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ABSTRACT 
 
In commercial massively-multiplayer online role-
playing games (MMORPG), players usually play 
in a populated environments with simple non-
player game characters. These non-player 
characters have fix behaviour. They cannot learn 
from what they experience in the game. However, 
MMORPG environments are believed to be 
greatly suitable for training AI, with plenty of 
players to provide tremendous amount of 
feedback, and persistent worlds to provide 
learning environments. This paper presents an 
experiment to find out the potential of MMORPG 
environments for fast learning evolutionary AI. 
The genetic algorithm is chosen as our learning 
method to train a non-player character to assist 
real players. We use a game server emulator and 
custom game clients to simulate and run a 
commercial MMORPG. Clients are divided into 
two groups,  real players and “helpers”. The 
results show that helpers can learn to assist real 
players effectively in small amount of  time. This 
confirms that evolutionary learning can be used to 
provide efficient learning in commercial 
MMORPG. It also verifies that MMORPG provide 
great platforms for research in evolutionary 
learning. 
 
INTRODUCTION 
 
Recent game AI research and developments in 
online games are mostly focused on player 
opponent AI. Seu simulated and tested the system 
for evolving distribution, physical parameters, and 
behavior of monsters in game (Seu et al 2004). 
They found that monsters special qualities could 
be evolved according to their environments by 
using GA technique. Group movement was 

expressed by the flocking algorithm. However, 
actual learning was restricted to animal behaviour 
such as looking for food. Also, the length of time 
spent before monsters displayed satisfactory 
intelligent behaviour was not discussed. Spronck 
proposed a novel technique called “Dynamic 
Scripting” (Spronck et al 2004). Dynamic 
scripting used an adaptive rulebase for the 
generation of intelligent opponent AIs on the fly. 
In his experiment, a module for the commercial 
game NEVERWINTER NIGHTS (NWN; 2002) 
was created. A group of agents using dynamic 
script  were pitted against various groups of pre-
coded opponents. The results showed that dynamic 
scripting succeeds in providing clever AI in an 
acceptable period of time (around 50 battles 
needed for fighting with well coded opponents). 
However, a predefined rulebase was needed in this 
technique, meaning the actual time when learning 
from scratch was longer. Furthermore, although an 
agent learned using information from other agents 
in its team, one agent could only learn for itself at 
one time. A genetic algorithm was later used to 
create a rulebase for dynamic scripting (Spronck et 
al 2005). However, the work was carried out as an 
offline learning and learning time from scratch 
was not discussed. Stanley introduced the real-
time NeuroEvolution of Augmenting Topologies 
(rtNEAT) (Stanley et al 2002). This is a learning 
method that was extended from NeuroEvolution of 
Augmenting Topologies for evolving increasingly 
complex artificial neural networks in real time, as 
a game is being played. The rtNEAT method 
allows agents to improve play style during the 
game. He demonstrated a new genre of games in 
which a player trains an agent team to compete 
with another player’s team in NeuroEvoling 
Robotic Operatives (NERO) game (Stanley et al 
2005). However, the nature of NERO implies that 
only one player can be training agents at one time. 
 
MMORPG provides a very different environment 
and gameplay compared to other kinds of games. 



 

With a massive number of players, these players 
can act as trainers for an evolving agent. Also, 
players spend more time playing MMORPG than 
other genres of games, and persistent world is used 
as a setting. This means MMORPG is likely to be 
a great  environment for fast learning, even though 
we may use a slow learning method such as a GA.  
This paper presents the result of an experiment 
that evolves a player’s helper in a commercial 
MMORPG game using a genetic algorithm. We 
call our player assistant a “Learnable Buddy”. 
 
Our learnable buddy technique has been tested by 
using the MMORPG server emulator of eAthena 
and custom client of OpenKore. eAthena is an 
open-source project, emulating a Ragnarok Online 
Server. It is written in C. Using its server 
emulator, a game server can be simulated and 
studied. OpenKore is an advanced bot for 
Ragnarok Online. It is free, open-source and cross-
platform. In real MMORPG, many human players 
play in the same game server. We simulate human 
players by using OpenKore. Learnable buddy also 
makes good use of OpenKore. By modifying 
OpenKore code, we build AI-control units that are 
able to learn to improve their behavior. 
 
Learnable Buddy 
 
Learnable Buddy uses a genetic algorithm to set its 
configuration, which is a bot script. By evolving 
the chromosome of our population bots, our bots 
are able to perform various behaviors. The system 
consists of the following components. 
 

 
 

Figure 1: Learnable Buddy system overview. 
 

1. Server: The game server sends game state 
information to every client and receives 
commands from clients. It keeps updating 
game state. 

2. Player: All players are online, each can 
give us feedback. 

3. Bot: Our bot is a supportive AI that travels 
along with a player. That player is a master 
and the bot is a slave. Bot systems have 
already been in use in various commercial 
games, such as the homunculus system in 
Ragnarok Online (RO; 2006). In Raknarok 
Online, players who play the alchemist or 
the biochemist can get a homunculus. The 
homunculus system surpasses other 
commercial MMORPG bots such as 
Guildwars’s pet (Guildwars; 2006) because 
players are able to manually rewrite the 
bot’s AI script. In this study, instead of 
using monsters as bots, we used player’s 
character class as our supportive AI 
because a player character can perform 
more varying kinds of behavior. OpenKore 
was used to control each supportive AI. 
OpenKore was modified to send 
information and receive commands from 
the bot manager. 

4. Bot manager: A module was written in 
Java. This module receives information 
from each bot, then determines their fitness 
and replaces low fitness bots with new 
ones. The detail is described below. 

 

 
 

Figure 2: The replacement cycle 
 
A bot plays using the first script it receives from 
the bot manager for a fixed period of time. Then, 
the bot manager will determine the fitness of each 
script. For this study, we use a fixed fitness 
equation. The fitness is calculated based on 
experience points a bot receives and the number of 
times that bot dies during the period. The value of 
fitness F, for bot b, is formally defined as: 

2)(
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The experience points that a master or its slave bot 
gain from any action will be divided in half. The 
bot receives the same amount of experience points 
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as its master. New chromosome generation is 
similar to regular GA techniques. First, good 
parents are chosen. Half of the bot population, 
whose with high fitness, are selected to produce 
offsprings that replace the half with lower fitness 
result. Each couple will perform a crossover, 
obtaining two new chromosomes. After that, new 
chromosomes will go through mutation. After a 
new chromosome is generated, the bot manager 
will read its attributes, transforming the attributes 
into a script,  and replace a poorly performed bot 
with the new script. 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 3: Example of chromosome to script 

translation 
 
The openKore main script consists of 2 formats. 
The first format is of the form: 

<configuration key> <value> 
 

This format is used for a simple task. For example, 
in order to specify whether our OpenKore bot 
automatically attacks monsters, we use the 
following script: 

attackAuto 1 
 

where the proper value for this configuration is 0 
(false) or 1 (true). 
 
The second format is of the form: 

<configuration key> <value> { 
  <attribute1> <value1> 
  <attribute2> <value2> 

} 
 
This format is called “block” format. It is used for 
a complicated task. In figure 3, OpenKore will use 
level 10 Heal skill on itself when its hp is less than 
70% and its sp is greater than 30%. With this 
configuration structure, it is quite straightforward 
to translate between a script and its corresponding 
chromosome. 

 
After new scripts are generated from the 
chromosomes of offsprings, half of the learnable 
buddies that used to have lower fitness results will 
reload new scripts and continue playing the game 
for another fixed period of time before repeating 
this cycle. The cycle can be done fast enough not 
disrupt the game play. 
 
 
THE EXPERIMENTS 
 
We assessed the performance of parties of two 
characters. We set up a private server using 
eAthena server emulator. Each party had the same 
members consisting of the following character. 
 

1. Knight: The knights are bots that represent 
the real players who play a game. In this 
study, we used controlled experimental 
environments such that every player shared 
the same play style. All knights were 
implemented with the same script.  This 
allowed learnable buddies to share their 
knowledge and learn together in a 
consistent way. The knights always attack 
the nearest monster that no one attacks. If a 
knight’s health  is reduced to half, it will 
rest until its health is  fully recovered. 

2. Priest: All priests are controlled by our 
learnable buddy technique. They will try to 
learn and adapt themselves to best serve 
their master. The priests support the 
knights with healing and buffing. Their 
behavior follows the script that they 
receive from the bot manager. 

 
Testing was initiated using 16 pairs of knights and 
priests. Every party played in the same map that 
has only one kind of monster. The time cycle that 
we used for our fixed period was 30 minutes. 
Having a shorter cycle would affect the accuracy 
of the fitness result because the number of enemies 
faced might be too small and the fitness function 
might not show its effect because of that. On the 
other hand, our test platform could not run more 
than 30 minutes without a bot failing due to too 
much load the system had to handle. Therefore, 
the cycle of  30 minutes was our best choice.    
 
To quantify the performance of each learnable 
buddy, after each time cycle, we calculated the 
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fitness for each learnable buddy by the function 
from our previous section and replaced poorly 
performed bots  with new ones. We ran 3 tests, 
each test ran for 50 generations of learnable 
buddy. The results of these experiments are 
presented in the next section. 
 
RESULT 
 
Figure 4 shows fitness mean of bots. A solid line 
represents fitness mean of each generation. It can 
be observed that, from the beginning until around 
the fifteenth generation our bots’ fitness mean 
rapidly increases. The fitness does not vary much 
after that. Figure 5 shows the result of figure 4 
after smoothness adjustment, using polynomial 
degree 5 trend line. 
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Figure 4: Resulting graph of learnable buddy, 
using three test runs. 
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Figure 5: Resulting graph of learnable buddy after 
smoothness adjustment using polynomial degree 5 
trend line. 
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Figure 6: Resulting graph of best fitness in each 
generation competing against best fitness of our 
manully scripted bot. 
 
We observed and compared the 15th generation of 
learnable buddies with manually scripted 
supportive characters configured by an 
experienced game player. The mean fitness of our 
bots came close to the mean fitness of the 
manually scripted bot. Not all of our best bots in 
the 15th generation could beat the manually 
scripted bot's best score. But observing the results 
for their future generations suggested that our best 
bots could compete well with the manually 
scripted bot (see figure 6). From the result, we 
believe that, in order to help one master with a 
task, our learnable buddies can improve 
themselves to their proper performance in around 
fifteen generations or 7.5 hours of playing. The 
survey from America Online shows that teenage 
players spend 7.4 hours per week on average 
playing online games (AOL 2004). Therefore our 
7.5 hours figure is significant. It means one task 
can be learned in just a week for the same group of 
real players. Most MMORPGs plan to let players 
play for several months or maybe a year, therefore 
one week is considered to be very efficient. It can 
even be improved further. A bot can be kept 
running for 24 hours by assigning it to another 
player. Therefore, fast learning for a task can be 
achieved. 
 
CONCLUSION AND FUTURE WORK 
 
In this paper we investigated whether 
evolutionary-learning can provide fast online 
adaptation of player supportive AI in commercial 
MMORPG. From our experimental results, we 
conclude that genetic algorithm is fast and 
effective enough for commercial MMORPG. The 



 

original game does not need to be adjusted in any 
way. Different genes can be used for different 
tasks and players can switch between tasks to 
allow more suitable behaviour at each situation.  
 
Currently, our bot manager only supports fixed 
fitness function given by game developers. That 
means, only common tasks can be learned. To 
allow supporting AI to be able to learn more tasks 
or even improve upon old tasks, especially ones 
specific to events or groups of players, players 
must be able to craft their own fitness function 
through an intuitive interface. We also plan to 
experiment with genetic programming, which 
allows builds-up of complex behaviour. One of 
our research goals is to be able to categorize 
player behavior while playing. This will permit 
learnable buddies to automatically switch to the 
script that best fits the situation, thus adding more 
sense of realism.  
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