. Action F represents the skill of throwing a fireball. Action M represents running, while E, J, 

and A represent avoiding enemies, jumping, and stomping on an enemy respectively. Each action can 

have varying difficulty scores depending on its target. For example, jumping to a small platform has 

higher scores than jumping to a large platform. A challenge is a sequence of these actions, as shown 

on the right of figure 1. In our approach, similar challenges were grouped. The difficulty of each 

challenge could be calculated from equation (1). 
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Where  difh  is the overall difficulty score of the challenge. 

ia    is a player's action. 

pd   is the difficulty score based on the player's skill for the given action. 

ed   is the difficulty score of the enemy involved in the player’s action. 

md   is the difficulty score of the map object used during the player’s action. 

pn    is the number of times the player’s action is repeated continuously. Currently,  

only jumping generates the score. Otherwise, it is 1.  

ija    is the property of the enemy involved with the player's action. 

ika   is the property of the map object used during the player's action. 



A     is the set of basic actions that can be carried out by the player. 

E     is the set of enemies’ properties. 

M    is the set of map objects' property. 

 

A chromosome represents one challenge. A level can have any number of challenges from a 

challenge group. In our prototype, a level consisted of two challenges from each challenge group. At 

the first level, chromosomes were created so that each of its actions did not exceed their default 

difficulties values. For each challenge group, its Challenge Rank score (CR) for a player could be 

calculated from the player’s performances during play. The value of CR for a group of challenges was 

used to calculate the change in difficulty score for the challenges of that group in the next level.  

Equation (2) - (4) show how CR was calculated. 

 

   12  STPTRL     (2) 

  12  RLPR      (3) 

PRPTCR       (4) 

 

Where  PT  is the number of times the challenges in the group were attempted. 

ST   is the number of times the challenges in the group were overcome. 

RL   represents Rank Level. It is the number of character used for the challenges in 

the group over several plays. Its smallest value is 1, which happens when the player 

character did not die at all.  

PR   is Play Rank. It is actually RL rescaled in order to calculate CR. 

CR  is Challenge Rank. It is transformed from RL so that scores are given more to 

the number of successful plays. 

 

 

 
Figure 1. Challenge Generation 

 

 

 
Figure 2. Chromosomes contain actions and their difficulty scores 

 



In our prototype, after a 5th level was played, PT  and ST  only counted the last three levels. A 

chromosome consisted of a string of action types and their corresponding difficulty scores. Figure 2 

shows two chromosomes. Both were from the same challenge group, JJ (this group contained 

challenges that started with two consecutive jumps).      

 
3.1 Chromosome Preparation 

We produced extra chromosomes to be used for crossover with original chromosomes. Each 

challenge group was used to generate a number of extra chromosomes. In our prototype, the number 

of generated chromosomes was the same as the number of original chromosomes. The CR value 

from a challenge group was used to construct extra chromosomes for that group. If CR >0, a newly 

produced chromosome should have a higher difficulty score than its source. However, the difference 

in scores should not exceed a factor of CR (such factor could be adjusted). If CR < 0, the new 

chromosome should have a lower difficulty score than its source, but the difference should not exceed 

the value of CR. For each challenge group, extra chromosomes were produced according to the 

following steps.  

1. The first few elements in the chromosome that identified the group were generated according 

to that group’s identity. 

2. Then  

a. If CR >0, a legal action was randomly added to the chromosome.    

b. Else If CR <0, the new chromosome built so far was compared with its source. If the 

difficulty score of the new chromosome was less than its source, an action would be 

added to the chromosome. 

3. The chromosome built so far was then checked to see if its difficulty score matched the value 

that was needed. Equation 6 and 7 were utilized.  

 

     phnhcndh difdifdif      (6) 

 nCRCLLF       (7) 

Where   nhdif  is the difficulty score of the chromosome built so far. 

 phdif is the difficulty score of the chromosome used as source. 

LF  is Learning Factor. 

CL  is Coefficient of Learning. It is a value used to scale the CR value.  

 nCR  is the difficulty level the current player could overcome. 

If the challenge group CR value of the current level is greater than 0, 

the value of  nCR will be between the CR value of the previous 

level and the CR value of the current level. If the challenge group CR 

value of the current level is less than 0, the value of  nCR will be 

equal to the CR value of the current level. 



Then 

a. If  cndhdif  < LF , the new difficulty score had not reached the value suitable for the 

player. Step 2 was then revisited. 

b. If  cndhdif  > LF , the new difficulty score was too high. The difficulty score of every 

action in the chromosome was checked. If every action had its least possible score, 

nothing would be done and the algorithm proceeded to the crossover. Otherwise, an 

action that had a lower difficulty score and was situated nearest to the end of the 

chromosome was chosen. Its difficulty score was then reduced. Then step 3 was 

repeated again. 

c. If  cndhdif  = LF , the player should be able to play the new challenge and 

challenges generated from it.  The crossover was performed next. 

 

3.2 Crossover 

Our crossover differed slightly from standard Uniform crossover. Parts of the chromosomes which 

identified their challenge groups were not modified. Furthermore, each resulting chromosome from 

our approach needed to be checked for correct continuous actions (see figure 1).  After the crossover, 

chromosomes were selected from the results. The chosen chromosomes would become the 

challenges of the next level. In our prototype, we selected chromosomes with the 

value   LFcndhdif  between 0 and 1. The reason we had to allow other values apart from 0 was 

because there might not be any chromosome with   0 LFcndhdif  at all after the crossover. We 

selected the ones with   LFcndhdif  nearest to 0 first. If more than one chromosome had equal 

marks, their order was randomly chosen.  

 

4. Testing and Results 
Twelve testers were asked to play our game twice. In the first play, the game utilized Kamnerdnond’s 

level generation methodology. In the second play, our level generation technique was applied. A 

tester cleared 20 levels for each play. During each player’s session, the difficulty score and the 

number of lives the player spent for each challenge were recorded. The memory usage data for each 

level was also collected. After finishing both games, each player was asked about how he felt when 

playing each game and how the game difficulty changed during play. We need the following model 

behavior. First, when a player spent many lives overcoming a challenge, challenges of the same 

group in the next level must become easier (but not too easy). Second, when a player spent no life or 

very few lives overcoming a challenge, challenges of the same group in the next level must become 

harder (but not too hard).  

 

Due to limited space, we cannot show results obtained from every player. However, all the players’ 

results were very similar. Figure 3 shows the average difficulty score of each challenge group for one 



of the players during his 20-level-play of our model. Lives spent by the player in figure 3 are displayed 

in figure 4. Table 1 shows each challenge and lives spent to overcome it by the same player. 

 

From the figure 3, 4 and table 1, it can be seen that when a player spent many lives for a group of 

challenges in a single level or spent some lives for the same challenge group over consecutive levels, 

the challenge difficulty score for that group tended to go down in the next level. On the other hand, if 

the player rarely died, the challenge difficulty score for that group tended to go up quickly. Only very 

few challenges did not follow this behavior. The players’ opinions support this conclusion. Ten out of 

twelve players (83.33%) felt that after they encountered very difficult challenges in a level, the next 

level became easier. Eight out of twelve players (66.67%) felt that after they played a very easy level, 

the next level became more difficult. All the results indicate that our proposed model can effectively 

adjust the game difficulty level according to players’ performances. 

 

Figure 5 displays the average memory usage of each level from Kamnerdnond’s model and our 

model, collected from 12 testers, each playing 20 levels for each model. Using the paired t-test, it was 

found that the two-tailed P value was less than 0.0001. By conventional criteria, this difference was 

considered to be extremely statistically significant. The difference between the mean of 

Kamnerdnond’s model and our model equaled 160972.7995. The 95% confidence interval of this 

difference was from 152089.6254 to 169855.9736. The intermediate values used in calculations 

included t = 37.9279, df = 19 and standard error of difference = 4244.180. Therefore, it can be 

statistically shown that our new model has better memory utilization. 
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Figure 3.  Average level difficulty score of player A for each challenge group 

 

Life use

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Level

Li
fe

 u
se

g1 

g2
g3
g4
g5
g6

 
Figure 4. Lives spent by player A for each challenge group 



Table 1. Lives spent by player A for each challenge in group 3 
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Figure 5. Average memory usage 

 

Conclusion 
Our main contribution was the new level generation methodology for platform games inspired by 

genetic algorithm. Levels generated with our methodology had their difficulty that suited each player’s 

skill. The model also had lower memory usage compared to the reinforcement learning approach.  

There was some problem with the random nature of crossover. Sometimes a crossover did not 

produce any good results. However, this was very rare. 
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