
DATA ANALYSIS FOR GHOST AI CREATION
IN COMMERCIAL FIGHTING GAMES

Worapoj Thunputtarakul

Vishnu Kotrajaras
Department of Computer Engineering

Chulalongkorn University Bangkok Thailand
worapoj.t@student.chula.ac.th, vishnu@cp.eng.chula.ac.th

KEYWORDS: Ghost AI, Fighting Game, Case base

ABSTRACT

 In this paper we present a simple, rapid and efficient
method for creating a ghost AI, an Artificial Intelligence
that can imitate playing styles of players in fighting games.
The ghost AI created can perform combination actions and
make decision about any movement in a similar fashion to a
player it is copying. We scan a player’s battle data, and then
create situation-action pair cases for the corresponding
ghost AI to use in actual battles. A ghost AI can be created
and run swiftly, using small amounts of memory, making it
suitable for console games. Our method is general enough
to be used in most 2D and 3D fighting games. We carried
out our experiment on Street Fighter Zero 3, one of the
most well crafted fighting games, using AI-TEM testbed
engine.

1. INTRODUCTION

1.1 Ghost AI

 An Artificial Intelligence (AI) that can copy a player’s
playing style had been used in many games for some time.
In many racing games, a semi-transparent car, which
mimics the player’s controls from the previous race/lap, is
usually available for the player to race against himself.
That semi-transparent car is known as a ghost car. It is one
of the well known ghost AI systems that players recognize.
In fighting games there were various attempts at ghost AIs.
Virtua Fighter 4 [8] allows players to train computer AIs to
fight like them. Such ghosts can then be assigned to fight
another player. However, feedback from players was not
good at the time the game was released because it was hard
to train their ghosts case by case. Also, at that time, means
of ghost AI exchange and distribution were limited.
Therefore the idea was not popular. But in recent years,
ghost AI has again been used, in Tekken5: Dark
resurrection [6]. This time many things have been changed.
Players do not need to train their ghosts in a training mode,
they just play the game normally and the system will
mechanically create their ghosts. The created ghosts will
be used as computer characters randomly when other
players play the game. The ghost owners gain points if
their ghosts defeat other players. This method makes
fighting games more interesting because there will be
many fighting styles for computer controlled opponents.

Points gained by winning with their ghosts also motivate
players to create more ghosts. Any player can fight with an
expert without having to meet or make an online
appointment. Furthermore, advancement in network
systems allows people to easily exchange their ghosts and
form ghost AI communities [7]. Despite the fact that the
ghost AI system is being acknowledged as the definitive
AI for fighting games, the method for ghost AI creation
remains undisclosed. In this paper, we propose a method
for ghost AI creation using data obtained from game
memory. Our method can be used in most fighting games.
It also requires very small amounts of memory and
therefore is suitable for console games.

1.2 Street Fighter Zero3 (SFZ3)

 Street Fighter Zero3 [5] on Nintendo GameboyAdvance
(GBA) [3] is an almost perfectly ported version of the
original Street Fighter Zero3 from arcade machines (CPS2
board system). This game is regarded as one of the best
fighting games of all times [2].

 In a fighting game, a player must select one character
from many characters, and fight one by one with an
opponent character (another player or computer AI). A
character can perform normal action such as move, crouch,
jump, guard, punch or kick. There are also special attacks,
such as firing bullets or executing a powerful flying punch.
These special actions can be performed when a player
presses a correct sequence of commands at the right time. A
player must choose to perform actions in various situations
based on the status of his character and opponent character.
Getting into action with SFZ3 requires only a few minutes
of tutorial. Nevertheless, the game has many ways to play a
single character. For that reason, we have chosen SFZ3 as
our game for experimenting with the ghost AI.

1.3 Testbed Environment

 For the reliability of experimental results, game
researchers may want to test their AI on real commercial
game environments (Graepel et al 2004). But such
environments are scarcely available. Results obtained from
a researcher created game may not be convincing enough to
warrant an actual use of discovered techniques in genuine
games. Some researchers used mod of a commercial game
(Spronck et al 2004), or a clone game (Ponsen et al 2005).

Some developed test games on their own (Demasi and
Adriano 2002, Kendall and Kristian 2004) or used a testbed
(Bailey and Katchabaw 2005). But none of those methods
fit our experimental goal. (Thunputtarakul and Kotrajaras
2006) proposed a system to test AI modules in real
commercial games without using any source code. They
implemented a testbed from VisualboyAdvance[9], a
Nintendo GameboyAdvance emulator. The testbed was
called AI-TEM [1]. An overview of AI-TEM is presented in
figure 1 and its workflow diagram is presented in figure 2.
By accessing the memory pool of the emulator, AI-TEM
users are able to know states of the game at any particular
moment. For fighting games, a state can consist of
characters’ positions, current animation frames, health
points, etc. Users can insert their AI modules, in the form of
C/C++ code or python [4] script, into the testbed to control
the game characters by providing controller signals.

 An AI-TEM user must first identify game states data that
his AI module needs to know. After that, he must find the
address of those game states data in the emulator memory
address pool. This step can be done by memory searching
and comparing techniques (Thunputtarakul and Kotrajaras
2006). It can be argued that for some games, this is a
difficult task. However, it is still easier to do than
implementing a complete commercial game from scratch.
Our work uses AI-TEM as its testbed.

Figure 1: AI-TEM Testbed System Overview.
The Light Blue Modules are VBA Original Modules.

Figure 2: Workflow Diagram of AI-TEM System in SFZ3.

2. OUR APPROACH FOR CREATING GHOST AI

 The main concept of our ghost AI creation is case based
AI construction. We extracted a player character’s reaction
in various situations from battle log data created while

playing, then created situation-action pairs for the ghost of
that character. Our experiment was made using SFZ3
training mode with character Ryu versus Ryu. AI-TEM was
modified to suit our experiment. The ghost AI creation
processes are displayed in figure 3. The following
subsections describe each component in the process.

2.1 Obtaining Player Battle Log Data

 First, while a player is playing, game states data need to
be dumped from memory onto a battle log file. The data are
used to identify each case in the case based AI system. The
data consist of characters animation, characters positions in
x and y axes, characters health points, characters bullet
positions in x axes, damage that characters obtain in that
frame, player character’s facing direction and the corner
status of characters. Recorded battle log data is in the
following form:

Frame Data no: 00001
P1:Ani=002,X=120,Y=40,bullet=0,damage=0,HP=90
P2:Ani=002,X=240,Y=40,bullet=0,damage=0,HP=90
 :

Frame Data no: 00720
P1:Ani=016,X=150,Y=40,bullet=0,damage=0,HP=30
P2:Ani=030,X=560,Y=40,bullet=0,damage=5,HP=20

 These criteria can change depending on game or user.
Creating the ghost AI while the game is running without
creating the battle log file is possible if complete
information about the game mechanic is known (such as
short or shared animation frame, that will be described in
section 2.3). For SFZ3 on AI-TEM, we did not have such
information. Therefore we had to use the log file.

Figure 3: Overall Processes of Ghost AI Creation.

2.2 Animation Set Database

 An animation set database is used for identifying whether
a character animation frame belongs to an animation set.
An example is illustrated in Figure 4. Ryu animation frame
number 0 to 6 belong to animation set ID 0, which
represents Ryu’s standing animation, while frame number
707 to 713 belong to Ryu’s medium punch action, set ID
150. Animation sets play an important role when processing

Emulator
Core

(VBA)

Game ROM

Menu Control

Game

State

Observer

Game

State

NormalizeCustom
AI

Module

Python
Interface

Input Controller

Game State Observer
1P Position X

Address: 0x20007C2
Value(16 bits): 002C(h)

002C = 44

Game state Normalizer
Normalize by subtract 44

1P Position X = 0

AI (run loop)
Char1.m_posX = 0

delta = abs(char1.m_posX –
char2.m_posX);

If (delta <= 10)
{

// do attack… press A button
}

AI (update)

Character Class

m_healthPoint:
m_posX:
m_posY:
m_animation:

AI (run loop)
Char1.m_posX = 0

delta = abs(char1.m_posX –
char2.m_posX);

If (delta <= 10)
{

// do attack… press A button
}

AI (update)

Character Class

m_healthPoint:
m_posX:
m_posY:
m_animation:

Input
Controller
Module

Signal
PRESS_A Save

-

Animation
Set

Database

Save Ghost AI

Ghost AI Creator

Scan Battle Log Data
(Create Ghost AI)

Animation
Set

Database
Animation

Set
Database

Scan & Mark Short
Animation

Deep Scan

Encryption

Scan Changed
Animation

Scan & Mark
Exception Animation

Obtain
Battle Log
Data

the battle log file. Together with the battle log file, the
animation sets are used to create situation-action pair cases.
In our experiment, we manually defined this database.
There are totally 912 frames for character Ryu. This seems
daunting. However, it is relatively easy for a game
company to do because any game development team
usually has access to animation data.

Figure 4: Example of Animation Set Database.

2.3 Scanning Battle Log Data

 This process scans through every frame of a player’s
battle log data, trying to find which situation the player
decided to begin his new animation set. For example, in
situation A player1 is standing on the ground at position
x=120 and player2 approaches player1 by jumping in the
air at position x=150, both characters have full health bars
and no bullets. Player1 decides to perform the special anti-
air attack called Shoryuken punch. In short, the following
situation-action pair will eventually be created:
if (Situation == A) do SHORYUKEN;
 Now we look at this process in more detail. The process
contains the following subtasks:

2.3.1 Finding short animation

 Short animation means any animation that occurs for a
very short period of time. It takes place mostly when a
character is changing over from any standing animation
loop to crouching animation loop. See an example
animation time frame in figure 5. In figure 5, our character
is standing then intends to do a crouching kick, but the
crouching kick is not performed immediately. Before the
crouching kick is carried out, a short period of moving
forward and crouching animation is performed. This can
happen due to the player not inputting the right command.
For a crouching kick to be performed correctly without any
prefix animation, the player needs to press down and kick at
the same time on his control pad. In figure 5, the player
presses down before kick and also unintentionally presses
forward at the same time as down. Therefore extra
animation is triggered. Nevertheless, the crouching kick is
eventually performed and the prefix animation is so fast a
human eye cannot see. We cannot avoid such minor
mistakes made by players.

 In our ghost AI model, detected animation frames tell us
about a player’s intention. Therefore, having the short
animation taking place before the intended animation can

misinform us. We must either identify a player’s intention
from the overall animation or get rid of the short animation
before processing. In our experiment, we chose to do the
latter.

 All battle log data need to be scanned to find which
animation set appears unusually brief, then that set is
marked. Marked animation will not be considered when
creating the AI. For a set of animation to be considered
short, it depends on the set. In our experiment with SFZ3,
short animation was no longer than 6 frames for most of the
animation sets. The only exception was the crouching
animation, of which short animation was no longer than 14
frames because changing from standing to crouching
already took 8 frames.

Figure 5: Short Animation Marking.

2.3.2 Deep scanning

 Some animation frames are shared between many
animation sets. In such case, scanning ahead becomes
necessary in order to identify the correct animation set. For
example, jump straight, jump forward and jump backward
begin with the same animation frames at the beginning.
With the first frame obtained, we can only conclude that the
character is doing an anonymous jump. With further
scanning, we then know which jump the player intends to
do and can go back to change from an anonymous jump to
a specific jump. This step can be omitted if the controller
signal can be completely analyzed. But this is not always
the case.

2.3.3 Exception Animation Sets

 Some animation sets should be omitted from our case
base because they do not take place under players’ control.
Obvious examples are various damage animation sets. They
occur as the results of opponent attacks. This type of
animation that appears in the battle log data will be marked
here.

2.3.4 Scanning Changed Animation

 This step is the core of our ghost AI creation. After
matching all animation frames to their corresponding
animation sets and marking useless animation, it is time to
scan the battle log data once more to find the situation that
causes the player character to change its animation. Such
situation and the changed animation set that it causes will
be paired to create a situation-action case.

 An example is shown in figure 6, where a player executes
a crouching heavy kick. In 7th-8th frame, our character
changes its animation set from standing to moving forward.
But moving forward lasts only 2 frames so it is a short
animation. It is marked useless and the next animation to
consider will be crouching. However, this crouching is also

0 1 2 3 4 5 6

707 708 709 710 711 712 713

Animation Set 0: Standing

Animation Set 15: Medium Punch

Stand

2 2 2 2 2 3 7 2 2 2 2 22 2 2 2 2 3 7 2 2 2 2 2

Move Forward Crouch Crouch Kick Heavy

Example time frame (1f = 1/60 sec)
....

2 2 2 2 2 M M 2 2 2 2 2

a short animation and therefore marked useless (a proper
crouching must last 14 frames or more). As a result, the
next animation (crouching heavy kick) will be taken into
account. The crouching heavy kick does not fit useless
animation category, so it is regarded as the changed
animation set. Therefore the (situation at 7th frame,
crouching heavy kick) is added to the case based AI.

Figure 6: Scan Animation Change.

2.3.5 Situation Encryption

 If the game needs to compare ten or more criteria
(animation, position, bullet, etc.) to judge whether the
current situation in the game is the same as any existing
condition in our situation-action database, it will be a waste
of processing power. Any game situation should be defined
in simple form for easy comparison and discovery. We
propose a method to encrypt a fighting game state situation
into a 32-bit integer (capable of holding 4,294,967,296
values). The bits can be divided into small 1-8bits sections
as shown in table 1.

Table 1: Detail of Situation Encryption.

• Bit 1 to 8 store the animation set ID of the action that the
player character performs in that frame situation. The
animation set value comes from the animation set database
described in section 2.2. The number of animation sets for
one character in a typical fighting game is between 60 to
100 sets. Our 8 bit can store up to 256 animation set ID,
therefore it is capable of dealing with future games or
games with extra animation sets.

• Bit 9 to 12 store the distance (in the x axis) between two
characters. First, the distance is calculated and stored in
variable absDeltaX. Then the distance table (shown in figure
7) is checked and the bits are set accordingly. A character
position is at the middle of its sprite. For example, the
distance between the two characters in figure 7 falls into
range 8. Ranges do not separate equally. A close range will
be more precise than a far range, because it plays a critical
role in combination attacks. A table is specific for each

character, but can easily be modified for other characters,
including characters in different games.

• Bit 13-14 keep the y axis distance between characters. The
meaning of distance in the y axis is different. Relative
distance is not important. Players are only interested in
whether a character is in the air. If a player character is in
the air, the player mostly will perform an air attack. On the
other hand, if the player character is on the ground and an
opponent is in the air, the player may decide to perform an
anti-air attack. Hence, the state of the y coordinate can be
simplified. In our experiment, this state was given 4
possible values. They are 0: both characters are on the
ground, 1: a player character on the ground and an
opponent in the air, 2: the player character in the air and the
opponent on the ground and 3: both characters are in the air.

Figure 7: Range of Distance in the x Axis.

• Bit 15-18 store an opponent state. Keeping all of the
opponent states is not necessary. There are only two things
that an AI needs to know about its opponent. The first is
whether the opponent is attacking. The second is whether
the opponent is in a state that can be attacked. In our
experiment, an opponent state had 6 possible values. They
are, 0: any state that does not match other states. 1: the
opponent is in damaged animation. The player can attack
the opponent in this state. 2: the opponent is in a wake-up-
from-knocked down state, which makes him invulnerable to
any attack (most games use this mechanism to prevent
unfair advantages). 3: the opponent is dizzy (some games
do not have this), and cannot do anything. This state is a
very nice opportunity for the player to perform his best
attack combos. 4: the opponent is in an attacking motion. 5:
the opponent is doing a block action.
 Since our opponent state contained 4 bits. There were
many possible values left unused. Other games can utilize
such values as appropriate.

• Bit 19 tells us whether there is a player character’s bullet
on the screen. The bullet is mostly used for keeping
distance form the opponent, or making an anti-air trap.
Therefore, when combining with other bits, only one bit
should be enough for this data.

• Bit 20-22. We used 3 bits to keep an opponent’s bullet
information. In our experiment, 6 possible distance values
between a player character and a bullet were defined.
Depending on the distance, a player can choose to perform
various actions to react to an opponent’s bullet, such as
countering with his own bullet or jumping out of the way.
Our bullet distance also included a ‘safe’ state, triggered

11 33 55 66 77 88 99

4422
[9] More than 75%.311-380

[8] 62% of screen.241-310

[7] 50% of screen.191-240

[6] 40% of screen.141-190

[5] 30% of screen.96-140

[4] 25% of screen.76-95

[3] Normal attack.63-75

[2] Throw distance.46-62

[1] Close attack.10-45

Range ID and
Range Meanings

Distance
(dot unit)

[9] More than 75%.311-380

[8] 62% of screen.241-310

[7] 50% of screen.191-240

[6] 40% of screen.141-190

[5] 30% of screen.96-140

[4] 25% of screen.76-95

[3] Normal attack.63-75

[2] Throw distance.46-62

[1] Close attack.10-45

Range ID and
Range Meanings

Distance
(dot unit)

1

1

1

7

3

1

4

2

4

8

nBits

Character side, left right.230

Is Player at corner.231

Is enemy at corner.232

Enemy damage.12823-29

Enemy’s bullet state.820-22

Character’s bullet state.219

Enemy character state.1615-18

Delta position in Y axis.413-14

Delta position in X axis.169-12

Character animation set ID.2561-8

MeaningsnValuesBit no.

1

1

1

7

3

1

4

2

4

8

nBits

Character side, left right.230

Is Player at corner.231

Is enemy at corner.232

Enemy damage.12823-29

Enemy’s bullet state.820-22

Character’s bullet state.219

Enemy character state.1615-18

Delta position in Y axis.413-14

Delta position in X axis.169-12

Character animation set ID.2561-8

MeaningsnValuesBit no.

2 2 2 1 2 2 2 2 1 2 2 2 2

stand fw crouch crouch kick heavy

2 2 2 1 2 2 2 2 1 2 2 2 22 2 2 1 2 2 2 2 1 2 2 2 2

stand fw crouch crouch kick heavy

A B C

AA B C

when the opponent’s bullet has already passed the player
character.

• Bit 23 to 29 store the damage that an opponent character
receives at that animation frame. We designed this to be
able to distinguish between situations with the same state
but come from different actions, such as distinguishing
between two combination attacks.

 Imagine two situations where a player character is
crouch-medium-punching and his opponent is sustaining
damage, the x and y distance of the two situations are the
same, and there is no bullet on the screen (see the middle
frame of figure 8). The first situation comes from a jump-
kick, and will end with a tornado kick as a 3-hit
combination attack. The other situation comes from a
crouch-kick, and will end with a fire Hadoken bullet as a 3-
hit combination attack.

 If we only look at the second frame, you can see that the
two sequences are exactly the same. Therefore, the tornado
kick and the Hadoken may have the same probability of
occurrence. This is wrong, since any whole sequence of
combination attack should be remembered in its entirety in
order for the ghost AI to perfectly reproduce the
combination attack frequently used by the player. Any
mixed sequence is considered unacceptable because it does
not match the player’s style of using combination attacks.

Figure 8: Different Combos Attack Situation.

 To differentiate between combinations, we use damages
that the opponent receives. In the first sequence of figure 8,
the jump-kick causes 16 damage, then the crouch-punch
causes 5 damage. Therefore the overall damage is 21. In the
other sequence, the total damage that the opponent receives
in the second frame is only 11. Now we can imitate the
whole first sequence correctly. There is a chance that total
damage value remains equal but that is very rare. Using
damage value helps save memory space. Otherwise, our
system will have to remember a sequence of animation sets,
which is more memory consuming.

 In many fighting games, an attack’s damage value is not
constant. For example, a heavy punch receives a damage
bonus if used to counterattack. In order to use our method
correctly, damage bonus and penalty need to be considered.

• Bit 30 tells us whether a player character is facing left or
right. Players, especially novices, play the game differently
depending on the direction their characters are facing. Some

can only execute a special move when facing right. Some
cannot perform a combination attack when facing an
unfamiliar side.

• Bit 31 tells us whether a player character is at a corner or
not. When a character is at corner, it is easier to be
damaged by combination attacks because there is no space
for evasion. Players usually try to escape from a corner.

• Bit 32 tells us whether an opponent character is at a corner.

 As an example, the situation in figure 7 is saved as
follows: Bit 1-8 are set to 0 (player character is standing).
Bit 9-12 become 0111 (range 8 but begin with 0). Bit 13-14
are set to 0 (both on the ground). Bit 15-18 become 0
(standing normal). Bit 19-22 are set to 0 (no bullet). Bit 23-
29 are set to 0 (no damage occurs). Bit 30 is 1 (player
facing left). Bit 31 is set to 0 (player is not at any corner).
Bit 32 becomes 1 (opponent is at a corner). When we bring
all 32bits together the result will be 2,684,356,352 (in
decimal). Details can be changed to match other games or
other platforms. We will discuss this topic again in section
5.1.

2.4 Creating Ghost AI File

 When the scanning process discovers that animation set
change takes place, the situation in the frame before that
discovered frame is encrypted into 32-bit data (integer) by
the process in section 2.3.5. Its corresponding case base can
now be created by combining the situation ID (32-bit
situation encryption result) with its response action list. An
example of our case base is shown below.

SituationID: 0000000000
TotalRatio: 03 TotalNextAni: 02
 NextAni: Punch-Light-Close Ratio 2
 NextAni: Kick-Heavy-Close Ratio 1
:
SituationID: 2684356352
TotalRatio: 01 TotalNextAni: 01
 NextAni: Hadouken Ratio 1

 Each case will have situationID for representing each
game situation. TotalRatio is the number of incidents the
player encounters that situation. TotalNextAni is the
number of different animation sets that the player performs
when facing that situation. It is followed by the list of those
animation sets and the number of times the player performs
each animation set. The ratio of each animation set and the
total number of sets will be used in response selection while
the ghost AI is actually running.

 From above example cases, the player encountered
situation 0 three times and decided to do a light-punch
twice and a heavy kick once. These cases should be kept in
a data structure that is convenient and fast to insert and find
because we need to know whether the situation is a new
situation that player never encounters (so we can add new
data from scratch), or an old situation that updates the
response action list. In our experiment we chose map of
standard template library (STL), which is a balanced binary
search tree, to store the cases. The tree was written into our

Total: 26

HadokenCrouch PunchCrouch Kick

Tornado KickCrouch PunchJump Kick

Total: 16 Total: 21

Total: 6 Total: 11 Total: 17

ghost AI file. Using file allows for future modifications of
the knowledge base.

3. USING GHOST AI

 To run the ghost AI, first, the game needs to load any
required database such as the animation set database. Then
it needs to load the ghost AI case base into some data
structure that allows quick finding and matching. A new
case is never inserted while running the ghost AI.
 From the data in section 2.4, the game first loads all
cases into the map. When the situationID 0 takes place,
the case that has situationID 0 in the map is searched. It
will be found and returned. That case has a total ratio of 3
and has two next animations (light-punch with ratio 2 and
heavy-kick with ratio 1). The game then randomly selects
one of these actions corresponding to the ratio value and
sends a command to perform that action.
 A command is a controller press function. For example,
if the ghost AI decides to fire Hadoken bullet, the controller
press function will create a signal buffer like:

PRESS_DOWN 6 frames,
PRESS_DOWN|PRESS_FORWARD 6 frames,
PRESS_FORWARD 6 frames,
PRESS_PUNCH 6 frames

 That will make the controller signal buffer not empty for
the next 24 frames. While the buffer is not empty, our ghost
AI will not encrypt game state situation or find any case
base from the map, but will immediately return the next
signal in the buffer to the emulator.

4. VERIFYING METHOD AND RESULTS

 The best way to evaluate a ghost AI’s similarity to its
creator should be: letting its creator verify with his own
eyes. But sometimes, people can make incorrect judgments,
forgetting even their own playing styles. Therefore we
designed a measurable method for evaluating the ghost AI.

4.1 The Experiment

 We appointed thirty two SFZ3 players and let them play
the game for approximately 2 to 10 minutes. We recorded
their game events in VMV file format (recording the
beginning game state and controller sequence) and created
their ghost AI. After that, we let the player semi-play the
game again two more times, while their ghost AI was
playing and while their own playing movie was playing.
The term semi-play means players see their ghosts or their
own movies playing while pressing the controller,
imagining that they are controlling their characters in that
situation. We wanted to compare the controller signals of
the ghosts with the players’ signals. We also wanted to
compare the players against their video.

 Controller signals should not be compared frame-by-
frame, because only 1 frame delay (1/60 second) will cause
the rest of the matching process to fail.

 Therefore the controller signals need to be normalized
before any comparison can be done. In our approach, we
normalized the signals by splitting the signals into parts.
Each part contained approximately 5 to 15 signals. After
that, we combined all the same signals that appear
continuous into one signal (when a player presses one
button normally, it takes approximately 6-8 frame, so it
gives out 6-8 continuous signals). For example, if the
signals are as follows:

Raw ghost signal:
16,16,16,32,32,32,64,64,64,64,128,128,256,256,256
Raw player signal:
16,16,16,16,16,16,32,32,32,32,64,64,128,128,128

After normalized they will be like these.

Normalized ghost signal: 16,32,64,128,256
Normalized player signal:16,32,64,128,0

 It can be seen from the example that if we compare raw
signals directly the result will be 3 of 15 signals match. The
matching result is not correct because identical commands
that are pressed for slightly different amount of time will be
regarded as being different. However, if we compare the
two signals after our normalization, the match is 4 out of 5.

 We had two methods for slicing controller signals. In the
first method, we sliced every 15 frames. We had tried
several values and this value gave the best result. Too small
values made the normalization meaningless, while too large
values put more than one signals in the same frame, making
the result unreliable. In the second method, we performed
the slicing every time the signal of the ghost AI or the
player movie changed values, based on the assumption that
matching signals should occur in the same frame time
period as its counterpart. With the second method, we
always had one signal per slicing window. We also gave
score if there were some similarity between controller
signals. For example, if the ghost AI was pressing down-
forward and the player was pressing forward only, we gave
similarity score of 0.5 (50%) to the ghost AI.

4.2 Result

 The result of our experiment is illustrated in figure 9 and
table 2. Player_Player% is the similarity (in percentage)
between each player’s own movie and his actual control
when re-playing the situation in the movie. Ghost
AI_Player% compares each ghost AI with its corresponding
player’s re-play. Delta% is the difference between the two
comparisons. Table 2 displays the overall statistical
summary. Delta A and Delta B indicate delta percentage
points between the result of [player’s own movie vs. player]
and [ghost AI vs. player]. Score is the score that the players
evaluate their ghosts’ similarity to their fighting styles
based on their feelings.

 Both signal slicing methods gave similar results. But the
second method gave less matching percentage points. This
is likely because the number of signals after the
normalization was less than in the first method. With many
long signals in play, such as idle signals, the first method

scored better because it did not compress long signals into
one signal.

 For the first method, the average similarity between
ghosts and the players is 26.33%. This may seem small. But
if we look at the comparison between the players and their
own movies, the similarity is only 34.96%. The ghosts’
performances were therefore very close to players’
performances (75.31% close). Some ghosts even scored
better than their corresponding players.

 An average satisfactory score given by players is 72.2%,
which is good. The players thought that the ghosts
sometimes performed more attacks and fewer defenses than
their creators. Some players could not distinguish between
their ghosts and their own movies while semi-playing. (We
did not tell the players which engine was really controlling
the characters).

Figure 9: Players vs. Movies and Players vs. Ghosts.

Table 2: Summary Result of Experiment. A: Slice Every 15
Frames, B: Slice Every Time When Signal Change.

5. DISCUSSION

5.1 About Situation Encryption

 The situation encryption method is very important. Our
proposed integer representation is only intended as a guide,
not an exact solution. Details can be changed to suit other

games or characters. For example, a character with long
arms will have greater throwing and attacking ranges.

Our situation information did not consider heath points and
super move points because these bars are always full in
training mode, the game mode that we used. In actual play,
these parameters can influence players’ decision. For
example, some players always use their super move when
their opponents’ health bar is nearly exhausted. This is
because a special move deals damage even when guarded.
Without these two parameters, our guideline encryption
criteria still gave satisfactory results.

5.2 Pitfalls and solutions

 Creating a ghost AI by scanning changes in animation
ignores the fact that “not doing anything” is also a player’s
style. For example, when a character is damaged while in
the air, its player can choose not to do anything and let the
character fall to the ground normally (animation set does
not change), or perform an air recovery (animation set
changes). Our method only regards changes in animation as
actions intended by players. Therefore “not doing anything”
is not recorded and counted as one of possible player
actions. This means even though the player may choose to
do an air recovery only one out of ten times, his ghost AI
will always do the air recovery when facing the same
situation. The solution to this problem involves identifying
situations that allow for both reactive and “do nothing”
actions, then adding “do nothing” as the intended action
appropriately if the system does not detect any animation
change when running the situation.

 Other pitfalls are caused by players changing fighting
styles. Ghosts do not unlearn things easily. If a player
changes his playing styles, his ghost AI will use mixed-up
styles learned from all his fights. Therefore it will not act
like him. To use more than one playing styles, a player will
have to create another ghost AI.

5.3 Performance of Creating and Using Ghost AI

 To create a ghost AI, we need to store a player battle
record into a file and scan it. This process does not use
heavy CPU power or large amount of memory. The amount
of data recorded depends on the length of the recording
session. In our experiment, we recorded about 4KB of data
per minute. When a ghost AI is running, if used with a
suitable data structure such as a balanced binary search tree,
searching any case is guaranteed to use O(log n) amount of
time (when n is the number of cases). A ghost AI with one
thousand cases should find a result in the tenth search. Each
case based data uses approximately 40 bytes of memory.
Therefore, a thousand-case ghost requires only 40KB of
memory. In short, creating and running our ghost AI does
not slow down the game or consume much memory at all.

5.4 Other Findings

 We also tried to verify our results by using methods other
than in section 4. These methods used human judgment.

Some did not measure the similarity between human and
his ghost AI counterpart directly, so we did not include
these methods in our main experimental result in section 4.

Ghost AI vs. its creator: We invited players to see many
matches of AI against AI. The AIs were the mixture of
ghost AIs, player recorded movies and original in-game AIs.
We asked them if they could tell which one was a ghost AI
and which one was a player recorded movie that was the
source of that ghost AI. Most of them could answer
correctly about the movies and their ghost counterparts.
From each movie-ghost pair, only some people could tell
which one was a ghost. Some even believed that a ghost
was a human player.

Statistical performance of Ghost AI: We counted the
number of each movement that each ghost performed then
compared with its creator’s recorded movie. It was found
that each movement was executed with a similar rate for
both. This verified our implementation.

 We also counted the hit rate and the damage rate of each
ghost against its creator. Each ghost achieved similar results
compared to its creator.

The effect of the amount of time used in training: The
average number of cases generated was 180 in the first two
minutes. It gradually increased to 350 cases in ten minutes
(this statistic varied depending on players, some player
could create 450 cases in the first two minutes). The longer
the training period, the harder new cases will come up.
Therefore we believe that if a player and his opponent do
not change their style, his training period does not have to
be long to obtain an effective ghost.

 We also selected some player that has a solid playing
style to play for a longer period (30 minutes). The resulting
ghost was not noticeably different from the resulting ghost
created by a 10-minute play.

6. CONCLUSION AND FUTURE WORK

 We propose a method and concept for creating ghost AI
without having to know game source code. We used AI-
TEM, an emulator based testbed to provide a commercial
game testing environment. Our concept for ghost AI
creation is general for all fighting games. Using SFZ3,
which is a very well respected commercial game. Its basic
systems are use in almost real fighting games so our
findings are guaranteed to be applicable to real games.

 Our method produces good results. Ghost AIs display
their creators’ playing styles even when the training time is
short. The two-minute average training time we used is
equal to a match time in an average fighting game.

 For future experiment we are interested in exploring
techniques for ghost AI in team based fighting games,
where characters can cooperate. Another interesting future
work is developing AI that can adapt and counter an
opponent’s play style.

REFERENCES

Bailey, C. and M. J. Katchabaw. 2005. An Experimental Testbed
to Enable Auto-Dynamic Difficulty in Modern Video Games.
Proceedings of the 2005 GameOn North America Conference.
Montreal, Canada.

Demasi Pedro and Adriano J. de O. Cruz. 2002. Online
CoEvolution for Action Games. GAME-ON 2002 3rd
International Conference on Intelligent Games and Simulation,
SCS Europe Bvba, pp. 113–120.

Graepel Thore, Ralf Herbrich, Julian Gold. 2004. Learning to fight.
International Conference on Computer Games: Artificial
Intelligence, Design and Education

Kendall Graham, Kristian Spoerer. 2004. Scripting the Game of
Lemmings with a Genetic Algorithm. Proceedings of the 2004
Congress on Evolutionary Computation, IEEE Press,
Piscataway, NJ, pp. 117-124

Ponsen Marc J.V., Hector Munoz-Avila, Pieter Spronck, and
David W. Aha. 2005. Automatically Acquiring Domain
Knowledge For Adaptive Game AI Using Evolutionary
Learning. Proceedings The Twentieth National Conference on
Artificial Intelligence.

Spronck Pieter, Ida Sprinkhuizen-Juyper, Eric Postma. 2004.
Online Adaptation Of Game Opponent AI With Dynamic
Scripting. International Journal of Intelligent Games and
Simulation, Vol. 3, No. 1, University of Wolverhampton and
EUROSIS, pp. 45–53.

Thunputtarakul Worapoj and Kotrajaras Vishnu. 2006. AI-TEM:
Testing Artificial Intelligence in Commercial Game using
Emulator. 8th CGAMES International Conference on Computer
Games: AI, Animation, Mobile, Educational & Serious Games.
Louisville Kentucky, USA.

[1] AI-TEM: Artificial Intelligence Testbed in Emulator
(2007). http://www.cp.eng.chula.ac.th/~g48wth/aitem.htm
[2] Gamespot review: Street Fighter Alpha3 (2002).
http://www.gamespot.com/gba/action/streetfighteralpha3/in
dex.html
[3] Nintendo GameboyAdvance (2007).
http://www.gameboy.com
[4] Python (2007).
http://www.python.org
[5] Street Fighter Zero3, Capcom game (2006).
http://www3.capcom.co.jp
[6] Tekken 5: Dark Resurrection, Namco game (2005).
http://www.tekken-official.jp/tk5dr/index.html
[7] Tekken Zaibatsu , Tekken ghost AI community (2007).
http://www.tekkenzaibatsu.com/forums/ghostlist.php
[8] Virtua Fighter 4, Sega game (2002).
http://www.virtua-fighter-4.com
[9] VisualboyAdvance, GameboyAdvance Emulator (2005).
http://vba.ngemu.com
[10] Street Fighter Alpha Anthology: Bradygames official
strategy guide (2006)
[11] All About Street Fighter Zero3: All About series
vol.21, Studio BENT STUFF (1998)

