
Towards an Evenly Match Opponent AI in

Turn-based Strategy Games
Kittisak Potisartra

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Payathai Road, Patumwan

Bangkok 10330, Thailand
Tel: +66859303372

ffseries_t@hotmail.com

Vishnu Kotrajaras
Department of Computer Engineering

Faculty of Engineering
Chulalongkorn University

Payathai Road, Patumwan

Bangkok 10330, Thailand
Tel: +66890212323

Vishnu@cp.eng.chula.ac.th, ajarntoe@gmail.com

Abstract
Research in turn-based strategy (TBS) games mostly involves classic games, such as Chess, and

how such games could be beaten by a computer controlled artificial intelligence. Guaranteeing that

opponents will be beaten, however, is not the focus of commercial Turn-based Strategy games. For

commercial games, if human players do not win, they quit the game. This can result in horrific future

sales. Therefore, keeping players engage in the game is much more important. This paper presents

an artificial player that learns to adjust its skills to match a player it is playing against. A Final Fantasy

Tactics-like game is used in our experiment. We introduce evaluation functions for calculating the

score from each unit's action. By evaluating a human player's score, our artificial player can estimate

his skill and play at the same level throughout the game.

Keywords
Turn-based Strategy (TBS) games, evaluation functions, Artificial Intelligence

1. Introduction
Opponents Artificial Intelligence (AI) in computer games varied greatly. Many researchers presented

AI that was guaranteed to beat its opponent. This was the case for turn-based strategy games such

as Go and Chess. However, AI that always beat human players was frustrating to play against. For a

commercial game, this could easily cause players to quit the game, damaging the game’s reputation

and consequently its sale figures. An AI that drew players to the game must be an AI that put

reasonable challenges on each player. In other words, an AI should be as good as a player it was

competing against.

Spronck and Herik [1] proposed an AI for Computer RolePlaying Games (CRPGs) that used three

different enhancements to dynamic scripting to play “even games” with human players in a tutoring

system. Their enhancement techniques included high-fitness penalization, weight clipping, and top

culling. The result showed that dynamic scripting with top culling was the best for difficulty scaling. In

this research, however, we focused on AI for turn-based strategy (TBS) games. The AI for TBS

games offered many challenges for researchers, such as planning and decision making under

uncertain situations. Players were able to spend as much time as they wanted to consider their moves

and actions. No time constraint affected players’ decisions. Bergsma and Spronck [2, 3] proposed

ADAPTA architecture for implementing the learning AIs for TBS games. They chose one subtask and

learned new AIs using an evolutionary algorithm. Their methodology was able to generate tactics that

defeat all single opponents.

The challenge of our research, however, was to create an adaptive AI that could compete evenly with

human players. To accomplish this, we introduced an evaluation function for managing our AI when

playing against players.

The outline of this paper is as follows. In Section 2 we provide a definition of this research’s TBS

game. Section 3 explains the evaluation function of this game. Section 4 covers our difficulty

adjustment mechanism. In Section 5 we explain the experimental setup. The results are discussed in

Section 6. Section 7 provides conclusions.

2. Game Definition
For our research, we developed our own TBS game using information and actions based on Final

Fantasy Tactics series. The game map was simplified to two-dimensional, tile-based map, as shown

in Figure 1. The tiles were split into 2 types. Players could move over the first type, not the second

type. Movement in the game could occur either be vertically or horizontally. Diagonal movement was

not permitted.

There were 4 character types in our game. They were warrior, archer, black mage and white mage.

Each type had its own set of parameters, which included (1) The starting amount of health points and

magic points, (2) The number of moves the character could make per turn, (3) The range of physical

attack and magic attack, (4) The attack, defense, magic attack and magic resistance value, and (5)

The character’s speed.

Figure 1. A screenshot of the TBS game used in this research

Each type of character was able to perform different actions. For example, a warrior could only attack

its opponent from close range, but the attack was more powerful than other types of characters. An

archer could perform a long range physical attack. But the attack strength was less powerful

compared to a warrior’s. A mage had very low defense, but it could perform magic that affect several

characters at once. A black mage could spend magic points to carry out a magic attack, while a white

mage could restore any character’s health point.

At each character’s turn, its player chose any action he wanted the character to perform, such as

move, physical attack, magic attack, or wait. Move and attacks could be carried out in the same turn,

but move must come first. A single tile could accommodate only one character. Characters were able

to pass through a tile that was occupied by characters in the same team. They were unable to pass

through a tile occupied by an opponent.

3. The Evaluation Function
Many researchers used evaluation function to maintain game AI. Bakkes [4] used the number of

enemy units scaled by visibility range. Strattman [5] used an evaluation function for finding the best

waypoint in first person shooting games. For our approach, we developed our own evaluation

function. Our function calculated a score for each character’s turn. The score was calculated using

equation (1).

,ݔ)ܵ (ݕ = ,ܵܦ,ܰܧ൫ߚ ,ܿ)ߜ ,ݔ ൯(ݕ
∈ಶ

+ ,ܰܧ൫ߛ ,ܿ)ߜ ,ݔ ൯(ݕ
∈ಲ

Where:

CA represented the set of all allies.

 CE represented the set of all enemies.

β(EN,DS,d) calculated a partial score using:

Enemies’ environment information, EN

The damage score DS, and

Distance d from enemy.

γ(EN,d) calculated a partial score using:

Allies’ environment information EN

Distance d from character.

δ(c,x,y) calculated the distance from character c to tile (x,y).

In summary, this equation calculated the score for each tile (x,y) by using environment information

and distance from other characters in the same map. We used this function to predict the score of a

character if it moved to a tile.

(1)

4. Difficulty Adjustment
Once a move was made, our evaluation function was able to determine how good it was. By analyzing

the score from a human player’s previous move(s), our system was able to adjust the AI to make a

similar-level move. In its turn, before our AI made its decision, it calculated how even the game was at

that stage using equation (2).

,ݔ)ܧ (ݕ = ܵூ(ݔ, (ݕ −
∑ ܵை௧∈்

ܰ

Where:

E(x,y) was the evenness score for each tile (x,y).

SAI(x,y) was the AI score, if it moved to tile (x,y).

SOP was the score of a human opponent character that made a move after our AI’s previous

turn. We need the sum because it was possible for two or more characters of the

same side to move in succession.

T was the set of the human player’s turn.

N was the number of members in T.

Positive E meant that the AI was at a better position than its opponent, and vice versa. If E was zero,

it meant the two sides performed equally at the current stage of the game. Figure 2 shows different

levels of evenness, where L0, L1,…, Ln limited the edge of each level. When our AI was made to

choose its action, it chose from available actions in an appropriate level. If the player’s score changed

during play, the AI responded accordingly.

5. Experiment
For our experiment, we played our AI against different scripted AIs. We split characters into two teams

and made them to fight each other. Each team had the same configuration of characters: warrior,

archer, black mage, and white mage.

Figure 2. Evenness Range

(2)

Smarter

Level Range of E
3 L2 < E
2 L1 < E < L2
1 L0 < E < L1
0 -L0 < E < L0
-1 -L1 < E < -L0
-2 -L2 < E < -L1
-3 -L3 < E < -L2

There were 4 scripted AIs we tested against. The AIs used the following strategies:

 The first script used the strategy that always moved towards the nearest opponent character,

and attacked whenever possible (Rush).

 The second script used the strategy that always moved towards one of the opponent

character, and kept attacking until the character was defeated, before targeting the next

opponent character (Unit Offence).

 The third script used the strategy that kept the characters close to each other, and attacked

only when provoked (Defense).

 The forth strategy attempted to balance both offense and defense (Balance).

6. Results
In Figure 3, the histograms show the percentage of total health point (Hp) that scripted AI and

adapted AI had after each battle for each strategy (except Defense). A positive value indicated that

the scripted AI won the battle. A negative value indicated otherwise. For a battle to be even, the

corresponding health point left in that battle has to be close to zero. Each team had 4 characters.

Therefore one character could be roughly represented by 25% of the total health point.

Our AI played evenly against Rush AI and Balance AI. After each battle finished, if a scripted AI won

the battle, it often had only one character left. If our AI won the battle, it often had only one character

left also. The total health point percentage mostly dropped below 25%. Most of the time, only one

character (or two characters; each with small health point) remained. For the Unit Offence AI,

however, our adapted AI won most of the battles quite comfortably. We investigated this and

discovered that characters controlled by the script usually moved in a group. Our AI played similarly in

response. This caused our AI’s character that was chosen by the Unit Offence to be surrounded by

allies. This resulted in the Unit Offence AI having to move characters around a lot in order to be able

to reach and attack its chosen target. Most of the moves ended up not attacking. Our evaluation

function did not scale down well in this case. For the defense AI, its characters waited to be attacked

first. Our AI tried to play an even match by choosing not to move also, causing the battle to stall.

Therefore we could not obtain the battle results.

It could be seen that our adapted AI played evenly against two of the four common strategies. For

Defense strategy, although the battles stalled, it was reasonable to state that our AI was doing the

right thing to maintain an even match. In actual use in a commercial game environment, we could

disable the even play temporary to allow initial attacks to take place. The only weakness of our AI

came up when playing against the Unit Offence Strategy. Improving our evaluation function further by

implementing a better scale down and considering more past and future moves would fix this

weakness.

Figure 3. Histogram of the percentage of heath point (HP) of each team AI (Rush, Unit offence, and

Balance) after playing against our adapted AI in 100 battles

7. Conclusions and Future Work
The goal of this research was to propose a prototype AI for turn-based strategy games that could play

as well as the player it was playing against. To accomplish this, we used an evaluation function to

calculate the score of each tile on the map by using data from each team. The score from each tile

was then used with opponent characters’ scores to calculate the evenness score of each tile. Our AI

adjusted its move for a matching evenness level. The result showed that our AI was able to play even

matches against most common strategies.

For future work, we intend to enhance our evaluation function to include a better adaptation when an

opponent failed to perform attacks. Our evaluation function also needs to look further into past and

future moves. A balance adjustment will need to be made because we do not want to look too far into

the past or future, since it wastes processing time for commercial games. Furthermore, we intend to

add more types of units that can initiate status effects, such as temporary speed-down, magic-disable

or poison. Such addition will make our model more like commercial turn-based strategy games

available today, thus adding values to our research.

-100

-75

-50

-25

0

25

50

75

100

-100

-75

-50

-25

0

25

50

75

100

-100

-75

-50

-25

0

25

50

75

100

Rush Unit offence

Balance

References
[1] Pieter Spronck and Jaap van den Herik. A Tutoring System for Commercial Games. ICEC 2005 (eds. Fumio Kishino, Yoshifumi
 Kitamura, Hirokazu Kato, and Noriko Nagata), Lecture Notes in Computer Science 3711, pp. 389-400. Springer-Verlag.
[2] Maurice Bergsma, Pieter Spronck. Adaptive Intelligence for Turn-based Strategy Game. Proceedings of the BNAIC 2008, the twentieth
 Belgian-Dutch Artificial Intelligence Conference.pp. 17-24. University of Twente, Twente, The Netherlands.
[3] Maurice Bergsma, Pieter Spronck. Adaptive Spatial Reasoning for Turn-based Strategy Games. Proceedings of the Fourth Artificial
 Intelligence and Interactive Digital Entertainment Conference, pp. 161-166. AAAI Press, Menlo Park, CA.
[4] Sander Bakkes, Pieter Spronck, Jaap van den Herik. Phase-dependent Evaluation in RTS Games. Proceedings of the 19th Belgian-
 Dutch Conference on Artificial Intelligence, 2007, pp. 3-10.
[5] Remco Straatman, William van der Sterren, Arjen Beij. Killzone's AI: dynamic procedural combat tactics. Game Developers
 Conference (GDC) 2005.

