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Abstract 
Research in turn-based strategy (TBS) games mostly involves classic games, such as Chess, and 

how such games could be beaten by a computer controlled artificial intelligence. Guaranteeing that 

opponents will be beaten, however, is not the focus of commercial Turn-based Strategy games. For 

commercial games, if human players do not win, they quit the game. This can result in horrific future 

sales. Therefore, keeping players engage in the game is much more important. This paper presents 

an artificial player that learns to adjust its skills to match a player it is playing against. A Final Fantasy 

Tactics-like game is used in our experiment. We introduce evaluation functions for calculating the 

score from each unit's action. By evaluating a human player's score, our artificial player can estimate 

his skill and play at the same level throughout the game. 
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1. Introduction 
Opponents Artificial Intelligence (AI) in computer games varied greatly. Many researchers presented 

AI that was guaranteed to beat its opponent. This was the case for turn-based strategy games such 

as Go and Chess. However, AI that always beat human players was frustrating to play against. For a 

commercial game, this could easily cause players to quit the game, damaging the game’s reputation 

and consequently its sale figures. An AI that drew players to the game must be an AI that put 

reasonable challenges on each player. In other words, an AI should be as good as a player it was 

competing against. 

   

Spronck and Herik [1] proposed an AI for Computer RolePlaying Games (CRPGs) that used three 

different enhancements to dynamic scripting to play “even games” with human players in a tutoring 

system. Their enhancement techniques included high-fitness penalization, weight clipping, and top 

culling. The result showed that dynamic scripting with top culling was the best for difficulty scaling. In 

this research, however, we focused on AI for turn-based strategy (TBS) games. The AI for TBS 

games offered many challenges for researchers, such as planning and decision making under 



uncertain situations. Players were able to spend as much time as they wanted to consider their moves 

and actions. No time constraint affected players’ decisions. Bergsma and Spronck [2, 3] proposed 

ADAPTA architecture for implementing the learning AIs for TBS games. They chose one subtask and 

learned new AIs using an evolutionary algorithm. Their methodology was able to generate tactics that 

defeat all single opponents. 

 

The challenge of our research, however, was to create an adaptive AI that could compete evenly with 

human players. To accomplish this, we introduced an evaluation function for managing our AI when 

playing against players. 

 

The outline of this paper is as follows. In Section 2 we provide a definition of this research’s TBS 

game. Section 3 explains the evaluation function of this game.  Section 4 covers our difficulty 

adjustment mechanism. In Section 5 we explain the experimental setup. The results are discussed in 

Section 6. Section 7 provides conclusions. 

 

2. Game Definition 
For our research, we developed our own TBS game using information and actions based on Final 

Fantasy Tactics series. The game map was simplified to two-dimensional, tile-based map, as shown 

in Figure 1. The tiles were split into 2 types. Players could move over the first type, not the second 

type. Movement in the game could occur either be vertically or horizontally. Diagonal movement was 

not permitted.  

 

There were 4 character types in our game. They were warrior, archer, black mage and white mage. 

Each type had its own set of parameters, which included (1) The starting amount of health points and 

magic points, (2) The number of moves the character could make per turn, (3) The range of physical 

attack and magic attack, (4) The attack, defense, magic attack and magic resistance value, and (5) 

The character’s speed. 

 

 

 
Figure 1. A screenshot of the TBS game used in this research 



Each type of character was able to perform different actions. For example, a warrior could only attack 

its opponent from close range, but the attack was more powerful than other types of characters. An 

archer could perform a long range physical attack. But the attack strength was less powerful 

compared to a warrior’s. A mage had very low defense, but it could perform magic that affect several 

characters at once. A black mage could spend magic points to carry out a magic attack, while a white 

mage could restore any character’s health point. 

 

At each character’s turn, its player chose any action he wanted the character to perform, such as 

move, physical attack, magic attack, or wait. Move and attacks could be carried out in the same turn, 

but move must come first. A single tile could accommodate only one character. Characters were able 

to pass through a tile that was occupied by characters in the same team. They were unable to pass 

through a tile occupied by an opponent. 

 
3. The Evaluation Function 
Many researchers used evaluation function to maintain game AI. Bakkes [4] used the number of 

enemy units scaled by visibility range. Strattman [5] used an evaluation function for finding the best 

waypoint in first person shooting games. For our approach, we developed our own evaluation 

function. Our function calculated a score for each character’s turn. The score was calculated using 

equation (1).  
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Where: 

CA represented the set of all allies. 

 CE represented the set of all enemies. 

β(EN,DS,d) calculated a partial score using:  

Enemies’ environment information, EN 

The damage score DS, and  

Distance d from enemy.  

γ(EN,d) calculated a partial score using: 

Allies’ environment information EN  

Distance d from character.  

δ(c,x,y) calculated the distance from character c to tile (x,y).  

 

In summary, this equation calculated the score for each tile (x,y) by using environment information 

and distance from other characters in the same map. We used this function to predict the score of a 

character if it moved to a tile. 

 
 

(1) 



4. Difficulty Adjustment 
Once a move was made, our evaluation function was able to determine how good it was. By analyzing 

the score from a human player’s previous move(s), our system was able to adjust the AI to make a 

similar-level move. In its turn, before our AI made its decision, it calculated how even the game was at 

that stage using equation (2).  
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Where:  

E(x,y) was the evenness score for each tile (x,y). 

SAI(x,y) was the AI score, if it moved to tile (x,y). 

SOP was the score of a human opponent character that made a move after our AI’s previous  

turn. We need the sum because it was possible for two or more characters of the 

same side to move in succession. 

T was the set of the human player’s turn. 

N was the number of members in T.  

 

Positive E meant that the AI was at a better position than its opponent, and vice versa. If E was zero, 

it meant the two sides performed equally at the current stage of the game. Figure 2 shows different 

levels of evenness, where L0, L1,…, Ln limited the edge of each level. When our AI was made to 

choose its action, it chose from available actions in an appropriate level. If the player’s score changed 

during play, the AI responded accordingly.  

 

5. Experiment 
For our experiment, we played our AI against different scripted AIs. We split characters into two teams 

and made them to fight each other. Each team had the same configuration of characters: warrior, 

archer, black mage, and white mage. 

 

 

 

 

 

 

 

 

 

Figure 2. Evenness Range 

 
 

(2) 

Smarter 

Level Range of E 
3 L2 < E 
2 L1 < E < L2 
1 L0 < E < L1 
0 -L0 < E < L0 
-1 -L1 < E < -L0 
-2 -L2 < E < -L1 
-3 -L3 < E < -L2 

 



There were 4 scripted AIs we tested against. The AIs used the following strategies: 

 The first script used the strategy that always moved towards the nearest opponent character, 

and attacked whenever possible (Rush). 

 The second script used the strategy that always moved towards one of the opponent 

character, and kept attacking until the character was defeated, before targeting the next 

opponent character (Unit Offence). 

 The third script used the strategy that kept the characters close to each other, and attacked 

only when provoked (Defense). 

 The forth strategy attempted to balance both offense and defense (Balance). 

 
6.  Results 
In Figure 3, the histograms show the percentage of total health point (Hp) that scripted AI and 

adapted AI had after each battle for each strategy (except Defense). A positive value indicated that 

the scripted AI won the battle. A negative value indicated otherwise. For a battle to be even, the 

corresponding health point left in that battle has to be close to zero. Each team had 4 characters. 

Therefore one character could be roughly represented by 25% of the total health point.   

 

Our AI played evenly against Rush AI and Balance AI. After each battle finished, if a scripted AI won 

the battle, it often had only one character left. If our AI won the battle, it often had only one character 

left also. The total health point percentage mostly dropped below 25%. Most of the time, only one 

character (or two characters; each with small health point) remained. For the Unit Offence AI, 

however, our adapted AI won most of the battles quite comfortably. We investigated this and 

discovered that characters controlled by the script usually moved in a group. Our AI played similarly in 

response. This caused our AI’s character that was chosen by the Unit Offence to be surrounded by 

allies. This resulted in the Unit Offence AI having to move characters around a lot in order to be able 

to reach and attack its chosen target. Most of the moves ended up not attacking. Our evaluation 

function did not scale down well in this case. For the defense AI, its characters waited to be attacked 

first. Our AI tried to play an even match by choosing not to move also, causing the battle to stall. 

Therefore we could not obtain the battle results. 

 

It could be seen that our adapted AI played evenly against two of the four common strategies. For 

Defense strategy, although the battles stalled, it was reasonable to state that our AI was doing the 

right thing to maintain an even match. In actual use in a commercial game environment, we could 

disable the even play temporary to allow initial attacks to take place. The only weakness of our AI 

came up when playing against the Unit Offence Strategy. Improving our evaluation function further by 

implementing a better scale down and considering more past and future moves would fix this 

weakness. 

 

 



    
 

       
 

Figure 3. Histogram of the percentage of heath point (HP) of each team AI (Rush, Unit offence, and 

Balance) after playing against our adapted AI in 100 battles 

 
 
7. Conclusions and Future Work 
The goal of this research was to propose a prototype AI for turn-based strategy games that could play 

as well as the player it was playing against. To accomplish this, we used an evaluation function to 

calculate the score of each tile on the map by using data from each team. The score from each tile 

was then used with opponent characters’ scores to calculate the evenness score of each tile. Our AI 

adjusted its move for a matching evenness level. The result showed that our AI was able to play even 

matches against most common strategies.  

 

For future work, we intend to enhance our evaluation function to include a better adaptation when an 

opponent failed to perform attacks. Our evaluation function also needs to look further into past and 

future moves. A balance adjustment will need to be made because we do not want to look too far into 

the past or future, since it wastes processing time for commercial games. Furthermore, we intend to 

add more types of units that can initiate status effects, such as temporary speed-down, magic-disable 

or poison. Such addition will make our model more like commercial turn-based strategy games 

available today, thus adding values to our research. 
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