

LEARNABLE BUDDY: LEARNABLE SUPPORTIVE AI IN COMMERCIAL
MMORPG

Theppatorn Rhujittawiwat and Vishnu Kotrajaras

Department of Computer Engineering
Chulalongkorn University, Bangkok, Thailand

E-mail: g49trh@cp.eng.chula.ac.th, vishnu@cp.eng.chula.ac.th

KEYWORDS
Artificial Intelligence, Genetic Algorithm,
Massively-Multiplayer Online Game.

ABSTRACT

In commercial massively-multiplayer online role-
playing games (MMORPG), players usually play
in a populated environments with simple non-
player game characters. These non-player
characters have fix behaviour. They cannot learn
from what they experience in the game. However,
MMORPG environments are believed to be
greatly suitable for training AI, with plenty of
players to provide tremendous amount of
feedback, and persistent worlds to provide
learning environments. This paper presents an
experiment to find out the potential of MMORPG
environments for fast learning evolutionary AI.
The genetic algorithm is chosen as our learning
method to train a non-player character to assist
real players. We use a game server emulator and
custom game clients to simulate and run a
commercial MMORPG. Clients are divided into
two groups, real players and “helpers”. The
results show that helpers can learn to assist real
players effectively in small amount of time. This
confirms that evolutionary learning can be used to
provide efficient learning in commercial
MMORPG. It also verifies that MMORPG provide
great platforms for research in evolutionary
learning.

INTRODUCTION

Recent game AI research and developments in
online games are mostly focused on player
opponent AI. Seu simulated and tested the system
for evolving distribution, physical parameters, and
behavior of monsters in game (Seu et al 2004).
They found that monsters special qualities could
be evolved according to their environments by
using GA technique. Group movement was

expressed by the flocking algorithm. However,
actual learning was restricted to animal behaviour
such as looking for food. Also, the length of time
spent before monsters displayed satisfactory
intelligent behaviour was not discussed. Spronck
proposed a novel technique called “Dynamic
Scripting” (Spronck et al 2004). Dynamic
scripting used an adaptive rulebase for the
generation of intelligent opponent AIs on the fly.
In his experiment, a module for the commercial
game NEVERWINTER NIGHTS (NWN; 2002)
was created. A group of agents using dynamic
script were pitted against various groups of pre-
coded opponents. The results showed that dynamic
scripting succeeds in providing clever AI in an
acceptable period of time (around 50 battles
needed for fighting with well coded opponents).
However, a predefined rulebase was needed in this
technique, meaning the actual time when learning
from scratch was longer. Furthermore, although an
agent learned using information from other agents
in its team, one agent could only learn for itself at
one time. A genetic algorithm was later used to
create a rulebase for dynamic scripting (Spronck et
al 2005). However, the work was carried out as an
offline learning and learning time from scratch
was not discussed. Stanley introduced the real-
time NeuroEvolution of Augmenting Topologies
(rtNEAT) (Stanley et al 2002). This is a learning
method that was extended from NeuroEvolution of
Augmenting Topologies for evolving increasingly
complex artificial neural networks in real time, as
a game is being played. The rtNEAT method
allows agents to improve play style during the
game. He demonstrated a new genre of games in
which a player trains an agent team to compete
with another player’s team in NeuroEvoling
Robotic Operatives (NERO) game (Stanley et al
2005). However, the nature of NERO implies that
only one player can be training agents at one time.

MMORPG provides a very different environment
and gameplay compared to other kinds of games.

With a massive number of players, these players
can act as trainers for an evolving agent. Also,
players spend more time playing MMORPG than
other genres of games, and persistent world is used
as a setting. This means MMORPG is likely to be
a great environment for fast learning, even though
we may use a slow learning method such as a GA.
This paper presents the result of an experiment
that evolves a player’s helper in a commercial
MMORPG game using a genetic algorithm. We
call our player assistant a “Learnable Buddy”.

Our learnable buddy technique has been tested by
using the MMORPG server emulator of eAthena
and custom client of OpenKore. eAthena is an
open-source project, emulating a Ragnarok Online
Server. It is written in C. Using its server
emulator, a game server can be simulated and
studied. OpenKore is an advanced bot for
Ragnarok Online. It is free, open-source and cross-
platform. In real MMORPG, many human players
play in the same game server. We simulate human
players by using OpenKore. Learnable buddy also
makes good use of OpenKore. By modifying
OpenKore code, we build AI-control units that are
able to learn to improve their behavior.

Learnable Buddy

Learnable Buddy uses a genetic algorithm to set its
configuration, which is a bot script. By evolving
the chromosome of our population bots, our bots
are able to perform various behaviors. The system
consists of the following components.

Figure 1: Learnable Buddy system overview.

1. Server: The game server sends game state
information to every client and receives
commands from clients. It keeps updating
game state.

2. Player: All players are online, each can
give us feedback.

3. Bot: Our bot is a supportive AI that travels
along with a player. That player is a master
and the bot is a slave. Bot systems have
already been in use in various commercial
games, such as the homunculus system in
Ragnarok Online (RO; 2006). In Raknarok
Online, players who play the alchemist or
the biochemist can get a homunculus. The
homunculus system surpasses other
commercial MMORPG bots such as
Guildwars’s pet (Guildwars; 2006) because
players are able to manually rewrite the
bot’s AI script. In this study, instead of
using monsters as bots, we used player’s
character class as our supportive AI
because a player character can perform
more varying kinds of behavior. OpenKore
was used to control each supportive AI.
OpenKore was modified to send
information and receive commands from
the bot manager.

4. Bot manager: A module was written in
Java. This module receives information
from each bot, then determines their fitness
and replaces low fitness bots with new
ones. The detail is described below.

Figure 2: The replacement cycle

A bot plays using the first script it receives from
the bot manager for a fixed period of time. Then,
the bot manager will determine the fitness of each
script. For this study, we use a fixed fitness
equation. The fitness is calculated based on
experience points a bot receives and the number of
times that bot dies during the period. The value of
fitness F, for bot b, is formally defined as:

2)(
)()(

bntbotDeadCou
bourbotEXPperHbF =

The experience points that a master or its slave bot
gain from any action will be divided in half. The
bot receives the same amount of experience points

BenQ
Placed Image

BenQ
Placed Image

as its master. New chromosome generation is
similar to regular GA techniques. First, good
parents are chosen. Half of the bot population,
whose with high fitness, are selected to produce
offsprings that replace the half with lower fitness
result. Each couple will perform a crossover,
obtaining two new chromosomes. After that, new
chromosomes will go through mutation. After a
new chromosome is generated, the bot manager
will read its attributes, transforming the attributes
into a script, and replace a poorly performed bot
with the new script.

Figure 3: Example of chromosome to script

translation

The openKore main script consists of 2 formats.
The first format is of the form:

<configuration key> <value>

This format is used for a simple task. For example,
in order to specify whether our OpenKore bot
automatically attacks monsters, we use the
following script:

attackAuto 1

where the proper value for this configuration is 0
(false) or 1 (true).

The second format is of the form:

<configuration key> <value> {
 <attribute1> <value1>
 <attribute2> <value2>

}

This format is called “block” format. It is used for
a complicated task. In figure 3, OpenKore will use
level 10 Heal skill on itself when its hp is less than
70% and its sp is greater than 30%. With this
configuration structure, it is quite straightforward
to translate between a script and its corresponding
chromosome.

After new scripts are generated from the
chromosomes of offsprings, half of the learnable
buddies that used to have lower fitness results will
reload new scripts and continue playing the game
for another fixed period of time before repeating
this cycle. The cycle can be done fast enough not
disrupt the game play.

THE EXPERIMENTS

We assessed the performance of parties of two
characters. We set up a private server using
eAthena server emulator. Each party had the same
members consisting of the following character.

1. Knight: The knights are bots that represent
the real players who play a game. In this
study, we used controlled experimental
environments such that every player shared
the same play style. All knights were
implemented with the same script. This
allowed learnable buddies to share their
knowledge and learn together in a
consistent way. The knights always attack
the nearest monster that no one attacks. If a
knight’s health is reduced to half, it will
rest until its health is fully recovered.

2. Priest: All priests are controlled by our
learnable buddy technique. They will try to
learn and adapt themselves to best serve
their master. The priests support the
knights with healing and buffing. Their
behavior follows the script that they
receive from the bot manager.

Testing was initiated using 16 pairs of knights and
priests. Every party played in the same map that
has only one kind of monster. The time cycle that
we used for our fixed period was 30 minutes.
Having a shorter cycle would affect the accuracy
of the fitness result because the number of enemies
faced might be too small and the fitness function
might not show its effect because of that. On the
other hand, our test platform could not run more
than 30 minutes without a bot failing due to too
much load the system had to handle. Therefore,
the cycle of 30 minutes was our best choice.

To quantify the performance of each learnable
buddy, after each time cycle, we calculated the

BenQ
Placed Image

fitness for each learnable buddy by the function
from our previous section and replaced poorly
performed bots with new ones. We ran 3 tests,
each test ran for 50 generations of learnable
buddy. The results of these experiments are
presented in the next section.

RESULT

Figure 4 shows fitness mean of bots. A solid line
represents fitness mean of each generation. It can
be observed that, from the beginning until around
the fifteenth generation our bots’ fitness mean
rapidly increases. The fitness does not vary much
after that. Figure 5 shows the result of figure 4
after smoothness adjustment, using polynomial
degree 5 trend line.

Result

0

50000

100000

150000

200000

250000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generation

Fi
tn

es
s M

ea
n

Result 1
Result 2
Result 3
Manually scripted bot

Figure 4: Resulting graph of learnable buddy,
using three test runs.

Result

0

50000

100000

150000

200000

250000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generation

Fi
tn

es
s M

ea
n Result 1

Result 2
Result 3
Manually scripted bot
Polynomial (Result 1)
Polynomial (Result 2)
Polynomial (Result 3)

Figure 5: Resulting graph of learnable buddy after
smoothness adjustment using polynomial degree 5
trend line.

Result

0

50000

100000

150000

200000

250000

300000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generation

Be
st

 F
itn

es
s Result 1

Result 2
Result 3
Manual script

Figure 6: Resulting graph of best fitness in each
generation competing against best fitness of our
manully scripted bot.

We observed and compared the 15th generation of
learnable buddies with manually scripted
supportive characters configured by an
experienced game player. The mean fitness of our
bots came close to the mean fitness of the
manually scripted bot. Not all of our best bots in
the 15th generation could beat the manually
scripted bot's best score. But observing the results
for their future generations suggested that our best
bots could compete well with the manually
scripted bot (see figure 6). From the result, we
believe that, in order to help one master with a
task, our learnable buddies can improve
themselves to their proper performance in around
fifteen generations or 7.5 hours of playing. The
survey from America Online shows that teenage
players spend 7.4 hours per week on average
playing online games (AOL 2004). Therefore our
7.5 hours figure is significant. It means one task
can be learned in just a week for the same group of
real players. Most MMORPGs plan to let players
play for several months or maybe a year, therefore
one week is considered to be very efficient. It can
even be improved further. A bot can be kept
running for 24 hours by assigning it to another
player. Therefore, fast learning for a task can be
achieved.

CONCLUSION AND FUTURE WORK

In this paper we investigated whether
evolutionary-learning can provide fast online
adaptation of player supportive AI in commercial
MMORPG. From our experimental results, we
conclude that genetic algorithm is fast and
effective enough for commercial MMORPG. The

original game does not need to be adjusted in any
way. Different genes can be used for different
tasks and players can switch between tasks to
allow more suitable behaviour at each situation.

Currently, our bot manager only supports fixed
fitness function given by game developers. That
means, only common tasks can be learned. To
allow supporting AI to be able to learn more tasks
or even improve upon old tasks, especially ones
specific to events or groups of players, players
must be able to craft their own fitness function
through an intuitive interface. We also plan to
experiment with genetic programming, which
allows builds-up of complex behaviour. One of
our research goals is to be able to categorize
player behavior while playing. This will permit
learnable buddies to automatically switch to the
script that best fits the situation, thus adding more
sense of realism.

ACKNOWLEDGMENT

This research is sponsored by
Ratchadaphiseksomphot Endowment Fund,
Chulalongkorn University.

REFERENCES

Kenneth O. Stanley, Bobby D. Bryant and Risto
Miikkulainen. 2005. “Evoling Neural Network
Agents in the NERO Video Game.” In Proceeding
of IEEE 2005 Symposium on Computational
Intelligence and Games (CIG’05).

Kenneth O. Stanley and Risto Miikkulainen. 2002.
“Efficient Reinforcemant Learning through
Evoling Neural Network Topologies.” In
Proceedings of Genetic and Evolutionary
Computation Conference (GECCO-2002).

Kenneth O. Stanley and Risto Miikkulainen. 2002.
“Evolving Neural Networks through Augmenting
Topologies.” The Massachusetts Institute of
Technology Press Journals, Evolutionary
Computation 10(2). 99-127

Jai Hyun Seu, Byung-Keum Song and Heung Shik
Kim. 2004. “Simulation of Artificial Life Model in
Game Space.” Artificial Intelligence and
Simulation, 13th International Conference on AI,
Simulation, and Planning in High Autonomy
Systems. 179-187

Marc J.V. Ponsen, Héctor Muñoz-Avila, Pieter
Spronck, and David W. Aha. 2005.
“Automatically Acquiring Adaptive Real-Time
Strategy Game Opponents Using Evolutionary
Learning.” Proceedings, The Twentieth National
Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial
Intelligence Conference, pp. 1535-1540. AAAI
Press, Menlo Park, CA.

Pieter Spronck, Ida Sprinkhuizen-Kuyper and Eric
Postma. 2004. “Online Adaptation of Game
Opponent AI with Dynamic Scripting.”
International Journal of Intelligent Games and
Simulation, Vol 3 No 1, 45-53

America Online (2004)
http://www.aol.com

eAthena (2006). Ragnarok Online Server Emulator
http://www.eathena.deltaanime.net

GuildWars (2006)
http://www.guildwars.com

Neuro-Evolving Robotic Operatives (2006)
http://nerogame.org

NEVERWINTER NIGHTS (2002)
http://nwn.bioware.com

OpenKore (2006). Ragnarok Online Bot
http://www.openkore.com

Ragnarok Online (2006)
http://www.ragnarokonline.com

