
AI-TEM: TESTING AI IN COMMERCIAL GAME WITH EMULATOR

Worapoj Thunputtarakul and Vishnu Kotrajaras
Department of Computer Engineering

Chulalongkorn University, Bangkok, Thailand
E-mail: worapoj.t@student.chula.ac.th, vishnu@cp.eng.chula.ac.th

KEYWORDS
Testbed , Artificial Intelligence, Commercial Game.

ABSTRACT
Many artificial intelligence (AI) game researchers find that it
is difficult to find a game environment that they can
appropriately test their AI on. They usually have to develop
parts of an existing game, using tools that come with the
game. Some even have to re-write their testing game from
scratch. Finding a perfect game environment that one can
use to test his AI is not easy, especially if a commercial-
quality game is required. Huge amount of time and effort are
lost in finding such ideal testbed. This paper presents AI-
TEM environment, a testing environment for testing AI by
using console game emulator and its ROM data to simulate
and run a commercial game. AI-TEM can be used to plug
many AI onto many commercial games. Researchers
interested in higher-level abstractions of game AI can test
their already developed AI algorithm on a commercial game.
We believe that AI-TEM adds a wider range of possibilities
to AI testing.

1 INTRODUCTION
Research and developments related to computer games have
always focused on graphical technology. However, players
have begun to demand for more playability. Recent games
have incorporated smart AI into their gameplay and became
very successful because of that. Therefore, research in AI is
important for the game industry. On the other hand, games
provide interesting testing environments for AI researchers.
 One problem faced by many researchers is to find or
develop a proper game environment to use in their AI testing
(Graepel et al 2004, Kendall and Spoerer 2004, Ponsen et al
2005). A game that should be used to test AI should have the
following qualities: It should be a game that has many ways
to play, many ways to win, and the game should be complex
enough to separate expert players from novice players. It
should be a commercial quality game. Because if
researcher's AI can win against its initial game AI, then
researchers can claim that the newly developed AI truly has
enough quality and efficiency to use in commercial game
(Spronck et al 2004).
 There are testbeds developed for testing AI (Aha and
Molineaux 2004, Bailey and Katchabaw 2005), but many of
them do not come with a complete game ready to be used.
Researchers will have to find a game or game engine to
integrate with it. Large amount of time may be used.
 This paper proposes another way to test game AI in an
environment that has been well made and well designed,
called AI-TEM (AI-Testbed in EMulator). AI-TEM uses an

emulator of Game Boy Advance (GBA), developed to test
many AI methods.
 In this paper, an emulator means a game console/handheld
emulator that simulates the working of game
console/handheld hardware such as GBA, PlayStation, and
arcade machine on any personal computer. There are many
emulators of console/handheld game hardware.
VisualboyAdvance (VBA) (VisualboyAdvance 2005) and
VisualboyAdvance Link (VBA Link) (VisualboyAdvance
Link 2005) are GBA emulators. ePSXe is a PlayStation
emulator. Even arcade machines have MAME as their
emulators.
 ROM (Read Only Memory) is the game data dumped
from the original game cartridge or disc. Using a game ROM
with its emulator, a game can be simulated and played on
PC.
 We used GBA emulator, VisualboyAdvance, for
developing a prototype of AI-TEM. And we used Street
Fighter Zero 3 (STZ3) game ROM as our test ROM, so that
we could experiment and write additional tools for a real
example. VBA is open-source, therefore we can modify its
functions. There are many interesting games on GBA that
can be used to test AI. VBA also has plenty of resources,
technical documents and support tools provided for us. The
VBA Link is an extended version of VBA. The VBA Link
team modifies original source code to make linkage possible.
In this paper we will call both VBA and VBA Link as VBA.
 STZ3 is a fighting game. In this type of game, a player
must select one character from many characters, and fight
one by one with an opponent character. A player must
decide what action he will perform in many different
situations based on his character and opponent character's
status. Therefore, we believe this is a good game for tuning
our testbed and for AI research.

2 AI-TEM FRAMEWORK
The concept of AI-TEM is generally simple but there is
some low-level work involved. Researcher's AI may need to
know game state data, such as object position or character
animation, but it cannot access the source code of the game.
The AI can only access the source code of the emulator. So
we must get the game state data from memory data the
emulator is emulating. We can see only a binary
(hexadecimal) value of game data that changes in every
cycle of a game execution. We must therefore find out which
address stores the value that we are interested in such as
position, animation, etc. We will use values in those
addresses as game state data for AI testing. When we know
the game state, AI can be written to react in each situation,
by sending a controller input, or forcing memory address
value. Using this concept, we can use AI-TEM as an AI
testing tool.

 Finding each address that stores those game state data is
difficult if done manually. Some values can be found easily,
while some are rather hard to find. User should have some
knowledge about programming in order to be able to identify
address more successfully. Some examples of how to find
the address of game data are demonstrated below.
 Example 1: Finding address of character’s health. Starting
by identifying all the values used in the game. Then the
game is played and the character’s health is forced to
decrease. The value that represents the character's health
should in fact decrease too. All game values are then
searched and compared with values before the health
decreases. It is common to find many values decreasing. The
process should be repeated, with different values of health,
until one address is identified.
 Example 2: Character's bullet position. The concept is the
same as the character's health example. When a bullet moves
forward, its position value should increase continuously. But
the time period that the bullet is alive is very short.
Therefore, repeating the experiment as many times as one
wants becomes difficult. If users must press a command
every time that they want to find a value, it will not be
convenient. A tool that can arrange this situation is needed,
such as movie recorder (section 3.0).
 We had developed some tools to help finding the address
more easily and will describe it in section 3.0 below. There
are other techniques to find values that we will not discuss in
this paper.
 Therefore, in the beginning phase of using AI-TEM, the
user must find the address of game state data that their AI
module needs to know. AI-TEM is depicted in figure 1 and
2, and discussed in more detail in the sections below.

Figure 1: AI-TEM system overview.

2.1 Emulator Core (VBA)

The core of this testbed is VBA (Link) emulator. It is used to
run game ROM and simulate the game. It also has many
tools useful for getting game state and testing AI. These
tools will be described in section 3.1.

2.2 Menu Control

We add a menu into the emulator to control the working of
AI-TEM, to turn on/off AI module or switch between
different AI modules. We can also activate other utilities that
the system may want to use.

2.3 Game State Observer

A game state can be known by observing data on the
memory address of the emulator and locating which address

stores the data that we want to know. (In STZ3, game states
that we are interested in consist of position of a character,
position of the character’s bullet, the character's health, and
current animation of the character.) We implemented this
module by modifying the memory viewer tools of VBA.
Users can identify addresses and size of data (8, 16, 32 bits)
that they are interested in. When AI-TEM is running, in
every frame, Game State Observer will copy the values from
those addresses to the data structure that an AI module can
use.

2.4 Game State Normalizer

Before Game State Observer sends game state data to AI
module's data structure, the game state data must be
normalized or interpreted, depending on the game and
format of data that we obtain from the memory. Example:
For STZ3, we use address 0x20007C2 (16bits) as the
address that stores the character 1P position in the X axis.
The range of value that we got from that address is 44
(002C) to 620 (026C), 576 units. But when using it, we
should normalize x position value to 0 - 576 for user
friendliness. Therefore, we must subtract 44 from the value
copied from the memory of the emulator. This normalization
process is not necessary if researchers do not care about the
format of raw data from the memory. We currently provide
this module as a code template for users to modify.

Figure 2: Work flow diagram of AI-TEM system.

2.5 AI

This module is where a user of AI-TEM will put his AI
module in. In every cycle of emulation, the emulator will
execute this module. This module evaluates the game data
and decides what controller input it will send to the
controller module. There is enough of VBA CPU power for
calculating non-intensive work, such as script (Dynamic
script (Spronck et al 2004), Genetic Programming result
script, etc.). With extension, other AI methodologies can
also be added. In our experiment with the system, we write
two static scripts for testing the use of AI-TEM. The detail
and result of this script will be shown below in section 4.1.

2.6 Python Script Interface

Python (Python 2006) is an interpreted, interactive, object-
oriented programming language. It is also usable as an
extension language for applications that need a
programmable interface. Python is portable: it runs on many

OS such as Windows and Linux. It is one of the most
famous script languages used in many applications.
 We modified the emulator to have an ability to use python
script language, providing interface functions for a script
writer to obtain game state data and to control the game via
any AI module. A script writer can write their python script
separately without running the emulator, and can change
script without recompiling AI-TEM. This will benefit users
who want to test their AI with static script. If researchers can
generate AI output in python script format, it can be tested
conveniently without the need of rerunning the game.
Example of an interface function used in the testing of STZ3
is shown below.
int GetCharacterPositionX (int C)
int PressButton(int button)

 The first function will return a position in the x axis of
character C. The second function will send a parameter
'button' to the Input Controller module. It allows a python
script to command character. Below is the example of
python script that uses those interface functions.
import myLib
def Main_AI_Run_Loop():
if (myLib.GetCharacterPositionX(P2) <10)
{
 return myLib.PressButton(PRESS_B)
}
return 0

myLib is a library of interface functions that we provide
from AI-TEM, it allows user of python script to use function
GetCharacterPositionX and PressButton. This
script results in character kicking (press B) when its
opponent comes closer than a specified threshold.

2.7 Input Controller

The original VBA captures signals from joystick or
keyboard and send them as input to a game. We modified the
system so that our AI module can replace input signals from
normal controller with its own signals.

Figure 3: Usage of tools in AI-TEM system.

3 AI-TEM UTILITY TOOLS
Other than modules described in section 2.0, AI-TEM has
other utility tools that can help in many tasks. Some of them
are original VBA tools that we use in our testbed. Some are

modified tools we made for our own use. The working of
these tools is shown in figure 3 and described below.

3.1 VBA Tools

These are original VBA tools that we had used in AI-TEM.
 Memory Viewer: used for displaying content of every
memory data address in a variety of formats, 8, 16, 32 bits,
sign, unsigned and hexadecimal. Our Game State Observer
is modified from this tool.
 Cheat Search: this tool is originally used for finding an
address of data that we want to find, by searching all of
memory and finding a value that matches a condition given
by user. For example, users can use it to find a value in the
address that is equal, greater or less than some specific
value. In AI-TEM, this tool is used to help in finding address
that Game State Observer will observe.
 Movie Recorder: this tool can record game movie in two
formats. VMV format will record only initial game state and
inputs given by controller. It has a very small file but can
playback only in emulator. AVI can playback in many movie
player programs but its file is larger and uses a lot of CPU
power. Movie recorder can help in a data collection process
(section 3.2) and can help recording the testing output or
debugging.
 Save/Load State: When running a game in the emulator,
the game state can be saved and reloaded to continue to play
at the same point where it was saved. This ability is useful
when researchers want to test decision conditions of their
AI. They can save game state before their AI makes decision
and can reload it to try another decision in perfectly the same
situation.

3.2 Modified Tools

Memory compare tool: As said in section 2.0, finding
address of value that AI module needs to know is difficult.
Therefore, we modified the original VBA tools to be
Memory compare tool. This tool will help in finding an
address of data, by comparing many game states data, given
a condition of data that users are seeking. Example: A user
wants to find the address of character's health in STZ3. He
will dump game states of various situations from the
emulator. We define the game state of situation N as GSn.
GS1: character's health is 100%.
GS2: character's health is 50%.
GS3: character's health is 75%.

The user will set conditions of the value he wants to find. In
this case, a health value address will have conditions as
follows: The value in our required address from state GS1
must be greater than the value from state GS2. The value in
our required address from state GS2 must be less than the
value from state GS3. And the value in our required address
from state GS3 must be less than the value from state GS1.
This tool will compare every data in those game states and
find the address that matches all user-given conditions
automatically, without any need to run the original cheat
search (The cheat search tool requires users to repeatedly
experiment and find any address manually.). If users provide
enough game states and proper conditions, finding a
required address should be straightforward. We believe this
tool can save a great deal of time finding those values.

 Automatic Data Collector: There are some situations that
we want to collect a lot of data from game state. It is difficult
to collect them manually. Example: In order to imitate
human reaction and decide its next response, an AI module
must know the animation of both characters. For example, if
an opponent character is going to punch, our character must
detect the opponent's movement and perform a guard. After
knowing the address that stores values of character
animation, we need to find out which value in that address
corresponds to which animation. (for example, 0 means
stand, 72 means crouch, 124 means jumping) Therefore, we
need some tools to help collecting game data (character
animation data).
 In STZ3, we modified the original VBA function that was
used for forcing values of addresses (Cheat function) to be a
tool for helping us to collect animation data. By writing a
value from the start animation value to the end of animation
value, we forced each character to do all of its actions. We
captured the character’s image of each action and saved it
with its animation value as its file name. We then knew the
animation value for each of a character’s action. Human
intervention was needed to identify the meaning of each
action. An animation database was then produced.

4 EXAMPLE EXPERIMENT IN STZ3
This section will discuss the result of using AI-TEM with
STZ3 ROM to create a simple, static script AI. Table 1
contains the addresses of STZ3 game state data that we
know by the method discussed in section 2.0. Table 2
contains some character animations from a character named
RYU, which we collected after normalization, by using stand
animation as a basis. (Each animation is composed of many
frames, so there are many values in each animation. Figure 4
shows some pictures of animations from table 2.

Table 1: Example address of STZ3 game state data.

Game State Data Address Data Size
character 1 position x axis 0x20007C2 16 bits
character 1 position y axis 0x20007C4 16 bits
character 2 position x axis 0x20043D2 16 bits
character 2 position y axis 0x20043D4 16 bits
character 1 Animation 0x20007D0 32 bits
character 2 Animation 0x20043E0 32 bits

Table 2: Example of character (RYU) animation.

Animation Value
Stand 0, 12, 24, 36, 48, 60
Crouch 276, 288, 300, 312, 72, 228, 240, 252, 264
Jump 420, 432, 468, 480, 492, 504, 516, 528, 444, 456
Punch (Figure 4) 8484, 8496, 8508, 8520, 8532, 8544, 8556
Kick (Figure 4) 9096, 9108, 9120, 9132, 9144, 9156, 9168

4.1 AI Script Experiment

In order to test our AI module and python interface, we had
implemented a static script to control a character in STZ3.
Our test condition for our static script is the character RYU
VS RYU in versus mode. This static script also allows us to
test our AI in a controlled situation. We implemented a static
script for character RYU. Our 1P’s RYU can detect states of
original game AI 2P’s RYU.

 Our first version of the script just randomly performs
action. The result was not as bad as we originally believed.
Even though it had no intelligence, it performed action
continuously and was able to beat the original game AI at
the easiest level. We improved our script in many aspects,
using animation data that we collected. Our static AI can
now sense distance between characters. We also script it not
to use special moves often, since special moves leave
characters defenseless. More combination attacks were also
added. We obtain a better result, as expected. Our static AI
can now beat the original game AI in middle level.
 This experiment convinced us that AI can make use of the
game state and animation of the opponent by using data in
section 4. We also have a fully working python interface
ready for creating future controlled situation.

Figure 4: Example pictures of animation values.

5 DISCUSSION
5.1 Outline steps of Using AI-TEM

Researchers must first find a game that is suitable for testing
their AI method or matches their experimental plan.
 Researchers then identify the game states data that their
AI module needs to know. In normal AI method, such as
scripting, an AI module needs to know only current
situations of the game. But in some AI method such as some
type of Reinforcement Learning, it needs to know a
complete set of actions that the agent can perform in every
situation.
 After that, they must find the address of game state data
that their AI needs to know.
 After the addresses are found, data must be collected from
those addresses and translated into a form that the AI can
understand.
 Finally, AI can be implemented. This topic will be
discussed in more detail in section 5.2.

5.2 Which AI method can AI-TEM be used with?

AI-TEM does not limit AI methods that it can be used with,
because its concept is only using an emulator as game
engine. Some AI methodology, however, requires extra
functions. For example, using Genetic Algorithm requires
running tests large amount of times, may be hundreds or
thousands generation. Therefore, automatic result recorder is
needed. High speed running mode will also be an additional
welcome, for it can save time to train AI.
 High speed mode is already available in VBA and many
other emulators. Not all games may allow us to provide
automatic running mode. This is because, if we cannot find
memory data address that tells us about the beginning and

the end of the game, we cannot force the situation. But in
general, automatic result collection can be done. Therefore,
various AI techniques can be used.

5.3 What kind of Game/AI-Subject should use AI-TEM?

If researchers are interested in first person shooter, real-time
strategies or D&D-style RPG game, there are games that
come with tools. Good testing environment for such games
can be built with such tools. Also, there are very few of
these games on consoles. AI-TEM may not be the first
choice for testing such games. If researchers are interested in
simple platform action game, writing a game from scratch or
finding some open source clone game is not a bad choice
because all environments of the game can be fully
controlled. However, developing games, from tools provided
by a game, or from an open source clone cannot easily get us
commercial-quality game. This is where AI-TEM can come
in. AI-TEM can be used to test an AI developed on a simple,
but fully controllable environment, against real commercial
game. In the case of racing game, it is difficult to know
game state data such as opponent car position and the track
situation. As a result, AI-TEM will not be appropriate. For
fighting game, we think that using AI-TEM is suitable,
because this type of game is rather difficult to make and
even more difficult to make it as good as commercial game.
Therefore, we think the tradeoff in the case of fighting game
is worthwhile. For sport game, we think that it is still
suitable to use AI-TEM, because of the same reason as
fighting game. Even though there may be many game states
that an AI module needs to know, finding them may be
easier than creating a high quality sport game from scratch.
Some AI researchers use Robocup simulation league to be a
testbed for their football AI research (Sean Luke 1997).
However, Robocup simulation league rules are still not the
same as real football rules.
 For other types of games/AI-subjects, researchers have to
consider the same factors as in this section.

5.4 The Limitation of using VBA in AI-TEM

To play a multiplayer mode in VBA (Link), two or more
instances of emulators have to be used. Controlling many
emulators at the same time while testing is not very
convenient. It will be better if the second instance can run in
the screen-off mode, in order to save CPU power.
 Sometimes two connected emulators do not synchronize.
This may damage the automatic module in long run.
Detecting game state of both VBAs becomes necessary. We
can then reload the game again if they do not synchronize.
 Although there are some inconveniences, AI-TEM
generally works well in our experiment. The emulator can be
fixed to tackle the problem.

6 CONCLUSION AND FUTURE WORK
Our work provides an environment for testing AI on a wider
range of commercial-quality games. Our experiment shows
that, with appropriate game ROM, AI-TEM meets the three
requirements in section 1 (test with a commercial-quality
game, the game should not be too simple and there are many
ways to play the game). Researchers can use AI-TEM to test
their AI against the game's original AI or against a human
opponent. Emulator players form huge communities,

therefore many players can help with AI testing. AI
developed by researchers can also be tested against AI
running on script. A well designed script can help an
evolutionary or learning AI improve in an appropriate
direction. Although the GBA is not as powerful as next
generation hardware, many games on GBA are regarded as
classics and have been re-released on several new platforms.
Therefore, AI-TEM is very much viable as testing
environment for commercial-quality games. And the
framework of AI-TEM should be adapted to more emulators
in the future.
 We plan to improve the implementation of the system and
its associated tools. To provide a package for AI research in
the future, we plan to collect the animation data of all
characters in STZ3. We also want to build a cooperative AI
for sport games using our testbed. The game WORLD
SOCCER Winning Eleven is a perfect candidate ROM for
the task. We also have plans to use another emulator with
AI-TEM, such as MAME or ePSXe, in order to access more
types of games. Multiplayer games can be run on MAME
and ePSXe without synchronization or performance
problems because only a single instance of emulator is
needed.

REFERENCES

 Aha, D.W., & Molineaux, M. 2004. Integrating learning
in interactive gaming simulators. Challenges of Game AI:
Proceedings of the AAAI'04 Workshop (Technical Report
WS-04-04). San Jose, CA: AAAI Press
 Bailey, C. and M. J. Katchabaw. 2005. An Experimental
Testbed to Enable Auto-Dynamic Difficulty in Modern
Video Games. Proceedings of the 2005 GameOn North
America Conference. Montreal, Canada.
 Graepel Thore, Ralf Herbrich, Julian Gold. 2004.
Learning to fight. International Conference on Computer
Games: Artificial Intelligence, Design and Education.
 Kendall Graham, Kristian Spoerer. 2004. Scripting the
Game of Lemmings with a Genetic Algorithm. Proceedings
of the 2004 Congress on Evolutionary Computation, IEEE
Press, Piscataway, NJ, pp.117-124
 Ponsen Marc J.V., Hector Munoz-Avila, Pieter Spronck,
and David W. Aha. 2005. Automatically Acquiring Domain
Knowledge For Adaptive Game AI Using Evolutionary
Learning. Proceedings The Twentieth National Conference
on Artificial Intelligence.
 Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson,
James Hendler. 1997. Co-Evolving Soccer Softbot Team
Coordination with Genetic Programming. First International
Workshop on RoboCup, at the International Joint
Conference on Artificial Intelligence.
 Spronck Pieter, Ida Sprinkhuizen-Juyper, Eric Postma.
2004. Online Adaptation Of Game Opponent AI With
Dynamic Scripting. International Journal of Intelligent
Games and Simulation, Vol. 3, No. 1, University of
Wolverhampton and EUROSIS, pp.45-53.
 Python (2006). Python Language
http://www.python.org
 VisualboyAdvance. (2005). GBA Emulator
http://vba.ngemu.com
 VisualboyAdvance Link. (2005). GBA Emulator
http://vbalink.wz.cz/index.htm

http://www.python.org/
http://vba.ngemu.com/
http://vbalink.wz.cz/index.htm

